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Finite Model Theory

Finite Model Theory
e motivated by computational issues;

e relationship between language and structure, where the
structure is finite;

e what are the limitations of language?
what properties of structures are definable by sentences?
what relations on structures are definable?

Model theory elaborates the relations of elementary equiva-
lence

A=B
and elementary embedding
A= B.

These are trivial on finite structures.
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Finite Structures

For any finite structure A, there is a sentence 4 such that,

B = ¢4 if, and only if, A = B

Any complete theory T" which has finite models is categorical.

But, first-order logic is not all powerful.

There is no sentence ¢ such that, a graph GG is connected

if, and only if, G = .
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Compactness and Completeness

The compactness theorem fails on finite structures.

Abstract Completeness Theorem

The set of valid first order sentences is recursively enumer-
able.

This also fails on finite structures
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Given a Turing machine M, we construct a first order sen-
tence ¢, such that

A |: VM
if, and only f,

e there is a discrete linear order on the universe of A with
minimal and maximal elements

e cach element of A (along with appropriate relations) en-
codes a configuration of the machine M

e the minimal element encodes the starting configuration of
M on empty input

e for each element a of A the configuration encoded by its
successor is the configuration obtained by M in one step
starting from the configuration in a

e the configuration encoded by the maximal element of A
is a halting configuration.
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Universal Preservation

The substructure preservation theorem (Theorem 2.3) fails
on finite structures.

There is a sentence ¢ that is preserved under substructures,
l.e.
For every finite structure A, if A = ¢ and B C A, then
BEA.

but, there is no V-sentence 1 such that

=r @ 9.
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Recovering Preservation

General form of many preservation theorems:

Ever sentence preserved under some semantic condition is
equivalent to a sentence satisfying some syntactic condi-
tion

Restricting to finite structures weakens both the hypothesis
and the conclusion.

If it fails, one may try to recover some form of preservation
result by either

e changing the semantic condition; or

e changing the syntactic condition.
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Connected Graphs

There is no sentence ¢ that defines the class of connected
(finite or infinite) graphs.

Otherwise, we could take ¢ along with the following set of
sentences in the language with two additional constants u
and v:

On(u,v) =—-Fzy -+ Jx, u =21 A= T,
A E(xi, i),

1<i<n
contradicting compactness.

Note, this does not show that there is no such ¢ for finite
graphs.

3,/2002 7



Quantifier Rank

The quantifier rank of a formula , written qr(¢p) is defined
inductively as follows:

1. if @ is atomic then qr(yp) = 0,
2. if o = =) then gr(p) = qr(y),

3.if o =11 Vg or o = Y1 A Yo then
qr(p) = max(qr(y1), qr(yz)).

4.if o = Jx or p = V1) then qr(p) = qr(v) + 1

For two structures A and B, we say
A=,B
if for any sentence ¢ with qr(¢) < p,
A E ¢ if, and only if, B = ¢.
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Back and Forth Systems

A back-and-forth system of rank p between A and B is a
sequence
I,C - Cl

of non-empty sets of partial isomorphisms from A to B such
that, if

f:(a) — (b)
is in I, 1, then for every a € A, there is a
g : {(aa) — (bb) € I,

such that g extends f (i.e. g C f).
Similarly, for every b € B.

Lemma (Fraissé)
There is a back-and-forth system of rank p between A and
B if, and only if, A=, B.
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Games

The p-round Ehrenfeucht game on structures A and B
proceeds as follows:

There are two players called Spoiler and Duplicator.

At the ith round, Spoiler chooses one of the structures
(say B) and one of the elements of that structure (say
b;).

Duplicator must respond with an element of the other
structure (say a;).

If, after p rounds, the map a; — b; extends to a partial
isomorphism mapping (a) to (b), then Duplicator has
won the game, otherwise Spoiler has won.
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Finite Connected Graphs

If a class of structures C is definable by a first-order sentence,
then there is a p such that C is closed under =,,.

If the vocabulary contains no non-nullary function sym-
bols, the converse of the above proposition is also true.

