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Abstract

Graph Isomorphism (GI) is one of the few natural problems in NP which is not known to be either
in P or NP-complete. The notion of fixed-parameter tractability provides a lens through which we
can explore the structure of the complexity of GI. It is unknown if Graph Isomorphism is fixed-
parameter tractable for many interesting parameterizations of the problem. In this dissertation we
review current knowledge of the parameterized complexity of GI. We then attempt to show that graph
isomorphism is fixed-parameter tractable when parameterized by three parameters, namely max leaf
number, crossing number and tree-depth. We successfully show that GI is fixed-parameter tractable
with respect to max leaf number. We then provide evidence that GI parameterized by crossing number
may be reducible to GI parameterized by path-width. Finally, we show that if a certain plausible
conjecture holds, then graph isomorphism is fixed-parameter tractable with respect to tree-depth. This
research has the potential to give new insights into graph isomorphism, and could aid in showing that
graph isomorphism is fixed-parameter-tractable with respect to path-width in future work.
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Chapter 1

Introduction

1.1 Graph Isomorphism and its Classical Complexity

A graph G is a set of vertices V (G) and a symmetric irreflexive binary relation E(G) on the vertices.
Given graphs G and H ,we say that G and H are isomorphic if there exists a bijection f : V (G) →
V (H) which preserves the edge relation, that is which obeys (x, y) ∈ E(G) ⇔ (f(x), f(y)) ∈
E(H).

Given graphs G and H , the Graph Isomorphism Problem (GI) is to decide whether or not G ∼= H .
This decision problem is clearly in NP, since an isomorphism f described above serves as a witness
to G ∼= H . Graph Isomorphism is not known to have a polynomial time algorithm. Furthermore,
evidence suggests that GI is not NP-complete. Babai showed that the complement of GI is in AM, the
set of problems decidable with probabilistic interactive proof systems [4]. This impies that if GI is NP-
complete, the polynomial hierarchy collapses to its second level. Since the polynomial hierarchy is not
believed to collapse, this is strong evidence against the NP-hardness of GI. By Ladner’s theorem, we
know that if P 6= NP then there exist NP-intermediate lanagues which are in NP but not NP-complete
[29]. GI is therefore a strong candidate to be an NP-intermediate lanaguage.

Figure 1.1: Two isomorphic graphs. The map which preserves the labels/colours of the graphs is an
isomorphism between them.
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Figure 1.2: The location of GI in the classical complexity hierarchy - if P 6= NP then evidence
suggests that GI is NP-intermediate.

No polynomial time algorithm for GI is known in the general case. The best known exact algorithm
for general graphs runs in time 2O(

√
nlogn)[3].

1.2 Parameterized Complexity

Parameterized complexity studies the computational complexity of parameterizations of classical
problems. Suppose we define a language Q over a finite alphabet Σ so Q ⊆ Σ∗. Q represents a
classical decision problem: given x ∈ Σ∗ we would like to decide whether or not x ∈ Q. Let
n = ‖x‖, the length of the input x. Classical complexity classifies decision problems Q based on how
long it takes to decide whether or not x ∈ Q as a function of n. Languages which can be decided in
time polynomial in n are considered tractable.

A parameterization of a language Q is a function κ : Σ∗ → N such that κ is computable [13].
For instance, if G is a graph, we might take as the parameter the maximal degree of G. Given a
parameterization κ of Q, we define a parameterized language to be a pair (Q, κ). Parameterized
complexity classifies parameterized decision problems (Q, κ) based on how long it takes to decide
whether or not x ∈ Q as a function of both ||x|| and κ(x) [13].

The notion of fixed-parameter tractability lies at the heart of parameterized complexity. A problem
is said to be fixed parameter tractable (for parameter κ) if there exists an algorithm for the problem
which runs in time

f(κ(x)) ∗ nc

where f : N → N is computable, n is the size of the input x and c is a constant [13]. Note that the
degree of the polynomial, c, must be a constant which is independent of the value of the parameter.
Hence if we are promised that the value of the parameter is k, we have an nc algorithm to decide the
problem: once the value of the parameter is controlled, the problem becomes easy. Also, note that
the function f is only required to be computable: f is allowed to grow very quickly and could be
exponential or super-exponential. These large constants associated with large values of the param-
eter mean that, on a practical level, fixed-parameter algorithms are only used when the value of the
parameter is small.
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FPT is defined to be the set of all parameterized languages (Q, κ) which are fixed-parameter tractable.
This complexity class serves as the parameterized analogue of P. Clearly any language Q in P is also
in FPT under any parameterization κ. Furthermore, many problems which are not known to be in P
are in FPT under certain parameterizations. FPT therefore extends the notion of classical tractability.
Given intractable problems such as SAT, it is interesting to identify which parameterizations of the
problem place it in FPT. Any parameter κ which places SAT in FPT is in some ways “responsible”
for making SAT intractable in the general case, since controlling this parameter leads to an efficient
nc algorithm for the problem. Hence discovering FPT algorithms for difficult problems can create
insights into the structure of their intractability.

In classical complexity, the notion of a poly-time reduction is used to show relationships between
the complexity of different problems. In parameterized complexity, the notion of a fixed parameter
Karp reduction (FPT-reduction) fills this role. Given two parameterized problems (Q, κ) over Σ∗ and
(Q′, κ′) over Σ′∗, we say that (Q, κ) ≤FPT (Q′, κ′), that is “(Q, κ) is FPT reducible to (Q′, κ′)”,
if there exists a map f : Σ∗ → Σ′∗ such that x ∈ Q ⇔ f(x) ∈ Q′, ‖f(x)‖ ≤ poly(‖x‖), and
there exists a computable g : N → N such that κ′(f(x)) ≤ g(κ(x)). This is precisely the same
notion as a poly-time Karp reduction, except now we also require that the value of the parameter is
bounded as a computable function of the old parameter. This ensures that if (Q, κ) ≤FPT (Q′, κ′),
and (Q′, κ′) ∈ FPT, then (Q, κ) ∈ FPT. The notion of FPT-reduction allows us to define hardness
results in parameterized complexity theory in precisely the same way we define hardness in classical
complexity [13].

Parameterized complexity theory involves several additional complexity classes which form the pa-
rameterized analogues of EXP and NP. The class XP is the parameterized analogue of EXP; the
definition is similar to that of FPT except the degree of the polynomial c in the runtime of the algo-
rithm is allowed to be a function c(κ(x)) of the parameter. The W-hierarchy is an infinite family of
complexity classes which form the parameterized analogues of NP.

1.3 Work completed in this dissertation

Graph Isomorphism is believed to be computationally intractable in the general case. In this project,
we set out to discover which parameterizations of graph isomorphism are fixed parameter tractable.
In chapter 2, we review the known XP and FPT parameterizations of graph isomorphism. Based
on this review, we pick several parameterizations and try to show that GI is in FPT under these
parameterizations. In chapter 3, we show that GI is FPT when parameterized by max leaf number and
vertex cover number. In chapter 4, we explore the parameter crossing number. We create a canonical
decomposition algorithm for graphs of crossing number k and use this to present evidence that (GI,
crossing number) may be FPT-reducible to (GI,path-width). Finally, in chapter 5 we show that if a
certain conjecture holds then (GI, tree-depth) ∈ FPT. We also briefly describe how one could prove
this conjecture.

Note that chapters 3 through 5 represent original mathematical work. Chapter 3 was completed in
collaboration with Prof. Anuj Dawar and Dr. Matthias Mnich. Chapters 4 and 5 were developed
independently under the advisorship of Prof. Anuj Dawar.
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Chapter 2

The status of GI in the Parameterized
Complexity Hierarchy

This section reviews the state of knowledge of the parameterized complexity of GI. The parameteriza-
tions are listed according to their known complexity-theoretic status, and a summary of the methods
used to create the most recent algorithm for each parameterization is provided. For each of the param-
eters listed in section 2.3, it is an open question whether or not this parameterization is in FPT.

2.1 Known Poly-time algorithms

There are several classes of graphs for which polynomial-time algorithms for isomorphism testing
are known. Graph Isomorphism was first shown to be in P over trees by Hopcroft and Tarjan [23],
and independently by Zemlyachenko [42] [27]. This was later refined to a logspace algorithm for
isomorphism testing of trees by Lindell [30]. This result was further extended to show that graph
isomorphism is in P over planar graphs by Hopcroft, Tarjan and Wong [22] [24]. The algorithm uses
the fact that any 3-connected planar graph has only two possible embeddings in the plane. It then
decomposes the planar graphs into 1, 2 and 3-connected components and propagates this constraint
up the decomposition tree [24]. This algorithm was recently refined into a logspace algorithm for
testing isomorphism of planar graphs by Datta et al. [9].

2.2 Parameterizations Known to be Fixed-Parameter Tractable

2.2.1 Size of largest colour class (coloured graph isomorphism)

A k-colouring of a graph G is a map f : V (G)→ {1, 2, ..., k}. Two k-coloured graphs G and H are
said to be isomorphic if there is a mapping between the vertices which preserves the edge relation as
well as the colour of the vertices, i.e. a vertex of colour i in G must be mapped to a vertex of the same
colour in H . The problem of deciding whether or not two coloured graphs are isomorphic is known
as the Coloured Graph Isomorphism (CGI) Problem.
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Given a coloured graph G, the colour classes of the graph Ci are taken to be the sets of vertices which
share the same colour i, i.e. Ci = {v ∈ V (G) : f(v) = i}. Coloured Graph Isomorphism is known
to be fixed-parameter tractable when parameterized by the size of the largest colour class. This result
was first shown to admit a randomized FPT algorithm by Babai [2], and later was strengthened into
a deterministic algorithm by Furst, Hopcroft and Luks [14]. It was also extended to a deterministic
algorithm for coloured hypergraph isomorphism (in which the edge relation can have arity higher than
two) by Arvind et al. [1]. The most general algorithm runs in time 2O(k)(mn)O(1), where k is the
size of the largest colour class, n is the number of vertices, and m is the number of hyperedges. The
methods used to create these algorithms are purely algebraic, and involve the application of pointwise
stabiliser series.

2.2.2 Largest Multiplicity of an Eigenvalue

Given a graph G, the adjacency matrix A(G) is the matrix whose (i, j)th entry is 1 if there is an
edge from i to j and 0 otherwise. Graph isomorphism is fixed parameter tractable with respect to the
largest multiplicity of an eigenvalue ofA(G). The algorithm was developed by Evdokimov and Pono-
marenko and uses purely algebraic methods [11]. Specifically, the algorithm produces a colouring on
the cellular algebras of the graphs, and then uses a stabiliser series approach to find an isomorphism
between the graphs, if one exists [11]. The algorithm runs in time kk

O(1)
nO(1), where k is the largest

multiplicity of an eigenvalue of the input adjacency matrix, and n is the number of vertices.

