
Choiceless Polynomial Time, Counting and

the Cai–Fürer–Immerman Graphs

Anuj Dawar

University of Cambridge Computer Laboratory, William Gates Building,

J.J. Thomson Avenue, Cambridge, CB3 0FD, United Kingdom.

David Richerby

Department of Mathematics, University of Athens, Panepistimioupolis, GR157-84,

Athens, Greece.

Benjamin Rossman

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,

MA 02139, U.S.A.

Abstract

We consider Choiceless Polynomial Time (C̃PT), a language introduced by Blass,
Gurevich and Shelah, and show that it can express a query originally constructed
by Cai, Fürer and Immerman to separate fixed-point logic with counting (IFP + C)
from P. This settles a question posed by Blass et al. The program we present uses
sets of unbounded finite rank: we demonstrate that this is necessary by showing
that the query cannot be computed by any program that has a constant bound on
the rank of sets used, even in C̃PT(Card), an extension of C̃PT with counting.

Key words: Finite model theory, descriptive complexity, choiceless polynomial
time, counting quantifiers.

Email addresses: Anuj.Dawar@cl.cam.ac.uk (Anuj Dawar),
davidr@math.uoa.gr (David Richerby), brossman@mit.edu (Benjamin Rossman).
1 Funded by the European Social Fund and Greek National Resources — (EΠEAEK
II) PYTHAGORAS II. Research carried out at the University of Cambridge Com-
puter Laboratory, supported by EPSRC grant GR/S06721.
2 Research carried out during internships at Microsoft Research, One Microsoft
Way, Redmond, WA 98052, U.S.A. and IBM Almaden Research Centre, 650 Harry
Road, San Jose, CA 95120-6099, U.S.A.

Preprint submitted to Elsevier Science 13 August 2007

1 Introduction

An important focus of the field of descriptive complexity is to provide logical
characterizations of computational complexity with the aim of deploying log-
ical and, in particular, model-theoretic methods to the study of complexity.
The central open question in the area is whether there is a logic that ex-
actly characterizes deterministic polynomial-time computability on relational
structures. Such a logical characterization of NP is known through the work
of Fagin [1], who showed that a class of structures is recognizable by a non-
deterministic machine in polynomial time if, and only if, it is definable in
existential second-order logic.

Immerman [2] and Vardi [3] independently showed that the polynomial-time
computable properties of linearly ordered structures are definable in the fixed-
point logic IFP (in this paper we will always use inflationary fixed-point logic,
though we could equally well take least fixed-point logic, as it has equiva-
lent expressive power [4,5]). IFP is too weak to express all polynomial-time
properties of unordered structures. In particular, there is no formula of IFP
that asserts that the size of a structure is even. Cai, Fürer and Immerman [6]
showed that IFP + C, the extension of IFP with counting terms, is still too
weak to express all polynomial-time properties, though it can easily express
evenness and similar cardinality properties. The example constructed by Cai
et al. gives, for each k ∈ N, a pair of graphs, rich in automorphisms, that
cannot be distinguished in Ck

∞ω, the k-variable fragment of infinitary logic
with counting quantifiers. It follows that the graphs are not distinguished by
any formula of IFP + C, which is strictly contained within Cω

∞ω =
⋃

k<ω C
k
∞ω.

There is, however, a single polynomial-time Turing machine that is able to
distinguish the members of every pair. The logics we refer to are reviewed in
Section 2 below and the reader may consult [7,8] for the proofs of the stated
results and a more thorough account of the problem of providing a logical
characterization of P.

Since the result of Cai et al., some logics have been proposed that extend
the power of IFP + C while still defining only polynomial-time properties. A
significant one is the logic with specified symmetric choice of Gire and Hoang
[9] (see also [10,11] for an analysis of symmetric choice) which relies on a
choice construct. It remains open whether this logic captures all polynomial-
time computations. In an attempt to understand the role of choice in defining
polynomial-time properties, Blass, Gurevich and Shelah [12] define choiceless
polynomial time, C̃PT, a ‘logic’ based on a machine model, which they describe
as an attempt to characterize what can be done without introducing choice.
They show that this logic is strictly more expressive than IFP but is still
unable to express cardinality properties such as the evenness of the number of
elements in a structure. This leads to a natural extension of C̃PT by means

2

of a counting mechanism. This extension, C̃PT(Card), is studied by the same
authors, who show it to be strictly more expressive than IFP + C [13]. The
example that separates C̃PT(Card) from IFP + C is a padded version of the
problem defined by Cai et al. to prove that IFP + C does not capture P.
Blass et al. leave open the question of whether there is any polynomial-time
computable property that is not definable in C̃PT(Card) and, in particular, of
whether the example of Cai et al. without padding is definable in the logic. In
fact, the construction of Cai et al. yields not just a single example of a property
that is not definable in IFP + C but a general construction that gives, for
each finite connected graph G with at least two vertices, a pair of graphs G

0

(referred to as ‘even’) and G
1 (‘odd’) which cannot be distinguished in Ck if

G has no separators of size k. (We refer to these graphs as CFI graphs.) Thus,
using a suitable infinite sequence of graphs G the desired result is obtained.
Indeed, we can also take G to be an ordered graph and this is the version of
the construction used in [13]. For ordered graphs G, the graphs G

0 and G
1 are

equipped with a linear pre-order.

In the present paper, we answer one question posed by Blass et al. by showing
that, in the case when we begin with ordered graphs, there is an algorithm in
C̃PT that distinguishes G

0 from G
1. The algorithm is based on the construction

of objects (hereditarily finite sets) with a high degree of symmetry that are,
nonetheless, able to determine the parity of the graph (i.e., distinguish between
G

0 and G
1). The algorithm does not use counting but crucially relies on the

use of hereditarily finite sets of unbounded rank. We show a corresponding
lower bound by establishing that no C̃PT(Card) program using only objects
of bounded rank can determine the parity of the CFI graphs, even when we
begin with ordered graphs. The lower bound is based on an analysis of the
automorphism structure of the graphs G

0 and G
1, extending the techniques

developed by Blass et al. in [12] to show that evenness is not definable in C̃PT.

The remainder of the paper is structured as follows. The next three sections
cover the necessary background. In Section 2, we review the definitions of
fixed-point logics, infinitary logics and logics with counting; Section 3 reviews
the definition of the CFI graphs and Section 4 reviews the choiceless machine
model and the definitions of C̃PT and C̃PT(Card). Section 5 presents the
proof that the CFI example can be solved by a C̃PT program. The next three
sections present the lower bound proof and are structured to follow the proof
of Blass et al. that C̃PT cannot express evenness on pure sets, but carried
out on the CFI graphs, in the presence of counting. Section 6 shows that each
C̃PT(Card) program on an input structure I can be translated into a formula
of IFP + C working on the extension of I with its hereditarily finite sets. In
Section 7, we present a general result showing that any hereditarily finite set
of fixed rank r activated in the course of any run of a C̃PT(Card) program on
an input of size n is fixed, with respect to any Abelian automorphism group,
by a set of elements (a ‘support’) of size O((log n)r). Section 8 shows that,

3

provided certain conditions (which, in particular, hold of the CFI graphs) are
met, any distinctions that can be made in the structure with hereditarily finite
sets in Ck can be made in the original structure in Cmk where m is the size
of the support of the elements. It follows that no C̃PT(Card) program that
uses sets of rank bounded by some constant can determine the parity of CFI
graphs. Concluding remarks appear in Section 9.

2 Preliminaries

We assume the standard definitions of a first-order vocabulary and a structure
interpreting it. All vocabularies that we consider are finite and, unless other-
wise stated, all structures are finite. An (m-ary) query is a map from structures
over some fixed vocabulary σ to (m-ary) relations on the structures, that is
closed under isomorphism. A 0-ary query is also called a Boolean query. Thus
a first-order formula with up to m free variables defines an m-ary query and a
sentence defines a Boolean query. We identify a Boolean query with the class
of structures that it maps to true.

FO denotes first-order logic. In general a logic L (such as FO or IFP) denotes
both a set of formulae and the class of queries definable in that logic.

By closing first-order logic under an operator for forming the least fixed points
of positive formulae, we obtain the logic LFP. This turns out to be equivalent
in expressive power to the logic IFP which allows instead the formation of
inflationary fixed points of arbitrary operators [4,5]. In the present paper, we
use IFP in preference to LFP.

Formally, IFP is the logic obtained by adding to first-order logic the formula-
formation rule that, if R is a new relation symbol, ϕ is a formula of IFP, x̄
a tuple of first-order variables and t̄ a tuple of terms, both of length equal to
the arity of R, then (ifpR,x̄ ϕ)(t̄) is a formula. The operator ifp binds R and
all occurrences of the variables in x̄ that appear in ϕ but any occurrences of
these variables in t̄ remain free.

The semantics of IFP is given by the rule: I |= (ifpR,x̄ ϕ)(t̄) if, and only
if, the tuple t̄I is in the relation that is the limit of the sequence ϕ0 = ∅;
ϕi+1 = ϕi ∪ ϕ(ϕi) where ϕ(ϕi) is the relation defined in I by ϕ when R is
interpreted as ϕi.

FO(#) is the extension of first-order logic with counting terms. To be precise, it
has two sorts of variables: ordinary variables, which range over |I|, the domain
of the structure I on which they are interpreted, and number variables which
range over the numbers { 0, . . . , ‖I‖ } where ‖I‖ is the cardinality of |I|. (We

4

also write ‖S‖ for the cardinality of an unstructured set S, to avoid confusion
with universes of structures.) The standard ordering and arithmetic operations
on numbers are available in the language. In addition, for any formula ϕ we
can form the term #xϕ (where x is a variable of either sort), denoting the
number of elements that satisfy ϕ(x), modulo ‖I‖+1. (The modulo condition
is required to allow the whole number domain to be counted.) IFP + C is the
logic that extends FO(#) with the inflationary fixed-point operator. It was
shown by Cai, Fürer and Immerman that IFP + C is strictly less expressive
than polynomial time computation [6]. A detailed account of IFP + C and
related results can be found in [14]; see also [8] for a textbook treatment.

