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ABSTRACT

Despite the tremendous market penetration of smartphones, their
utility has been and will remain severely limited by their battery
life. A major source of smartphone battery drain is accessing the
Internet over cellular or WiFi connection when running various
apps and services. Despite much anecdotal evidence of smartphone
users experiencing quicker battery drain in poor signal strength,
there has been limited understanding of how often smartphone users
experience poor signal strength and the quantitative impact of poor
signal strength on the phone battery drain. The answers to such
questions are essential for diagnosing and improving cellular net-
work services and smartphone battery life and help to build more
accurate online power models for smartphones, which are building
blocks for energy profiling and optimization of smartphone apps.
In this paper, we conduct the first measurement and modeling

study of the impact of wireless signal strength on smartphone en-
ergy consumption. Our study makes four contributions. First, through
analyzing traces collected on 3785 smartphones for at least one
month, we show that poor signal strength of both 3G and WiFi
is routinely experienced by smartphone users, both spatially and
temporally. Second, we quantify the extra energy consumption
on data transfer induced by poor wireless signal strength. Third,
we develop a new power model for WiFi and 3G that incorporates
the signal strength factor and significantly improves the modeling
accuracy over the previous state of the art. Finally, we perform
what-if analysis to quantify the potential energy savings from op-
portunistically delaying network traffic by exploring the dynamics
of signal strength experienced by users.

Categories and Subject Descriptors

C.4 [Computer SystemOrganization]: Performance of Systems—
Modeling techniques; C.2.3 [Computer System Organization]:
Computer Communication Networks—Network Operations

General Terms

Experimentation, Measurement
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1. INTRODUCTION
The smartphone market has been growing at a phenomenal rate.

A recent study [3] finds that out of the world’s 4 billion mobile
phones, over one billion are smartphones, and projects that by the
year 2014, there will be more smartphone users surfing the Web
than desktop users. Despite such an incredible adoption rate of
smartphones, the user experience has been, and will remain, severely
limited by the phone battery life. As such, understanding and opti-
mizing the energy consumption of apps running on mobile devices
is of significant importance.

A major source of smartphone energy consumption is accessing
the Internet via 3G or WiFi [4, 20, 18] when running various inter-
active apps and background services. The energy consumed by the
wireless interfaces is perceived as a necessity – after all, a smart-
phone provides the user with a ubiquitous portal to the Internet.
Ideally, accessing the Internet should consume an amount of energy
commensurate with the amount of traffic being transported and the
(peak) throughput supported by the wireless technology used.

In practice, the wireless channel can be noisy and a fundamen-
tal law governs wireless networking performance: wireless chan-
nel capacity is upper-bounded by the signal-to-noise ratio (SNR),
which measures the ratio of the level of a desired signal to the
level of background noise, as dictated by the Shannon-Hartley the-
orem. In other words, poor signal strength can significantly affect
the achievable network performance. How to achieve the upper-
bound channel capacity under a given SNR is at the very center of
of wireless communication research.

In this paper, we contend that poor wireless signal strength not
only affects network performance, but also –in the context of energy-
constrained mobile devices perhaps more importantly – can signif-
icantly inflate the actual energy consumption by the wireless in-
terface to be much higher than under good signal strength, while
transferring the same amount of network traffic. The more obvi-
ous impact on energy drain is that reduced signal strength triggers
rate adaptation at the PHY layer to lower the data rate which elon-
gates packet transmission and hence increases power consumption
by the radio. There are also several additional, less obvious, impact
factors. Weak signal strength can result in retransmissions, e.g., in
the link layer in 3G and at the MAC layer in WiFi, and even at the
transport layer, all of which lead to extra radio power consump-
tion. Retransmissions at the transport layer (e.g., TCP) can further
increase the number of times and hence the total duration the wire-
less interface stays in the tail power state [4, 19, 20], wasting “tail”
energy. Further, poor signal strength can cause disassociation and
reassociation with the access point which incur extra energy drain.



Despite the above intuitive understanding of the energy impact of
poor signal strength and much anecdotal evidence that smartphone
users frequently have experienced quicker battery drain when the
wireless signal strength is poor, we have a rather limited under-
standing of (1) how often smartphone users experience poor signal
strength, and (2) the quantitative impact of poor signal strength on
the phone battery drain. The answers to such questions are essen-
tial to assessing cellular network service qualities, and diagnosing
and reducing their negative impact on smartphone battery life. Fur-
ther, answering question (2) above enables us to develop an online
power model for smartphones that is more accurate than previous
work [19], by explicitly capturing the potentially significant im-
pact of signal strength. Accurate online power models for smart-
phones form building blocks for energy profiling and optimization
of smartphone apps [18], and the new signal-strength-aware power
model enables what-if analysis of techniques that explore signal
strength dynamics to reduce the energy drain of wireless interfaces,
e.g., by delaying and aggregating network traffic for latency insen-
sitive apps and services.
In this paper, we conduct to our knowledge the first measurement

and modeling study of the impact of wireless signal strength on
smartphone energy consumption. Our study makes four specific
contributions and findings.

• We collected a cellular and WiFi signal strength and traffic vol-
ume trace from 3785 smartphones, geographically distributed
over 145 countries, each trace covering at least a one-month
period with an average of 4.2 months. Our trace analysis shows
that (1) WiFi and 3G are dominant wireless technology choices
among users, (2) individual users are experiencing significant
signal variations in daily life and during active phone usage, (3)
on average 43% and 21% of their foreground data are trans-
ferred during poor 3G and WiFi signal strength, respectively,
(4) 19% of 3G transfer and 4% of WiFi transfer can be classi-
fied as background data and thus can be potentially deferred to
times with better signal strength, and (5) the signal variations
are correlated with popular user locations to some extent which
also manifests itself in a correlation with time of day.

• We then conducted controlled experiments to quantify the ex-
tra energy consumption for data transfers that is induced by
poor wireless signal strength and its breakdown to different
factors including rate adaptation, power control, link layer re-
transmissions and TCP retransmissions. Our measurements re-
fined packet-driven power models for WiFi and 3G to be signal-
strength-aware and hence much more accurate than before. Our
energy impact analysis shows that for WiFi the lower bit rate
andMAC layer retransmission when the Received Signal Strength
Indicator (RSSI) drops from -50dBm to -90dBm cost 810.5%
more energy for a typical mobile download of 100KB with
30ms server RTT; for 3G the increased energy on data transfer
and RRC state demotion when the RSSI drops from -85dBm to
-105dBm dominates the extra energy consumption, resulting in
52.0% more energy for the same 100KB download with 30ms
server RTT.