2.2.3 Tree distance width and Path distance width

Given a graph G, a tree distance decomposition of G consists of a root node r ∈ V (G), a tree T
with vertices I and edge relation F , and a collection {Xi|i ∈ I} of subsets of V (G) which obey the
following conditions:

1. The Xi ’s form a partition of V (G)

2. For each v ∈ V (G), if v ∈ Xi then for all other w ∈ Xi , dist(r, v) = dist(r, w), where dist(v, w)
is the distance from v to w along the shortest path between them.

3. For each (v, w) ∈ E(G), where v ∈ Xi and w ∈ Xj , either i = j or (i, j) ∈ F .

The width of a tree distance decomposition of G is given by max
i
|Xi|. The tree distance width of a

graph G is the minimum width of a tree distance decomposition of G. The path distance width of a
graph is defined analogously, but where T is a path rather than a tree.

Graph isomorphism is fixed parameter tractable when parameterized by tree distance width or path
distance width. This was shown by Yamazaki et al. [41]. Their algorithm is purely combinatorial in
nature. The authors show that one can efficiently test for isomorphism between decompositions by
iteratively building an isomorphism from the root of the decomposition outwards. They then leverage
the fact that producing a minimal tree distance decomposition is FPT to achieve their result. Overall,
their algorithm runs in time f(k)O(n3), where n is the size of the graph and k is the tree distance
width of the graph. For rooted path distance width, the algorithm runs in time f(k)O(n2).
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2.2.4 Maximum size of a simplicial component

Graph isomorphism is poly-time reducible to chordal graph isomorphism, that is isomorphism over
graphs in which every cycle of length ≥ 4 has a chord [40]. It is known that every chordal graph can
be uniquely decomposed into simplicial components. Based on this decomposition, Toda shows that
isomorphism over chordal graphs is FPT when parameterized by the maximum size of the simplicial
components. This is achieved using purely algebraic methods; it is an open question whether this
result can also be achieved using combinatorial methods. The algorithm runs in time O(k!)nO(1),
where n is the size of the graph and k is the maximum size of the simplicial components in the
chordal graph obtained from the reduction [40] from GI to chordal GI [39].

2.2.5 Size of feedback vertex set

Given a graph G, a set S ⊆ V (G) is a feedback vertex set if removing S from the graph makes
it acyclic. Graph isomorphism is fixed-parameter tractable with respect to the size of the smallest
feedback vertex set. The algorithm was developed by Kratsch and Schweitzer using combinatorial
methods [28]. Intuitively, graphs with small feedback vertex sets are “close” to forests, and graph
isomorphism over forests can be decided in poly-time [24]. To test if two graphs are isomorphic, the
authors first compute a miminal feedback vertex set S of the first input graph. Then they observe that
under isomorphism the image of S must intersect every cycle of the second graph. They then create
an isomorphism-preserving method of reducing size of the cycles in the second graph to be bounded
by some function of the parameter. The remaining possible isomorphisms between the reduced graphs
are explored by brute force search. The algorithm runs in time f(k)O(n2), where n is the size of the
graph and k is the size of the minimum feedback vertex set [28].

2.3 Parameterizations Known to be in XP

The following parameters are XP parameterizations of GI: if the parameter is fixed, then isomorphism
can be solved in poly-time, but the degree of this polynomial depends on the parameter. For each of
these parameterizations, it is unknown if the parameterizations are fixed-parameter tractable.

2.3.1 Tree-width and Path-width

Given a graph G, a tree decomposition of G is a tree T with vertices I and edge relation F and a
collection {Xi|i ∈ I} of subsets of V (G) which obey the following conditions:

1.
∞⋃
i=1

Xi = V (G)

2. For each (v, w) ∈ E(G), there is an Xi such that v ∈ Xi and w ∈ Xi

3. For all i, j, k ∈ I , if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj
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The width of a decomposition is the size of the largest Xi minus one. The tree-width of a graph is the
smallest width of a valid tree decomposition. The path-width is defined analogously, but where T is a
path rather than a tree.

Graph isomorphism parameterized by tree-width is known to be in XP. Bodlaender developed the
proof using combinatorial methods. His algorithm creates a representation of the input graphs as
partial k-trees in time O(nk+2). Next, the algorithm tests for isomorphism over partial k-trees using
combinatorial methods involving the k-vertex separators of the graphs. The algorithm runs in time
O(n1+22(k+1)

), where k is the tree-width of the graph [5].

Note that a graph of path-width k has tree-width ≤ k, since a path decomposition of width k is also a
tree-decomposition of width k. Since GI is in XP when parameterized by tree-width, it is also in XP
when parameterized by path-width.

2.3.2 Genus

Given a graph G and a surface S, an embedding of G into S is a map α from the vertices of G
to distinct points in S and a mapping from each edge (v, w) ∈ E(G) to a continuous curve γvw :
[0, 1]→ S such that:

1. γvw(0) = α(v) and γvw(1) = α(w), so the curve starts at v and ends at w

2. At most two curves intersect at any point in S, apart from at their endpoints.

Given a graphG, the genus ofG is the minimum genus surface into whichG can be embedded without
any of the edges crossing one another, apart from at their endpoints. For instance, any planar graph
has genus 0, since it can be embedded into the plane without crossing any edges.

Graph isomorphism is in XP when parameterized by genus. Miller showed this using topological
methods. In his algorithm, first the graphs are embedded in a topological space of the appropriate
genus. Next, each graph is used to create a labelling of 2-stable graphs to be compared. He then
shows each 2-stable graph has a small number of embeddings, which can be used to run a brute force
search of all remaining possibilities. The algorithm runs in time nO(k), where n is the size of the
graph and k is the genus of the graph [33]. Grohe later showed that for each genus k there exists an
l = f(k) such that the l-dimensional Weisfeiler-Leman algorithm solves isomorphism over graphs of
genus k. This was achieved using methods from descriptive complexity. Grohe’s algorithm runs in
time O(nf(k)) [15].

2.3.3 Maximum Degree

The degree of a vertex v ∈ V (G) , denoted ∆(v), is the number of edges incident to v. The maximum
degree of a graph G, denoted ∆(G), is given by max

v∈V (G)
∆(v). Graph isomorphism is known to be in

XP when parameterized by maximum degree. The algorithm, developed by Luks, is purely algebraic
and is a refinement of the algorithm developed to test isomorphism on graphs of bounded colour class
size. The algorithm runs in time nf(k), where n is the size of the graph and k is the maximum degree
of the graph [31].
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2.3.4 Size of the smallest excluded minor

A graph H is a minor of a graph G (denoted H � G) if H can be obtained from a subgraph of G by
a sequence of edge contractions. (Recall that to contract an edge (v, w) ∈ E(G) is to replace v and w
with a single vertex z which is adjacent to {x ∈ V (G) : (v, x) ∈ E(G)∨ (w, x) ∈ E(G)} ). A graph
G excludes a minor H if H is not a minor of G.

Graph isomorphism is known to be in XP when parameterized by the size of the smallest excluded
minor. Ponomarenko first showed this result using a non-trivial algebraic algorithm [36]. Grohe later
approached the problem through combinatorial and logical methods. He showed that for any class of
graphs C excluding a minor, there exists an l such that the l-dimensional Weisfeiler-Leman algorithm
(which runs in poly-time) decides GI over C. To do this, he shows that FP + C (fixed point logic
with counting) captures P over any class of graphs with excluded minors [17]. This, combined with a
theorem of Otto [35], imply the result. Their algorithms both run in time nf(k), where n is the size of
the graph and k is the size of the smallest excluded minor [17].

2.4 The way forward

The fundamental parameterizations known to be in XP but not in FPT are tree-width, genus, max-
imum degree, and the size of the smallest excluded minor. To show GI is in FPT for any of these
parameterizations would represent a significant advance in the field.

These fundamental parameters are related to a number of other parameters upon which graph isomor-
phism could be easier to solve. For instance, suppose that two parameterizations κ1 and κ2 are such
that for every graph, κ1 ≤ g(κ2) for some computable function g. Then we know that if GI is FPT
with respect to κ1, then it is also FPT with respect to κ2. To see this, observe that if this the case,
then isomorphism can be solved in time f(κ1)n

c. When using κ2 as a parameterization, by using the
algorithm for κ1 we can test for isomorphism in time f(g(κ2))n

c, yielding a FPT algorithm.

Hence if two parameters are related by κ1 ≤ g(κ2), then κ1 is “harder” to solve than κ2, so κ1
is a “more general” parameter. This immediately gives a trivial FPT reduction between these two
parameterizations, which we denote (GI, κ2) ≤FPT (GI, κ1). Given a set of parameters, we can create
a graph by connecting parameter κ1 to κ2 if (GI, κ2) ≤FPT (GI, κ1). This graph provides a clear
picture of the parameter landscape, in which the parameters at the top of the chart (that is, the root of
the DAG) are the most fundamental ones. We produce such a chart in figure 2.1 (next page).
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Figure 2.1: A chart of graph parameters. An arrow is drawn from parameter κ1 to parameter κ2 if
(GI, κ2) ≤FPT (GI, κ1).

In this dissertation, we explore the parameterizations near the bottom of the chart and attempt to show
that GI is in FPT with respect to them. We begin by showing that GI is FPT when parameterized
by max leaf number and vertex cover number. Next, we look at GI parameterized by the crossing
number. It seems plausible that graphs of low crossing number could admit a tractable algorithm,
since graphs of low crossing number are “almost planar”, and GI is in P over planar graphs. Although
we do not show that GI is FPT when parameterized by crossing number, we do present an argument
that graph isomorphism parameterized by crossing number could be FPT reducible to (GI, path-
width). Finally, we look at GI when parameterized by tree-depth. By extending a tree canonization
algorithm by Lindell [30], we show that if a certain plausible conjecture holds, then GI is in FPT
when parameterized by tree-depth. We leave the conjecture unproven but present techniques which
we believe will allow it to be proven in the future.
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Chapter 3

Max Leaf Number and Vertex Cover
Number

This chapter demonstrates that graph isomorphism is fixed-parameter tractable when parameterized
by max leaf number and vertex cover number. Note that the vertex cover number result follows from
the result for feedback vertex set, so we will only provide an outline of this proof.

3.1 Max Leaf Number

Given a connected graph G, a spanning tree of G is a set F ⊆ E(G) such that the graph (V (G), F )
is a tree. A leaf is a vertex of degree 1 in a tree. The max leaf number of G is the maximum number
of leaves in a spanning tree of G.

