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ABSTRACT
Accurate, dependable location information enables new services to
users and efficient message routing within a sensor network.Fine-
grained location data are often degraded by prevalent multipath and
varying transmission channel characteristics. Successful position-
ing systems have used over-constrained sensor data to increase re-
silience to these problems and improve the accuracy of the loca-
tion information produced. In this paper we evaluate a selection of
commonly used algorithms for range-based (lateration) measure-
ment data. We consider their accuracy, dependability, and com-
putational requirements. The evaluation is performed using data
collected over an extended period using an established indoor posi-
tioning system that locates active tags using the propagation of ul-
trasound from tag to a matrix of static sensors distributed through-
out a 550m2 office floor space. We identify algorithms with suc-
cessful multipath rejection and highlight the importance of the sen-
sors’ geometric configuration. This is particularly pertinent when
considering positioning near cell boundaries in the sensornetwork.
We introduce two new metrics to characterise the dependability of
positioning algorithms.

Categories and Subject Descriptors
I.6 [Information Systems]: Simulation and Modeling; D.0 [Software]:
General

General Terms
Algorithms, Experimentation, Reliability
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1. INTRODUCTION
There is a growing interest in the localisation of both people and

objects in the mobile computing world. Systems are being devel-
oped to provide location-based services to humans, whilst sensor
networks are increasingly using location information to spatially
localise disparate nodes and sensed objects, potentially aiding in
communications routing [9].

Fine-grained location systems (with sub-metre positioning accu-
racy or better) have emerged primarily from sensor platforms de-
signed solely with positioning in mind. Fine-grained tracking en-
ables new interfaces (augmented reality, three-dimensional mouse
input, etc), better contextual inferences (people seated around a ta-
ble implies a meeting, etc), and accurate, location correlated, sens-
ing (mobile nodes placed on a seabed, etc). To date many systems
have been developed to provide location data for static and dynamic
objects alike [8], utilising visible light [2, 3, 10] infra-red [14], ul-
trasound [13, 16], and radio in many guises [1, 5]. The positioning
calculation has been based on multiangulation (angular bearing-
based), multilateration (time- or range-based), or a mix ofthe two.
It may be offloaded to nearby high power systems or performed lo-
cally on mobile devices . The former case allows for more complex
algorithms, whilst the latter increases location privacy by determin-
ing its own position.

A significant challenge facing location system designers isthat
of multipathed signals — all location systems rely on the propaga-
tion of signals, and multipathed signals are those that do not prop-
agate along the expected direct line-of-sight paths. Multipathed
signals reduce the dependability of the output locations. Aperfect
positioning algorithm rejects all multipathed signals, but in reality
it is not always possible to distinguish direct from multipathed. Tra-
ditionally this issue is tackled by using algorithms that search for
consistent positioning solutions within an over-constrained system
of lateration measures.

In this paper, we examine the trade-offs associated with theuse
of five positioning algorithms for lateration data. The choice of
lateration data over an angular equivalent allows evaluation of the
algorithms using real positioning data from an establishedfine-
grained positioning system known as the Bat system [16]. We ex-
amine the performance of the chosen algorithms with respectto
precision, dependability, and computation costs: metricswe define
in detail. The algorithms are implemented within an open source
positioning library which we have made generally available.

The rest of this paper is structured as follows: Section 2 sum-
marises the algorithms evaluated, Section 3 describes the collec-
tion of location data, Section 4 presents the results, and Section 5
concludes.



Figure 1: Predicted and actual error.

2. POSITIONING ALGORITHMS
In a realistic environment it is important to acknowledge the per-

formance of the algorithm in terms of results and execution costs.
We parameterise the space of location algorithms with the follow-
ing dimensions:

• Actual Error The algorithm’sactual error describes the
Euclidean distance of the estimated position (algorithm out-
put) to the corresponding true position (measured experimen-
tally).

• Predicted Error The predicted erroris an estimate of the
actual error when the true position is unknown i.e. based
solely on the lateration data. See Figure 2 for a comparison
with actual error. We also introduce the notion ofdepend-
ability which is the proportion of time the true position lies
within the predicted error of the estimated position (it lies
outside in the example of Figure 2).

• Computation Cost It is often important to minimise com-
putation costs for systems with mobile devices.