• We further derived a new system-call-driven power model for
WiFi and 3G that improves the state of the art [19] by incor-
porating the impact of signal strength and RTT. Our evalua-
tion shows that the new model drastically improves the mod-
eling accuracy over the prior art. Specifically, under poor sig-
nal strength, the new model reduces the energy estimation error
from 61.0% to 5.4% for WiFi, and from 52.1% to 7.2% for 3G.

• We present a case study showing how our new system-call-

driven power model can be used to perform what-if analysis of
the effectiveness of energy optimization techniques that explore
signal strength dynamics. Specifically, our analysis shows that
for three selected subsets of users who experienced predom-
inantly good, fair, and poor signal strength, opportunistically
delaying background network traffic till the signal strength be-
comes better, can reduce the total energy consumption of data
communication by up to 23.7% and 21.5% under WiFi and 3G,
respectively.

The rest of the paper is organized as follows. §2 briefly re-
views the impact of signal strength on the network layers in 3G and
WiFi. §3 presents the trace analysis. §4 gives the context for the
remaining impact analysis, power modeling, and what-if analysis.
§5 presents our controlled measurement study of the energy im-
pact of signal strength on WiFi and 3G. §6 presents our new power
model which incorporates the signal strength and RTT factors, and
§7 presents a case study of using the power model to perform what-
if analysis. We discuss related work in §8 and conclude in §9.

2. BACKGROUND
In this section, we first review the basics about the multiple power

states of 3G and WiFi. We then examine the impact of signal
strength on the extra energy consumption at various network layers.

2.1 Power States and Transitions
A wireless device like a 3G or WiFi radio can be in several oper-

ating modes, known as power states for that device, each draining
a different amount of power. Each device has an idle base state
which is the power state where that particular device consumes
least power. A device can further have one or more levels of pro-
ductive power states, depending on the workload. Finally, both 3G
and WiFi radios exhibit a tail power phenomenon where the radio
stays in a high power state after active usage and continues to con-
sume energy in anticipation of more communication [4, 20, 19],
before eventually returning to the base power state.

In a 3G network, the power state of a user equipment (UE) is
determined by the Radio Network Controller (RNC) via the Ra-
dio Resource Control (RRC) protocol. The power states of the 3G
device we measured on an HTC Nexus One phone are shown in
Figure 1(a): (1) IDLE: A UE is in the IDLE state when it does not
send or receive any data; the 3G radio draws nearly zero power.
(2) FACH: At low transfer rate, the UE establishes the connec-
tion and enters the FACH state which does not have a dedicated
channel. The 3G radio consumes moderate power in the FACH
state. (3) DCH: At high transfer rate, the UE enters the DCH state,
which usually has its dedicated data channel but also consumes
high power. (4) The transitions from IDLE to FACH and from
FACH to DCH – known as promotions – take a certain amount
of time and consume a certain amount of power. (5) Similarly, the
transitions from DCH to FACH and from FACH to IDLE have spe-
cific timeouts and incur tail power costs. In particular, in T-Mobile
network 3G stays in DCH and FACH after active usage for 3.6s and
3.3s, respectively, before switching to the next lower power state.

The power states and transitions for WiFi are simpler, as shown
in Figure 1(b). In WiFi, the tail power state is a result of 802.11 Dy-
namic Power Saving Mode (PSM) [5]; after transmitting/receiving,
the device will stay in the high power state for a pre-defined dura-
tion (called PSM timeout) before going into PSM.

The above power state behavior of 3G and WiFi suggests that
the total energy drain of 3G/WiFi in carrying out a fixed amount of
traffic equals the sum of the energy consumed while in productive
power states and while in the tail state, which is determined by the



(a) 3G (b) WiFi

Figure 1: 3G and WiFi power state machine for HTC Nexus

One phone. All parameters are for under good signal strength.

total duration they stay in these states, Tproductive, Ttail:

Etotal = Pproductive ∗ Tproductive + Ptail ∗ Ttail

The total time spent in a productive state is affected by the data rate
and retransmissions. The total time spent in the tail state depends
on the total number of times the device enters the tail state and the
duration of each episode.

2.2 Energy Impact of Weak Signal Strength
Weak wireless signal strength can result in smartphone apps con-

suming significantly more energy than under good signal strength.
In particular, weak signal strength can increase the total time spent
in productive and tail power states, Tproductive, Ttail, as well as
transmit power, Pproductive, when sending and receiving data by
affecting the behavior of almost all layers of the network stack.

Rate adaption. Rate adaptation is a dynamic, continuous link
adaptation process where the modulation, coding and other signal
and protocol parameters of the wireless communication are adapted
to match the dynamically changing channel conditions, in order to
reduce bit error rates and improve the effective rate of transmission.
In general, weak signal strength leads to reduced data rate, which
effectively elongates per-packet transmission time and thereby the
total time the device stays in the productive state, Tproductive.
WiFi switches between multiple modulation types and data rates

in the PHY layer. A large number of autorate schemes have been
proposed, including link-layer approaches [13, 14, 25] and physical-
layer approaches [10, 22]. 3G blurs the notion of PHY and MAC
and rate adaptation forms part of the tightly integrated link adapta-
tion. In the 3G link layer, poor signal strength therefore not only
leads to reduced data rate, which directly elongates the transmis-
sion time of a packet, but also increases the retransmissions of
transport block sets of information bits within a packet, which in-
directly elongate the transmission time.

Power control. Another form of link adaptation that could be
triggered by signal strength variation is transmission power con-
trol, which performs intelligent selection of transmitting power to
achieve good link data rate, network capacity, and/or geographic
coverage. Increased transmission power can increase the SNR and
hence reduce the bit error rates at the receiver, or allow transmis-
sion at a higher data rate using rate adaptation. However, it can also
increase the power consumption of the transmitting radio, e.g., of
a mobile device, and increase the interference to other users in the
same frequency band.

WiFiMACRetransmission. Poor signal strength can lead to dropped
packets and retransmissions at the WiFi MAC layer. Packet loss is
discovered when a sender does not receive the ACK frame within
a fixed time interval and the MAC retransmits the same packet up

Table 1: Trace statistics.