Another way of adding counting to first-order logic is to introduce counting
quantifiers. For each natural number i, we have a quantifier ∃>i where I �

∃>ixϕ if, and only if, there are at least i distinct elements a ∈ I such that
I |= ϕ[a/x]. While the extension of first-order logic with counting quantifiers
is no more expressive than FO itself (in contrast to the situation with counting
terms), the presence of these quantifiers does affect the number of variables
that are necessary to express a query.

Let Lk denote the fragment of FO consisting of those formulae which use only
the variables x1, . . . , xk. C

k denotes the k-variable fragment of first-order logic
with counting quantifiers. L∞

∞ω is the extension of first-order logic with in-
finitary conjunctions and disjunctions. Let Lk

∞ω be the k-variable fragment of
L∞

∞ω and let C∞
∞ω and Ck

∞ω be the corresponding logics with counting quan-
tifiers. For each k, Ck is more expressive than Lk and Ck

∞ω is more expressive
than Lk

∞ω. Indeed, for each k, there are formulae of C1 that are not equivalent
to any formula of Lk

∞ω. Let Lω
∞ω =

⋃
k<ω L

k
∞ω and Cω

∞ω =
⋃

k<ω C
k
∞ω. That is,

Lω
∞ω consists of those infinitary formulae in which only finitely many distinct

variables appear.

Infinitary logics are of interest because any formula of IFP is equivalent over
finite structures to one of Lω

∞ω. Similarly, IFP + C translates to Cω
∞ω (this

involves translating counting terms into counting quantifiers) and most results
establishing inexpressibility in IFP and IFP + C rely on this fact. Thus, the
construction of Cai et al. gives a polynomial time query that is not definable
in Cω

∞ω.

Given two structures I and J and a logic L, we write I ≡L J to indicate that
no L-formula distinguishes I and J . For finite I and J , I ≡Lk

J if, and only
if, I ≡Lk

∞ω J [15] and I ≡Ck

J if, and only if, I ≡Ck
∞ω J [16]. Thus, to establish

that a Boolean query is not definable in Cω
∞ω (and, a fortiori, not definable

in IFP + C) it suffices to exhibit structures Ik and Jk for each k, that are
distinguished by the query, with Ik ≡

Ck

Jk. Hella has shown that ≡Ck

is char-
acterized by the k-pebble bijection game [17]. This is played by two players,
the spoiler and the duplicator, on structures I and J , with k pairs of pebbles

5

{ (xi, yi) : 1 6 i 6 k }. For each move, the spoiler chooses a pair of pebbles
(xi, yi), the duplicator chooses a bijection f : |I| → |J | and the spoiler chooses
a ∈ |I| and places xi on a and yi on f(a). If, after some move, the map x̄ 7→ ȳ is
not a partial isomorphism, the spoiler wins; the duplicator wins infinite plays.
The duplicator has a winning strategy if, and only if, I ≡Ck

J .

3 The graphs

In this section, we describe the class of graphs that we will use in the rest of
the paper. The graphs are originally due to Cai, Fürer and Immerman [6]; our
presentation is essentially the same as that of Blass et al. [13] which, in turn,
is an adaptation of Otto’s presentation [14].

For a graph G = (V,E), assumed to be finite, undirected and simple, V (G) =
V , ‖G‖ = ‖V ‖ and E(G) = E. We write E(v) for the set of edges incident on
a vertex v.

Definition 1 Let G = (V,E) be a connected graph with at least two vertices.
Let V̂ = { vX : v ∈ V and X ⊆ E(v) } and let Ê = { e0, e1 : e ∈ E }, where the
vX and ei are new atoms (i.e., primitive entities considered not to be sets).

G∗ =
(
V̂ ∪ Ê,

{
{ vX, e1 } : e ∈ X

}
∪

{
{ vX, e0 } : e ∈ E(v) \X

})
.

For v ∈ V of degree d, we write v∗ for the associated set of 2d vertices in V̂ ;
likewise, we write e∗ for the set { e0, e1 }.

Definition 2 Let G = (V,E,6) be an ordered connected graph with at least
two vertices. 6 induces a lexicographic order on E, which we also write 6. Let
G = (G∗,4), where the linear pre-order 4 is defined by

• vX 4 wY if, and only if, v 6 w;
• vX 4 ei for all vX and ei;
• ei 4 f j if, and only if, e 6 f .

Any automorphism ρ of G must fix the set v∗ for each v ∈ V as it would
otherwise not preserve 4. Also, it must fix the set e∗ for each e ∈ E as the
vertices in different e∗’s are connected to vertices in different v∗’s. (Note that
any individual v∗ or e∗ is not necessarily fixed pointwise.) It can be seen that
the action of ρ is completely determined by the set S ⊆ E given by

S =
{
e : ρ swaps e0 and e1

}
.

6

Indeed, for every H = (V ′, E ′) ⊆ G (not necessarily an induced subgraph), we
can define ρH to be the automorphism of G that flips exactly those edges in
E ′:

ρH :





ei 7→ e1−i for e ∈ E ′, i ∈ { 0, 1 }

ei 7→ ei for e 6∈ E ′

vX 7→ vXM(E′∩E(v)) .

Each ρH depends only on E(H) and is an involution of G. Aut(G) is generated
by the set of ρH where H contains a single edge.

The Cai–Fürer–Immerman graphs are subgraphs of G which have restricted
automorphisms.

Definition 3 Let T ⊆ V . For each v ∈ T , let vT = { vX : ‖X‖ is odd } and,
for each v ∈ V \ T , let vT = { vX : ‖X‖ is even }. G

T is the subgraph of G

induced by Ê ∪
⋃

v∈V v
T. G

T is even if ‖T‖ is even and odd, otherwise.

Since the ρH are automorphisms of G, the image of any G
T ⊆ G under ρH

must be an isomorphic copy of G
T and an induced subgraph of G. For a graph

H, let odd(H) ⊆ V (H) be the set of H’s vertices of odd degree. It is easy to
see that ‖odd(H)‖ must be even (otherwise, the sum of degrees is odd); call
H an even subgraph of G if odd(H) = ∅. In fact, for every H ⊆ G and T ⊆ V ,
ρH(GT) = G

TModd(H) and Aut(GT) = { ρH : H ⊆ G is an even subgraph }.

A proof of the following proposition can be found in, e.g., [13].

Proposition 4 For connected G, G
S ∼= G

T if, and only if, ‖S‖ ≡ ‖T‖
(mod 2).

As such, the even and odd versions of G
T are uniquely defined up to isomor-

phism: call these graphs G
0 and G

1, respectively. The parity of a CFI graph
G

T is the parity of ‖T‖.

4 C̃PT(Card)

The C̃PT model of computation is introduced by Blass, Gurevich and Shelah
in [12] and extended with a counting mechanism by the same authors in [13]
to give C̃PT(Card).

We summarize the computation model here but the reader should consult
these two references, particularly [12], for a full description. Our presentation
is substantially the same as that of Blass et al.: the only significant difference
is that we represent numbers as a linearly-ordered set of atoms, which is the
way they are represented in IFP + C, whereas Blass et al. code them as von

7

Neumann ordinals. This change is motivated by our interest in the rank of the
sets used in a computation but has no other material effect on the computation
model.

Conventional models of computation, such as Turing machines, are sequen-
tial devices operating on strings. Because the machines operate on strings,
relational structures must be encoded to be used as inputs. This coding is
straightforward but is problematic because it is possible that a machine might
accept some codings of a structure and reject others. In contrast, C̃PT pro-
grams are based on Gurevich’s abstract state machines [18], so are parallel
and operate directly on relational structures.

Given an input structure I of vocabulary σ, a C̃PT program operates on hered-
itarily finite sets over |I|, with the elements of |I| viewed as atoms (objects
that are not sets). HF(I) is the least set having as members all elements of
|I| and all its own finite subsets. We abuse notation and also write HF(I) for
the extension of I with universe HF(I) and the additional relation ∈ and con-
stant ∅ with the obvious interpretations. Any automorphism η of I naturally
induces an automorphism of HF(I); we will usually write η for this induced
automorphism, also.

An object x ∈ HF(I) is transitively-closed if, whenever y ∈ x and z ∈ y, we
have z ∈ x. The transitive closure of x is TC(x), the least transitively-closed
set containing x. The rank of an object x ∈ HF(I) is defined inductively: ∅
and the elements of |I| have rank 0; the rank of a non-empty set x is one
greater than the maximal rank of its members.

A C̃PT program proceeds by making parallel updates to a series of ‘dynamic
functions’ via rules that are iterated until the distinguished nullary dynamic
function Halt is set to true. At this point, the program is deemed to accept if,
and only if, the distinguished nullary dynamic function Output is true.

The vocabulary of a program consists of two parts: the input vocabulary σ,
which is assumed to be purely relational, and the vocabulary δ of dynamic
function names, including the nullary functions Halt and Output.

4.1 States

A computation of a program with variables v1, . . . , vk over input structure I
is a finite or countable sequence of states 〈Si : i < κ 〉 for some κ 6 ω.

States of C̃PT programs are expansions of HF(I) adding all functions in δ
and constants v1, . . . , vk, whose interpretations give the values of the dynamic
functions and the variables, respectively. States of C̃PT(Card) programs are

8

expansions of HF(I ∪N) adding all functions in δ and the constants v1, . . . , vk,
where N is a structure whose universe is some suitably-chosen initial segment
of the natural numbers, including zero, equipped with the binary relation
symbol 6N with the obvious interpretation. We assume I and N to be disjoint.

For both kinds of program, the initial state S0 interprets every dynamic func-
tion as the constant function mapping all inputs to ∅. It is a consequence of
the finitary nature of the computation model that, in every subsequent state,
any dynamic function will take values other than ∅ for at most finitely many
values of the arguments.

4.2 Terms, rules and programs

The terms over vocabulary (σ, δ) are defined as follows. We write [[t]]S for the
denotation of a term t in state S, which we do not define where it is obvious.

Variables. Every variable is a term.
Boolean constants. The constants false and true are terms denoting ∅ and
{ ∅ }, respectively.

Boolean combinations. If t1 and t2 are terms, then ¬t1 and t1∧t2 are terms.
The Boolean connectives have the obvious denotation if their arguments
take values true or false and denote false, otherwise.

