Mathematical Tripos Part III Finite Model Theory

Lent 2002

Anuj Dawar

Exercise Sheet 3

- 1. The 0-1 law for first-order logic was obtained for purely relational vocabularies. It does not hold in the presence of constant or function symbols: consider the sentence P(c) in a language with constant c and a unary predicate P. However, if there are no function symbols of positive arity (i.e. constant symbols are permitted), one can establish the following, which specialises to the 0-1 law in the case of relational vocabularies:
 - (a) Almost everywhere quantifier elimination: For every sentence ϕ , there is a quantifier-free sentence θ such that $\mu(\phi \leftrightarrow \theta) = 1$.
 - (b) Is this also true of $L^{\omega}_{\infty\omega}$?

This, too, fails if we have a function symbol with arity at least 1.

- (c) Show that there is no quantifier-free sentence that is "almost everywhere equivalent" (in the sense of part (a)) to the sentence $\forall x(f(x) \neq x)$.
- 2. For any constant $0 , we use <math>\mathcal{G}_{n,p}$ to denote the probability distribution on directed graphs on the set of vertices $\{1, \ldots, n\}$ obtained by assigning, independently, to each pair (i, j) an edge with probability p. For any sentence ϕ in the language of graphs, we write $\mu_{n,p}(\phi)$ for the probability that ϕ is true in $\mathcal{G}_{n,p}$.

Show that, for all ϕ , $\lim_{n\to\infty} \mu_{n,p}(\phi)$ is defined and is either 0 or 1.

- 3. Recall that a graph is 2-colourable if, and only if, it contains no cycle of odd length. Show (using Hanf's locality condition or otherwise) that 2-colourability is not definable in first-order logic. Do the same for 3colourability.
- 4. If σ is a relational signature, and A and B are σ-structures, write A+B for the structure whose universe is the disjoint union of the universes of A and B and where each relation symbol R is interpreted by the corresponding union of its interpretations in A and B. Similarly, write nA for the disjoint union of n copies of A.
 - (a) Show that, if $\mathcal{A} \equiv^k \mathcal{A}'$ and $\mathcal{B} \equiv^k \mathcal{B}'$, then $\mathcal{A} + \mathcal{B} \equiv^k \mathcal{A}' + \mathcal{B}'$.
 - (b) Show that, for $n, m \ge k, n\mathcal{A} \equiv^k m\mathcal{A}$.

With \mathcal{A} and \mathcal{B} as above, define $\mathcal{A} \times \mathcal{B}$ to be the structure whose universe is the Cartesian product of A and B, and where an m-ary relation symbol R is interpreted by the set of tuples $((a_1, b_1), \ldots, (a_m, b_m))$ such that $(a_1, \ldots, a_m) \in \mathbb{R}^{\mathcal{A}}$, and $(b_1, \ldots, b_m) \in \mathbb{R}^{\mathcal{B}}$. Similarly, write \mathcal{A}^k for the structure that is the product of k disjoint copies of \mathcal{A} .

- (c) Show that, if $\mathcal{A} \equiv^k \mathcal{A}'$ and $\mathcal{B} \equiv^k \mathcal{B}'$, then $\mathcal{A} \times \mathcal{B} \equiv^k \mathcal{A} \times \mathcal{B}'$.
- (d) Show that, for each p, there is an n_p such that if $n, m \ge n_p$, then $\mathcal{A}^n \equiv_p^k \mathcal{A}^m$.
- 5. Consider a structure $\mathcal{E} = (A, E)$ where E is an equivalence relation on the set A, and let e_i denote the number of equivalence classes of E with exactly i elements. Define the k-index of E to be the k-tuple (n_1, \ldots, n_k) where, for i < k, $n_i = \min(k, e_i)$ and $n_k = \min(k, \sum_{i>k} e_i)$.
 - (a) Show that if \mathcal{E}_1 and \mathcal{E}_2 are two such structures with the same k-index, then $\mathcal{E}_1 \equiv^k \mathcal{E}_2$.

For an isomorphism-closed class of finite structures C, we say that C is *k*-compact if there are finitely many \equiv^{k} -equivalence classes of structures in C.

- (b) Show that, on any k-compact class \mathcal{C} , $L^k_{\infty\omega}$ is no more expressive than L^k , i.e. for each sentence ϕ of the former, there is a sentence ψ of the latter such that $\phi \leftrightarrow \psi$ holds on all structures in \mathcal{C} .
- (c) Deduce from (a) and (b) that LFP is no more expressive than firstorder logic on the class of finite equivalence relations.
- 6. Show that $(\mathbb{Z}, <) \equiv^{2}_{\infty \omega} (\mathbb{Q}, <)$ but $(\mathbb{Z}, <) \neq^{3} (\mathbb{Q}, <)$.
- 7. Let $\mathcal{A} = (A, <)$ and $\mathcal{B} = (B, <)$ be two linear orders (not necessarily finite), and **a** and **b** be two *n*-tuples of elements from A and B respectively, in increasing order. Suppose that for each i < n, $(\mathcal{A}, a_i, a_{i+1}) \equiv_p^3 (\mathcal{B}, b_i, b_{i+1})$. Show that $(\mathcal{A}, \mathbf{a}) \equiv_p (\mathcal{B}, \mathbf{b})$ (i.e. without restriction on the number of variables).

Conclude that, on linear orders, every first-order sentence is equivalent to a sentence of L^3 .

Generalise the above to linear orders with additional unary relations.

- 8. Let γ be the signature of two binary relations: \langle and E.
 - (a) Show that any isomorphism-closed class of finite γ -structures in which \langle is a linear order is definable in $L^3_{\infty\omega}$.

Let χ_n denote the first-order sentence that asserts that < is a linear order, and E is an equivalence relation with at least n distinct equivalence classes.

- (b) Show that, if infinite structures are admitted, χ_{k+1} is not equivalent to any sentence of $L^k_{\infty\omega}$. (Hint: consider structures where < is dense, and the equivalence classes of E are all dense in each other.)
- (c) Show that, on finite structures, χ_n is equivalent to a sentence of L^3 , for any n.