The five algorithms analyzed in this paper are chosen to provide
a spectrum of algorithms with different trade-offs. They are used to
process range-based data, and represent a necessary step inthe po-
sitioning solution (some systems effectively amalgamate sequences
of mobile positions using a filter to increase accuracy and depend-
ability [6]: we do not consider such algorithms here since weare
interested in deterministic position calculations that are often used
as input to such filters)

2.1 Non-linear Regression (NLR)
In essence the problem of positioning is one of data-fitting;given

a set of input measurements {mi}, what parameters {pj } provide
a best fit? In general for such problems regression analysis can be
used to estimate the parameters, which in the case of positioning
will include the location (x,y,z). The standard choice of fitting func-
tion for position determination fits each of the range measurements
to the distance between the current position estimate (px,py ,pz) and
the associated static sensor (sx,sy,sz),

di =
p

(sx − px)2 + (sy − py)2 + (sz − pz)2. (1)

This is a non-linear function of the parameters, and thus a non-
linear regression analysis is appropriate. A single application of
non-linear regression results in a position estimate basedon all in-
put measurements. If the input data set is densely packed with re-
liable data and only one or two datums are multipathed, this algo-
rithm should perform reasonably well, generally preferring a posi-
tion that agrees with the majority of the input set. A residual, ei,
is defined for each input datum,i, by measuring its agreement with
the final output. The overall model fit forn measurements can be
estimated by a standard error,σ, where
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where ri represents the range measurement associated with da-
tum i.1 This quantity serves as the predicted error.

2.2 Iterative Non-linear Regression (INLR)
A useful extension to NLR is to iteratively form NLR models re-

ducing the size of the input data set with each iteration. Following
the formation of a model, the single measurement determinedto
disagree with the estimate most (i.e. the measurement associated
with the greatest residual) is discarded and the modelling process
starts afresh. The Bat system makes use of a such an algorithm
to perform its multilateration. Here, outliers arise from acombi-
nation of signal reflections and noise. With each rejection of a
range value, a new non-linear model is computed using only the
remaining data [15]. This process repeats until either there are in-
sufficient measurements remaining to fully constrain the model (a
failure) or the modelσ value goes below a nominal threshold (a
success). The finalσ is used as the predicted error. Essentially
this algorithm searches for the largest quorum of consistent values
within the measurement set, adopting the corresponding position as
its position estimate and the level of agreement within the quorum
as the predicted error.

2.3 Least Squares (LS)
It is possible to linearise Equation 1 in order to use more tradi-

tional linear regression (or least squares). The solution can then be
represented as a matrix computation which can be computed faster
than using the NLR analysis. Whilst NLR effectively considers the
intersection of spheres centred on each receiver, the linearisation
considers the intersection of infinite planes. Each pair of spheres
that intersect do so entirely within a plane and linearisation identi-
fies all such planes. The point that best represents the intersection
of all these planes is then found by the least squares algorithm.
Previous work has shown that this technique is highly susceptible
to outliers [12]. Evaluating theσ value of the model does not pro-
vide a good predicted error since the linearisation processresults
in residuals that are not representative of obvious spatialquantities.
Instead the predicted error can be derived from calculationof the
distance residuals using the original (non-linearised) measurements
and the estimated position (Equation 2), or based on the magnitude
of the maximum residual (where we have used the former we refer
to LLSA, whilst we use LLSB for the latter).

2.4 Random Sample Consensus (RANSAC)
The RANSAC [4] technique uses trilateration [11] to derive a

position from a randomly selected triplet within the dataset. The
remainder of the data set is then partitioned into supporting and
non-supporting data based on the expected error of each reading.

1We assume each measurement has a variance of unity.



If a quorum of suitable size is found the algorithm returns the esti-
mated position. Otherwise, another triplet is selected randomly and
the process repeated until a predetermined number of iterations has
elapsed. We nominally assign the maximum expected error of a
reading to be the precision of this algorithm. This algorithm acts
in the opposite sense to the INLR algorithm given above, where all
data is taken and iteratively discarded. In this case an estimate is
produced and additional support is garnered by adding remaining,
consistent data points.