Equality. If t1 and t2 are terms, then t1 = t2 is a term.
Ordering. If t1 and t2 are terms, then t1 6N t2 is a term. The denotation is

obvious if both t1 and t2 denote numbers and false otherwise.
Set-theoretic functions. ∅ and Atoms are terms; if t1 and t2 are terms, then⋃

t1, TheUnique(t1), t1 ∈ t2 and { t1, t2 } are terms. Atoms denotes the set
of atoms (i.e., |I| or |I| ∪N) as appropriate) and TheUnique(a) denotes the
unique element of a if it is a singleton set and denotes ∅, otherwise.

Counting. If t is a term, Card(t) is a term, denoting the cardinality of the
set [[t]]S, modulo ‖N‖, as an element of N , or 0 if t denotes an atom. 3

Predicates. If P ∈ σ is an n-ary relation symbol and t1, . . . , tn are terms,
then P (t1, . . . , tn) is a term. [[P (t1, . . . , tn)]]S = true if ([[t1]]

S, . . . , [[tn]]S) ∈ P I

and is false, otherwise. Note, in particular that, unless all the ti denote
atoms, the predicate term denotes false.

Dynamic functions. If f ∈ δ is an n-ary dynamic function and t1, . . . , tn
are terms, then f(t1, . . . , tn) is a term.

Comprehension. If v is a variable, t(v), r and g(v) are terms, with v not
occurring free in r, then T ≡ { t(v) : v ∈ r : g(v) } is a term, in which v is

3 In Section 4.4, we will introduce resource bounds for programs. The bounds will
allow us to choose N to be sufficiently large with respect to ‖I‖ that, in any program
that operates within the resource bounds, the denotation of Card(t) is just ‖[[t]]S‖
for any term t denoting a set.

9

bound. [[T]] =
{

[[t]]S[a/v] : a ∈ [[r]]S and [[g]]S[a/v] = true
}
.

Note that our definition of states and terms differs slightly from the original
definition of Blass et al. in [12]. They regard the set-theoretic elements as
being constants and relations in the state; we include only ∅ and ∈ as being
part of the state as the other set-theoretic terms are easily defined from these.

For clarity, we will use the terms Numbers and Points to abbreviate the sets
{ a : a ∈ Atoms : a 6N a } and { a : a ∈ Atoms : ¬(a 6N a) }, respectively.

The rules over vocabulary (σ, δ) are as follows. The denotation of a rule is
the set of updates to the dynamic functions that it generates: these updates
define the successor state. Write 〈 f, ā, b 〉 for the update that sets the value of
f(ā) to b, where f ∈ δ.

Skip. Skip is a rule. [[Skip]]S = ∅.
Update. If t1, . . . , tn+1 are terms and f ∈ δ is an n-ary dynamic function,

then f(t1, . . . , tn) := tn+1 is a rule.

[[f(t̄) := tn+1]]
S =

{ 〈
f, [[t1]]

S, . . . , [[tn+1]]
S

〉 }
.

Conditional. If t is a term and R1 and R2 are rules, if t then R1 else R2 fi

is a rule with denotation [[R1]]
S if [[t]]S = true and denotation [[R2]]

S other-
wise.

Parallel execution. If v is a variable, t is a term in which v is not free and
R is a rule, do forall v ∈ t R od is a rule, in which v is bound.

[[do forall v ∈ t R od]] =
⋃ {

[[R]]S[a/v] : a ∈ [[t]]S
}
.

A set of updates clashes if it contains 〈 f, ā, b 〉 and 〈 f, ā, b′ 〉 for some b 6= b′,
i.e., it tries to assign two distinct values to f(ā). If R is a rule and S a state,
the successor of S is the state S ′ obtained by applying all the updates in [[R]]S

to S, unless [[R]]S clashes, in which case S ′ = S.

A program is a rule without free variables. In fact, we can allow programs to
be finite sets of rules without free variables, putting [[{R1, . . . , Rn }]] =

⋃
i [[Ri]].

We can regard this as an abbreviation for the rule generated by recursively
replacing {R } with R and {R1, . . . , Rn } with the following, where v is a
variable that does not occur free in any of the Ri.

do forall v ∈ { true, false }

if v then {R1, . . . , Rbn/2c } else {Rbn/2c+1, . . . , Rn } fi

od

10

4.3 Runs

A run of a program is a finite or countable sequence of states 〈Si : i < κ 〉 for
some κ 6 ω, satisfying the following properties:

• S0 interprets every dynamic function as the constant function with value ∅;
• Si+1 is the successor of Si for all i;
• [[Halt]]Si = true only if i+ 1 = κ.

If κ = ω, we say that the run is non-terminating. Note that, if any stage pro-
duces a clashing update, the run must be non-terminating. In the following
section, we introduce resource bounds for programs, which explain the possi-
bility above that a run might be finite without its last state having Halt = true.

4.4 Polynomial bounds

In order to obtain the class C̃PT(Card), polynomial bounds are placed on both
the number of stages for which a program is allowed to run and the number of
objects within HF(I ∪N) that it is allowed to use. Both bounds are necessary
to guarantee that a program can be simulated in polynomial time by a Turing
machine operating on a coding of the input structure. Bounding the number of
stages is clearly necessary; bounding the number of objects ensures that only a
polynomial number of parallel assignments is done at each stage, allowing the
computation to be simulated in a polynomial number of steps on a sequential
machine.

Call an object in HF(I ∪N) critical at some stage of a run if it is true or
false, is in the range of some dynamic function or is part of a tuple ā which
some dynamic function maps to a value other than ∅. An object is active at a
stage if it is in the transitive closure of some critical object.

Write Active(I) for the substructure of HF(I ∪N) containing exactly the ob-
jects that become active when a program Π is run on I. Because of the choice-
less nature of the computation, Active(I) is closed under all automorphisms of
I. (Of course, N has no non-trivial automorphisms and there are no automor-
phisms exchanging numbers with elements of I as no element of I participates
in 6N.)

Definition 5 A C̃PT(Card) program of input vocabulary σ is a tuple Π̄ =
(Π, p, q), where Π is a program and p, q ∈ N. The run of Π̄ on a structure I
is the greatest initial segment of the run of Π on I containing at most ‖I‖p

stages and ‖I‖q active objects in total. For the states of the run, we take
|N | = { 0, . . . , ‖I‖q }.

11

Note that any program that activates a set x of size at least ‖I‖q must activate
more than ‖I‖q objects (x and each of its members) and, thus, oversteps the
resource bounds. Hence, in any program that operates within the bounds, N
is large enough to represent the size of every set that is activated and the
modular nature of the Card operator is moot. From this point, we will always
assume that |N | = { 0, . . . , ‖I‖q }.

We say that Π̄ accepts input I if its run on that structure terminates in a
state where Halt and Output are both true and rejects I if its run terminates
in a state where Halt is true but Output is false. Notice that, if the program
Π attempts to use more than its allocated resources of time or active objects,
the run of Π̄ will be a truncated version of the run of Π and will end in a state
where Halt is false. Such a run neither accepts nor rejects.

A C̃PT program is a C̃PT(Card) program containing no Card terms and no
6N terms. Blass et al. show in [12] that, for every C̃PT program Π̄, there is
a Turing machine with polynomial time bounds that accepts exactly those
strings that code structures accepted by Π̄. This proof trivially extends to
C̃PT(Card). Their main result is that C̃PT is not the whole of P because
it cannot define the evenness query, which is easily defined in C̃PT(Card).
On the other hand, C̃PT does define all polynomial-time queries on ordered
inputs.

Blass et al. also show in [12] that C̃PT can define any polynomial-time property
of small definable subsets S ⊆ I, where ‘small’ means that ‖S‖! 6 ‖I‖. This
is because a program can define, in parallel, all ‖S‖! linear orders on S and
use these to compute arbitrary polynomial-time queries on S. For instance,
consider the family of structures consisting, for graphs G, of a copy of the
graph G

0 or G
1 along with ‖G0‖! isolated vertices. There is a C̃PT program

that distinguishes the padded versions of G
0 from the corresponding padded

version of G
1, a query that is not definable in IFP + C. In the following section,

we improve on this result of Blass et al. by showing that C̃PT can distinguish
the the unpadded versions of G

0 and G
1.

5 The algorithm

We now present a C̃PT algorithm that determines the parity of ordered graphs
G

T (that is, the parity of ‖T‖). The algorithm does not involve counting but
does use a slightly enriched model of computation. A C̃PT program with input
structure I ordinarily runs on HF(I), the set of hereditarily finite sets over
I’s universe. For this section only, we enrich this universe with tuples and
additional atoms 0 and 1.

12

Definition 6 Let I be a set. HF+(I) is the least set containing every element
of |I| along with 0 and 1, as atoms, and containing all its own finite subsets
and all finite tuples of its elements.

In other words, HF+(I) treats tuples and the numbers 0 and 1 as first-class
objects, rather than coding them as sets. We use the notation 〈 . . . 〉 for tuples
of positive length in HF+(I) (we do not require the empty tuple). Because
these new objects can be efficiently coded as sets, using this enriched universe
does not affect the expressive power of programs. Objects in HF+(I) can be
coded as sets in HF(I) using a function such as

h(0) = [0, 0]

h(1) = [0, 1]

h(a) = [1, a] for atoms a ∈ I

h(x) = [2, {h(y) : y ∈ x }] for sets x ∈ HF+(I)

h(〈x1, . . . , xn 〉) = [3, [h(x1), [. . . , [h(xn), ∅] . . .]]] ,

where the numbers on the right-hand side are coded as von Neumann ordinals
and [x, y] = {x, {x, y } } is the standard Kuratowski coding of ordered pairs
as sets.

The notion of rank extends to HF+(I) in the obvious way: ∅ and the atoms
have rank zero; tuples and non-empty sets have rank one higher than the
greatest rank of their elements.

The algorithm for finding the parity of a CFI graph G
T proceeds as follows.