Figure 3.1: A graph G, with a spanning tree of G in red.

A graph G is a subdivision of a graph H if G can be obtained by replacing the edges of H with
simple paths of length ≥ 1. The following theorem is key to showing that graph isomorphism is
fixed-parameter tractable with respect to max leaf number:
Claim 1. Suppose G is a graph with max leaf number k. Then G is a subdivision of a graph H with
at most 4k − 6 vertices.
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Proof. This theorem was cited in Fellows et al. [12] as a theorem from Kleitman and West [26]. The
statement in Fellows et al. claims this holds for 4k − 2 [12].

This theorem does not actually appear in Kleitman and West. However Kleitman and West do show
that any graph with minimum degree 3 on n vertices has a spanning tree with at least n

4 +2 leaves [26].
They show this by creating an algorithm to construct a spanning tree of the given size on any graph
of minimum degree 3. Here we work out the details omitted in [12] which shows that this theorem
indeed follows from [26].

Kleitman and West’s algorithm works by greedily expanding a spanning tree T with a set of operations
O1, O2 and O3. If G has maximum degree ∆(G) at least 4, then the algorithm initializes T to be
all edges adjacent to a vertex of maximal degree. Otherwise, if ∆(G) = 3, then T is initialized to be
an edge which is in no triangle (If every edge of T is in a triangle then T is K4, which trivially has a
spanning tree with the correct number of leaves).

For each vertex x ∈ V (T ), let d′(x) be the number of vertices adjacent to x which are not already in
T . If x is a leaf of T , the operation “expand at x” is defined as adding all vertices adjacent to x but
not T to the tree. If d′(x) = 0, then x is called dead.

After initializing T , Kleitman and West’s algorithm expands T using the following operations:

O1: If there is a leaf x of T with d′(x) ≥ 2, then expand at x.

O2: If every leaf x of T satisfies d′(x) ≤ 1, and there is a leaf x of T adjacent to y /∈ T such that y
has at least two neighbours in T , then expand at x.

O3: If every leaf x of T satisfies d′(x) ≤ 1 and there is no leaf x whose neighbour y outside of T has
two neighbours in T : Then pick an x with d′(x) = 1 adjacent to y /∈ T which has no other neighbours
in T . Then expand at x, and subsequently expand at y.

If T has n nodes, l leaves, and m dead leaves (m ≤ l), Kleitman and West show that operations O1
to O3 always satisfy the expansion inequality 3∆l+ ∆m ≥ ∆n. They also show that one can always
expand T using one of these operations until T is a spanning tree ofG. If we expand T in this manner,
then summing these expansion inequalities we see that 3L+M ≥ N −N0, where L is the number of
leaves in the final tree, M is the number of dead leaves in the final tree, and N0 is a constant related to
properties of the initial spanning tree. Since M = L at the end of the process, we have 4L ≥ N −N0.
Hence the graph has a spanning tree with at least n

4 + k0 leaves for some constant k0. Kleitman and
West show that k0 = 2 suffices [26].

To show that any graph G of max leaf number k is a subdivision of a graph of size at most 4k − 6,
we take G and create a graph G′′ such that G is a subdivision of G′′. We then show that if n′′ is the
number of vertices in G′′, then G′′ has a spanning tree with n′′

4 + 2 leaves which can be turned into
a spanning tree of the same number of leaves of G. Hence k ≥ n′′

4 + 2, implying that n′′ ≤ 4k − 8.
This holds so long as G′′ is nonempty; in our algorithm G′′ is empty if and only if G is a path, so to
handle this case we relax our constraint to n′′ ≤ 4k − 6.

Consider any graph G with max leaf number k, and create a graph G′ by contracting all vertices of
degree 2 (that is, if a vertex v of degree 2 is adjacent to x and y, remove v from the graph and add
an edge from x to y). Then G is a subdivision of G′. Note that G′ may contain self-loops, i.e. we
could have (v, v) ∈ E(G′) for some v ∈ V (G′). It may also contain multiple edges between any two
vertices. To correct for these, we create two gadgets as follows. Replace each self-loop from v to v

12



Figure 3.2: The gadgets used to reduce G′ to G′′ in Claim 1.

with a cycle of length 3, i.e. create two new vertices x and y in V (G′′) such that (v, x), (x, y), (y, v) ∈
E(G′′). Replace each set of k edges between vertices v and w with one edge from v to w and k − 1
paths of length 2 from v to w (so we insert k − 1 new vertices into the graph). Let G′′ be the simple
graph obtained by applying these gadgets to G′.

Note that G is also a subdivision of G′′, because a self-loop in G′ can only be created by a path of
length ≥ 3 in G, and k edges between two vertices in G′ can only be created if at least k − 1 of
them were paths of length 2 or more in G . Additionally, note that the only vertices of degree 2 in G′′

are those that we inserted using the gadgets. Furthermore, note that if G′′ has a spanning tree with k
leaves, then so does G.

Now run Kleitman and West’s algorithm for constructing a spanning tree T over G′′. We now show
that their algorithm produces a spanning tree of G′′ with at least n′′

4 + 2 leaves, even though G′′ does
not have minimum degree 3.

We first take care of the vertices of degree 2 in G′′ which were added using the reflexive edge gadget.
Consider any 3-cycle v, x, y added to G′′ where v is of degree ≥ 3 and x, y are of degree 2. Note that
once x and y are added to T , then they are both dead so are ignored by the algorithm.

In running Kleitman and West’s algorithm, if G′′ has maximum degree ∆ ≥ 4, then the algorithm
initializes T to be all edges adjacent to a vertex of maximal degree. Hence by this initialization, either
x and y are in T or neither of them are. Otherwise, T is initialized to be an edge which is in no triangle
(If every edge of T is in a triangle then T is a subdivision of K4 so trivially has a spanning tree with
the correct number of leaves). Since x and y are in a triangle, they are not in the initial T . Therefore
either x and y are in T initially, or neither of them are.

We now begin building the tree T by operations O1 to O3. Once v is added to T , the algorithm
will immediately expand T to include x and y using operation O1. From this point forward they
will be dead vertices which no longer affect the algorithm. Furthermore, operation O1 will create
changes ∆l = ∆n − 1 and ∆m ≥ 0, which obeys the expansion inequality. Hence x and y are
added simultaneously to T and still obey the expansion inequality. Therefore the addition of vertices
of degree 2 into G′′ as described above does not affect Kleitman and West’s algorithm.

This takes care of those vertices of degree 2 which we added using the reflexive edge gadget. Now
let’s take care of those vertices of degree 2 which we added using the multi-edge gadget. Let’s say
there were three edges from v to w inG′, and vertices x and y of degree 2 were added into these edges
at step 1. We know that after initialization, either both x and y are added to T or neither of them are,
since they are both adjacent to the same vertices and both are part of a triangle. Additionally, they
must both be added to T in one operation O1, and afterwards are ignored by the algorithm as they are
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dead vertices. So this case is precisely analogous to the previous case.

We’ve now taken care of the vertices of degree 2 in G′′; we now simply need to take care of the
vertices of degree 1.

Consider a vertex z of degree 1 in G′′. Then z is adjacent to some v of degree ≥ 3 (otherwise G is a
path and the theorem is trivial). Once z is added to T , it becomes a dead leaf which is irrelevant to the
algorithm. So we simply need to show that the presence of a vertex of degree 1 does not cause any of
the operations O1 to O3 to violate the expansion inequality. We showed that operation O1 obeys the
expansion inequality regardless of the degree of the vertices to which it is expanding. The same holds
for O2, since O2 results in ∆n = 1, ∆m ≥ 1 and ∆l = 0. So we only need to worry about operation
O3.

Operation O3 is only performed when d′(x) ≤ 1 for every current leaf x and for each leaf x adjacent
to y /∈ T , x is y’s only neighbour in T . Now we need to consider what happens if y has degree 1. In
this case y = z, x = v has already been added to T , z is the only neighbour of v not in T . But now
simply expanding at v = x, we have ∆n = 1, ∆m = 1 (since z becomes a dead vertex), and ∆l = 0.
This operation still obeys the expansion inequality, so by modifying O3 in this way in the case of a
vertex of degree 1 we can preserve the expansion inequality.

This takes care of all vertices degree 1 or 2 in G′′, thus finishing our proof.

With this in hand, we can now prove a key corollary:
Corollary 1. IfG is a graph with max leaf number k, then at most 4k−6 vertices have degree greater
than or equal to three.

Proof. By Claim 1 we know that G is a subdivision of a graph G′ of size ≤ 4k − 6. Therefore
∀v ∈ V (G)− V (G′), ∆(v) = 2. Hence only those vertices in V (G′) can have degree greater than 2,
so |{v ∈ V (G) : ∆(v) ≥ 3}| ≤ |V (G′)| ≤ 4k − 6

Suppose two graphs G1 and G2 are isomorphic by some isomorphism f . Since f preserves the edge
relation, f preserves the degree of the vertices, so f must map those vertices in G1 of degree ≥ 3 to
the vertices of degree ≥ 3 in G2. This forms the basis for an efficient algorithm for GI parameterized
by max leaf number. The idea of the algorithm is to brute force search through all possible partial
isomorphisms between the sets of vertices in each graph of degree ≥ 3. By Corollary 1 this can
be done in FPT time. We then test whether or not we can extend each of these partial isomorphisms
between the vertices of high degree to a full isomorphism between the graphs. We know thatG1

∼= G2

if and only if at least one of these partial isomorphisms can be extended to a full isomorphism between
the graphs. Hence this algorithm will correctly decide isomorphism between the graphs.

To turn this into a tractable algorithm for isomorphism, we need to show that testing whether these
partial isomorphisms are extendible to the whole graph is “easy” to test. Fortunately this is the case,
as the following claim demonstrates.
Claim 2. Suppose you are given connected graphs G1 and G2 and nonempty sets S = {v ∈ V (G1) :
∆(v) ≥ 3} and T = {w ∈ V (G1) : ∆(w) ≥ 3} and a partial isomorphism f : S → T between S
and T .
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Then, one can decide whether or not there exists an isomorphism g : G1 → G2 which extends f in
time O(n2).

Proof. We know that all vertices in V (G1)− S and V (G2)− T have degree less than or equal to 2.

Consider the weighted multigraphG′1 obtained fromG1 by replacing all simple paths inG1 of length l
by a single edge of weight l. (Here a simple path means a path of vertices of degree 2). The multigraph
G′1 could have multiple edges between the same vertices, and could also have reflexive edges from a
vertex to itself. Note that G′1 is connected because G1 is connected.

