Interpreting the significance of Android energy optimisation by collecting large-scale usage information

> Andrew Rice August-2011

Part 1: We want to know how much energy a particular *action* will consume

Part 2: We want to know if this is significant in real usage

Example: joining the wireless network consumes 6 Joules

HTC G1 (or Magic), Android 1.1, 194 trials

We measure energy consumption by intercepting the power supply

Trace of the G1 boot process

HTC G1 (or Magic), Android 1.1

HTC G1 (or Magic), Android 1.1

Power (Watts)

Access point beacons correlate with spikes in the power trace

HTC G1 (or Magic), Android 1.1

Timestamped events from the phone must be aligned with the appropriate sample points

The synchronization information is embedded in power trace

HTC G1 (or Magic), Android 1.1

Hypothesise matching pulses

HTC G1 (or Magic), Android 1.1

Find alignment from autocorrelation with a hypothesised signal

HTC G1 (or Magic), Android 1.1

HTC G1 (or Magic), Android 1.1

Power (Watts)

Remove the DHCP overhead by using static addressing

HTC G1 (or Magic), Android 1.1

Static addressing reduces the connection cost to 1.5 Joules

HTC G1 (or Magic), Android 1.1, Static = 143 trials, Dynamic = 194 trials

We could remove the ARP probes from our client implementation

RFC2131 "...the client SHOULD probe the newly received address, e.g., with ARP."

RFC2119 – SHOULD "...there may exist valid reasons in particular circumstances to ignore a particular item"

Dynamic addressing now costs 1.5J

Google N1, Android 2.1, 100 trials / HTC G1 (or Magic), Android 1.1, 194 trials

How much energy is 5 Joules?

- 5 seconds of talk time
- 8 minutes of standby time
- 3.5 minutes of idle wireless (the extra cost of having the wireless on is approx. 0.024W)

Knowing the connection cost helps with system design

- How long should the wireless stay active whilst idle?
 - 6J connection \rightarrow 250 seconds idle cost
 - 1.5J connection \rightarrow 62 seconds idle cost
- Is it worth forcing programmers to tell the system explicitly?

Its not clear whether its worth the effort to apply these optimisations

- Wifi connection should we change the API to get more detail of an application's intent?
- Sending data should we change the operating system to support packet level co-scheduling?
- Changes to API are costly
 - To implement
 - To migrate existing applications

We are attempting to build a (SMS substantive Phone dataset of & Texts smart-phone use

Apps

(((-

Wifi

Location

Data Transfer

Battery & Charging

Device Analyzer for Android

PhD work by Daniel Wagner

We collect everything...

Handset: on/off, OS version, device type Screen: on/off, brightness Storage: size/free/type Telephony: ringer/mode/roaming/sigstrength/data Tel events: calls/text/mms/data Battery: charging/voltage/level Wifi: connects/scans/data Bluetooth: connects/scans/data Apps: source/running/resource use

Some of these require polling

More features coming over the summer

We remove direct identifiers from trace

- Your contacts each get a unique pseudonym
- This doesn't give you anonymity
- You can assign a readable name for your use
- We will only release data which is at least 3 months old \rightarrow you can opt out retroactively
- Pause functionality available

Current progress (6-Aug-2011)

Implementation lessons... timestamps are not reliable

- Users manually change the time
 - Travelling, daylight saving
- Sometimes the OS reports invalid dates
 - e.g. after an update for some reason
- How do network corrections get applied?
- Solution: record phone uptime and insert realtime clock events to anchor it

Users are highly sensitive to the size of your application

- Consider effective methods of minimizing size
- Android sorts by size don't be the biggest!

Please install Device Analyzer and/or Please tell us if you have concerns

http://deviceanalyzer.cl.cam.ac.uk

Or search for Device Analyzer by dtg-android on the Android Market

Thanks to Daniel Wagner, Andy Hopper, Alastair Beresford, Simon Hay, Google & Qualcomm

Computing for the Future of the Planet http://www.cl.cam.ac.uk/research/dtg/planet

The distribution for the G1 phone splits into 3 parts

Google N1, Android 2.1, 100 trials / HTC G1 (or Magic), Android 1.1, 194 trials

The G1 histogram peaks are due to discontinuities in connection time

HTC G1 (or Magic), Android 1.1, Dynamic

Caused by power control in radio?

This power control is evident when sending data too

Send 7K of data over TCP

Send 8K of data over TCP

HTC G1 (or Magic), Android 1.1

This effect has a big impact on energy cost

Best case \approx 0.005 Joules

HTC G1 (or Magic), Android 1.1, 1120 Trials (HTC Hero, Android 1.5 is the same)

N1 energy performance

Best case: same

Worst case: much better

Best case ≈ 0.005 Joules

Google N1, Android 2.1, 900 Trials

Programmer should make a different choice depending on the platform

- Using a G1 => send 7k chunks
- Using a Nexus One => the larger the better
- We see unexpected behaviour in both graphs

Nexus One Send 4 packets 384ms interval Android 2.2

Nexus One Send 4 packets 224ms interval Android 2.2

Co-scheduling packets between applications would save energy

- (Some) Applications already wait for opportunistic use of the network
- Operating system / library support needed to do better

TCP additionally needs to receive packets – more complex

2G consumes more idle power than 3G (in my office)

HTC G1 (or Magic) running Android 1.1

Bluetooth power consumption also shows this 'tail energy' effect

Assume that you want to make a connection to a known device

It has to listen periodically for you attempting to contact it

More frequent listening => quicker connection but more power

We can model fit these two modes as expected