The first step is to construct an object µT ∈ HF+(GT), that exhibits a high
degree of symmetry. In particular, it is fixed not only by all automorphisms
of G

T but also by all automorphisms of G — we call such objects super-
symmetric. The key property of µT is that, despite its super-symmetry, µT =
µT ′

if, and only if, ‖T‖ ≡ ‖T ′‖ (mod 2).

The next step is to transform µT into an object B(µT) ∈ HF+(∅) by replacing
each pair of atoms e0 and e1 with the atoms 0 and 1. Because of the super-
symmetry of µT , it does not matter whether we substitute e0 7→ 0 and e1 7→ 1
or e0 7→ 1 and e1 7→ 0, and the choice can be made for each e independently.
The transformation retains the property that B(µT) = B(µT ′

) if, and only if,
‖T‖ ≡ ‖T ′‖ (mod 2).

We now define a ‘parity function’ p : HF+(∅) → { 0, 1 }, recursively as follows.
Put p(0) = 0, p(1) = 1 and

p(〈x1, . . . , xk 〉) ≡
∑

i

p(xi) (mod 2)

p({ x1, . . . , xk }) =
∏

i

p(xi) .

13

Note that the arithmetic required to compute p(x) can be performed in C̃PT,
without counting: for a set S, p(S) = 0 if, and only if, p(s) = 0 for some
s ∈ S; the components of a tuple are ordered so we can compute the sum by
inspecting the terms in turn.

The final step of the algorithm is to compute p(B(µT)), which we show to be
equal to the parity of ‖T‖.

For the remainder of this section, fix a finite, connected, ordered graph G =
(V,E,6) of order n and let v1, . . . , vn enumerate V according to the linear
order 6. Recall that automorphisms of the graph G are given by ρH where
H ⊆ G and automorphisms of a Cai–Fürer–Immerman graph G

T are precisely
those ρH where H is an even subgraph of G. Recall that each ρH ∈ Aut(G)
naturally induces a bijection HF+(Ê) → HF+(Ê) that extends the restriction
of ρH to Ê.

Definition 7 x ∈ HF+(Ê) is symmetric if it is fixed by all ρH ∈ Aut(GT)
and super-symmetric if it is fixed by all ρH ∈ Aut(G).

Each vertex u of the form vX
i is adjacent in G to exactly one of the vertices e0

and e1 for each edge e adjacent to vi in G. Let N(u) be the set of neighbours
of u in G, and let N4(u) be the tuple enumerating the elements of N(u)
according to the order 4. (Note that the restriction of 4 to N(u) is a linear
order.)

Definition 8 For all T ⊆ V and i ∈ { 1, . . . , n }, let

τT
i =

{
N4(vX

i) : X ⊆ E(vi) : X is even ⇐⇒ vi /∈ T
}

τ̃T
i =

{
N4(vX

i) : X ⊆ E(vi) : X is even ⇐⇒ vi ∈ T
}
.

For example, if E(vi) = { e, f, g } where e < f < g, then

τ ∅i = τ̃
{ vi }
i =

{ 〈
e0, f 0, g0

〉
,
〈
e1, f 1, g0

〉
,
〈
e1, f 0, g1

〉
,
〈
e0, f 1, g1

〉 }

τ̃ ∅i = τ
{ vi }
i =

{ 〈
e1, f 0, g0

〉
,
〈
e0, f 1, g0

〉
,
〈
e0, f 0, g1

〉
,
〈
e1, f 1, g1

〉 }
.

Lemma 9 For all S, T ⊆ V and k ∈ { 1, . . . , n },

(1) τS
k = τT

k ⇐⇒ τ̃S
k = τ̃T

k ⇐⇒ vk 6∈ S M T ;
(2) τS

k = τ̃T
k ⇐⇒ τ̃S

k = τT
k ⇐⇒ vk ∈ S M T .

PROOF. Immediate from definitions. 2

14

Definition 10 Let µT
1 = τT

1 and µ̃T
1 = τ̃T

1 . For i ∈ { 1, . . . , n− 1 }, let

µT
i+1 =

{ 〈
µT

i , τ
T
i+1

〉
,
〈
µ̃T

i , τ̃
T
i+1

〉 }

µ̃T
i+1 =

{ 〈
µT

i , τ̃
T
i+1

〉
,
〈
µ̃T

i , τ
T
i+1

〉 }
.

Notice that τT
i , τ̃

T
i , µ

T
i , µ̃

T
i ∈ HF+(Ê) and τT

i 6= τ̃T
i and µT

i 6= µ̃T
i for all T ⊆ V

and i ∈ { 1, . . . , n }.

Lemma 11 There is a C̃PT program that, given input structure G
T, con-

structs the object µT
n .

PROOF. For each i ∈ { 1, . . . , n }, the objects τ T
i and τ̃T

i can be constructed
in deg(vi) steps. Therefore, we can construct maps (i.e. dynamic functions) i 7→
τT
i and i 7→ τ̃T

i in O(n) steps. Maps i 7→ µT
i and i 7→ µ̃T

i require an additional
n steps to construct. The number of active objects is only O(‖GT‖). 2

Note that, in constructing the sequence τ T
1 , . . . , τ

T
n , we are reliant on the linear

order 6 on G’s vertices.

For T ⊆ V and k ∈ { 1, . . . , n }, write T (k) for T ∩ { v1, . . . , vk }.

Lemma 12 For all S, T ⊆ V and k ∈ { 1, . . . , n },

(1) µS
k = µT

k ⇐⇒ µ̃S
k = µ̃T

k ⇐⇒ ‖S(k)‖ ≡ ‖T (k)‖ (mod 2);
(2) µS

k = µ̃T
k ⇐⇒ µ̃S

k = µT
k ⇐⇒ ‖S(k)‖ 6≡ ‖T (k)‖ (mod 2).

PROOF. Easy induction on k. 2

Corollary 13 For all T ⊆ V, µT
n is super-symmetric.

PROOF. Any ρH ∈ Aut(G) maps G
T to G

S where S = T M odd(H). ρH

therefore maps µT
n to µS

n. Since ‖odd(H)‖ is even and ‖T‖ ≡ ‖S‖ (mod 2), we
have µT

n = µS
n. 2

15

For each ei ∈ Ê, define the map Bei : HF+(Ê) → HF+(Ê \ { e0, e1 }) as
follows:

Bei(x) =





0 if x = 0 or ei

1 if x = 1 or e1−i

x if x ∈ Ê − { e0, e1 }

〈Bei(x1), . . . , Bei(xk) 〉 if x = 〈x1, . . . , xk 〉

{Bei(y) : y ∈ x } if x is a set.

In other words, Bei(x) is the function that replaces all instances of ei with 0
and e1−i with 1 throughout the transitive closure of x. Now, define the map
B : HF+(Ê) → HF+(∅) as

B(x) = Be0
1
(Be0

2
(· · ·Be0

m
(x) · · ·)) ,

where e1, . . . , em is the enumeration of E in the order induced by 4. We
would like to compute B(µT

n) by a C̃PT algorithm. This calculation looks
problematic, since e0

i and e1
i are indistinguishable in G

T up to isomorphism.
We cannot compute B(x) without also computing

α(B(x)) = Bα(e0
1
)(Bα(e0

2
)(· · ·Bα(e0

m)(x) · · ·))

for each automorphism α of G
T . This would seem to require ‖Aut(GT)‖ active

objects, which is not bounded by any polynomial in the size of G
T. The fol-

lowing lemma shows that the objects B
e
i1
1

(B
e
i2
2

(· · ·Beim
m

(x) · · ·)) are, in fact,

the same for any choice i1, . . . , im ∈ { 0, 1 }.

Lemma 14 If x ∈ HF+(Ê) is super-symmetric, then Be0(x) = Be1(x) and
Bei(x) is super-symmetric for every e ∈ E.

PROOF. Let x ∈ HF+(Ê) be super-symmetric, and let e ∈ E. Proof is by
induction on the rank of x. The only super-symmetric objects of rank 0 are 0,
1 and ∅ so the base case is trivial. For the inductive step, if x = 〈x1, . . . , xn 〉,
then each xi is super-symmetric and the result is immediate from the inductive
hypothesis. The only remaining case is x a set. Note that, for any y (not
necessarily super-symmetric), Bei(ρe(y)) = Be1−i(y) and that, since x is super-
symmetric, ρe(x) = x. Therefore, Be0(x) = Be1(ρe(x)) = Be1(x), as required.

To prove super-symmetry of Bei(x), it suffices to show that ρf fixes Bei(x) for
all f ∈ E, since these automorphisms generate all of Aut(G). This is obvious
when f = e, so we assume f 6= e. From the definition of Bei , it is clear that
ρf ◦Bei = Bei ◦ ρf . By the super-symmetry of x, we have ρf (x) = x. It follows
that ρf (Bei(x)) = Bei(ρf (x)) = Bei(x). 2

16

Lemma 15 There is a C̃PT program that, given input structure G
T, outputs

the object B(µT
n).

PROOF. We first use the C̃PT program described in Lemma 11 to compute
µT

n . We can then define a C̃PT program which, given as input an object x ∈
HF+(Ê) and a distinguished atom ei, computes Bei(x) in O(rank(x)) steps,
using O(‖TC(x)‖) active objects. It is, therefore, possible to compute the
sequence b0, . . . , bm in O(mn) additional steps, where b0 = µT

n and bi+1 =
TheUnique({Be0

i+1
(bi), Be1

i+1
(bi) }). Finally, output bm: by Lemma 14, bm =

B(µT
n). 2

Notice that B(µT
n) ∈ HF+(∅), so that p(B(µT

n)) ∈ { 0, 1 } is well-defined.

Lemma 16 p(B(µT
n)) ≡ ‖T‖ (mod 2).

PROOF. By Lemma 12, it suffices to check the cases T = ∅ and T = { vn }.
For notational convenience, we set P (x) = p(B(x)).

Consider, first, the case T = ∅. For all i ∈ { 1, . . . , n }, P (τ ∅i) = 0, since each
tuple in the set B(τi) contains an even number of 1’s. Similarly, P (τ̃ ∅i) = 1, as
each tuple in the set B(τ̃T

i) contains an odd number of 1’s.