2.5 Trilaterate on Minima (ToM)
Low resource location systems might require much simpler al-

gorithms for position estimation than those mentioned above. The
ToM algorithm produces a position by selecting the three shortest
readings from the sample set. This heuristic hopes to eliminate
reflected signals by assuming they take a longer path to direct sig-
nals. This technique has no mechanism for rejecting sightings and
so cannot be considered dependable — bad data cannot be distin-
guished from good. It uses a heuristic to select a set of data points
from the available data. A solution, potentially avoiding outliers,
can be reached without iteration. Since the input data to ToMis
not over-constrained, calculating a predicted error as with other al-
gorithms is not possible: the algorithm will either fail or provide a
result in perfect agreement with its input.

3. DATA COLLECTION
An evaluation of the performance of each algorithm requires

measurements from a real-world environment. Meaningful results
cannot be drawn from simulated data since no reliable simulation
of indoor environments and people exists.

As part of the Sentient Computing project at the University of
Cambridge, we have deployed the Bat system [16] — an ultrasonic
positioning system. This uses sensors in the form of ultrasonic re-
ceivers installed at precisely measured locations in the ceiling of
the laboratory and powered tags (“Bats”) which act as ultrasound
transmitters. It is an example of a centralised sensor network with
the sole purpose of accurately locating Bats and, by extension, the
people and objects attached to them. The system is capable ofpo-
sitioning to within 3cm of the true position 95% of the time using
iterative multilateration of ranging data (the INLR technique).

The Bat system provides a testbed with which to evaluate posi-
tioning algorithms: it has a dense distribution of ceiling sensors (as
might be expected in more generic sensor node deployment), is an
established and well-tested platform, and offloads the calculation
of position to surrounding infrastructure, allowing closeanalysis of
computational demands. A four month study using the Bat system
was conducted to collect data in an office environment. In excess
of two million sightings were collected for a total of ten Bats, eight
of which were fixed to office walls and two to the centre of offices
(Figures 2 and 3). The Bats were thus in a static configuration: this
allowed determination of their true position using laser-surveying
equipment. Given that the error associated with the Bat system is
at least one decimal order of magnitude greater than this, the laser
survey results are treated here as absolute.

The choice to place the majority of Bats on walls decreased the
likelihood of accidental movement by the room’s users without af-
fecting the room’s normal usage patterns. The few Bats placed in
the centre of offices permit significant differences in behaviour be-
tween central and perimeter Bats to be detected. We also notethat
in our Sentient Environment many of the interaction zones requir-
ing location of Bats are placed on the perimeter of offices.

For each sighting of a Bat, the raw positioning data was logged.
This consisted of a series of timing pulses and measurementsof

Figure 2: Bats were fixed in positions in the centre of an office
and to the walls.

Figure 3: The location of each of the deployed survey Bats.

the local environment details at the time (temperature, etc.). The
logs were then used to post-process the data using the various algo-
rithms. This permitted fair comparison of the candidate algorithms
on using the same real-world dataset. The computation cost was be
estimated, to some extent, by monitoring the computation time re-
quired by each algorithm. The actual error was derived by compar-
ing the returned positions with the corresponding laser-measured
true positions.

4. RESULTS
Examination of the raw sighting data has shown that multipathed

outliers occupy between 5% and 20% of the sighting information.
There seems to be little correlation between the rate of outlier oc-
currence when the Bat is fixed to a wall or when it is affixed to
the centre of an office, consistent with the expected behaviour of
inwardly-facing Bats

All algorithms show, to a varying extent, decreased precision
near the room boundaries. We attribute this to Dilution of Preci-
sion (DOP) due to the fact that the walls physically partition the
ultrasonic system. Bats fixed to the edge of the room will see
only ceiling receivers in front of them rather than behind. Thus
each incoming measurement data set contains a reduced volume of
data and the degree of redundancy present is similarly reduced, ad-
versely affecting the position estimate. Table 1 shows the averaged
actual error for each algorithm tested. Table 2 shows the percentage
of sightings that lay within the predicted error of the true position
(thedependability).

On the basis of actual error alone, it is clear that ILNR is an at-
tractive solution. This is attributable to its iterative nature which
completely discards inconsistent data and proves very powerful in
eliminating multipathed signals. However, Table 2 shows a low
density of positions within its predicted error, relative to the other
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Figure 4: Histograms of actual error distributions for Bat 1 .