Devices > 1 month trace 3785
(3/6/9/12 months) (1728/835/463/232)
Aggregate trace duration 1334 years
Median trace duration 82 days
Countries of origin 145
Mobile operators 896
Unique phone types 487
Rate of mobile RSSI reading when signal changes,

effective: 1/min
Rate of network usage reading every 5 minutes

to a fixed number of retries. Clearly retransmitting the same packet
multiple times increases the energy consumption per packet.

TCPRetransmission. When the signal strength is extremely weak,
retransmissions at the link layer may not guarantee eventual packet
delivery. When this happens, it triggers packet retransmission and
potentially reduces the sending rate from congestion control at the
TCP layer which again leads to extra energy consumption.

Re-Association and Handoffs. Weak wireless signal strength due
to the mobility of smartphone users, e.g., during driving while con-
nected to 3G, or walking on a campus covered withWiFi, can result
in disassociations and reassociation with the wireless network (3G
tower or WiFi AP), as well as handoffs between 3G and 2G [17],
which consume significant amount of extra energy. We note that
this can happen even if the user is not actively interacting with the
smartphone and no app requires network access.

Tail Energy. Conceptually, the tail power state phenomenon is
independent of the signal strength. However, for TCP flows, since
the radio is in the tail state in between consecutive TCP windows,
retransmissions due to packet loss can increase the number of times
the radio enters the tail state and hence the total tail state duration.

Wait Energy. All of the above categories of extra energy con-
sumption due to weak signal strength incur on the wireless device
itself. Weak signal strength can further have a secondary effect that
wastes energy on other components of a smartphone. In particular,
the delay induced by the slower transfers from lower data rate or re-
transmissions can cause other phone components such as CPU and
screen to stay awake longer while waiting for the network transfer
to complete. This secondary effect is app usage dependent and we
leave quantifying it as future work.

3. TRACE ANALYSIS
In this section, we present a trace analysis of the signal strength

experienced by 3785 smartphone users from 145 countries.

3.1 Trace Collection
We developed a free Android app that users can install on their

smartphone to contribute data anonymously. We collected informa-
tion from 3785 volunteers worldwide. Each user trace ranges from
1 month to 19 months in length, with an average of 4.2 months
(median 84 days). The collected data include cellular and WiFi
signal strength, operator name, bytes transferred, coarse (network-
based) location, screen on/off state and battery level. The detailed
characteristics of the trace are shown in Table 1.

The very first observation we make is that the vast majority of the
users spend most of the time using 3G cellular networks and WiFi.
In particular, we find that over 80% (60%) of the 3785 users spent at
least 44% (63%) of the time using 3G (UMTS or HSPA) networks
or WiFi. We therefore focus on these two wireless technologies in
the rest of the paper. For clarity, we only plot the distribution of
various statistics for a stratified sample of 100 users drawn from
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Figure 2: Wireless technologies over time.

Figure 3: Overall 3G signal strength (left) and while screen was

on (right) as observed by 100 sampled devices.

the whole dataset of 3785 users—incorporating the data from all
users does not alter the visual characteristics. Figure 2 shows the
fraction of time (i.e., non-cumulative, as in the other figures of this
type) spent in different wireless technologies for the stratified sam-
ple of 100 users. Each horizontal row (y-axis) corresponds to a
single user, and each unique color segment shows the faction of
time (along the x-axis) for which the primary data communication
mechanism was a particular technology. For example, the 20th row
contains a dark green segment of width 0.1, indicating this particu-
lar user made use of some WiFi network 10% of the time.

3.2 3G Signal Strength
We make three key observations from analyzing the 3G signal

strength experienced by 3785 users.
Observation 1: 3G signal strength over the entire trace varies

considerably across users and over time. Figure 3 (left) shows the
fraction of the total trace collection time of different signal levels
experienced by the 100 sampled users. The figure for all 3785 users
has the same visual characteristics. Research by the UK commu-
nications regulator Ofcom considers a good signal to have a power
of -91.7 dBm or higher (shown in colors from orange to green in
Figure 3).1 By this definition, the 3785 users in our dataset saw a
poor signal on average 47% of the time, and over 80% (60%) of
them experienced signal strength weaker than -91.7 dBm for over
13% (31%) of the time.
Observation 2: Signal strength also varies considerably during

active usage across users and over time. Clearly, periods of poor
signal strength are only relevant to users if they notice the effects of

1
http://stakeholders.ofcom.org.uk/

market-data-research/other/telecoms-research/

mobile-not-spots/ Appendix 1

Figure 4: Data transferred over 3Gwith a given signal strength.

Devices without mobile data traffic were excluded.

bad signal strength. These effects will be most pronounced when
the user is actively using the phone. We define periods of active
usage as periods when the device’s screen is turned on. Figure 3
(right) shows the distribution of signal levels experienced during
active usage remains almost identical to that for the entire tracing
period in Figure 3 (left). In particular, across our dataset of 3785
users we observe poor signal, i.e., below -91.7 dBm, during 47% of
active usage time, and over 80% (60%) of users experienced poor
signal strength for over 15% (32%) of their active usage time.

Observation 3: Users transfer significant amounts of data dur-

ing poor signal strength periods. Periods of poor signal strength
matter most to users if significant amounts of data are transferred
during those periods. We therefore investigate the amount of data
transferred over mobile networks by the individual devices and
further distinguish between foreground and background network
traffic. Since there is no explicit indication of traffic class from
the OS, we approximately partition data into foreground and back-
ground classes as follows. We assume that data transmitted while
the screen is off are solely non-interactive background data, whereas
data transmitted while the screen is on are primarily foreground
data. This is an underestimate of the amount of background data
which could happen while the screen is on. For the 3785 users, this
approach labels on average 19% of the total bytes transferred on
3G as background data.

Signal strength is collected upon change through notifications
from the OS. As it may change in the middle of a 5-minute network
usage polling interval, we assume that the network usage is uniform
across each interval. This allows us to calculate the number of bytes
transmitted by each wireless device at different signal levels. We
find that by this definition, the 3785 users performed on average
43% of their foreground data transfers during poor signal strength
of below -91.7 dBm, with over 80% (60%) of the 3785 users seeing
over 11% (26%) of their foreground data transfer during such poor
signal strength periods.