To show that finite connected graphs cannot be defined, we
exhibit, for every p, two finite graphs G and H such that:

oG =H

e (7 is connected, but H is not.
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Theories

The proof (using compactness) of the inexpressibility of Con-
nectedness showed the stronger statement:

There is no theory T' such that GG is connected if, and
only if, G = T.

On finite structures, for every isomorphism-closed class of
structures K, there is such a theory.

Let S be a countable set of structures including one from
each isomorphism class, and take:

{—=p4| A €Sand A& K}
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Queries

Definition
An (n—ary) query is an map that associates to every structure
A a (n-ary) relation on A, such that,

whenever f : A — B is an isomorphism between A
and B, it is also an isomorphism between (A, Q(.A)) and

(B,Q(B)).

For any query (), there is a set Ty of formulae, each with free
variables among x4, . .., x,,, such that on any finite structure
A, and any a

A = pla
, for all ¢ € T, if, and only if, a € Q(A).

The transitive closure query is not definable by a finite such
set.
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Evenness

The collection of structures of even size is not finitely axiom-
atizable.

The collection of linear orders of even length is not finitely
axiomatizable.

Both of these can also be shown by infinitary methods.
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Asymptotic Probabilities

Fix a relational vocabulary ..
Let S be any isomorphism closed class of >-structures.

Let C,, be the set of all 2 structures whose universe is

{1,...,n}.

We define 1, (S) as:

SAC|
,LLn(S) -
|Ch|

The asymptotic probability, 1(S), of S is defined as
p(S) = lim pi(5)

if this limit exists.
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0-1 law

Theorem

For every first order sentence in a relational signature ¢,
p(Mod(¢)) is defined and is either 0 or 1.

This provides a very general result on the limits of first order
definability.

Cf. result concerning first order definability of sets of
linear orders
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Extension Axioms

Given a relational signature o,

an atomic type

T(T1, ..., T))
is the conjunction of a maximally consistent set of atomic
and negated atomic formulas.

Let 7(x1,...,2x) and 7/(x1, ..., xr11) be two atomic types
such that 7’ is consistent with 7.

The 7, 7/-extension axiom is the sentence:

Vay .. Vo 3ega(r — 7).
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Gaifman’s theory

For each extension axiom 7 .,

M(MOd (UT,T’)) =1

Also, therefore, for every finite set A of extension axioms.

Let ' be the set of all >-extension axioms.

Then I is:
e consistent; and

e countably categorical,

though it has no finite models.

3/2002
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Turing Machines

A Turing Machine consists of:
e () — a finite set of states;

e > — a finite set of symbols, disjoint from (), and including
L

e s € () — an initial state;

o : (@x(ZU{r}) — (QU{a,r})x (BU{r})x{L, R, S}
A transition function that specifies, for each state and
symbol a next state (or a or r), a symbol to overwrite

the current symbol, and a direction for the tape head to
move (L — left, R — right, or S — stationary).

With the conditions that:

0(q,>) = (¢',>, D),
where D € {R, S}, and
if 5(¢q,s) = (¢',>, D) then s = .
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Configuration

A configuration is a triple (q,>w,u), where ¢ € () and
w,u € X*

(q, w,u) yields (¢',w',u") in one step
(g, w,u) —n (¢, w', )
if
oW =va,
e d(q,a) =(q',b,D); and

eecither D=L and w' =v 4 = bu
orD=Sand v =vband v =u

or D =R and w' = vbc and ' = x, where u = cx
orD=Randw =vbland v/ =¢, if u =c¢.
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Computation

The relation —7, is the reflexive and transitive closure of
— M-

The language L(M) C >* accepted by the machine M is
the set of strings

{z | (s,>,z) =7}, (a,w,u)for some w and u}

A sequence of configurations cy,...,c,, where for each 1,
c; — M Ci+1, 1S @ computation of M.
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Multi-tape Machines

The formalization of Turing machines extends in a natural
way to multi-tape machines.

a machine with k tapes is specified by:
e (), X, s; and

5 (Qx (SUDLHY = QU{ar} x (SU{p}) x
{L,R, S}

Similarly, a configuration is of the form:

<Q7 >wi, uy, ..., PWE, uk)
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Complexity

For any function f : N — N, we say that a language L. C >*
is in TIME(f(n)) if there is a machine M = (Q, X, s,0),
such that:

o L =L(M); and

e for each x € L with n symbols, there is a computation
of M, of length at most f(n) starting with (s,>, x) and
ending in an accepting configuration.