Now S ⊆ V (G′1), since all vertices in S have degree ≥ 3 so are not part of any simple paths.
Additionally, there are no vertices in G′1 of degree two, since a vertex has degree two if and only if it
is lies on a simple path. Hence V (G′1) = S ∪ {v ∈ V (G) : ∆(v) = 1}.

Now modify G′1 further by colouring each vertex in v ∈ S by the multiset {{weight(e) : e = (v, w)
for w∈ V (G′1) of degree 1 }}, and then removing all vertices of degree 1. Here weight(e) denotes
the weight of the edge e in G′1. Call this graph G′′1 .

Now G′′1 is a weighted connected coloured multigraph, and V (G′′1) = S. Construct G′′2 analogously.

We now claim that f is extendible to an isomorphism between G1 and G2 ⇔ f is a coloured isomor-
phism between G′′1 and G′′2 .

If f is extendible to an isomorphism betweenG1 andG2, then as our reduction process is isomorphism
invariant, trivially f will be a coloured isomorphism between G′′1 abd G′′2 .

On the other hand, if f is a coloured isomorphism between G′′1 and G′′2 , then we can extend f to an
isomorphism over all of G1 and G2. To see this, note that the isomorphism type of a path of length l
is entirely characterized by its length. Hence if f is a coloured bijection between G′′1 and G′′2 , then by
extending this bijection f ′ along the paths, we create a full bijection between G1 and G2. Hence f is
extendible to an isomorphism over the whole graphs.

So by reducing G1 and G2 to G′′1 and G′′2 , and testing if f is an isomorphism between the reduced
graphs, we indeed can decide whether or not f is extendible to an isomorphism of the whole graphs.

Figure 3.3: A graph G and the reduced graph G′′. A black edge is of weight 1, a red one of weight 2,
a green one of weight 3, and a purple one of weight 4. A red vertex denotes it is attached to a leaf by
an edge of weight 3.
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Reducing the graphs takes O(m) time, where m is the number of edges in G1.

Testing if f is a coloured isomorphism between G′′1 and G′′2 takes time O(m′′ + n′′2), where m is the
number of edges in G′′1 and n is the number of vertices in G′′1 . Since we decrease the number of edges
in G1 to create G′′1 , we know m′′ ≤ m ≤ n2. Likewise n′′2 ≤ n2, so this step takes time O(n2).

Putting this all together, the algorithm runs in time O(n2), and correctly decides whether or not f is
extentible to an isomorphism over the entire graphs.

We can now prove our main result:
Theorem 1. Graph Isomorphism, parameterized by max leaf number, is fixed-parameter tractable.

Proof. Given G1 and G2, each of max leaf number k:

Find S = {v ∈ V (G1) : ∆(v) ≥ 3} and T = {v ∈ V (G2) : ∆(v) ≥ 3}. If |S| 6= |T |, then reject.

If |S| = |T | = 0, then ∆(G) ≤ 2, so G1 and G2 are planar. In this case, use the planar isomorphism
test of Datta et al. [9] to test for isomorphism in time O(n).

Otherwise, loop through all possible bijections f between S and T , and use Claim 2 to test if each
is extendible to an isomorphism of the entire graph. If this is true for any of the bijections f , accept.
Otherwise, reject.

Since G1
∼= G2 ⇔ at least one of these bijections f : S → T can be extended to a full isomorphism

between the graphs, this algorithm will have the correct output.

Finding the set of vertices with degrees greater than or equal to 3 can be done in time O(n2) by
counting the number of edges adjacent to each vertex.

By Claim 1 we know that |S| ≤ 4k − 6, so there are at most (4k − 6)! bijections to test. By Claim 2
each bijection can be tested in time O(n2), so overall this algorithm takes time O((4k − 6)!n2).

Hence graph isomorphism over graphs of max leaf number k can be decided in time O((4k− 6)!n2),
so (GI,max leaf number) ∈ FPT.

This is our first fixed-parameter tractability result for GI.

3.2 Vertex Cover Number

We can extend the arguments used in the previous section to show GI is also FPT when parameterized
by vertex cover number. This result is subsumed by the fact that graph isomorphism is FPT when
parameterized by the size of the smallest feedback vertex set [28], so we only provide an outline of
the proof.

Given a graph G, a vertex cover of G is a set of the vertices S ⊆ V (G) such that every edge in the
graph is adjacent to S. The vertex cover number of a graph G, denoted VCN(G), is the minimum size
of a vertex cover of G.
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Figure 3.4: The red vertices form a vertex cover of this graph.

Any vertex cover S is also a feedback vertex set, since removing S removes all edges from the graph,
making the graph acyclic. Hence this result has been subsumed by Kratsch and Schweitzer’s result
that (GI, minimum feedback vertex set size) ∈ FPT [28].

The following fact is key to creating an FPT algorithm for GI parameterized by vertex cover number:
Claim 3. If a graph G has VCN(G) = k, then there are at most 2k different vertex covers of G of
size k. Furthermore, these vertex covers can be enumerated in time O(2kn).

Proof. See Flum and Grohe [13] Chapter 1.

Pick an edge e = (v, w) ∈ E(G). Then any vertex cover S must contain v or w. Define AS = {e ∈
E(G) : e is adjacent to S}. Consider G′{v} = G− A{v}, the graph obtained by deleting the edges of
A{v} from G. Observe that v is in a vertex cover of size k if and only if G′{v} has vertex cover number
k − 1. This gives a recursive algorithm for enumerating all vertex covers of size k of G (for details
see [13]).

Any isomorphism between graphs must preserve vertex covers. As in the last section, this allows us
to create an algorithm which searches through all partial isomorphisms between all possible vertex
covers of either graph, and tests whether or not each is extendible to a full isomorphism. For each
of these partial isomorphisms, we can quickly check whether or not it is extendible to the rest of the
graph:
Claim 4. Suppose we are given graphs G and H with VCN(G) = VCN(H) = k, two minimal-sized
vertex covers S and T ofG andH , respectively, and a partial isomorphism f : S → T over the vertex
covers.

Then, one can decide whether or not there exists an isomorphism g : G→ H which extends f in time
O(n).

Proof. Since S and T are vertex covers, there cannot be any edges in the subgraphs induced by
V (G)− S and V (H)− T . Therefore every edge of the graph is either (1) from S to S or (2) from S

17



to V (G)−S. Since we know that f preserves the edge relation in case (1), to extend the isomorphism
we simply need to preserve the edges in case (2).

Label the vertices of S from 1 to k in an arbitrary order. For each vertex v ∈ V (G) − S, colour that
vertex with the tuple bv = (b1, b2, ..., bk), where bi = 1 if v is adjacent to vertex i in S and bi = 0
otherwise. This colouring captures which vertices of S the vertices of V (G) − S are adjacent to.
Colour the vertices of w ∈ V (H) − T likewise with the tuples bw = (b1, b2, ..., bk), where bi = 1 if
w is adjacent to f(i) and bi = 0 otherwise.

Figure 3.5: A colouring of the vertices outside the vertex cover as decribed in Claim 4.

Consider the multisets A = {{bv : v ∈ V (G)− S}} and B = {{bw : w ∈ V (H)− T}}. If A = B,
then there is an isomorphism between the graphs which extends f . Indeed, it suffices to take the map
g : V (G) → V (H) where g(v) = f(v) for v ∈ S, and g is any colour-preserving bijection between
V (G)−S and V (H)−T . Alternatively, ifA 6= B , then there is no isomorphism extending f between
G and H because there is no colour-preserving bijection between V (G)− S and V (H)− T .

From this point onwards, the proof that (GI, vertex cover number) ∈ FPT follows analogously to
Theorem 1.
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Chapter 4

Crossing Number

One of the fundamental parameters for which GI is not known to be FPT is genus. In this chapter we
attempt to address a parameter related to genus, the crossing number. Although we do not show that
GI is FPT parameterized by crossing number, in our explorations we provide some evidence that the
problem might be FPT reducible to isomorphism parameterized by the path-width of the graph.

4.1 Introduction

Given a graph G, a drawing of G into the plane <2 is a pair of maps (f : V (G) → <2, γ : E(G) →
{γe : [0, 1]→ <2}) such that:

1. f(v) = f(w)⇒ v = w, that is, f maps the vertices to distinct points in <2

2. If e = (v, w), then γe is continuous, γe(0) = f(v) and γe(1) = f(w), so the curve starts at v and
ends at w

3. At most two curves intersect at any given point in <2, except at the vertex points {f(v) : v ∈
V (G)}.

The crossing number of a graph G is the minimum number of edge crossings (that is, points of
intersection between the maps {γe : e ∈ E(G)} not at the vertex points) in any drawing of G. For
instance, the crossing number of any planar graph is 0, and the crossing number of K3,3 is 1. We
denote the crossing number of G by cross(G).

Clearly the crossing number of a graph is greater than or equal to the genus of the graph. Given a
graph with crossing number k, consider a drawing of the graph with k crossings, and create a surface
S which is the same as <2, but with k small “donut holes” located at the intersection points of the
edges. The G can be embedded in S without any edge crossings, indicating that the genus of G is less
than or equal to k.

Graphs with small crossing number are “nearly” planar in the sense that any graph of crossing number
k can be turned into a planar graph by deleting only k edges. (This is trivial, because given a drawing
of G with k crossings, we can simply remove one edge at each of the k crossing points of the drawing
to create a planar graph). Hence we say that graphs with crossing number k have “edge deletion
distance” k away from planar graphs.
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Graph isomorphism is known to be in P over planar graphs [24]. It is known that in some circum-
stances, having low edge deletion distance from a set of graphs with a poly-time isomorphism test
does result in an efficient isomorphism algorithm:
Claim 5 (From Kratsch and Schweitzer [28]). Suppose a graph class C is characterized by a finite
number of forbidden induced subgraphs H1, ...,Hl. If the coloured graph isomorphism problem for
graphs from C is in P, then the coloured graph isomorphism problem, parameterized by the vertex
deletion distance from C, is fixed-parameter tractable.

Proof. See Theorem 1 from [28].

The basic idea is that, given two graphs G1 and G2, the algorithm finds a minimal deletion set S of
size k in G and a forbidden induced subgraph H of G2. Any isomorphism must map some vertex in
S to some vertex in H . The algorithm branches on all possible vertex pairs (s, h) : s ∈ S h ∈ H and
tries each of these as a possible partial isomorphism between the graphs.