The figures for background data transfers are identical to the
above numbers for foreground data transfers. Background data
transfers during poor signal strength in the user’s daily cycle can
potentially be deferred until a strong signal is available, while we
assume foreground transfers to be time-critical. In §7, we show
how to use our new WiFi and 3G power model to estimate the en-
ergy reduction from deferring background data.

Finally, Figure 4 shows that the fraction of data transferred for
the 100 sampled devices during different signal conditions are largely
similar during screen on and screen off, suggesting the network be-
havior of users is in general not affected by poor signal conditions.

3.3 WiFi Signal Strength
We next analyze the WiFi signal conditions experienced by our

3785 users. For WiFi, we consider -80 dBm and below poor signal

http://stakeholders.ofcom.org.uk/market-data-research/other/telecoms-research/mobile-not-spots/
http://stakeholders.ofcom.org.uk/market-data-research/other/telecoms-research/mobile-not-spots/
http://stakeholders.ofcom.org.uk/market-data-research/other/telecoms-research/mobile-not-spots/


Figure 5: Overall WiFi signal strength (left) and while screen

was on (right) as observed by 100 sampled devices.

Figure 6: Data transferred over WiFi with a given signal

strength. Devices without WiFi data traffic were excluded.

strength, which can significantly affect data transfer time and en-
ergy drain, as shown in §5. We find the same three key observations
made for 3G above hold true for WiFi as well. In particular, (1) the
3785 users on average experienced poorWiFi signal, i.e., below -80
dBm, 25% of the time, and over 80% (60%) of them experienced
poor WiFi signal strength over 5% (13%) of the time; (2) during
active device usage on WiFi, the 3785 users saw poor signal on av-
erage 23% of the time, and over 80% (60%) of them experienced
poor signal condition over 5% (13%) of the time; (3) foreground
data traffic on WiFi is much more prevalent, with the 3785 users
transferring on average 96% of their total WiFi data volume during
active device usage. On average 21% of these data transfers oc-
curred during poor WiFi signal strength, with over 80% (60%) of
the 3785 users transferring over 2% (8%) of their foreground data
during poor signal strength.
Figure 5 and Figure 6 plot the WiFi signal strength experienced

and fraction of data transfers during different WiFi signal condi-
tions, respectively, for the 100 sampled devices. We observe they
look largely similar to the previous same figures for 3G.
We also find that significantly more data usage occurs over WiFi

than over 3G. In fact, the ratio of data downloaded to uploaded
changes from 6:1 when using cellular networks to around 20:1 on
WiFi. One explanation for this could be that users consume differ-
ent types of content on WiFi, such as streaming audio and video or
downloading larger files. Indeed many market applications which
perform background data transfer offer an option to limit this ac-
tivity to WiFi networks only. However, this is probably motivated
more by cost implications than energy usage.

3.4 Insights for Poor Signal Strength
The most likely explanation for the prevalence of poor signal

strength experienced by a significant fraction of users is the com-
pound effect of geographic variation in cellular network coverage
and the fact that a user principally stays in a few locations through-
out a day. Figure 7 gives supporting evidence by analyzing three
selected users from the dataset in detail under 3G. The figure for

WiFi looks similar and is omitted due to page limit. We see that the
distribution of signal strength at the top three most popular loca-
tions for each user has a considerably tighter distribution than their
overall distribution of signal strength. As a consequence, we expect
that a user’s daily routine will also give rise to a correlation between
signal strength and time of day. This is confirmed by the circular
plots in Figure 7. These daily cycles in signal strength suggest that
all three users can benefit from a system that delays background
data usage to exploit periods of improved signal strength.

4. OVERVIEWOF IMPACTANALYSIS AND

POWERMODELING
Themotivation for quantifying the impact of wireless signal strength

on device energy drain is to develop more accurate power models
which will enable accurate energy profiling of mobile apps and ul-
timately help to optimize the energy efficiency of mobile apps.

Power models for mobile devices in general and wireless com-
ponents such as WiFi, 3G and 4G radios have gone through three
generations. The first generation of power models on smartphones
(e.g., [24, 26]) are based on the fundamental yet intuitive assump-
tion that the (actual) utilization of a hardware component (e.g.,
NIC) corresponds to a certain power state and the change of uti-
lization is what triggers the power state change of that compo-
nent. Consequently, these designs all use the notion of utilization
of a hardware component as the “trigger” in modeling power states
and state transitions. Such models do not take into account non-
utilization-based power behavior of modern wireless components
such as the promotion and tail power behavior of 3G and 4G, and
thus can incur high modeling error.

The second generation of power models capture the non-utilization-
based power behavior, in particular, non-utilization power states
and transitions, using power state machines. In essence, such power
state machines reverse-engineer the built-in state machine of the
wireless radio, e.g., the RRC state machine in 3G, and annotate
each state or transition with power draw and duration. These in-
clude [4, 15, 20, 16] for WiFi and 3G and most recently [11] for a
commercial LTE network. However, such models suffer two draw-
backs. First, they use packet-level trace, e.g., collected using TCP-
Dump, as the triggers to drive the power state machine (e.g., [20]),
which are fairly heavy weight. Second, they cannot map the power
activities of the wireless component back to the program entities in
the app source such as subroutines and threads, which is essential
for energy profiling.

In [19], the authors propose a third-generation power model which
overcomes the above two drawbacks. The new power model uses
system calls issued from apps as triggers in a system-call-driven fi-
nite state machine which captures both utilization and non-utilization
based power behavior of smartphone components including wire-
less devices. The new model thus does not require packet-level
traces, and allows direct mapping of power activities to program
entities, making fine-grained energy profiling of apps a straight-
forward task [18].

However, none of above models takes into account the signal
strength factor, and hence will incur high modeling error in the
presence of poor signal strength which we have shown to be very
common. Concurrent to our work, [16] extends the 3G RRC power
state machine in [20] to incorporate the impact of signal strength on
DCH and FACH and their tails, but not on promotion transitions.

Given the above context, we proceed with our measurement and
modeling study in three steps. First, we perform controlled exper-
iments to quantify the impact of poor WiFi and 3G signal strength
on the device energy drain, and in doing so effectively refine the



Figure 7: 3G RSSI per hour of the day for three devices experiencing predominantly bad, average and good signal (left to right).