We now show by induction that, for all i ∈ { 1, . . . , n }, P (µ∅
i) = 0 and P (µ̃∅

i) =
1. The case i = 1 has already been dealt with, since µ1 = τ1 and µ̃1 = τ̃1.
Suppose P (µ∅

i) = 0 and P (µ̃∅
i) = 1.

P (µ∅
i+1) = P

(
{ 〈µ∅

i , τ
∅
i+1 〉, 〈 µ̃

∅
i , τ̃

∅
i+1 〉 }

)

=
(
P (µ∅

i) + P (τ ∅i+1)
)
·
(
P (µ̃∅

i) + P (τ̃ ∅i+1)
)

(mod 2)

= (0 + 0) · (1 + 1) (mod 2)

= 0 .

P (µ̃∅
i+1) = P

(
{ 〈µ∅

i , τ̃
∅
i+1 〉, 〈 µ̃

∅
i , τ

∅
i+1 〉 })

)

=
(
P (µ∅

i) + P (τ̃ ∅i+1)
)
·
(
P (µ̃∅

i) + P (τ ∅i+1)
)

(mod 2)

= (0 + 1) · (1 + 0) (mod 2)

= 1 .

Therefore, P (µ∅
n) = 0.

Now, let T = { vn }. Similar reasoning shows that P (τ T
i) = P (µT

i) = 0 and
P (τ̃T

i) = P (µ̃T
i) = 1 for all i ∈ { 1, . . . , n− 1 }. As P (τ T

n) = 1 and P (τ̃T
n) = 0,

17

we have

P (µT
n) = P

(
{ 〈µT

n−1, τ
T
n 〉, 〈 µ̃T

n−1, τ̃
T
n 〉 }

)

=
(
P (µT

n−1) + P (τT
n)

)
·
(
P (µ̃T

n−1) + P (τ̃T
n)

)
(mod 2)

= (0 + 1) · (1 + 0) (mod 2)

= 1 . 2

Theorem 17 There is a C̃PT algorithm that, given input structure G
T, out-

puts ‖T‖ (mod 2).

PROOF. Using Lemma 15, we first construct B(µT
n). It is easy to see that,

for x ∈ HF+(∅), p(x) can be computed in O(rank(x)) steps, while activat-
ing O(‖TC(x)‖) objects. This allows us to compute and output p(B(µT

n)).
Correctness is guaranteed by Lemma 16. 2

In the remainder of the paper, we revert to considering C̃PT programs with
input I as working on HF(I) rather than HF+(I).

6 Fixed-point logics

In this section, we give some results on the fixed-point definability of queries
defined by C̃PT(Card) programs and vice-versa. It is known from the work
of Blass et al. [13] that IFP + C cannot express every query definable in
C̃PT(Card), and this also follows from the previous section of the present
paper, since IFP + C cannot determine the parity of CFI graphs.

However, we show that, for every C̃PT(Card) program Π̄, there is an IFP + C
formula ϕ such that Π̄ accepts I if, and only if, HF(I ∪N) � ϕ. The proof is a
relatively straightforward adaptation of the construction in [12] that translates
a C̃PT program on I to an IFP formula on HF(I).

In this section, we use the notation α ? β : γ to abbreviate the formula
(α ∧ β) ∨ (¬α ∧ γ) and α? to abbreviate the formula α ? [true](x) : [false](x),
where the subformulae are defined below.

Lemma 18 For every state S and term t of appropriate vocabulary not men-
tioning the variable x, there is a formula [t](x) ∈ FO(#) such that (S, a) � [t]
if, and only if, a = [[t]]S.

18

PROOF. By induction on the structure of t.

[false](x) ≡ x = ∅

[true](x) ≡ ∀y
(
y ∈ x↔ y = ∅

)

[vi](x) ≡ x = vi

[∅](x) ≡ x = ∅

[Atoms](x) ≡ ∀u
(
u ∈ x↔ (u 6= ∅ ∧ ∀v v 6∈ u)

)

[
⋃
t](x) ≡ ∀u

(
u ∈ x↔ ∃vw

(
[t](w) ∧ u ∈ v ∈ w

))

[TheUnique(t)](x) ≡ ∃u
(
[t](u) ∧ ∃v∀w (w ∈ u↔ w = v)

)
?

∃u
(
[t](u) ∧ x ∈ u

)
: x = ∅

[t1 ∈ t2](x) ≡
(
∀uv

(
([t1](u) ∧ [t2](v)) → u ∈ v

))
?

[{ t1, t2 }](x) ≡ ∀u
(
u ∈ x↔

(
[t1](u) ∨ [t2](u)

))

[Card(t)] ≡ ∃u
(
[t](u) ∧ #v (v ∈ u) = x

)

[¬t1](x) ≡ [t1](∅) ?

[t1 ∧ t2](x) ≡
(
∃u

(
[true](u) ∧ [t1](u) ∧ [t2](u)

))
?

[P (t1 . . . tn)](x) ≡
(
∃u1 . . . un

(
P (u1 . . . un) ∧

∧

i

[ti](ui)
))

?

[f(t1 . . . tn)](x) ≡ ∃u1 . . . un

(
f(u1 . . . un) = x ∧

∧

i

[ti](ui)
)

[{ t(v) : v ∈ r : g(v) }](x) ≡ ∀u
(
u ∈ x↔ ∃v

(
[t(v)](u) ∧ ∃w ([r](w) ∧ v ∈ w)

∧ ∃w ([g(v)](w) ∧ [true](w))
)

∧
(
(∀uu /∈ x) ↔ x = ∅

)
.

The terms t1 = t2 and t1 6N t2 can be dealt with in the same way as predicate
terms P (t1, . . . , tn). 2

Note that counting is required only for the translation of Card terms.

Lemma 19 Let R be a rule of vocabulary (σ, δ), let f be a function symbol
in δ and let S be a state. There is a formula νR,f (x̄y) ∈ FO(#) such that
(S, ā, b) � νR,f if, and only if, 〈 f, ā, b 〉 ∈ [[R]]S and [[R]]S is non-clashing.

PROOF. Suppose we have a formula ν ′R,f (x̄y) such that (S, ā, b) � νR,f if,
and only if, 〈 f, ā, b 〉 ∈ [[R]]S. That is, ν ′ doesn’t worry about clashes. We can
then put

νR,f (x̄y) ≡ ν ′R,f (x̄y) ∧
∧

g∈δ

∀ūvw
((
ν ′R,g(ūv) ∧ ν

′
R,g(ūw)

)
→ v = w

)
.

19

We now define ν ′ by induction on the structure of R. If R is Skip or g(t̄) := t
for some g 6= f , then ν ′R,f ≡ false. Otherwise, for R ≡ f(t1 . . . tn) := tn+1,

ν ′R,f (x̄y) ≡ [tn+1](y) ∧
∧

16i6n

[ti](xi) ,

for R ≡ if t then R1 else R2 fi,

ν ′R,f (x̄y) ≡ ∃u
(
[t](u) ∧ [true](u)

)
? ν ′R1,f (x̄y) : ν ′R2,f (x̄y)

and, for R ≡ do forall v ∈ t R1 od,

ν ′R,f (x̄y) ≡ ∃uw
(
u ∈ w ∧ [t](w) ∧ ν ′R(u),f (x̄y)

)
. 2

Theorem 20 Let Π̄ = (Π, p, q) be a program of vocabulary (σ, δ), with input
I. There is a formula ϕ ∈ IFP + C such that HF(I ∪N) � ϕ if, and only if,
Π̄ accepts I.

PROOF. We show that relations Df for each f ∈ δ are simultaneously de-
finable in IFP + C, where (i, x̄, y) ∈ Df if, and only if, f(x̄) = y 6= ∅ at stage
i.

We construct the Df stage by stage. Let χ(i) denote the formula that says
that i is the current stage: that is, χ(i) asserts that i is the least number not
yet appearing as the first component of any tuple in any Df . Let ν∗Π,f be νΠ,f

with every subformula g(ū) = v replaced by

Dg(i− 1, ū, v) ∨
(
v = ∅ ∧ ∀w¬Dg(i− 1, ū, w)

)
.

That is, ν∗Π,f is a version of νΠ,f that obtains the value of the dynamic functions
from the relations Dg instead of from the structure representing the current
state.

The new value of Df is defined by

ϕf (i, x̄, y) ≡ χ(i) ∧ y 6= ∅ ∧
[
ν∗Π,f (x̄y)∨(

Df (i− 1, x̄, y) ∧ ∀z ¬ν∗Π,f (x̄z)
)]
,

where i − 1 denotes the immediate 6N-predecessor of i (or 0 if i = 0). ϕf

says that, either f(x̄) is set to y 6= ∅ at stage i or it keeps its value from
the previous stage. Once the Df are defined, it is straightforward to write the
required formula, using counting to simulate Card terms and to check that
the resource bounds are not exceeded. 4

2

4 We do not actually need to use counting for this result. Instead, we could check

20

In fact, ϕ does not need access to the whole of HF(I ∪N) but only needs the
elements of Active(I) along with the numbers up to the greater of ‖I‖p and
‖I‖q to allow the numbering of the stages and counting of any set of objects
that may become active. Call this structure Active+(I).

Corollary 21 Let Π̄ = (Π, p, q) be a program with input I. There is a formula
ϕ ∈ IFP + C such that Active+(I) � ϕ if, and only if, Π̄ accepts I.

We can also simulate fixed-point formulae with C̃PT(Card) programs.

Theorem 22 Let ϕ(ū) ∈ IFP + C. There is a program Π̄ of C̃PT(Card) that,
on input (I, ā), determines whether (I, ā) � ϕ. Further, Π̄ uses only sets of
rank at most 1 and uses counting if, and only if, ϕ does.

PROOF. It follows from [19] that we may assume ϕ to be of the form
∃λ∃y (ifpX, x̄ ψ) (λ . . . λy . . . y), where ψ ∈ FO(#), λ is a number variable
and y a point variable. We may also assume that every quantifier in ψ uses a
fresh variable.