P=UTIME(f(n)),

where f ranges over all polynomials.
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Nondeterminism

A nondeterministic Turing machine is M = (Q,>,s,0),
where we relax the condition on 0 being a function and in-
stead allow an arbitrary relation:

0 C (@ (BUP}) X ((QUAa, 7} x (BU>}) x{R, L, 5}).

L(M) is defined by:

{z | (s,>,x) =7 (@, w,u) for some w and u}

Say L € NTIME(f(n)) if there is a nondeterministic M
with L = L(M') whose accepting computations on strings of

length n are bounded by f(n).

NP = UNTIME(f(n)),

where f ranges over all polynomials.
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Space Complexity

To define space bounded computation, we consider two-tape
machines M in which one tape is read-only.

If
!/ / / / !/
<q7w17u17w27u2) —M (q 7w17u17w27u2>7

!,/
then wyu; = wyuy.

A language L is in SPACE(f(n)) if L = L(M) for some
machine M for which,

if (q, w1, uy,ws,us) is any configuration arising in the
computation of M starting from (s,>, x,>, €), where
x| < n then |wous| < f(n).

NSPACE(f(n)) is defined similarly with nondeterministic ma-
chines.
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Complexity Classes

L = USPACE(log f(n))
NL = UNSPACE(log f(n))

PSPACE = USPACE(f(n))

where f ranges over polynomials.

L CNL C P CNPCPSPACE
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Encoding Structures

In order to talk about the complexity of the class of structures
defined by a sentence, we have to fix a way of representing
finite structures as strings.

We use the alphabet > = {0, 1, #, —}

For a structure A = (A, Ry,..., Ry, f1,--., f1), fix a linear
order < on A= {ay,...,a,}.

R; is encoded by a string [RR;]- of Os and 1s of length n*.

fi is encoded by a string [f;]- of Os, 1s and —s of length
n”*logn.

Al = 1 L#|Ry| - - # R <# | f1] <# - - #1)<

n
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Complexity of first-order logic

If © is a first-order sentence, then the set of strings:

{[A]- | AE ¢ and < is an order on A}

Is in L.

Even size is an example of a property of structures decidable
in L which is not definable in first-order logic.

Connectedness of graphs is not known to be in L.

3/2002 28



Second-order logic

A formula is in existential second order logic (ESO), in the
signature X if it is of the form

Ry ... AR, 3f1... 3fip

where ¢ is a first-order formula in the signature

YUA{Ry, ..., Ry, f1,---, fi}.

If © is an ESO sentence, then the set of strings:

{lA]l- | AE @ and < is an order on A}
is in NP.

3/2002 29



Example

3-colourability

dR3BAG Vx(Rx V Bx V Gz)A\
Vx( —(Rx N Bx) A —~(Bx A Gx)A
—(Rx N\ Gx))A
VaVy(Erzy — ( —(Rx A Ry)A
—(Bx A By)A
~(Gz A Gy))

Hamiltonicity

4 < < is a linear order A
VeE(x,x + 1) A E(max, min)
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Fagin's Theorem

Theorem (Fagin 1974)
A class of structures is definable in ESO if, and only if, it is
decidable in NP.

Given a nondeterministic machine M and a positive integer
k, there is an ESP formula ¢ such that:

AEg
if, and only if, M accepts A in n* steps.

Modify the formula ¢;; encoding the computation of ¢ in the
proof of Trakhtenbrot's theorem (failure of completeness).
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Spectra

For a first order sentence ¢, the spectrum of ¢ is the set:

{n | thereis A such that |A| =n and A & ¢}

What sets of numbers are spectra?
(Scholz 1952)

Is the set of spectra closed under complementation?

(Asser 1955)

n is in the spectrum of ¢ if, and only if,

({1,...,n}) E3R,... 3R, 3f1... 3f1¢
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co-NP

Definition
A language L C ¥* is in co-NP just in case ¥\ L is in NP.