Table 2: Mobile handsets used throughout the paper.
Handset OS (kernel) Cellular

HTC Nexus One Android 2.3.4 (Linux 2.6.37) T-Mobile 3G

Motorola Atrix 4G Android 2.3.7 (Linux 2.6.32) AT&T 3G

Sony Xperia S Android 4.0.4 (Linux 3.0.8) AT&T 3G

second-generation packet-driven power models to be signal-strength-
aware and hence much more accurate (§5). For WiFi our analysis
goes deeper than previous packet-level power modeling as we also
quantify the impact on MAC retransmission and PHY rate adapta-
tion. Second, we develop a refined third-generation, system-call-
driven power model that takes into account signal strength (§6).
Finally, we show how our new, signal-strength-aware system-call-
driven power model enables what-if analysis of the effectiveness of
energy optimization techniques that explore signal strength dynam-
ics (§7).

5. CONTROLLED EXPERIMENTS
In this section, we present controlled experiments to quantify the

impact of signal strength on the energy consumption of the WiFi
and 3G devices and refine packet-driven power models.

5.1 Methodology

5.1.1 Devices and Tools

Table 2 lists the three smartphones used in our measurement
study. The WiFi is provided by a Netgear WGR614v9 802.11
b/g wireless router. To measure the energy consumption, we use
a Monsoon Power Monitor [2], which supplies power to the phone
and samples the power draw every 0.2ms. During the measure-
ment, we close all other apps and only run our benchmarks. Since
our benchmark simply performs socket sending/receiving, the en-
ergy consumption of other phone components is close to 0 and
the power draw measured by the powermeter is primarily the en-
ergy cost of WiFi or 3G NIC. Unless otherwise stated, we keep the
phone’s screen on during the experiment, and subtract the display
energy from the total energy consumption.

We focus on data download since our trace presented in §3.3
shows real life download volumes to far exceed upload volumes
over both 3G and WiFi; results for upload were omitted due to
page limit. The phone downloads data from a local server, which
is connected to the wireless router via 100Mbps LAN. Since the
RTT between the WiFi AP and the server (server RTT for short) is
less than 1ms, we use the Linux traffic control API tc to emulate
different RTTs when accessing the Internet. Similarly, for 3G, the
server RTT is to emulate the Internet delay between GGSN and
the server, i.e., excluding the time for the packets to travel through
the UMTS Terrestrial Radio Access Network (UTRAN), which is
typically in the order of tens to hundreds of milliseconds [12].

The data download is implemented using a simple client/server
program written in C and running on the phone and the server. The
client opens a TCP socket, sends a request, receives data, and closes
the socket. The data downloads are separated by 1s and 30s, for
WiFi and 3G, respectively, to make sure that each transfer starts
from the IDLE state of the interface. We conducted the measure-
ment at late night, so that there is minimum interference in WiFi
and the cellular network is lightly loaded.

5.1.2 Data Transfer

We set the base case data download size to 100KB, which is in
the same order of typical transfer sizes in mobile web browsing.
We set the default server RTT to 30ms, which is representative of
typical Internet RTTs. We also vary the flow size and server RTT
and study how they affect the impact of signal strength on energy
consumption. For each configuration, we repeat the download 50
times; results presented below are averaged over the 50 trials.

5.1.3 WiFi Analysis

We control the WiFi signal strength by adjusting the distance be-
tween the phone and the AP, and record the signal strength by log-
ging the RSSI in the WifiStateTracker and WifiStateMachine
classes in the Android framework. To capture frame retransmis-
sions, and to read the data rate of frames from the radiotap header,
we set up two laptops right next to the phone and the AP in the
monitor mode using the Airmon-ng tool in Aircrack-ng suite [1],



to eavesdrop WiFi link layer frames sent out by the phone and the
AP, including DATA and ACK frames, control frames and beacons.

Energy breakdown. We break down the total energy of the WiFi
NIC measured by the powermeter into six splits to quantify the
impact on different network layers: (1) Unique Tx: Energy spent
in the transmission of unique TCP ACK frames. (2) Unique Rx:

Energy spent in the receiving of unique DATA frames. (3) ReTx:
Energy spent in retransmitting TCPACK frames. (4) ReRx: Energy
spent in receiving retransmitted DATA frames. (5) Idle: Energy
spent while waiting for frames from the AP, i.e., in between frames
or TCP windows. Its power equals the WiFi PSM tail power. (6)
PSM Tail: Energy spent in the final WiFi tail power state, i.e., after
the flow completes while waiting for the PSM timeout to expire.
The default PSM timeout on all three handsets is 210ms.
With the power profile from the powermeter and the eavesdropped

link layer packet trace from the laptops, the above energy break-
down can be accomplished as follows.
First, we synchronize the time between the power profile and

the monitor mode network traffic trace, by aligning the start of the
first frame transmission with the start of the first WiFi power spike.
Next, we categorize each frame sent or received by the phone WiFi
NIC in the trace as either unique Tx/Rx or ReTx/ReRx, follow-
ing their definitions above. Note ReTx/ReRx frames include both
MAC and TCP retransmissions.
We next calculate the duration of each frame transmission by

dividing the frame size by its transfer rate, which is indicated in
the 802.11 radiotap header. For every sent ACK or received DATA
frames eavesdropped by the laptop, since the timestamp indicates
the time when the frame is finished transmitting, we backtrack the
start of the transmission by subtracting the duration from the times-
tamp of the frame, and account the energy during the transmission
interval between the start and finish time as the Tx/Rx energy. The
energy drain between frame transmissions is counted as idle energy.
Finally, the energy drains belonging to each category are summed

together and give the six-way split of the total energy drain.

Refining packet-driven power models. Since the packet-driven
models use the packet time in the packet trace to determine the state
transition time, inferring the refined packet-driven power models to
incorporate signal strength boils down to inferring the power draw
of each state under different signal conditions. In particular, for
WiFi, with the synchronized power profile and link layer packet
trace, we derive the Tx/Rx power under different signal strength by
calculating the average power draw of WiFi NIC during a burst of
packet sending/receiving.

5.1.4 3G Analysis

We adjust the 3G signal strength by changing the location of
the phone, and record the signal strength by logging the RSSI in
the GsmServiceStateTracker class in the Android framework.
We observe that during experiment the signal strength variation is
within 2dBm at good and fair signal strength locations, and within
3dBm at poor signal strength locations.