Bat 1 2 3 4 5 6 7 8 9 10 Average
INLR 0.027 0.023 0.019 0.045 0.047 0.03 0.06 0.06 0.06 0.06 0.04
RANSAC 0.048 0.048 0.149 0.07 0.09 0.09 0.11 0.1 0.09 0.07 0.09
NLR 0.418 0.058 0.074 1.058 0.54 0.21 0.12 0.37 0.42 0.48 0.38
LLS 15.392 3.742 6.135 26.24 9.849 15.01 6.26 3.36 111.7 18.94 21.66
ToM 0.899 0.36 0.636 0.984 0.468 1.16 0.62 0.27 0.63 0.3 0.63

Table 1: Actual error (metres) for the positioning algorithms.
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Figure 5: Histograms showing the absolute positioning error for Bat 8.



Bat 1 2 3 4 5 6 7 8 9 10 Average
INLR 99.443 99.988 99.838 95.556 79.017 99.52 76.44 95.71 81.97 92.47 91.99
RANSAC 99.967 99.979 99.983 99.964 99.969 99.56 99.33 96.45 99.75 99.4 99.44
NLR 99.95 99.963 99.996 100 100 100 100 100 100 100 99.99
LLSA 5.456 79.122 27.081 2.038 12.567 0.89 16.81 45.52 0.03 33.6 22.31
LLSB 5.458 79.143 27.095 4.474 12.577 6.19 28.15 45.53 0.03 33.6324.23

Table 2: Dependability (%).

Bat 1 2 3 4 5 6 7 8 9 10 Average
INLR 0.026 0.046 0.09 0.032 0.065 0.067 0.044 0.049 0.017 0.025 0.046
RANSAC 2.513 0.946 2.305 2.024 0.799 1.161 0.815 0.252 0.459 0.288 1.156
NLR 6.642 3.079 4.569 7.315 3.609 6.156 3.005 1.661 2.032 2.531 4.06
LLSA 0.994 1.178 1.185 0.303 0.887 0.295 0.175 1.38 1.045 0.442 0.788
LLSB 0.995 1.179 1.186 1.21 0.887 0.592 0.58 1.382 1.046 0.443 0.95

Table 3: Dependability strength (metres).

algorithms. This can be attributed to the thresholdσ value used,
which defines how accurate a model must be (and hence how much
data is to be discarded) before a success is declared. For there-
sults as presented,σ was set to 3cm. The result of the threshold
is that it may be possible for only three noisy measurements to re-
main and for them to be consistent with a single (noisy) position
which is duly returned alongside the fit error, failing to represent
the true noise. i.e. A particular sighting may have a set of measure-
ments only affected by random noise. Use of INLR runs the rickof
reducing that set since each reduction produces a new set of mea-
surements that are more consistent (suggesting a lower predicted
error). Thus the final predicted error does not faithfully represent
the noise encountered in the entire data.

Over time we have become aware of a further subtle issue with
with the standard INLR algorithm. To summarise, the algorithm
iteratively discards the data that disagrees with the majority of the
input data set. This should produce a more accurate positionesti-
mate with a correspondingly better predicted error. Unfortunately,
this can be misleading in certain extreme cases. Consider the ma-
jority of signals reflecting specularly from the same objectand the
remaining measures being direct measures. The majority of the
data set then agrees with a position that is a reflection of thetrue
position through the reflecting surface. Thus INLR will discard
the correct measurements and converge on the reflection. Since
the remaining (reflected) signals are in close agreement, itwill as-
sociate a small predicted error with the position estimate,despite
being wildly incorrect. Such cases arise in the Bat system, where
application of physical principles to the ordering of residuals has
drastically reduced the issue [7].

The NLR algorithm produces a degraded position and predicted
error relative to INLR. From the standpoint of accurate position-
ing, then, the iterative element is clearly desirable. However, it is
clear that the dependability of the result is much better since the
evaluation of fit uses all available data.

The LLS algorithm might be expected to show similar results
to the NLR algorithm, since it is effectively a linearised version
of it. It is clear from Table 1, however, that LLS performed very
badly in our tests. Closer inspection revealed that the linearisation
process (which considers intersecting planes) results in avery poor
constraint in the vertical dimension — a by-product of the fact Bat
system receivers are each installed at an approximately equivalent
height, giving planes with near horizontal normal vectors.Thus
LLS tended to provide accurate estimates of the x- and y- coordi-
nates, but poor estimates of the z. Figure 6 shows that LLS andNL

produce similar results in the x-y plane but the z axis of the LLS
shows enormous errors.