Let z̄ = z1 . . . zr enumerate the variables of ϕ and let ψ1, . . . , ψn enumerate the
subformulae of ψ, with ψn ≡ ψ and i < j whenever ψi is a proper subformula of
ψj. For each ψi, the program will build up a dynamic function fi(z̄) such that,
after simulating t stages of the fixed-point, fi(a1 . . . ar) = a1 if (I,Xt, ā) � ψi

and fi(ā) = ∅, otherwise. In particular, note that a1 ∈ |I|, so a1 6= ∅, and that
some projection of fn defines X.

For each ψi, we write a rule Ri(z̄) that updates fi to define the tuples that
satisfy ψi, so long as each fj with j < i defines the tuples that satisfy ψj at
the current stage. This is trivial for atomic formulae and Boolean combina-
tions; the case ψi ≡ ∃zk ψj, can be dealt with by checking whether the set
{ a : a ∈ S : fj(z̄[a/zk]) 6= ∅ } is empty, where S is either Points or Numbers
according to the sort of zk.

We can use a sequence of nullary dynamic functions to ensure that the Ri are
fired in sequence rather than in parallel, and further rules to detect whether a
fixed-point has been reached and to set Output and Halt appropriately. This

that ‖S‖ = n by asserting the existence of an object in HF(I ∪ N) that codes
a bijection between the sets S and { 0, . . . , n − 1 } and count the number of stages
and active objects in a similar manner. However, these bijections are not, in general,
activated by the program being simulated so will not be available when we restrict
to active objects for Corollary 21.

21

can then be wrapped in nested rules of the form

do forall z1 ∈ S1

do forall z2 ∈ S2

· · ·

od

od,

where each Si is either Points or Numbers, as before. Finally, add rules to
‘remember’ the value of X from the previous iteration of the induction to
determine when the fixed-point has been reached.

It is easily checked that the program described evaluates ϕ in a polynomial
number of steps, activating at most polynomially many objects, none of which
has rank greater than 1. 2

7 Supports

Let G be a group acting on a set I. The action of G on I extends naturally to
an action on HF(I) defined inductively by putting g(x) = { g(y) : y ∈ x } for
every set x ∈ HF(I) and g ∈ G.

For all x ∈ HF(I), let StabG(x) = { g ∈ G : g(x) = x } denote the stabilizer
subgroup of x. If x is a set, let Stab•

G(x) =
⋂

y∈x StabG(y) denote the pointwise
stabilizer of x. Note that Stab•

G(x) ⊆ StabG(x) for every set x. For all x ∈
HF(I), let Orbit(x) = { g(x) : g ∈ G } and for every x ∈ HF(I), let µ(x) =
maxy∈TC(x) ‖Orbit(y)‖.

For all x, x′ ∈ HF(I), write x ∼G x′ if x′ ∈ Orbit(x). Note that ∼G is an
equivalence relation on HF(I). A set x is connected if y ∼G y′ for all y, y′ ∈
x. The connected components of a set are its maximal connected subsets.
Note that a non-empty set x is connected precisely when it has exactly one
connected component, namely x itself.

A subset S ⊆ I is a support for x if Stab•
G(S) ⊆ StabG(x); that is, every g ∈ G

that fixes S pointwise also fixes x (but not necessarily pointwise). Let σ(x)
denote the minimal size of a support for x. For all r,m ∈ N, let

σmax(r,m) = max {σ(x) : x ∈ HF(I), rank(x) 6 r and µ(x) 6 m } .

The main theorem of this section is:

Theorem 23 If G is Abelian, then σmax(r,m) 6 (log2m)r for all r,m ∈ N.

22

As a corollary of Theorem 23, we obtain a bound on the size of supports of
active elements for C̃PT(Card) programs over CFI graphs.

The upper bound in Theorem 23 can be shown to be tight for Abelian groups.
In the non-Abelian setting, we do not know whether there exists an upper
bound on the function σmax(r,m) in terms of r and m alone (excluding the
size of I). This might be an interesting question relevant to the study of
C̃PT(Card).

Lemma 24 Let x1, . . . , xn be the connected components of a set x. Then
StabG(x) = StabG(x1) ∩ · · · ∩ StabG(xn).

PROOF. The inclusion StabG(x1) ∩ · · · ∩ StabG(xn) ⊆ StabG(x) is obvious,
since every element of G that fixes each component of x also fixes x. For
the converse, consider g ∈ StabG(x) and, towards a contradiction, assume
g /∈ StabG(x1) ∩ · · · ∩ StabG(xn). There must be some i ∈ { 1, . . . , n } such
that g /∈ StabG(xi) and there must be some y ∈ xi such that g(y) /∈ xi. Since
g ∈ StabG(x), it follows that g(y) ∈ x so there exists j 6= i such that g(y) ∈ xj.
But this yields the desired contradiction, since y ∼G g(y) yet yi 6∼G yj for all
yi ∈ xi and yj ∈ xj. 2

Lemma 25 Let x′ be a connected component of a set x. Then µ(x′) 6 µ(x).

PROOF. StabG(x) ⊆ StabG(x′) by Lemma 24. By the orbit–stabilizer the-
orem, we have ‖Orbit(x′)‖ 6 ‖Orbit(x)‖. Since TC(x′) \ {x′ } ⊆ TC(x), we
have,

µ(x′) = max
{
‖Orbit(x′)‖, max

y∈TC(x′)\{x′ }
‖Orbit(y)‖

}

6 max
{
‖Orbit(x)‖, max

y∈TC(x)
‖Orbit(y)‖

}

= µ(x) . 2

Lemma 26 For Abelian G, if x ∼G y then StabG(x) = StabG(y).

PROOF. Suppose y = g(x). For all h ∈ G, notice that

h(x) = x ⇐⇒ gh(x) = g(x) ⇐⇒ hg(x) = g(x) ⇐⇒ h(y) = y .

So exactly the same elements of G fix x as fix y. Therefore, StabG(x) =
StabG(y). 2

23

Lemma 27 Let G be Abelian and let x be a connected set with y ∈ x. Then
StabG(y) ⊆ StabG(x).

PROOF. For every y′ ∈ x, Lemma 26 implies that StabG(y) = StabG(y′), as
y ∼G y′ by connectedness of x. Thus, we have StabG(y) =

⋂
y′∈x StabG(y′) =

Stab•
G(x) ⊆ StabG(x). 2

Lemma 28 If G is Abelian and x is a non-empty connected set, then σ(x) 6

σmax(rank(x) − 1, µ(x)).

PROOF. Suppose x is a non-empty connected set and y ∈ x. By Lemma 27,
StabG(y) ⊆ StabG(x). Therefore, σ(x) 6 σ(y) since any subset of I that
supports y also supports x. Since µ(y) 6 µ(x) and rank(y) = rank(x) − 1, we
have

σ(x) 6 σ(y) 6 σmax(rank(y), µ(y)) 6 σmax(rank(x) − 1, µ(x)) . 2

Lemma 29 Let x1, . . . , xn be the connected components of a set x, let y0 = ∅
and yj = x1 ∪ · · · ∪ xj for all j ∈ { 1, . . . , n }, and let

J = { j : StabG(yj) 6= StabG(yj−1) } .

Then ‖J‖ 6 log2 ‖Orbit(x)‖ and σ(x) 6
∑

j∈J σ(xj).

PROOF. Let j0 = 0 and let J = { j1, . . . , jt } where 1 6 j1 < · · · < jt 6 n.
Note that

G = StabG(yj0)) StabG(yj1)) StabG(yj2)) · · ·) StabG(yjt−1
)

) StabG(yjt
) = StabG(x1) ∩ · · · ∩ StabG(xn) = StabG(x) ,

where the last equality is by Lemma 24. By the orbit–stabilizer theorem, we
have that

‖Orbit(x)|| =
‖G‖

‖StabG(x)‖
=

t∏

i=1

‖StabG(yji−1
)‖

‖StabG(yji
)‖

> 2t .

Therefore, ‖J‖ = t 6 log2 ‖Orbit(x)‖.

It remains to prove the bound on σ(x). For all j ∈ J , let Sj ⊆ I be a support
of least cardinality for xj, so that ‖Sj‖ = σ(xj). Let S =

⋃
j∈J Sj. Notice that

Stab•
G(S) =

⋂
j∈J Stab•

G(Sj) ⊆
⋂

j∈J StabG(xj) = StabG(x). Thus, S supports
x and so σ(x) 6 ‖S‖ 6

∑
j∈J σ(xj), as claimed. 2

24

We are now ready to prove the main theorem, that σmax(r,m) 6 (log2m)r for
all r,m ∈ N. That is, every object x ∈ HF(I) with rank at most r and with
‖Orbit(y)‖ 6 m for every y ∈ TC(x), has a support of size at most (log2m)r.

Proof of Theorem 23. By induction on r. For the base case, the only objects
of rank 0 are the atoms and ∅. Each atom a has a support of size 1 (namely,
{ a }) and ∅ has empty support. Therefore, σmax(0,m) = 1, as required.

Let r ∈ N and assume that σmax(r,m) 6 (log2m)r for allm ∈ N. We now argue
that σmax(r + 1,m) 6 (log2m)r+1. Consider x ∈ HF(I) with rank(x) = r + 1
and let m = µ(x). Let x1, . . . , xn be the connected components of x and
let J ⊆ { 1, . . . , n } be as in Lemma 29. That lemma implies that ‖J‖ 6

log2 ‖Orbit(x)‖ 6 log2m and that σ(x) 6
∑

j∈J σ(xj). Each xi is a non-
empty connected set with rank(xi) 6 r + 1 and µ(xi) 6 m by Lemma 25.
By Lemma 28 and the inductive hypothesis, we have σ(xj) 6 σmax(r,m) 6

(log2m)r. As this holds for all j ∈ J , we have

σ(x) 6
∑

j∈J

σ(xj) 6 ‖J‖ · σmax(r,m) 6 log2m · (log2m)r ,

as required. 2

Now, let Π̄ be a C̃PT(Card) program with an active element bound of nq for
some q > 0. Blass et al. have shown that that, because the computation is
choiceless, if Π̄ activates an object x ∈ HF(I), then it also activates every
object in the orbit of x under Aut(I), as well as every object in TC(x). There-
fore, we must have µ(x) 6 ‖I‖q for every object x activated by Π̄ over I. This
observation combined with Theorem 23 yields:

Corollary 30 Let G be an Abelian subgroup of Aut(I). Every object x ac-
tivated in Π̄’s run on I has a support of size at most (q log2 ‖I‖)

rank(x) with
respect to the action of G.