NP = co-NP if, and only if, every existential second-order
sentence is equivalent (on finite structures) to a universal
second-order sentence.

If there is any second-order sentence that is not equivalent
to an ESO sentence, then P # NP.
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Monadic second-order logic

MSO consists of those second order formulas in which all
relational variables are unary.

That is, we allow quantification over sets of elements, but
not other relations.

Any MSO formula can be put in prenex normal form with
second order quantifiers preceding first order ones.

Mon.¥1 — MSO formulas with only existential second order
quantifiers in prenex normal form.

Mon.II} — MSO formulas with only universal second order
quantifiers in prenex normal form.
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Theorem
There is a Mon.X! sentence that is not equivalent to any
sentence of Mon.II}

Connectedness is expressible in Mon.II3:

VS (Fx Sz A (VaVy (Sx A Ezy) — Sy))
— Vx Sz

Connectedness is not Mon.X1.
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MSO Game

The m-round monadic Ehrenfeucht game on structures A
and B proceeds as follows:

At the ith round, Spoiler chooses one of the structures
(say B) and plays either a point move or a set move.

In a point move, he chooses one of the elements of the
chosen structure (say b;) — Duplicator must respond
with an element of the other structure (say a;).

In a set move, he chooses a subset of the universe of the
chosen structure (say S;) — Duplicator must respond
with a subset of the other structure (say R;).

If, after m rounds, the map

a; — b

Is a partial isomorphism between

(A,Rl,...,Rq> and (B,Sl,...,Sq>

then Duplicator has won the game, otherwise Spoiler has
won.

3/2002
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Existential Game

The m, p-move existential game on (A,B):

e First Spoiler moves m set moves on A, and Duplicator
replies on B.

e This is followed by an Ehrenfeucht game with p point
moves.

If Duplicator has a winning strategy, then for every Mon.3}{
sentence:

0 =dRy...dR,, ¢
with gr(y) = p,

if A pthen BE
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Variation

To show that P is not Mon.X1 definable, find for each m
and p

o A € P; and
e B ¢ P; such that

Duplicator wins the m, p move game on (A, B).

Or,
e Duplicator chooses A.
e Spoiler colours A (with 2" colours).
e Duplicator chooses B and colours it.

e They play an p-round Ehrenfeucht game.
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Neighbourhood

On a structure A, define the binary relation:
E(ay,as) if, and only if,

there is some relation R and some tuple a containing both
a; and as with R(a).

dist(a,b) — the distance between a and b in the graph
(A, E).

Nbd(a) — the substructure of A given by the set:

{b | dist(a,b) < r}
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Locality

Suppose A and B are structures, and f is a bijection from
A to B such that, for each a:

Nbdh(a) 2 NbdS(f(a))

then,

(Hanf 1965)
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Duplicator’s strategy is to maintain the following condition:

After k& moves, if ai,...,a; and by, ..., b, have been
selected, then

UNbd%—(a;) = UNbd5,(b;)

If Spoiler plays on a within distance 2-37~*~1 of a previously
chosen point, play according to the isomorphism, otherwise,

find b such that

N bd3p—/{;—1 (CL) = N bdgp—k‘—l (b)

and b is not within distance 2 - 3?~*~1 of a previously chosen
point.

Such a b is guaranteed by f.
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Inductive Logic

Let o(R,x) be a first-order formula in the vocabulary o U

1R}

Associated operator ®:

O(RY) ={a| (A R a) Fo(R x)}

® js monotone if for any relations R and S such that R C S,
O(R) C P(5)

If ® is monotone, it has a least fixed point.
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The least fixed point of O is obtained by iterating it
PV = ()
q)m+1 — @(q)m)

Then, for some m, "1 = O™ = the least fixed point of ®
and m < n" where n is the size of A

A sufhicient syntactic condition for the formula © to define a
monotone map on all structures is that o be positive in R
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LFP

The language LFP is obtained by closing first order logic un-
der an operation for forming the least fixed points of positive
formulas:

LFP (o)
o if © is first-order formula over o, then ¢ € LFP(0)

e if © is formed from formulas in LFP (o) by conjunction,
disjunction, negation and first-order quantification, then

¢ € LFP(0), and

oif p € LFP(0c U {R}), p is positive in R and x is a k-
tuple of distinct variables, where k is the arity of R, then
fprl(t1 ... 1) € LFP(0) for any terms
oot
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Example:
Let (R, z,y) be x =y V Jz(E(x,2) AN R(2,y))

Then, [Ifpy, ,©l(u,v) is a formula in two free variables

that expresses the transitive closure of E.