RANSAC shows a more significant change in actual error when
the Bats are fixed to a room boundary. This is because the RANSAC
algorithm starts by randomly selecting a candidate tripletfor trilat-
eration. If this tuple should happen to have weak geometry then
a poor estimate of position will be used to initialise the search for
a supporting set. The possibility of RANSAC selecting an initial
choice with poor geometry is exemplified by looking at the dis-
tribution of errors produced by the algorithm. When locating a
Bat in the centre of a room (Figure 4) the distribution displays an
evident, strong peak. However, when considering a Bat fixed to
a wall the distribution becomes markedly heavy tailed (Figure 4).
We note that the performance of the LS algorithm shows littlevari-
ation between Bats fixed to the wall or in the office centre. This
is due to the fact that the rate of outliers is largely unaffected by
the Bat’s position. The ToM algorithm shows actual error similar
to the RANSAC algorithm. However, it is evident for Bat 5 that
the selection heuristic breaks down and produces answers with an
average 1 metre of error. This is due to the weak geometric ar-
rangement of the closest receivers to this Bat. We can expectthat
performance of the RANSAC and ToM algorithms to vary depend-
ing on the geometry of the ceiling receivers contributing tosighting
information.

Table 3 shows thestrengthfor each algorithm, calculated as the
average discrepancy between the error estimate and the actual er-
ror for those sightings where the algorithm gave a dependable re-
sult. This metric is designed to identify algorithms that achieve
dependability through overly large error estimates. An algorithm
with a low strength distance is one that produces error estimates
that bound tightly the actual error. As is shown in the table the high
dependability of the NLR algorithm comes at the price of a poor
value for strength. The INLR algorithm produces better strength
readings but this reduces its dependability because of the increased
likelihood of a reading falling outside the error bound.

The computation times for RANSAC and INLR were approxi-
mately 0.1ms for each sighting on our test platform whereas the
computation times for the ToM and LS algorithms were approxi-
mately 0.02ms per sighting. The LLS algorithm performed best,
completing each calculation in an average of 0.01ms. This sug-
gests that the LLS algorithm is a good candidate for low resource
location systems if there is rarely a planar arrangement of sensors.



(a) Top Down View

(b) Side View

Figure 6: The resolved position for Bat 9 using the NL and LLS algorithms.



5. CONCLUSIONS
We have evaluated five popular positioning algorithms usingex-

perimental data collected over a four month period. Of thesealgo-
rithms, iterative non-linear regression (INLR) offers thebest accu-
racy but is an order of magnitude slower in execution than theother
simpler algorithms, and the associated predicted error maynot be
truly reliable. Comparison with the NLR algorithm shows there-
sults of rejecting rather than tolerating multipathed measurements,
but the latter algorithm is undeniably faster since it is a subset of
the operations required for INLR. LLS is popular for ease of im-
plementation but these tests have highlighted an inherent weakness
that favours the use of NLR.

We have introduced two metrics: dependability and dependabil-
ity strength which can be used to assess the performance of depend-
able algorithms.

The optimal algorithm for a given purpose depends upon the con-
straints in the system. Whilst INLR offers higher precision, it has a
more computation-demanding nature, which means the simpler al-
gorithms may be favourable for small embedded platform (assum-
ing the drop in precision is acceptable to the intended applications).

It is important to realise, however, that the output from anypo-
sitioning algorithm can only ever be as good as its inputs. Ifan
algorithm receives purely multipathed signals, for example, it can-
not hope to recognise the erroneous signals since all may agree on
a reflected position. Within the Bat system, we have observedthis
ambiguity when users sit close to a vertical screen, encouraging all
signals to specularly reflect from the screen before reception.

In future work we hope to extend the simpler algorithms to make
more intelligent groupings of data. For example, RANSAC starts
by forming three randomly chosen inputs. An improvement may
be to selectthe inputs based on their geometry (GDOP) about a
low granularity estimate of the position of the locatable. Such ap-
proaches promise to increase the efficiency of algorithms. We plan
to expand the error estimation techniques for each algorithm (per-
haps by including sensor GDOP) in order to improve their depend-
ability and strength.

Code for the algorithms discussed here are available withinthe
open source C++ software library named NLMaP, available from
http://www.cl.cam.ac.uk/Research/DTG/.
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