Energy breakdown. Unlike WiFi, there is no easy way to eaves-
drop link layer packet transmissions in 3G. We instead resort to
TCPDump to capture the packet trace. As such, we cannot observe
the block set retransmissions or changing data rate in each packet
transmission. The compound effect of the two factors makes it dif-
ficult to infer either one based on the observed transmission time of
a packet, and hence we cannot separate the link layer retransmis-
sion from unique Tx/Rx as in the WiFi case.
To break down the energy, we first synchronize the time between

the packet trace, which is timestamped by the phone, and the power
profile, by inserting controlled power events (e.g., a CPU spike) and

recording its time on the phone. We then play the packet trace to
infer the 3G state transitions by leveraging the prior knowledge of
the 3G state machines, following the methodology studied in-depth
in [21, 20]. The energy drain during the duration of each 3G state
is counted as the energy for the state. The energy drain of DCH
during data transfer is further divided into data transmission energy
and idle energy, based on whether the phone is sending/receiving
packets or waiting for packets from the server.

Following this methodology, we break down the energy into fol-
lowing categories: (1) Promotion1: Energy spent in the first pro-
motion phase, i.e., IDLE to FACH in T-Mobile network and IDLE
to DCH in AT&T network. (2) Promotion2: Energy spent in the
second promotion phase, i.e., FACH to DCH in both T-Mobile and
AT&T network. (3) Data transmission: Energy spent in receiving
DATA and transmitting ACK packets. This entails the impact of
link layer rate adaptation and retransmissions. (4) Tail1: Energy
spent in the first 3G tail state, i.e., tail of DCH state. (5) Tail2:
Energy spent in the second 3G tail state, i.e., tail of FACH state.
(6) Idle: Energy spent while waiting in DCH for packets from the
server, i.e., in between TCP windows. The duration is primarily
determined by the end-to-end RTT.

Refining packet-driven power models. With the above energy
breakdown, we then calculate the average power draw for each 3G
state under each signal strength to derive the signal-strength-aware
power model for 3G. Note for both new WiFi and 3G models, we
only present parameters at discrete RSSI values, and hence in using
the models, we use linear interpolation to estimate the parameters
for RSSIs that are between the discrete points.

5.2 WiFi Results

5.2.1 Data Transfer Energy Breakdown: Base Case

Due to page limit, we only show the measurement result for the
Nexus One phone. Figure 8(a) plots the time and energy consump-
tion to download 100KB data with 30ms server RTT. 2 While the
flow time only changes mildly from -50dBm to -80dBm, we see
a 142.2% increase at -85dBm, followed by a dramatic increase of
1345.5% at -90dBm, compared to -50dBm. Similarly, the energy
cost of downloading increases by 113.3%, 810.5% at -85dBm and
-90dBm, respectively.

To understand the reason for the flow time and energy inflation,
we break down the energy consumption in Figure 8(b). We make
the following observations.

First, from -50dBm to -80dBm, most energy drain is from idle
energy and PSM tail energy, while at -85dBm and -90dBm the
idle energy dominates the total energy consumption. The reason
is that for transfers of 100KB at good or medium signal strength,
i.e., above -80dBm, the active NIC transmitting/receiving time is
generally in the order of tens of milliseconds, much shorter than
the aggregate idle time and PSM tail time, which are in the or-
der of hundreds of milliseconds. When the signal strength further
drops, the average idle interval between frames increases signifi-
cantly, from 0.28ms at -50dBm to 0.84ms at -85dBm and 5.47ms
at -90dBm, leading to drastically increased idle energy.

Second, both unique Tx/Rx energy and retransmission energy
increase significantly under poor signal strength. The total energy

2For simplicity, we represent power draw using the current drawn
by the phone in milliAmperes. The actual power consumed would
be the current drawn multiplied by 3.7V, the standard battery volt-
age supply. Similarly, energy is reported in µAh (micro Ampere
Hours), and the actual energy would be the µAh value multiplied by
3.7V. These metrics are used since smartphone batteries are rated
using these metrics and hence is easy to correlate.



 0

 1000

 2000

 3000

 4000

-50 -60 -70 -80 -85 -90
 0

 40

 80

 120

 160
F

lo
w

 t
im

e
 (

m
s
)

E
n

e
rg

y
 (

µ
A

h
)

RSSI (dBm)

Time
Energy

(a) Flow time and energy

 0

 40

 80

 120

 160

-50 -60 -70 -80 -85 -90

E
n
e
rg

y
 (

µ
A

h
)

RSSI (dBm)

PSM Tail
Idle
ReTx
Unique Tx
ReRx
Unique Rx

(b) Energy breakdown

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 5.5 11  18  24  36  48  54

C
D

F

Data rate (Mbps)

-50dBm

-60dBm

-70dBm

-80dBm

-85dBm

-90dBm

(c) Data rate CDF

 0

 40

 80

 120

 160

-90-85-80-70-60-50

R
e
tr

a
n
s
m

is
s
io

n
 r

a
te

 (
%

)

RSSI (dBm)

ACK Frame
Data Frame

(d) Retransmission rate

Figure 8: WiFi experiment: 100KB download with 30ms server RTT.
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Figure 9: Time, energy and energy breakdown for downloading

10KB with 30ms server RTT under WiFi.

spent on data transfer, including unique Tx/Rx and ReTx/ReRx, in-
creases from 0.60µAh at -50dBm to 6.79µAh at -85dBm, and fur-
ther to 33.95µAh at -90dBm. To understand the reason, we plot the
frame data rate CDF in Figure 8(c). We observe that from -50dBm
to -70dBm, most frames are transmitted at 54.0Mbps, which is the
highest rate supported by 802.11g. When signal strength drops be-
low -70dBm, frames are transmitted at much lower rates due to
rate adaptation. For example, at -85dBm 74.0% of the frames are
transmitted at rates equal to or lower than 11.0Mbps, while at -
90dBm a majority of frames (92.6%) are transmitted at the lowest
rate 1.0Mbps. Figure 8(d) plots the retransmission rate of DATA
frames from the AP and of TCP ACK frames from the phone. The
DATA frame retransmission rate has a sharp increase from 1.3%
at -60dBm to 58.7% at -85dBm, and 97.7% at -90dBm, while the
retransmission rate of ACK frames increases almost linearly from
14.9% at -50dBm to 146.0% at -90dBm.