Vuvv [fpg . ,](u, v) expresses connectedness.
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Simultaneous Induction

If
o1(x1, Ry, ..., Ry), ..., 0%, Ry, ..., Ry)

are formulae, each positive in all R;, they define, by simulta-
neous induction, a sequence of relations.

Any relation that can be obtained as one of a sequence de-
fined by simultaneous induction of LFP formulae, can also
be defined in LFP.
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Polynomial time complexity

If © is a sentence of LFP, then the set of strings:

{[A]- | AE ¢ and < is an order on A}

isin P.

If > is a signature, including the binary relation symbol <,
and Oy is the class of X structures which interpret < as a
linear order, then

for any Turing machine M and any k, there is a sentence
¢ of LFP such that, for any A € Oy,

AEg

if, and only if,

k

M accepts | A]- in n" steps.
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The role of order

Without the requirement of order, LFP is weak.

There is no sentence ¢ such that A = ¢ if, and only if,
| A| is even.

Is there a natural logic for the Polynomial time queries on all
structures?

Or more broadly:

Are the polynomial time queries on all structures recursively
enumerable?
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Enumerating Graph Queries

Consider graphs — structures over the signature (F).

A graph on n vertices can be encoded by a binary string of
length n?.

This gives up to n! distinct strings encoding a graph.

Given My, ..., M;,... — an enumeration of polynomially-
clocked Turing machines.

Can we enumerate those that compute graph properties, i.e.
are encoding invariant?
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Order invariance

A sentence @ of LFP in the signature (E, <) is order invariant
if
for every graph G = (V, E') and any two linear orders <;
and <5 on V:

(V,E,<1) E e if,andonlyif, (V,E <9)E ¢

The collection of all order invariant sentences of LFP is a
“logic” for P.

This set of sentences is not recursively enumerable.

Is there a subset including, up to equivalence, every sentence
which is r.e.?
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Finite Variable Logics

L¥ — First order formulas using only the variables z1, . . ., 2.

This provides another stratification of elementary equiva-
lence.

A=FRB

if A and B are not distinguished by any sentence of LF.

By extension, also write
(A,a) =" (B,Db)
to mean that for any formula ¢ of LF,

A = plal
if, and only if,

B = ¢lb]
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Stages

For every formula ¢ of LFP, there is a £ such that the query
defined by ¢ is closed under =*.

For

[prR,XQO] <t>
Let the variables occurring in @ be x1,...,x;, with x =
(x1,...,27), and y1, ...,y be new.

Define, by induction, the formulas ™.

" = False

0™ is obtained from (R, x) by replacing all sub-formulae
Rity,... 1)

with

Ty .. Jy (A Y =t;) A" (y)

1<i<
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Back and Forth Systems

A k-back-and-forth system between A and B is a non-empty
set I of partial isomorphisms from A to B such that:

olf f €1 and a C dom(f), then fl|, € I.

o If f €I, with [dom(f)| < k and a € A, then there is a
g € I with f C g and a € dom(g).

o If f €I, with |dom(f)| < k and b € B, then there is a
g € I with f C g and b € rng(g).

A=FRB
if, and only if, there is a k-back-and-forth system between A
and B.
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Pebble Games

Played on two structures A and B
k pairs of pebbles {(ay,b1), ..., (ax, b}

Spoiler moves by picking a pebble and placing it on an ele-
ment.

