

Interpreting the significance of
Android energy optimisation by

collecting large-scale usage
information

Andrew Rice
August-2011

Part 1: We want to know how much
energy a particular action will

consume

Part 2: We want to know if this is
significant in real usage

Example: joining the wireless
network consumes 6 Joules

HTC G1 (or Magic), Android 1.1, 194 trials

We measure energy consumption
by intercepting the power supply

Power V
1
x V

2

Both voltages
are sampled
at 250 kHz

Trace of the G1 boot process

HTC G1 (or Magic), Android 1.1

Joining a
wireless
network

HTC G1 (or Magic), Android 1.1

Access point beacons correlate with
spikes in the power trace

HTC G1 (or Magic), Android 1.1

Timestamped events from the
phone must be aligned with the

appropriate sample points

The synchronization information is
embedded in power trace

Dimmed screen

Bright screen

HTC G1 (or Magic), Android 1.1

Hypothesise matching pulses

HTC G1 (or Magic), Android 1.1

Find alignment from autocorrelation
with a hypothesised signal

HTC G1 (or Magic), Android 1.1

ARP probing
wastes a lot
of energy

HTC G1 (or Magic), Android 1.1

Remove the DHCP overhead by
using static addressing

HTC G1 (or Magic), Android 1.1

Static addressing reduces the
connection cost to 1.5 Joules

Dynamic AddressingStatic Addressing

HTC G1 (or Magic), Android 1.1, Static = 143 trials, Dynamic = 194 trials

We could remove the ARP probes
from our client implementation

RFC2131 “...the client SHOULD probe the newly
received address, e.g., with ARP.”

RFC2119 – SHOULD “...there may exist valid
reasons in particular circumstances to ignore a
particular item”

Android 2.1 doesn't ARP probe in
our tests

Google N1, Android 2.1

Dynamic addressing now costs 1.5J
Dynamic Addressing

G1
Dynamic Addressing

N1

Google N1, Android 2.1, 100 trials / HTC G1 (or Magic), Android 1.1, 194 trials

How much energy is 5 Joules?

● 5 seconds of talk time
● 8 minutes of standby time
● 3.5 minutes of idle wireless (the extra cost of

having the wireless on is approx. 0.024W)

Knowing the connection cost helps
with system design

● How long should the wireless stay active whilst
idle?
● 6J connection → 250 seconds idle cost
● 1.5J connection → 62 seconds idle cost

● Is it worth forcing programmers to tell the
system explicitly?

Its not clear whether its worth the
effort to apply these optimisations

● Wifi connection – should we change the API to
get more detail of an application's intent?

● Sending data – should we change the operating
system to support packet level co-scheduling?

● Changes to API are costly
● To implement
● To migrate existing applications

 PhD work by Daniel Wagner

We are
attempting to

build a
substantive
dataset of

smart-phone
use

We collect everything...

Handset: on/off, OS version, device type
Screen: on/off, brightness

Storage: size/free/type
Telephony: ringer/mode/roaming/sigstrength/data

Tel events: calls/text/mms/data
Battery: charging/voltage/level

Wifi: connects/scans/data
Bluetooth: connects/scans/data

Apps: source/running/resource use

Some of these require polling

More features coming over the
summer

We remove direct identifiers from
trace

● Your contacts each get a unique pseudonym
● This doesn't give you anonymity
● You can assign a readable name for your use
● We will only release data which is at least 3

months old → you can opt out retroactively
● Pause functionality available

Current progress (6-Aug-2011)

Release date May 9th
Jun 19th Engadget

Server fail

Implementation lessons...
timestamps are not reliable

● Users manually change the time
● Travelling, daylight saving

● Sometimes the OS reports invalid dates
● e.g. after an update for some reason

● How do network corrections get applied?
● Solution: record phone uptime and insert real-

time clock events to anchor it

Users are highly sensitive to the
size of your application

● Consider effective methods of minimizing size
● Android sorts by size – don't be the biggest!

Please install Device Analyzer
and/or

Please tell us if you have concerns

http://deviceanalyzer.cl.cam.ac.uk

Or search for Device Analyzer by dtg-android on the Android Market

http://deviceanalyzer.cl.cam.ac.uk/

Thanks to
Daniel Wagner, Andy Hopper,
Alastair Beresford, Simon Hay,

Google & Qualcomm

Computing for the Future of the Planet
http://www.cl.cam.ac.uk/research/dtg/planet

The distribution for the G1 phone
splits into 3 parts

Dynamic Addressing
G1

Dynamic Addressing
N1

Google N1, Android 2.1, 100 trials / HTC G1 (or Magic), Android 1.1, 194 trials

The G1 histogram peaks are due to
discontinuities in connection time

HTC G1 (or Magic), Android 1.1, Dynamic

Caused by power control in radio?

HTC G1 (or Magic), Android 1.1, Dynamic

This power control is evident when
sending data too

Send 7K of data over TCP Send 8K of data over TCP

HTC G1 (or Magic), Android 1.1

This effect has a big impact on
energy cost

HTC G1 (or Magic), Android 1.1, 1120 Trials (HTC Hero, Android 1.5 is the same)

Best case ≈ 0.005 Joules

Worst case ≈ 0.13 Joules

N1 energy performance

Google N1, Android 2.1, 900 Trials

Best case: same Worst case: much better

Best case ≈ 0.005 Joules

Worst case ≈ 0.04 Joules

Programmer should make a different
choice depending on the platform

● Using a G1 => send 7k chunks
● Using a Nexus One => the larger the better
● We see unexpected behaviour in both graphs

Measure sending costs by sending
UDP packets

Nexus One
Send 4 packets
384ms interval
Android 2.2

Nexus One
Send 4 packets
224ms interval
Android 2.2

Measure sending costs by sending
UDP packets

Nexus One
Send 4 packets
128ms interval
Android 2.2

Measure sending costs by sending
UDP packets

Nexus One
Send 4 packets
8ms interval
Android 2.2

Measure sending costs by sending
UDP packets

Co-scheduling packets between
applications would save energy

● (Some) Applications already wait for
opportunistic use of the network

● Operating system / library support needed to do
better

TCP additionally needs to receive
packets – more complex

DTIM=1 DTIM=10

2G consumes more idle power than
3G (in my office)

HTC G1 (or Magic) running Android 1.1

Bluetooth power consumption also
shows this 'tail energy' effect

Assume that you want to make a connection to a
known device

It has to listen periodically for you attempting to
contact it

More frequent listening => quicker connection but
more power

18 window
+
18 interval

18 window
+
32 interval

We can model fit these two modes
as expected

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