To see if the partial isomorphism from s to h can be extended to the remaining graph, the algorithm
uses a similar technique to the one used in our proof of the fixed parameter tractability of vertex cover
number. The algorithm removes s from G1 and recolours each v ∈ V (G) of colour c by the ordered
pair (c, b), where b is 1 if v is adjacent to s and 0 otherwise. This colouring captures the adjacencies
of s while removing s from the graph. The algorithm colours G2 analogously. Then, the partial
isomorphism is extendible to the rest of the graph if and only if the recoloured graphs are isomorphic
(where the isomorphism respects colours).

Note that removing s and h from their respective graphs reduces the vertex deletion distance from C
to k − 1. Hence by removing these vertices and recursing, the recursion tree is bounded in the size of
k, leading to an FPT algorithm.

Corollary 2. Suppose a graph class C is characterized by a finite number of forbidden induced
subgraphs H1, ...,Hl. If the coloured graph isomorphism problem for graphs from C is in P, then
the coloured graph isomorphism problem, parameterized by the edge deletion distance from C, is
fixed-parameter tractable.

Proof. Note that a graph of edge deletion distance d from C also has vertex deletion distance ≤ d
from C. Indeed, suppose that we can remove d edges from G to create G′ ∈ C. Starting with G,
remove one vertex from each of those edges to create G′′. Now G′′ is a subgraph of G′, and since C
is characterized by forbidden induced subgraphs, G′′ is in C as well.

We know that graphs of crossing number k are edge deletion distance k away from planar graphs,
and that coloured graph isomorphism is in P over planar graphs [22] [24][17]. If planar graphs were
characterized by a finite number of forbidden subgraphs, this would trivially prove the fixed-parameter
tractability of GI with respect to crossing number. Elementary graph theory, however, tells us this is
not the case. By Kuratowski’s Theorem, we know that a graph is planar if and only if it excludes any
subdivision of K5 or K3,3 as a subgraph, or equivalently if it excludes K5 and K3,3 as a minor [18].
So the class of planar graphs is characterized by an infinite number of forbidden subgraphs, and a
finite number of forbidden minors. If we could somehow modify Kratsch and Schweitzer’s theorem
to accomodate for graph minors, then this would immediately imply our desired result.
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Another simple way of modifying Kratsch and Schweitzer’s algorithm is as follows. Suppose that
graphs G1 and G2 have crossing number k. What if the number of edges whose removal decreases
the crossing number were bounded as a function f of k? If E1 is a set of edges of G1 of size k
whose deletion yields a planar graph, and E2 is the set of edges whose removal decreases the crossing
number of G2, then any isomorphism between the graphs must map some edge of E1 to some edge of
E2. We could then try all possible mappings between edges (e1, e2), e1 ∈ E1 e2 ∈ E2 and recurse on
the remaining graph, precisely analogously to Claim 5. Since there would only be kf(k) pairs to try
at any stage in the recursion, and the recursion tree has depth k, this would create a bounded recursion
tree and thus show (GI, crossing number) ∈ FPT.

However, in general, the number of edges whose removal decreases the crossing number is not
bounded by a function of k. In fact, there exist infinite families of graphs known as k-crossing-critical
graphs for which removing any edge decreases the crossing number.

A graph G is called k-crossing-critical, denoted KCC, if

1. cross(G) ≥ k

2. ∀e ∈ E(G), cross(G− e) < k, where G− e denotes the graph obtained by removing e from G.

KCC graphs are the subject of contemporary combinatorial research. There exist several known in-
finite families of KCC graphs such that, for each n0, there exists a KCC graph in the family of size
n ≥ n0 [21]. For instance, the “crossed fence” family of KCC graphs consists of the following
construction: Create a square lattices of points in a diamond shape of width k and wrap it around
a cylinder (this is the “fence”). To one side of the fence pick two vertices distance > k apart and
attach a node w1 to each of them. Do likewise to create a node w2 on the botton side of the fence,
and then “cross” the fence by connecting w1 and w2. Hlinĕný showed that this construction is indeed
k-crossing critical [21].

Note that other infinite families of KCC graphs can be created using the “Möbius strip” method, which
uses a fence or grid and, instead of crossing the fence, adds a half-twist to the fence [21].

Figure 4.1: A Crossed Fence 6-crossing critical graph [20]. The left and right edges of the graph are
attached as if wound around a cylinder.
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Work is currently being done to better understand the structure of KCC graphs. There are several open
conjectures in the field, including:
Conjecture 1. If G is k-crossing critical, then the number of vertices of odd degree greater than 6 is
bounded as a function of k [21].
Conjecture 2. If G is k-crossing critical, then the maximum degree of the graph ∆(G) is bounded as
a function of k [37].
Conjecture 3. If G is k-crossing critical, then the bandwidth of the graph is bounded as a function of
k [37]. If proven, this would imply Conjecture 2 as well, since graphs of bandwidth k have degree at
most k.

Many facts about KCC graphs have been proven, the most relevant of which is the following fact:
Theorem 2 (From Hlinĕný 2002 [20]). Suppose a graph G is k-crossing critical. Then the pathwidth
of G is bounded by a function of k. Specifically, the path-width of G is most 2f(k)+1 − 2, where
f(k) ≤ 6(72 log2 k + 248)k3.

Note that G must be k-crossing-critical in order to have bounded pathwidth. Graphs which only have
crossing number k need not have bounded pathwidth. Indeed, there are planar graphs, such as binary
trees, which have arbitrarily high pathwidths but have crossing number 0.

Suppose GI were FPT when parameterized by path-width. Then, by Theorem 2, (GI, crossing number)
would be FPT when restricted to k-crossing critical graphs. A natural question is whether or not we
could extend this isomorphism algorithm for KCC graphs to work for all graphs of crossing number
k. If so, then we would show that (GI, path-width) ∈ FPT⇒ (GI, crossing number) ∈ FPT.

In the next section we present evidence that this might be the case. We create an algorithm which
canonically decomposes graphs of crossing number k into planar and k-crossing-critical components.
This algorithm is isomorphism-invariant, so could form the basis of an FPT reduction between cross-
ing number and pathwidth. We explore this idea, and the difficulties that arise in turning this into a
proven reduction.

4.2 Reducing Crossing Number to Pathwidth

We would like to create a FPT reduction from crossing number to pathwidth. To do so, we suppose
that GI is in FPT when parameterized by pathwidth. Our goal is to create an isomorphism algorithm
for crossing number using the isomorphism algorithm for pathwidth as a black box. If we are able
to do so, then we will show that (GI, pathwidth) ∈ FPT ⇒ (GI, crossing number) ∈ FPT. This is
essentially a parameterized Cook reduction between the problems, which transforms an instance of
the problem into at most f(k)nc instances of the pathwidth problem, rather than a parameterized Karp
reduction (which we defined previously).

From Theorem 2, we know that all k-crossing critical graphs have bounded path-width as a function
of k, so we can solve GI efficiently for these k-crossing critical graphs. If we could decompose our
graphs of crossing number k into their “critical” and “planar” components, then we could easily solve
graph isomorphism separately on each of these components, and perhaps combine the results to test
for isomorphism on the entire graphs.

We now provide a fixed-parameter tractable algorithm which creates a canonical (that is, isomorphism-
invariant) decomposition of a graph into planar and KCC components. A key fact that we use in the
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proof is that testing whether the crossing number of a graph is less than or equal to k is fixed parameter
tractable with respect to k [16]; in fact, it can be done in linear FPT time [25].

ALGORITHM 1: Canonical Decomposition Algorithm for graphs of Crossing Number k
Input: A graph G of crossing number k
Output: A partition of the edges of G into sets E1, E2, ... El such that l ≤ k
repeat

Ei = {e ∈ E(G) : cross(G− e) = cross(G)} ;
if |Ei| == 0 OR |Ei| == |E(G)| then

Ei = E(G);
end
E(G) = E(G)− Ei;

until |E(G)| == 0;

Theorem 3. Algorithm 1 produces a partition of the edges of G such that all the graphs (V (G), Ei)
are planar except potentially (V (G), El), which could be k′-crossing-critical for k′ ≤ k.

Proof. Given G of crossing number k:

Let’s describe what happens to G in step i of the algorithm, when cross(G) = ki.

Consider Ei = {e ∈ E(G) : cross(G− e) = ki}.

Note that for any edge e, cross(G − e) ≤ ki, since removing any edge cannot increase the crossing
number.

Hence if |Ei| == 0, then for each edge cross(G−e) < cross(G), soGmust be ki-crossing critical. In
this case, by setting Ei = E(G), we ensure the algorithm terminates before starting the next iteration,
and the algorithm terminates with a ki-crossing-critical graph.

Now, if |Ei| == |E(G)|, then removing any edge from G does not affect its crossing number. This
immediately implies thatG is planar. (To see this, suppose by way of contradiction that cross(G) > 0.
Consider any drawing of G with a minimal number of crossings. At least one edge e is crossed in this
drawing. Then immediately we have cross(G − e) < cross(G), yielding a contradiction.) Again by
setting Ei = E(G) we ensure the algorithm terminates before beginning the next step.

We are now left with the third case, where 0 < |Ei| < |E(G)|. In this case, we will show that
(V (G), Ei) is planar.

ConsiderD, the set of all drawings ofGwith exactly ki crossings. SinceG has crossing number ki,D
is nonempty. Furthermore, for each edge e ∈ Ei, e cannot be crossed in any drawing in D (otherwise,
removing e from the graph would create a drawing with < ki crossings, which is a contradiction).
Hence in any drawing inD, every edge in Ei is not crossed. This implies any drawing inD is a planar
drawing of the graph (V (G), Ei), so since D is nonempty, (V (G), Ei) is planar.

We have now established that every graph in the sequence is either planar or crossing-critical, and
that if the graph is crossing-critical, then it is the last graph in the sequence. Furthermore, this al-
gorithm is trivially isomorphism invariant, as no arbitary choices are made in the algorithm, and the
crossing number of a graph is isomorphism invariant. Hence this algorithm does produce a canonical
decomposition of the graph efficiently.

We now need to show that the algorithm terminates after at most k rounds. If we ever reach |Ei| ==
|E(G)| or |Ei| == 0, then we terminate on the next round, so we are done. So we only need to look at
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what happens when 0 < |Ei| < |E(G)|. In this case, we remove a subset of the edges fromG to create
a new graph G′, with cross(G′) ≤ cross(G). So at the end of this step, either cross(G′) = cross(G)
or cross(G′) < cross(G). We show that only the latter case is possible.