Duplicator responds by picking the matching pebble and plac-
ing it on an element of the other structure

Spoiler wins at any stage if the map from A into B defined
by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for p moves of the k
pebble game on structures A and B, then A and B agree
on all first-order sentences of quantifier rank up to p with at
most k distinct variables

(Barwise 1977)
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Types

Definition:
Type,((A,a)) = {¢ € L*|A |= p[a]}

For every A and a € A=k there is a formula © of L* such
that B |= p[b] if, and only if, (A,a) =" (B, b).
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ac Ak
©2(z1...1;) is the conjunction of all atomic and negated
atomic formulas 6(z; ... ;) such that A |= 0[a]

90];+1 = gpg ANA E|$l+1§0ga A \V/.TH_l v Spga
acA acA

oo = QRN N e

1

where a; is obtained from a by removing a;.

b defines the equivalence class of the tuple a

in the relation E];.
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Infinitary Logic

L., — extend first-order logic by allowing conjunctions and
disjunctions over arbitrary sets of formulas.

L., is complete

V
AeS rA

L* - formulas of L., with at most & variables.

w 0 k
Loow — kgl Loow
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Write
(A a) =L, (B,Db)

to say that (4, a) and (B, b) cannot be distinguished by any
formula of L .

For finite A and B,

(A,a) =L, (B,b)
if, and only if,

(A,a) =F (B,Db).
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0-1 Law

Let 0. be the set of all extension axioms 7, . such that:

7' has only k variables.

Since 6, is a finite set,

p(Mod(6y)) = 1.

Moreover, if A = 6; and B |= 0y, then
A =FB.

We obtain a 0-1 law for LY .

3/2002
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Defining Equivalence

The query, mapping a structure A to the 2k-ary relation ="
is itself definable in LFP.
Let ay(xy...2k), ..., a4(x1...2k) be an enumeration, up

to equivalence, of all atomic types with £ variables on the

finite signature o.

0o(T1 ... ThY1 - . Yp) = \/,_ (i(Z) N aj(y))

3,/2002
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Inflationary Fixed-Point Logics

The inflationary fixed point of an arbitrary (not necessarily
monotone) operator ® is obtained by iterating it as:

PV = ()
®m+1::¢%®m>LJ@m

Then, for some m < n* &L = ®™ where n is the size of

A

O = @™: the inflationary fixed point of .

IFP denotes the logic obtained by extending first order logic
with an operator which allows us to define the inflationary
fixed point of a formula.

Every formula of IFP is equivalent to one of LFP and vice
versa.
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PFP

Given a formula ¢(R) defining an operator ®.
The partial fixed point is obtained by the following iteration:

PV = ()
(I)erl — (I)((I)m)

If there is an m such that ™+ = o™
then @ = @™ and ®* = (), otherwise.

Theorem
On ordered structures PFP = PSPACE

PSPACE is captured on arbitrary structures by:

< @
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Example

Example:
Let (R, z,y) be v =y Vv Iz(E(x,2) AN R(z,y))

In both versions:
Ol = f(v,w) | thereis a path v — w of length < m}

O is the transitive closure of the graph

Let (R, x,y) be
(x =y AVaVy—-R(z,y)) V Iz(E(x,z) AN R(z,y)).

The inflationary fixed point of 1) is the same as of .

For the partial fixed point:
Ol = f(v,w) | thereis a path v — w of length = m}
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Ordering the Types

There is an IFP formula, v, such that:

1. On any structure, A, ¢ defines a linear pre-order on k-
tuples.

2. If s and tt have the same L*-type, then neither 1)[st] nor

Y[ts].
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Ordered Invariant

For a structure A, and positive integer k, define

I(A) = (A" =8 <4, =, R}, X;, Pr)

e Universe A"/ =F

e <, — ordering as defined

"(la]) iff a = (a1, a9, ...,a;) and a; = as
([a]) iff s € R,
il
 (

?U

RS

al, |b]) iff a and b differ at most on their ith element

al, [b]) iff 7(a) = b,
for each function 7 : {1,..., k} — {1,... k}.

“U><
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Characterising Fixed-Point Definability

An isomorphism-closed class of structures K is definable in
IFP (or LFP) if, and only if, there is a k such that K is closed

under =" and

Ur(A) | A e K}

is decidable in polynomial time.

An isomorphism-closed class of structures K is definable in
PFP if, and only if, there is a k such that K is closed under
=" and

Ur(A) | A e K}

is decidable in polynomial space.

The following statements are equivalent:

e Every formula of PFP is equivalent to one of IFP.

e P = PSPACE.
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