Scanning. When the signal strength is below -80dBm, we observe
the phone occasionally performs active scanning by exchanging
Probe Request and Probe Response frames with the AP. Normally
such a process takes from 40ms to 100ms. However, at poor signal
conditions, both the Probe frames and their ACKs may get lost and
it takes up to 1s to complete the scanning, with tens of retransmis-
sions, consuming significant amount of energy on the phone.

5.2.2 Impact of Size

We next study the relative impact of signal strength on differ-
ent transfer sizes. Figure 9 shows the flow time, energy consump-
tion and energy breakdown for downloading 10KB usingWiFi with
30ms server RTT. Similarly as in the 100KB download, the trans-
fer time and energy consumption remain roughly the same as signal
strength varies from -50dBm to -80dBm, but increase significantly
by 70.7% and 40.8% at -85dBm, and by 586.1% and 263.4% at -
90dBm. Compared to 100KB transfer, the transfer time and energy
inflation due to poor signal strength is much less since the effect of
lower data rate and higher retransmission rate are more pronounced
in larger transfers.
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Figure 10: Time and energy for downloading 100KB with dif-

ferent server RTT under WiFi.

Table 3: Signal-strength-aware WiFi power model. The unit of

RSSI is dBm and the unit of Tx/Rx/Tail current is mA.

RSSI
Nexus Atrix Xperia

Rx Tx Rx Tx Rx Tx

-50 117 165 115 175 120 251
-60 120 191 115 178 133 270
-70 125 251 139 197 133 308
-80 116 203 120 245 120 267
-85 104 207 118 242 118 256
-90 89 207 83 237 115 253

PSM Tail
Nexus Atrix Xperia
70 68 50

5.2.3 Impact of RTT

We next study the relative impact of signal strength under differ-
ent server RTTs. Figure 10 shows the time and energy consumption
to download 100KB with different server RTTs. We observe that as
the RTT increases from 30ms to 100ms, the flow time increases by
287.1% and 48.1% under -50dBm and -90dBm, respectively, and
the energy drain increases by 144.8% and 26.6% under -50dBm
and -90dBm, respectively. This suggests that RTT has a significant
impact on the flow time and energy in WiFi downloading, at both
good and bad signal strength. A large RTT leads to longer idle time
between TCP windows, and hence more idle energy. The smaller
increase ratio at -90dBm compared to -50dBm is because under -
90dBm the idle interval between frames, due to heavy packet loss,
dominates the flow time and energy consumption.

5.2.4 New Power Model

Table 3 shows the new signal-strength-aware packet-driven WiFi
power model for the three handsets. The PSM tail power remains
constant under different signal strength. We observe that for all
three handsets, the average Tx and Rx power reach their peak at
-70dBm (except the Tx power for Atrix). This is due to the com-
pound effect of power control, rate adaptation and frame loss: as the
RSSI drops, while the radio transmitting power tends to increase,
the data rate decreases and more frame loss occurs, which leads to
longer idle interval between frames, hence lower average power.
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Figure 11: Time, energy and energy breakdown for download-

ing 100KB with 30ms server RTT under 3G.
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Figure 12: 3G power snapshots for downloading 100KB with

30ms server RTT under different signal strength.

These three factors interplay and lead to the non-monotonic corre-
lation between the signal strength and the average Tx/Rx power.
Another interesting observation is that, while in general Nexus

One is the most power efficient in Tx/Rx among the three handsets,
it has the highest PSM tail power; and Xperia S is the opposite.

5.3 3G Results

5.3.1 Data Transfer Energy Breakdown: Base Case

As with the WiFi experiment, we use 100KB download with
30ms server RTT as the base case and only show the result for
the Nexus One phone due to page limit. Figure 11(a) plots the flow
time and energy consumption for the base case. We see that from
-85dBm to -95dBm, the flow time remains similar and the energy
consumption increases mildly by 6.6%; while at -105dBm, the flow
time increases by 7.3% and the energy consumption dramatically
increases by 52.0%, compared to -85dBm.
To gain insight into the increase, we again break down the total

energy, as shown in Figure 11(b). An immediate observation is
that, most of the energy increase comes from increased data transfer
and tail1 (DCH tail) energy. The powermeter output snapshots in
Figure 12 confirm the significant power draw increase of the above
two states.

5.3.2 Impact of Size

Figure 13 plots the flow time, energy consumption and energy
breakdown for 10KB downloads under different signal strength.
Compared to 100KB downloads, 10KB downloads on average only
consume 6.3%, 5.8%, 8.0% less energy under good, medium and
bad signal strength, respectively, as the promotion and tail energy
dominate the total energy consumption under all signal strength.

5.3.3 Impact of RTT

Figure 14 plots the time and energy consumption to download
100KB with different server RTTs, under different signal condi-
tions. We observe that the impact of server RTT on flow time and
energy consumption is less significant in 3G compared to that in
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Figure 13: Time, energy and energy breakdown for download-

ing 10KB with 30ms server RTT under 3G.
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Figure 14: Time and energy for downloading 100KB with dif-

ferent server RTTs under 3G.

WiFi. Under -105dBm, the flow time and energy only increase by
25.9% and 9.4%, respectively, when the RTT varies from 10ms to
100ms, in contrast to 56.0% and 44.2% under WiFi at -90dBm.
There are several reasons that contribute to the difference: (1) the
3G network used has a relatively large internal delay (about 100ms)
which diminishes the server delay difference; (2) the promotion
time in 3G, which is in the order of seconds and hence much larger
than the server RTT, dominates the flow time for small and medium
size downloads; and (3) the tail energy is also much higher in 3G
than in WiFi, dominating the total flow energy consumption.

5.3.4 New Power Model

Table 4 shows the inferred new signal-strength-aware 3G power
model for the three handsets. We see that while tail2 power stays
constant across different signal strength, the power draw of all other
states increases as the RSSI decreases, especially when the sig-
nal strength drops below -95dBm. In particular, compared to -
85dBm, the tail1 power at -105dBm increases by 73.3%, 172.2%
and 253.3%, for Nexus One, Atrix 4G and Xperia S, respectively.