If cross(G′) = cross(G), then we know that G′ must be ki-crossing critical, hence the algorithm must
terminate in the next iteration. To see this, suppose by way of contradiction that G′ is not ki crossing
critical. Then there is some edge e in G′ such that cross(G′ − e) = cross(G′) = cross(G). Since
we know that e was not removed in this step, removing e from G must decrease its crossing number.
Hence there is a drawing d of the graph G − e with less than ki crossings. But note that d is also
a drawing of the graph G′ − e with less than ki crossings. Hence cross(G′ − e) < ki, yielding a
contradiction.

Therefore we know that cross(G′) < cross(G), so the crossing number strictly decreases at each
round. Hence the algorithm terminates after at most k iterations.

Since finding Ei and removing it from the graph can be done in time O(f(k)mn), this means that the
algorithm runs in time O(kf(k)mn). Hence this is indeed an FPT algorithm.

We therefore have an FPT algorithm to canonically decompose a graph of crossing number k into
at most k planar graphs and at most one crossing critical graph. Since we are assuming GI is FPT
with respect to pathwidth in this section, we know that we can solve isomorphism in FPT time on
each of these components individually. Clearly if G1

∼= G2, then both graphs must have isomorphic
decompositions, so testing these individual isomorphisms is a necessary condition for isomorphism
between these graphs. However, this condition is not sufficient to ensure isomorphism between the
graphs, as the example in Figure 4.2 demonstrates. Hence we need a stronger condition to ensure
isomorphism between the graphs.

Given a graph G, the automorphism group of G, denoted Aut(G), is the set of automorphisms of G.
(Recall that an automorphism of a graph is an isomorphism from the graph to itself). The orbit of a
vertex v ∈ V (G), denoted Ov is the set {w ∈ V (G)|∃f ∈ Aut(G) : f(v) = w}. The set of orbits
of the automorphism group form an equivalence relation on the vertices of G, because if w ∈ Ov,
then v ∈ Ow because isomorphisms are invertible. The orbits of the automorphism group of a graph

Figure 4.2: Two non-isomorphic graphs of crossing number 1 which have the same canonical decom-
position into K3,3 (black edges) and two K2 graphs (red edges)
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convey information about the structure of Aut(G), but they do not provide enough information to
fully describe Aut(G). For instance, the orbits of Kn and Cn are both the entire graph, but the
automorphism group of the former is much larger than that of the latter.

Note that if we can test for coloured graph isomorphism between two graphs efficiently, then we can
also efficiently label the vertices of the graph by their orbits. Suppose we are given two coloured
graphs G1 and G2, and we can test that G1 and G2 are isomorphic in time O(f(k)nc). If we find that
G1
∼= G2, then we can label the graphs as follows:

For each vertex v ∈ V (G1), test, for each w ∈ V (G1), whether or not G1 − v ∼=CGI G1 − w, where
G1 − x has been recoloured by giving vertex y colour (c, 1) if y is adjacent to x and colour (c, 2)
otherwise, where c is the original colour of y. Clearly G1 − v ∼=CGI G1 − w ⇔ w ∈ Ov. So this
allows us to label the orbits of G1 with labels 1...k, where k is the number of distinct orbits of the
graph. We then colour G2 with the same colours 1...k by giving vertex w ∈ V (G2) the same colour
as any v ∈ V (G1) such that G1 − v ∼=CGI G2 − w. Since G1

∼= G2, these are the same graph, so the
orbits will be labelled correspondingly. Overall, this can be completed in time O(f(k)nc+2), which
is also an efficient algorithm. We can therefore label the orbits of two isomorphic graphs efficiently.

Given a graph of crossing number k, we’ve seen that we can canonically decompose it into at most
k graphs, each of which admits an FPT isomorphism test. Also, we can easily label the orbits of
the automorphism groups of each of these subgraphs efficiently. If we’re given two graphs G1 and
G2 which have isomorphic canonical decompositions, then one way to distinguish non-isomorphic
graphs from one another is to test whether the orbits of each of these graphs interact in the same way.
We can do this by colouring each of the graphs by the orbits of their automorphism groups, and then
taking the intersection of these colourings. This leads us to a colour refinement algorithm, Algorithm
2, which attempts to create a colouring of the orbits ofG1 andG2 based on the orbits of its constituent
components.

ALGORITHM 2: An orbit refinement algorithm for graphs with isomorphic canonical decompositions
Input: Graphs G1 and G2 of crossing number k.
Output: A colouring of G1 and G2 .
index = |G|;
Canonically decompose G1 and G2 into graphs E1...El and F1...Fl respectively using Algorithm 1.
Check for each i = 1...l that Ei

∼= Fi, otherwise return;
repeat

For each i = 1...l label the orbits of Ei and Fi correspondingly as above.
Colour each vertex v ∈ V (G1) by (c, c1, c2,...cl) where c is the old colour of vertex v and ci is the orbit
label of vertex v in graph Ei. Do likewise for G2.
index−−;

until index==0;;

Note that the colouring produced by this algorithm is strictly refined at each stage, so it will take at
most n iterations to stabilize. So this algorithm is indeed a tractable algorithm for the problem, since
we are assuming (CGI, path-width) ∈ FPT. Also note that this algorithm successfully distinguishes
the graphs in Figure 4.2.

This algorithm clearly produces a colouring which is compatible with a colouring of the orbits of the
automorphism groups of G1 and G2, because since G1 can be decomposed edgewise into Ei, i = 1...
l, then Aut(G1) ⊆

⋂
i∈[1,...,l]

Aut(Ei), which implies Ov ⊆
⋂

i∈[1,...,l]

Ov(Ei), where Ov(Ei) is the orbit
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of v in subgraph Ei. So clearly this algorithm does not refine the colouring beyond the orbits of
Aut(G1).

If the colouring produced by this algorithm is actually a colouring of the orbits of Aut(G1) and
Aut(G2), then testing for isomorphism between the graphs becomes fixed-parameter tractable under
our assumptions. Give G1 and G2 of crossing number k, we could colour them using Algorithm
2. If the multisets of colours contained in each graph are not equal, then clearly the graphs are not
isomorphic. Otherwise, pick v ∈ V (G1) andw ∈ V (G2) of the same colour such that cross(G1−v) <
k. Then clearly G1

∼= G2 ⇔ G1− v ∼= G2−w , where the colouring of the graphs Gi−x are refined
to convey whether or not the vertices are or are not adjacent to x, as above. If the new graphs are
isomorphic, then repeat. This can only continue at most k steps since the crossing number decreases
at each stage. Hence this would produce an algorithm to test for isomorphism between the graphs in
time O(f(k)nc).

Ergo if Algorithm 2 actually colours the orbits of G1 and G2, then we know that (CGI, path-width) ∈
FPT⇒ (GI, crossing number) ∈ FPT.

4.3 Future work to be done

Unfortunately, it’s not clear that this algorithm will properly colour the orbits ofAut(G1) andAut(G2).
This algorithm does not work for general edge decompositions of graphs. For instance, consider the
edge decomposition of the graph in Figure 4.3 into two copies of C7, the 7-cycle:

Figure 4.3: An edge decomposition into two copies (one red, one black) of C7 showing that orbit
Refinement does not work for generic edge decompositions.

Clearly the orbits of the automorphism group of each subgraph is the entire graph, so Algorithm 2
would give this graph a single colour. However, the actual colouring of the orbits of the automorphism
group of this graph uses 7 colours. So on general graph decompositions of G, Algorithm 2 does not
produce a colouring of the orbits of Aut(G). However, this example does not immediately show our
algorithm is incorrect, since this particular edge decomposition is not an example of a canonical edge
decomposition.

Hence if we want to prove that this algorithm is correct, we would need to leverage the fact that we
are using our particular canonical decomposition algorithm. Any such proof would have to leverage a
number of detailed topological facts, in a similar fashion to the planar isomorphism testings algorithms
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of Hopcroft, Tarjan and Wong [22] [24]. Here we leave open the question of whether or not this colour
refinement algorithm works.

Note that even if this colour refinement algorithm does not work, there could be other ways to lever-
age our canonical decomposition algorithm to prove (CGI, path-width) ∈ FPT ⇒ (GI, crossing
number) ∈ FPT. A more sophisticated approach would be to directly mimic the planar isomorphism
testing algorithm of Hopcroft, Tarjan and Wong [22] [24]. The planar isomorphism algorithm de-
composes the graph into 2 and 3 connected components in a tree-like structure, then propagates the
automorphism group constraints up the tree structure to determine isomorphism over the entire graph.
In our case, our decomposition algorithm has a path-like structure to it, which could allow us to per-
form a similar propagation of automorphism group constraints to the entire graph. However, such an
algorithm could not work exactly analogously to the Hopcroft Tarjan and Wong algorithm because
our decomposition of the graph is over the edges of the graphs rather than the vertices. This algorithm
would be heavily topological in nature. Such an approach could be fruitful for future research.
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Chapter 5

Tree-Depth

In this chapter we show that, if a certain conjecture holds, then graph isomorphism is fixed-parameter
tractable with respect to tree-depth. We also provide several ideas as to how this conjecture could be
proven.

5.1 Introduction

A directed tree T is a graph consisting of a root r and a connected strongly acyclic graph (where
strong acyclic means the graph is acyclic even if the directed edges are replaced by undirected edges)
which is directed away from r. Given a tree T , the depth of T is the length of the longest path from r
to any vertex in the graph. A vertex v is said to be an ancestor of vertex w if there is a directed path
from v to w in F . The closure of T , denoted clos(T ), is the undirected graph obtained by taking the
symmetric transitive closure of T . In other words, it is the graph obtained by adding an undirected
edge between two verticies v and w if and only if one is the ancestor of another in T .

A directed forest is a graph whose connected components are directed trees. The closure of a directed
forest is defined to be the closure of its connected components.

Figure 5.1: A tree T and its closure.
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A forest F is said be a forest decomposition of a graphG ifG is a subgraph of clos(F ). The tree-depth
of G, denoted td(G), is the minimum height of a forest F which is a forest decomposition of G.

Figure 5.2: A graph G and the closure of its tree decomposition.

Tree-depth is also known as the minimum elimination tree height or the vertex ranking number. The
parameter has been studied extensively in the area of factorization of sparse matrices ([19] via [32]). In
this area, the nodes of the graph represent chunks of computational work, and the edges represent the
dependencies between these computations. In this context, graphs of low tree depth are computations
which are easily solvable by a parallel computation using an unbounded number of processors.

Tree-depth is a generalization of the vertex cover number of a graph. For any graph, td(G) ≤
VCN(G). To see this, note that any graph of vertex cover number k has a depth k decomposition
taken as follows: Order the vertices of a minimal vertex cover arbitrarily and place them in a path.
At the bottom of the path, attach all remaining nodes of the graph. This is a tree of height k, and the
closure of this tree contains all edges adjacent to the vertex cover, which by the defintion of the vertex
cover must be a superset of the edges of the graph. Hence for any graph G, td(G) ≤ VCN(G).