We will use supports to show that, if a C̃PT(Card) program activates objects
only of rank at most some fixed r, independent of its input, then it cannot
determine the parity of CFI graphs. It is not hard to see that, for any ordered
graph G = (V,E,6), the pre-ordered CFI graphs G

0 and G
1 have the same

Abelian automorphism group. Also note that, if we fix some k and restrict
attention to k-regular graphs G, we have ‖G0‖ = O(‖G‖).

Corollary 31 Let Π̄ be a C̃PT(Card) program that activates objects of rank at
most r. For every fixed k, there is a constant c such that, for any sufficiently
large ordered, k-regular graph G, every object activated in the run of Π̄ on
G

0 or G
1 has a support of size O((c log2 ‖G‖)

r) with respect to the action of
Aut(G0).

25

8 Equivalence

Given a structure I of vocabulary σ and a constant k, the transitively k-
supported elements of HF(I) are those elements x where every element of
x’s transitive closure has a support of size at most k. 5 We abuse notation
and write Īk for both the transitively k-supported part of HF(I) and the
corresponding structure of vocabulary 〈σ,∈, ∅ 〉.

The proof of Blass et al. in [12] that evenness is not definable in C̃PT has a
counterpart to our Corollary 31 showing that there is a constant bound on
the size of supports of active elements when the input is an unstructured set.
This is then combined with a statement showing that, if I and J are sets
which cannot be distinguished in Lmk, then Īk ≡Lm

J̄k. We generalize this in
Theorem 33 in two ways. We consider the counting logics Cm and Cmk and we
relax the hypothesis from requiring I and J to be unstructured sets, allowing
any pair of Cmk-homogeneous structures (defined below).

Recall that the Cm-type of a tuple ā in a structure I is the collection of Cm

formulae that are true in (I, ā).

Definition 32 A structure I is Cm-homogeneous if, whenever ā and b̄ have
the same Cm-type in I, there is an automorphism of I that maps ā to b̄.

In particular, every ordered CFI graph G
0 or G

1 is Cn-homogeneous for any
n > 2 as there is an automorphism mapping a to b if, and only if, the two
elements are in the same equivalence class of the pre-order. Any finite linear
order, such as N , is Cn-homogeneous for any n > 2. In the case where a
structure I is to be used as input to a C̃PT(Card) program, we may assume
that I contains a linear order of sufficient length to number the stages of the
computation and to denote any numbers required by Card terms.

We can now state the main theorem of this section.

Theorem 33 Let k > 0 and m > 1 and let I and J be Cmk-homogeneous
structures of the same vocabulary. If I ≡Cmk

J then Īk ≡
Cm

J̄k.

Towards a proof of the theorem, fix appropriate k, m, I and J . We may assume
k > 0 as the result is trivial otherwise.

A molecule on a structure I (or, more succinctly, an I-molecule) is a sequence
α = α1 . . . αk of atoms. (We relax the condition of Blass et al. that the atoms

5 Blass et al. use the term ‘k-symmetric’ for the transitively k-supported objects;
our term is, we feel, more descriptive and avoids confusion with the ‘symmetric’ and
‘super-symmetric’ objects of Section 5.

26

must be distinct.) The intention is to use molecules as supports for sets.

The m-ary type of a sequence ᾱ = α1 . . . αm of molecules is just the Cmk-type
of the sequence of atoms α11 . . . αmk in I. Write tpI(ᾱ) for the type of ᾱ. The
following lemma is immediate from the definition of types and the fact that
Cmk-types are determined by a single formula on finite structures [16].

Lemma 34 For some ` < m, suppose that α0 . . . α` are I-molecules and that
β1, . . . , β` are J-molecules. If tpJ(β1, . . . , β`) = tpI(α1, . . . , α`), there is a J-
molecule β0 such that tpJ(β0, . . . , β`) = tpI(α0, . . . , α`).

The definition of forms is adapted from the corresponding definition in [12].
Forms can be thought of as templates for building transitively k-supported
sets from molecules.

Definition 35 Fix a list c1 . . . ck of new symbols. The set of forms is the least
set containing each of the ci and every finite set of pairs (ϕ, τ), where ϕ is a
form and τ a binary type.

The rank of a form is defined inductively: rank ci = 0, for each i, and if ϕ is a
set, rankϕ = 1 + max { rankψ : (ψ, τ) ∈ ϕ }.

Definition 36 The denotation of a form ϕ and a molecule α over a structure
I is ϕ?α ∈ HF(I), where ci ?α = αi and ϕ?α = {ψ ? β : (ψ, tpI(α, β)) ∈ ϕ }
if ϕ is a set.

We want to show that the set of denotations of forms and I-molecules corre-
sponds exactly to Īk. We first prove a useful result on the action of automor-
phisms on denotations.

Lemma 37 If ρ ∈ Aut(I) then ρ(ϕ ? α) = ϕ ? ρ(α).

PROOF. By induction on the structure of ϕ. If ϕ = ci, the result is trivial
so suppose ϕ is a set.

ρ(ϕ ? α) = { ρ(ψ ? β) : (ψ, tpI(α, β)) ∈ ϕ }

= {ψ ? ρ(β) : (ψ, tpI(α, β)) ∈ ϕ }

= {ψ ? ρ(β) : (ψ, tpI(ρ(α), ρ(β)) ∈ ϕ }

= ϕ ? ρ(α).

The second line is by the inductive hypothesis; the third follows because the
types of molecules are preserved under automorphisms. 2

Lemma 38 x ∈ Īk if, and only if, x = ϕ?α for some I-molecule α and some
form ϕ.

27

PROOF. (⇐) Suppose x = ϕ ? α and let ρ be an automorphism of I that
fixes α. By Lemma 37, ρ(ϕ ? α) = ϕ ? ρ(α) = ϕ ? α. Therefore, α supports
ϕ?α. Further, every y ∈ TC(x) is also of the form ψ ?β so also has a support
of size k. Hence, x ∈ Īk.

(⇒) By induction on the structure of x. If x = a for some atom a, then
x = c1 ? α for any molecule α with α1 = a. If x = ∅, then x = ∅ ? α for any α.

Suppose that x ∈ Īk is a non-empty set. There must be some molecule α
supporting x. By the inductive hypothesis, x = {ϕy ? αy : y ∈ x }. We show
that x = ϕ ? α, where ϕ = { (ϕy, tpI(α, αy)) : y ∈ x }.

ϕ ? α = {ψ ? β : (ψ, tpI(α, β)) ∈ ϕ }

= {ϕy ? β : y ∈ x and tpI(α, β) = tpI(α, αy) }

Clearly, then, x ⊆ ϕ ? α. For the converse, suppose z ∈ ϕ ? α. We must
have z = ψ ? β with (ψ, tpI(α, β)) ∈ ϕ. Further, there must be y ∈ x with
ψ = ϕy and tpI(α, β) = tpI(α, αy). It follows from the Cmk-homogeneity of I
that there is an automorphism ρ of I such that ρ(αβ) = ααy. Since ρ fixes α
pointwise, it also fixes x so z ∈ x. 2

The final pieces of machinery we need in order to prove Theorem 33 are the
relations Eq and In. These allow us to determine whether ϕ ? α = (resp.,
∈) ψ ? β by considering only the forms ϕ and ψ and the type of α and β,
independent of the structure from which the molecules come.

Lemma 39 There are ternary relations Eq and In such that, for all Īk, all
forms ϕ and ψ and molecules α and β,

ϕ ? α = ψ ? β ⇐⇒ Eq(ϕ, ψ, tp(α, β))

ϕ ? α ∈ ψ ? β ⇐⇒ In(ϕ, ψ, tp(α, β))

PROOF. Define Eq and In as follows, where τ is any realizable binary type.

Eq(ϕ, ψ, τ) ⇐⇒
[
ϕ = ci, ψ = cj and (αi = βj) ∈ τ

]
or

[
ϕ, ψ are sets and, for all forms χ and molecules γ,

(
(χ, tp(α, γ)) ∈ ϕ⇒ In(χ, ψ, tp(γ, β))

and (χ, tp(β, γ)) ∈ ψ ⇒ In(χ, ϕ, tp(γ, α))
)]

28

In(ϕ, ψ, τ) ⇐⇒

ψ is a set and, for some form χ and molecule γ,

(χ, tp(β, γ)) ∈ ψ and Eq(ϕ, χ, tp(α, γ))

We prove these definitions correct simultaneously by induction on rankϕ +
rankψ.

(Eq) We may assume that both ϕ and ψ are sets as the other two cases are
trivial.

(⇒) Suppose ϕ ? α = ψ ? β and let χ be a form and γ a molecule. Suppose
(χ, tp(α, γ)) ∈ ϕ. Then χ ? γ ∈ ϕ ? α = ψ ? β. Since rankχ < rankϕ, it
follows from the inductive hypothesis that In(χ, ψ, tp(γ, β)) holds. The case
(χ, tp(β, γ)) ∈ ψ is symmetric.

(⇐) Suppose Eq(ϕ, ψ, tp(α, β)) holds. We show that ϕ?α ⊆ ψ?β and the result
follows by symmetry. Suppose χ ? γ ∈ ϕ ? α. We must have (χ, tp(α, γ)) ∈ ϕ
so, by definition of Eq, In(χ, ψ, tp(γ, β)) holds. By the inductive hypothesis,
χ ? γ ∈ ψ ? β.

(In) The result is trivial if ψ is not a set so assume that it is. ϕ ? α ∈ ψ ? β if,
and only if, there is a (χ, τ) ∈ ψ with ϕ?α = χ?γ for some γ with tp(β, γ) = τ .
By the inductive hypothesis, this happens if, and only if, Eq(ϕ, χ, tp(α, γ)),
if, and only if, In(ϕ, ψ, tp(α, β)). 2

We are now ready to prove the equivalence theorem.