Likewise, path-width is a generalization of tree-depth, because for any graph G, pw(G) ≤ td(G),
where pw(G) is the path-width of G. To see this, given any graph G of tree-depth k consider a
minimum height tree decomposition of G. Now take the bags of the path decomposition Xi to be the
sets of vertices on paths from the root of the tree decomposition to a leaf, taken in the order the leaves
would be visited in a depth-first search. Then this is a valid path decomposition of G, with width k.

Figure 5.3: A graph of Vertex Cover Number k, and its forest decomposition of height k.
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Hence for any graph G, pw(G) ≤ td(G). So if GI were FPT when parameterized by path-width,
then it would trivially also be FPT parameterized by tree-depth. However GI is not known to be FPT
parameterized by path-width.

An alternative and equivalent definition of tree-depth provided by Nes̆etr̆il and Ossona de Mendez
[34] will prove very useful in constructing our algorithm:
Claim 6. Let G be a graph with connected components G1, ..., Gp.

Then td(G) =


1 if |V (G)| = 1
1 + min

v∈V (G)
td(G− v) if p = 1 and |V (G)| > 1

max
i=1...p

td(Gi) otherwise


Proof. See Nes̆etr̆il and Ossona de Mendez, Lemma 2.1 [34].

Tree-depth is also well-behaved with respect to the operation of taking minors.
Claim 7. If H is a minor of G, then td(H) ≤ td(G) [34].

From Nes̆etr̆il and Ossona de Mendez [34]. Given a graph G with a minimum height decomposition
F : Suppose we contract an edge (v, w) ∈ E(G) to create a graph G′. Then (v, w) ∈ E(clos(F )),
so v is an ancestor of w in F . Consider the forest F ′ obtained by identifying v with its parent p(v) .
Then G′ ⊆ clos(F ′). Hence td(G′) ≤ td(G).

This fact can be used to show that we can test if a graph has tree-depth d efficiently:
Claim 8. Given a graph G, we can find the tree-depth of G in time O(f(d)n) for some function f ,
where d = td(G). [7].

Proof. Provided by Bodlaender et al. [7]

Let Cd = {G : td(G) ≤ d}. Then by Claim 7 the class Cd is closed under the operation of taking
minors. Trivially the class Cd does not contain all planar graphs, as it doesn not contain P2d+2 , the
path of length 2d+2. By a theorem of Bodlaender (which is a consequence of a theorem of Robertson
and Seymour) any minor-closed class of graphs which does not contain all planar graphs has a linear
time recognition algorithm [6]. Hence given G we can decide for each d if G ∈ Cd in time O(g(d)n).
By repeating this for d = 1...td(G), we can find the tree-depth of G in time O(f(d)n), where f(d) =
d∑

i=1

g(d).

Note that underlying this result is a powerful theorem by Robertston and Seymour, which states that
any proper minor closed class is characterized by a finite number of forbidden minors [38]. This
theorem is non-constructive, so the function f(d) described above is not necessarily computable. In
order to consider this algorithm to be FPT, we need to relax our notion of fixed-parameter tractability
to allow the function f(k) to be non-computable. This relaxation of FPT is known as uniform FPT
[10], whereas requiring f is be computable is known as strongly uniform FPT. In this chapter we will
only consider the uniform version of FPT.
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5.2 A potential proof that (GI,tree-depth) ∈ FPT

With the basic facts about tree-depth established, we can now work to create an algorithm which
shows that graph isomorphism parameterized by tree-depth is in FPT. The basic idea is to extend
the logspace algorithm for tree isomorphism developed by Lindell [30] to test for isomorphism over
forest decompositions of a graph.

For the moment assume that our graphs are connected; later we will show that our algorithm also
works for disconnected graphs.

Lindell’s algorithm works by establishing an ordering < on the set of trees [30]. In his algorithm, two
trees S and T obey S < T if

1. |S| < |T |, where |S| denotes the number of nodes in S.

2. |S| = |T | and #s < #t, where #s is the number of children of the root of S

3. |S| = |T |, #s = #t = k and (S1, S2, ..., Sk) < (T1, T2, ..., Tk) lexicographically, where we
inductively assume that S1 ≤ S2 ≤ ... ≤ Sk and T1 ≤ T2 ≤ ... ≤ Tk are the ordered subtrees of S
and T obtained by removing the roots of S and T

Clearly if neither S < T or T < S then S ∼= T . Alternatively, if S < T or T < S then S and T are
not isomorphic [30].

Our idea is to extend this ordering on trees to an ordering of the tree decompositions of a graph G.
Recall that a tree decomposition of a graph G consists of a tree T over V (G) and a subset E(G) ⊆
E(clos(T )). We say that two decompositions T1 and T2 are equivalent, denoted T1 ' T2, if their
respective trees are isomorphic, and furthermore there is an isomorphism between the trees which
preserves E(G) as well. So in particular, an isomorphism between tree decompositions is also an
isomorphism between the graphs.

To test for isomorphism, our algorithm finds a minimal decomposition of each graph. If the two graphs
are isomorphic, then they have the same minimal decomposition. If two graphs are nonisomorphic,
then they do not have the same minimal decomposition. We show that we can find this minimal
decomposition efficiently, so this gives us an efficient test for graph isomorphism. We create this
algorithm by defining an order on decompositions recursively in such a way that our recursion tree
has depth and breadth bounded as a function of the tree-depth.

Suppose that we are given a connected graph G with td(G) = d. We inductively define an ordering
of (sub) tree decompositions of G as follows:

Consider a connected subgraph G′ of G of tree-depth d′ ≤ d. If d′ < d suppose that the root of
the decomposition of G is fixed, as well as the path of vertices to the root r = r1, r2, ...rd−d′ in
the entire decomposition of G of length d − d′. Also assume that G′ is a connected component of
G− r1 − r2 − ...− rd−d′ .

Let S and T be two depth d′ decompositions of G′, with roots s and t, respectively.
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Figure 5.4: A sub-decomposition of G′ with root s and connected components S1...Sk of G′ − s.

We say that the decomposition S of G′ is less than the decomposition T , denoted S < T , if one of the
following conditions is satisfied:

1. (E(r1, s), E(r2, s), ..., E(rd−d′ , s)) < (E(r1, t), E(r2, t), ..., E(rd−d′ , t)) lexicographically, where
E(x, y) = 1 if there is an edge from x to y and 0 otherwise. If d = d′, then we ignore this condition.

2. E(ri, s) = E(ri, t) ∀i = 1...(d − d′) and #s < #t, where #x is the number of connected
components in G′ − x.

3. E(ri, s) = E(ri, t) ∀i = 1...(d− d′), #s = #t = k, and

(χ(S1), χ(S2), ..., χ(Sk)) < (χ(T1), χ(T2), ..., χ(Tk))

lexicographically, where S1 � S2 � ... � Sk are the connected components of G′−s and T1 � T2 �
... � Tk are the connected components of G′ − t. Here the connected components are ordered by �,
which is defined below and is different from the ordering on decompositions.

Here χ(Si), the “characteristic of Si”, is defined to be the ordered tuple (|Si|, ||Si||,∆(s, Si)), where
|Si| is the number of nodes in Si, ||Si|| is the number of edges in Si, and ∆(r, Si) is the number of
edges between r and Si. We define Si ≺ Sj if and only if χ(Si) < χ(Sj) lexicographically. Note that
ordering the components by � requires us only to compute χ(Si) for each i.

4. E(ri, s) = E(ri, t) ∀i = 1...(d− d′), #r = #s = k, χ(Si) = χ(Ti) ∀i = 1...k, and

(S1, S2, ..., Sk) < (T1, T2, ..., Tk)

lexicographically, where we inductively assume that S1 ≤ S2 ≤ ... ≤ Sk and T1 ≤ T2 ≤ ... ≤ Tk
are the ordered connected components of G′− s and G′− t, along with their decompositions induced
by S and T . Here the connected components are ordered first by their size, then by ≤ on their
decompositions induced by S and T .

This ends our definition of < over tree decompositions.
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This ordering has several nice properties:
Claim 9. Given graphs G and H , both connected and with the same tree-depth d and size. Let S be
a depth d tree-decomposition of G and T a depth d tree-decomposition of H . Then if neither S < T
nor T < S, then S ' T and G ∼= H .

Proof. Follows by a simple induction on the tree-depth of the graphs. The base case is trivial, as
graphs of tree-depth 0 are singleton vertices.

Suppose this holds for tree-depth d − 1, and we want to show it holds for tree-depth d. Consider a
graphsG andH of tree-depth dwith a depth-d decompositions S and T rooted at s and t, respectively.
By Claim 6 the connected components of G − s and H − t have tree-depth ≤ d − 1. Since neither
S < T nor T < S, by conditions (2) (3) and (4) of the ordering and by the induction hypothesis
we know that the corresponding components of G − s and H − t are isomorphic. Furthermore, by
condition (1) of the ordering we know that the edges of E(G) and E(H) form the exact same subsets
of clos(S) and clos(T ), and these subsets respect the isomorphism between the components of G− s
and H − t. Hence S ' T , which trivially impies that G ∼= H .

By condition (4) of the ordering, we know that to find the minimal decomposition of G rooted at s,
we simply need to find the minimal decompositions of each of the connected components of G − s.
This forms the basis of a recursive algorithm to compute the minimum depth-d decomposition of a
graph G.

ALGORITHM 3: Recursive construction of a minimal tree-decomposition
Input: A connected graph G′ of tree-depth d′, with a specified path to the root of the larger decomposition

r1...rl of G
Output: A tree decomposition S of G′ of depth d′ which is minimal with respect to <
if td(G) = 1 then

Output the trivial decomposition of the graph
else

Set R = {v ∈ V (G′) : td(G′ − v) = d− 1}
Remove those elements r ∈ R which do not have minimal values of (E(r1, r), E(r2, r), ..., E(rl, r))
Remove those elements r ∈ R which do not have minimal values of #r
Remove those elements r ∈ R which do not have minimal (χ(S1), χ(S2), ..., χ(S#r))
foreach r ∈ R do

Compute minimal decompositions of S1...Sk, the connected components of G′ − r, using this
algorithm and appending r to the list of roots of the decomposition of the larger graph.
Order S1...Sk by < using k log k comparisons

end
Find which r ∈ R produces the decompositions (S1, ...Sk) which are minimal in lexicographic order, call
this rmin

Output the decomposition obtained by making rmin the root of the decomposition and connecting it to the
root of each of the minimum decompositions of S1...Sk

end

This algorithm is correct by the observation that subdecompositions of a minimal decomposition are
also minimal. With this in hand, we can now create the isomorphism test given by Algorithm 4.
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ALGORITHM 4: A graph isomorphism algorithm parameterized by tree-depth
Input: Two graphs G and H
Output: Whether or not G ∼= H
Check that td(G) = td(H) = d, if not output G and H not isomorphic
Compute S, the minimal decomposition of G , and T , the minimal decomposition of H using Algorithm 3.
if neither S < T nor T < S then

output G ∼= H
else

output G and H not isomorphic
end

The following claim will help us show that this is indeed a correct test for isomorphism.
Claim 10. If G ∼= H , then the decompositions produced by Algorithm 3 on G and H are isomorphic

Proof. Follows from the fact that all steps in Algorithm 3 are isomorphism invariant

Corollary 3. Algorithm 4 correctly tests for graph isomorphism

Proof. By Claim 10 if G ∼= H , then Algorithm 3 outputs S ' T , so Algorithm 4 correctly decides
that G ∼= H

If G and H are not isomorphic, then S and T are not isomorphic, so either S < T or T < S, so
Algorithm 4 makes the correct choice in this case as well.

The following conjecture would immediately imply that GI is FPT when parameterized by tree-depth,
as the following result holds
Conjecture 4. Suppose G is a graph of tree-depth d. Then the number of vertices r of G which can
serve as the root of a depth-d decomposition ofGwhich are minimal in #r and (χ(S1), χ(S2), ..., χ(S#r))
is bounded by a function g(d).
Theorem 4. If Conjecture 4 holds, then GI can be decided in time O(h(d)n4), where h is some
function and d is the tree-depth of the graphs.

Proof. Suppose Conjecture 4 holds. Let’s compute the runtime of Algorithm 3 which outputs a mini-
mal decomposition of the graph.

Let T (n, d) denote the runtime of Algorithm 3 on a graph G with n vertices and tree-depth d.

We know td(G− v) = d− 1⇔ v is a root of a depth d decomposition. By Claim 8 we can check if
td(G) = d − 1 in time f(d − 1)n. So finding R = {v ∈ V (G′) : td(G′ − v) = d − 1} can be done
in time f(d)n2. Now R can have size up to n.

Next we reduce the size of R to only those vertices with minimal #r and (χ(S1), χ(S2), ..., χ(S#r)).
For each r, computing #r and χ(Si) for each component Si ofG−r can be done in time Σi=1...#rO(|Si|2) ≤
O(n2). Hence this step takes time O(n3).

Now the algorithm recurses. By Conjecture 4 it will recurse on at most g(d) different roots. For each
of these roots r, if k = #r then it will compute a decomposition of each of the connected components
S1...Sk of G− r, which will take time ≤ Σk

i=1T (|Si|, d− 1). To order these decompositions by <, it
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will then make k log k comparisons of the decompositions using <, each of which takes time O(n2),
and subsequently make g(d)k comparisons in time g(d)kn2 between these sorted decompositions to
find which of the g(d) roots is minimal.

Putting this together, we see that the recursion relation for the run time is given by

T (n, d) ≤ f(d)n2 + n3 + g(d)

{(
k∑

i=1

T (|Si|, d− 1)

)
+O(k log kn2)

}

with base case T (1, 0) = 1.

Now we can easily see that a run time of T (n, d) = h(d)n4 suffices. Plugging this ansatz into the
recursion relation, we see that h must satisfy

T (n, d) ≤ f(d)n2 + n3 + g(d)

{(
k∑

i=1

h(d− 1)|Si|4
)

+O(k log kn2)

}

so, since n4 is convex and k ≤ n, we see that

T (n, d) ≤ (f(d) + 1)n3 + g(d)
{
h(d− 1)n4 +O(n4)

}
or

T (n, d) ≤ (f(d) + 1 + g(d) {h(d− 1) +O(1)})n4

So taking h(d) = f(d) + 1 + g(d) (h(d− 1) +O(1)), we have T (n, d) ≤ h(d)n4, so this suffices.
By setting h(0) = 1, this provides an inductive definition of h as a function.

Hence Algorithm 3 runs in time O(h(d)n4). So Algorithm 4 also runs in time O(h(d)n4).

Hence by this and by Corollary 3, this algorithm correctly decides isomorphism over connected graphs
in time O(h(d)n4).

We can now see that this algorithm extends naturally to disconnected graphs. If two graphs G and H
have k connected components each, then test for isomorphism between the components as follows:
pick a connected component S1 of G and test whether it is isomorphic to any of the components of
H . If not, reject. If so, then remove S1 and T1 (where S1 ∼= T1) from G and H respectively and
repeat. This process correctly decides graph isomorphism, and also runs in time O(h(d)n4) because
n4 is convex.

Ergo if Conjecture 4 holds, then graph isomorphism can be decided in time O(h(d)n4), where h is
some function and d is the tree-depth of the graphs.

Corollary 4. If Conjecture 4 is true, then (GI, tree-depth) ∈ FPT, where FPT is taken to be uniform
FPT.
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5.3 Bounding the number of roots of a decomposition

In order for our algorithm to decide graph isomorphism in FPT time with respect to tree-depth, we
need prove Conjecture 4, that is we need to bound the number of “minimal” roots of a depth-d de-
composition of a graph as a function of d. This section provides ideas as to how to prove Conjecture
4, but does not present a proof of the conjecture.

Ideally, we’d like to show that a graph of tree-depth d can have at most g(d) roots of depth d de-
compositions of the graph. This would immediately imply Conjecture 4, thus showing that (GI,
tree-depth) ∈ FPT. This however is a very general theorem to prove. Our strategy is to leverage
the constraints on these roots contained in Conjecture 4. The constraints contained in Conjecture 4 in
turn impose constraints on the roots themselves, which may help us limit them in number.

Suppose G is a graph of tree-depth d. Let R be the set of vertices which can serve as roots of a
depth-d decomposition of G and are minimal in #r and (χ(S1), χ(S2), ..., χ(S#r)), where the Si are
the connected components of G− r ordered lexicographically by χ(Si).

Our goal is to show that necessarily |R| ≤ g(d) for some function g. One way to do this would
be to create a proof by contradiction by showing that if there are more than g(d) roots with these
characteristics, then td(G) > d. We could show td(G) > d by finding a forbidden minor of Cd in the
graph, for instance by finding Kd+2 as a minor of G.

One constraint that we definitely can prove about these roots is as follows:
Claim 11. Suppose |R| > 1. For each r ∈ R, let R1...Rk denote the connected components of G− r
ordered by χ(Ri). Then R − {r} ⊆ Rk, that is, all other minimal roots of a decomposition lie in the
largest connected component of G− r. Furthermore, |Rk| ≥ n

2 .

Proof. Consider s and t distinct elements of R. Let S1...Sk denote the connected components of
G− s and let T1...Tk denote the connected components of G− t as above.

For any i 6= j, we know that Si and Sj are separated by s. Hence for any v ∈ Si and w ∈ Sj , i 6= j,
then all simple paths from i to j go through s. Furthermore, as G is connected, such a path from v to
w through s exists.

We know that t ∈ Si for some i. Let’s now consider what happens when t is the root of the decompo-
sition. By the above observation, for any w ∈ Sj , j 6= i, there is a simple path from t to w through s.
Hence for any w ∈ Sj , j 6= i, there is a path from w to s which does not go through t. Hence t cannot
separate any element of Sj , j 6= i, from s. Therefore {s} ∪

⋃
j 6=i

Sj must lie in the same connected

component of G− t, say the component is Tl for some 1 ≤ l ≤ k.

Since Tl ⊇ {s} ∪
⋃
j 6=i

Si, then we also know that |Tl| ≥ 1 + Σj 6=i|Si|. But this also implies that

|Tl| ≥ 1 + Σj 6=i|Ti|, since χ(Si) = χ(Ti) ∀i = 1...k, which implies |Ti| = |Si| ∀i = 1...k.

This immediately implies that l = k, since we know |T1| ≤ |T2| ≤ ... ≤ |Tk|. (Otherwise, if l < k
then |Tl| ≥ 1 + Σj 6=i|Ti| > |Tk| , which is a contradiction).

This result also implies that |Tk| > n
2 . Indeed, since |Tk| + Σj<k|Tj | + 1 = n, then Σj<k|Tj | =

n−1−|Tk|. Combining this with our constraint that |Tk| ≥ 1+Σj<k|Ti|, we see that |Tk| ≥ n−|Tk|,
so |Tk| ≥ n

2 . Since |Sk| = |Tk|, then |Sk| ≥ n
2 as well.
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Since this result holds when we switch s and t, we have s ∈ Tk as well. So for any r ∈ R, R−{r} ⊆
Rk, the largest connected component of G− r, and |Rk| ≥ n

2 .

However, this constraint itself does not provide enough leverage to produce a forbidden minor of
G. It’s quite clear that any vertex v ∈ V (G) can be the root of a decomposition of G, but that
decomposition is not necessarily of minimal depth. Hence if we were to produce a proof of Conjecture
4, it would have to use the fact that td(G) = d, so all these decompositions are of minimal depth.
Unfortunately it is not trivial to do so.

We leave the proof of conjecture 4 as an open question for future research.
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Chapter 6

Conclusions

Through this work, we have shown that (GI, max leaf number) ∈ FPT. Additionally, we have created
a canonical decomposition algorithm which has an efficient runtime when parameterized by cross-
ing number, which could be used in the future to show (GI, path-width) ∈ FPT ⇒ (GI, crossing
number) ∈ FPT. Finally, we have shown that if Conjecture 4 is correct, then (GI, tree-depth) ∈ FPT.

We leave open a number of questions for future research. First and foremost, we would like to find a
proof of Conjecture 4. Although we provide some ideas as to how to construct a proof by contradic-
tion, additional constraints will need to be derived in order to complete this task. Also, we leave open
the question as to whether Algorithm 2 succesfully decides graph isomorphism. It is clear that any
proof of this theorem will require a number of topological facts about graphs of crossing number k.

If we were to succesfully prove Conjecture 4, and hence show that (GI, tree-depth) ∈ FPT, then
this could help us to show that (GI, path-width) ∈ FPT. Graphs of tree-depth k and graphs of max
leaf number k represent different facets of the structure of graphs of path-width k. Hence it could
be possible to combine efficient algorithms for max-leaf-number and tree-depth to create an efficient
algorithm for path-width. This topic would provide a fruitful area for future research.
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