Proof of Theorem 33. We show that Īk ≡
Cm

J̄k by exhibiting a winning
strategy for the duplicator in the m-pebble bijective game on the two struc-
tures. The strategy is to ensure that, after every move, there are forms ϕ1, . . . , ϕm,
I-molecules α1, . . . , αm and J-molecules β1, . . . , βm such that, for every i ∈
{ 1, . . . ,m }, xi = ϕi ? αi, yi = ϕi ? βi and tpI(α1, . . . , αm) = tpJ(β1, . . . , βm),
where the xi and yi are the pebbled elements of Īk and J̄k, respectively.

We show first that the strategy can be followed and then that it is winning.
We may assume that, in the initial position, all pebbles are on ∅. Put all the
ϕi = ψi = ∅; by Lemma 34, we can set the αi arbitrarily and choose the βi

with the same types. The condition holds.

Suppose the condition holds after some number of moves and that, without
loss of generality, the spoiler chooses to play the pebbles x1 and y1. We define
the duplicator’s bijection f : Īk → J̄k.

First, Cmk-equivalence of I and J means that there is a bijection g : |I|k → |J |k

29

such that, for all α ∈ |I|k, tpI(α, α2, . . . , αm) = tpJ(g(α), β2, . . . , βm). To see
this, consider the position in the game on I and J , where the pebbles in I are
on α21, . . . , αmk and suppose the spoiler plays pebbles in k successive rounds
to the elements of α = a1, . . . , ak. The duplicator’s winning strategy gives her
bijections h1, h2[a1], h3[a1, a2], . . . , hk[a1, . . . , ak−1] where the bijections chosen
after the first round depend on the spoiler’s placement of the pebbles in the
earlier rounds. g(α) = 〈h1(a1), h2[a1](a2), . . . , hk[a1, . . . , ak−1](ak) 〉.

Second, by Lemma 39, for all forms ϕ and ϕ′ and molecules α and α′, whether
ϕ?α = ϕ′ ?α′ depends only on the two forms and tp(α, α′). Since tpI(α, α

′) =
tpJ(g(α), g(α′)), it follows that ϕ?α = ϕ′?α′ if, and only if, ϕ?g(α) = ϕ′?g(α′).

By Lemma 38, every x ∈ Īk can be written ϕx ? αx. We may choose values
arbitrarily for each ϕx and αx and set f(ϕx ? αx) = ϕx ? g(αx). It remains
to check that f is a bijection. f is one-to-one because of the relation Eq. To
establish that f is onto, let y ∈ J̄k, choose ψ and β such that y = ψ ? β and
let x = ψ ? g−1(β) ∈ Īk. But now f(x) = ϕx ? g(αx) = ψ ? β, again by the
relation Eq.

When the spoiler places the pebbles on elements x ∈ Īk and f(x) = y ∈ J̄k,
the duplicator sets ϕ1 = ϕx, α1 = αx, and β1 = g(αx).

It remains to prove that the duplicator’s strategy actually wins the game, i.e.,
that the map h : x1 . . . xm 7→ y1 . . . ym is always a partial isomorphism. h
preserves the structure of I because tpI(α1, . . . , αm) = tpJ(β1, . . . , βm); it just
remains to show that the set-structure is preserved. By Lemma 39,

xi = xj ⇐⇒ ϕi ? αi = ϕj ? αj

⇐⇒ Eq(ϕi, ϕj, tpI(αi, αj))

⇐⇒ Eq(ϕi, ϕj, tpJ(βi, βj))

⇐⇒ ϕi ? βi = ϕj ? βj

⇐⇒ yi = yj

and similarly for ∈ and In. 2

Finally, we recall the main result of Cai et al. They show that, for any k,
there are arbitrarily large 3-regular graphs G such that G

0 ≡Ck

G
1 [6]. The

relevance of the graphs being 3-regular is that, for any of the graphs, ‖G0‖ =
‖G1‖ = 7‖G‖. (For a graph G of minimum degree δ and maximum degree ∆,
(δ + 2δ−1)‖G‖ 6 ‖G0‖ = ‖G1‖ 6 (∆ + 2∆−1)‖G‖.)

We are now ready to pull the various elements together to prove that no
C̃PT(Card) program that only activates sets of small rank can compute the
parity of CFI graphs.

30

Theorem 40 The parity query for pre-ordered CFI graphs is not accepted by
any program of C̃PT(Card) that activates sets of rank at most o(log n

log log n
).

PROOF. Suppose the C̃PT(Card) program Π̄ accepts all structures G
0 but

activates no set of rank greater than r. By Corollary 21, there is an m such
that, if Π̄ accepts a structure I and Active+(I)≡Cm

Active+(J), then Π̄ accepts
J . By the result of Cai et al., for any large enough n, we may choose a 3-regular
graph G with O(n) vertices such that G

0 ≡Cn

G
1. Moreover, by Corollary 31,

there is a c such that, ifG is large enough and x ∈ Active+(G0) or Active+(G1),
x has a support of size at most c(log2 n)r.

By Theorem 33, Active+(G0)≡Cm

Active+(G1) for all m < n
c(log n)r . If r =

o
(

log n
log log n

)
, then n

c(log n)r is unbounded. Thus, ifG is large enough, Π̄ also accepts

G
1. 2

In particular, this implies that no C̃PT(Card) program using only sets of rank
bounded by some constant can compute the CFI query. Since, by Theorem 22,
any formula of IFP + C can be translated into a C̃PT(Card) program that uses
set of rank at most 1, the following corollary is a strengthening of the main
result of Cai et al.

Corollary 41 Let r ∈ N. The parity query for pre-ordered CFI graphs is not
defined by any C̃PT(Card) program that only activates sets of rank r or less.

Clearly, these results continue to apply in the absence of the pre-order: any
algorithm that can compute the parity of unordered CFI graphs can trivially
compute the parity in the presence of a pre-order by ignoring the ordering.
Further, the addition of a pre-order cannot increase the number of automor-
phisms of the input structure so cannot increase the resources required.

9 Concluding remarks

Our main results are that Blass, Gurevich and Shelah’s language C̃PT (with-
out counting) can determine the parity of pre-ordered Cai–Fürer–Immerman
graphs but that this cannot be done, even with counting, by any program that
activates sets of rank bounded by some constant. In fact, for graphs G of order
n, our program activates sets of rank O(n) to determine the parity of input
G

T.

The algorithm crucially relies on the presence of the pre-order on the CFI
graphs and it remains open whether there is a C̃PT or C̃PT(Card) algorithm

31

that determines the parity of unordered CFI graphs or, indeed, whether there
is any polynomial-time query not definable in C̃PT(Card). Our algorithm can
clearly be adapted to work on any class of graphs where an order is definable
and can also be modified to work for some other classes of unordered graphs,
such as complete graphs, which are the examples presented by Blass et al. in
[13].

Acknowledgements

The authors would like to thank Alan Nash for the helpful comments he made
on a draft of this paper.

An extended abstract of this paper appeared as [20]. We are grateful to the
referee for pointing out a serious error in Section 5 of that paper. This section
has been completely re-written as Section 7 of the present paper.

References

[1] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets,
in: R. M. Karp (Ed.), Complexity of Computation, Vol. 7 of SIAM-AMS
Proceedings, 1974, pp. 43–73.

[2] N. Immerman, Relational queries computable in polynomial time, Information
and Control 68 (1–3) (1986) 86–104.

[3] M. Y. Vardi, The complexity of relational query languages, in: Proc. 14th ACM
Symp. on Theory of Computing, 1982, pp. 137–146.

[4] Y. Gurevich, S. Shelah, Fixed-point extensions of first-order logic, Annals of
Pure and Applied Logic 32 (1986) 265–280.

[5] S. Kreutzer, Expressive equivalence of least and inflationary fixed-point logic,
in: Proc. 17th IEEE Symp. on Logic in Computer Science (LICS), 2002, pp.
403–410.

[6] J.-Y. Cai, M. Fürer, N. Immerman, An optimal lower bound on the number of
variables for graph identification, Combinatorica 12 (4) (1992) 389–410.

[7] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, 2nd Edition, Springer, 1999.

[8] N. Immerman, Descriptive Complexity, Springer, 1999.

[9] F. Gire, H. Hoang, An extension of fixpoint logic with a symmetry-based choice
construct, Information and Computation 144 (1) (1998) 40–65.

32

[10] A. Dawar, D. M. Richerby, A fixed-point logic with symmetric choice, in: Proc.
17th Workshop on Computer Science Logic, Vol. 2803 of LNCS, Springer, 2003,
pp. 169–182.

[11] A. Dawar, D. M. Richerby, Fixed-point logics with nondeterministic choice,
Journal of Logic and Computation 13 (4) (2003) 503–530.

[12] A. Blass, Y. Gurevich, S. Shelah, Choiceless polynomial time, Annals of Pure
and Applied Logic 100 (1–3) (1999) 141–187.

[13] A. Blass, Y. Gurevich, S. Shelah, On polynomial time computation over
unordered structures, Journal of Symbolic Logic 67 (3) (2002) 1093–1125.

[14] M. Otto, Bounded Variable Logics and Counting, Vol. 9 of Lecture Notes in
Logic, Springer, 1997.

[15] P. G. Kolaitis, M. Y. Vardi, Infinitary logics and 0-1 laws, Information and
Computation 98 (2) (1992) 258–294.

[16] E. Grädel, M. Otto, Inductive definability with counting on finite structures,
in: Selected papers from 6th Workshop on Computer Science Logic, Vol. 702 of
LNCS, Springer, 1993, pp. 231–247.

[17] L. Hella, Logical hierarchies in PTIME, Information and Computation 129 (1)
(1996) 1–19.

[18] Y. Gurevich, Evolving algebra 1993: Lipari guide, in: E. Börger (Ed.),
Specification and Validation Methods, Oxford University Press, 1995, pp. 9–
36.

[19] J. Flum, M. Grohe, On fixed-point logic with counting, Journal of Symbolic
Logic 65 (2) (2000) 777–787.

[20] A. Dawar, D. M. Richerby, B. Rossman, Choiceless polynomial time, counting
and the Cai–Fürer–Immerman graphs (extended abstract), in: Proc. 12th
Workshop on Logic, Language, Information and Computation, Vol. 143 of
ENTCS, Elsevier, 2005, pp. 13–26.

33