5.4 Implications on App Design
We further draw implications from our new understanding of

the energy impact of signal strength on how developers can opti-
mize the energy drain of their apps. (1) App developers need to be
conscious about the behavior of their apps in case of weak signal
strength during the app development. For example, delaying elas-
tic data transfers till good signal strength can potentially reduce the
apps’ energy consumption. A notification scheme supported in the
OS or the framework that informs apps of when signal strength is
good can help delay-tolerant apps (e.g., peer-to-peer file sharing) to
save energy by avoiding data transfers during poor signal strength
moments. (2) Tail energy must be curtailed in case of small trans-
fers since they consume a significant fraction of the total energy, es-
pecially under poor signal strength. (3) Aggregating data transfers
in an app whenever possible can significantly reduce the total en-
ergy drain of the app, and the energy savings from doing so are even
more pronounced when taking signal strength into account. For ex-
ample, aggregating 10 separate 10KB transfers under -90dBm into



Table 4: Signal-strength-aware 3G power model. The unit of

RSSI is dBm and unit of current of states is mA.
Nexus

RSSI Prom1 Prom2 Rx Tx Tail1 Tail2

-85 117, 0.6s 143, 0.9s 180 198 150, 3.6s 97, 3.3s
-95 123, 0.6s 150, 0.9s 192 281 160, 3.6s 97, 3.3s
-105 140, 0.9s 195, 1.0s 333 390 260, 3.6s 97, 3.3s

Atrix

RSSI Prom1 Prom2 Rx Tx Tail1 Tail2

-85 171, 1.8s 178, 0.9s 217 417 151, 4.0s 114, 10.0s
-95 197, 1.8s 203, 0.9s 287 497 188, 4.0s 114, 10.0s
-105 320, 2.0s 320, 1.0s 520 530 411, 4.0s 114, 10.0s

Xperia

RSSI Prom1 Prom2 Rx Tx Tail1 Tail2

-85 120, 1.8s 120, 0.9s 155 303 120, 4.0s 80, 10.0s
-95 127, 1.8s 127, 0.9s 215 425 190, 4.0s 80, 10.0s
-105 306, 2.0s 306, 1.0s 488 512 424, 4.0s 80, 10.0s

a single 100KB transfer under -70dBm can reduce the total WiFi
energy consumed by a factor of 22.

6. NEW SYSTEM-CALL POWER MODEL
In this section, we develop a new system-call-driven power model

for WiFi and 3G that improves the state of the art [19] by incorpo-
rating the impact of signal strength and RTT.

6.1 Current Power Model
The system-call-driven power model [19] for WiFi and 3G es-

sentially looks similar to those in Figures 1(b) and 1(a), except the
send/receive transitions are triggered by send/receive system calls
(as opposed to packet transmissions).
The system-call-driven power model is derived in two steps, us-

ing a set of micro benchmarks and a powermeter [19]. First, the
power state machines for individual system calls are derived, by
capturing state transitions and power draw and duration at each pro-
ductive state and tail state. The duration at an active power state is
derived using linear-regression on the data transfer size. Second,
the power state machines for individual system calls are integrated
by observing the power profile for concurrent system calls.
As mentioned in §4, the current system-call-driven model for

WiFi and 3G does not take into account the signal strength, which
can affect various model parameters. It also ignores the effect of
RTT, which can affect the power states visited during a system call.

6.2 WiFi Model

Observations. To develop the new model, we first make several
observations about the effects of signal strength and RTT on the
power profile of a data transfer system call. Figure 15 shows the
power draw over time in a 100KB download with 30ms server RTT
under different signal strength. A TCP download involves multiple
TCP windows of packets, with packets in a window typically arriv-
ing in a cluster. We refer to the power spike corresponding to each
TCP window as a window spike.
First, the current model ignores server RTT, and assumes the de-

vice stay in the productive state throughput data transfer due to the
system call. This is a simplification. Figure 15(a) shows for a typ-
ical 30ms server RTT, the device effectively enters the tail power
state in between TCP windows. The duration it stays in the idle tail
state depends on the RTT value, and hence the power model needs
to explicitly take RTT into account.
Second, when the signal strength drops, we observe several changes

in the power profile as shown in Figure 15(b) : (1) the frames are

 0

 75

 150

 225

 300

 0  200  400  600  800  1000

C
u
rr

e
n
t 
(m

A
)

Time (ms)

(a) -50dBm

 0

 75

 150

 225

 300

 0  200  400  600  800  1000

C
u
rr

e
n
t 
(m

A
)

Time (ms)

(b) -85dBm

Figure 15: WiFi power snapshots for downloading 100KB with

30ms server RTT under different signal strength.
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Figure 16: Effective receiving rates for WiFi and 3G under dif-

ferent signal strength.

transmitted at lower bit rates from rate adaptation, and the win-
dow spikes become wider; (2) the retransmission rate increases,
and more frames are transmitted or received within each window,
making each window spike even wider; (3) the power draw of
spikes changes, as summarized in Table 3. In summary, poor sig-
nal strength causes TCP window spikes to have longer duration and
changed power draw.

Modeling a single system call. To extend the system-call-driven
power model for WiFi and 3G to take into account wireless sig-
nal strength, we need to log the signal strength and end-to-end
RTT, in addition to system calls. We record the WiFi and 3G
signal strength by logging the RSSIs in the WifiStateTracker,
WifiStateMachine and GsmServiceStateTracker classes in
the Android framework. The RTT of TCP connections can be re-
trieved from tcp_info struct via the Netlink API in Linux.

We model the power behavior of a data transfer system call in 3
steps: (1) For a transfer of size s, we first estimate the number of
TCP windows and the size of each window, following the AIMD
behavior. This proves to be reasonably accurate for small transfers,
e.g., on the order of tens of KB, which account for the majority
of the mobile traffic [8]. (2) For each TCP window w, we deter-
mine its duration tw using linear regression on the window size,
and power pw according to Table 3, under each signal strength. (3)
We then include the idle periods of staying in the PSM tail state in
between the TCP windows, with the duration being the end-to-end
RTT minus the window duration, as well as the final PSM tail after
the last window.

The duration of a TCP window spike tw is calculated by divid-
ing the window size by the effective sending/receiving rate under
the current signal strength. The effective rate is derived by calcu-
lating the average transfer rate of TCP windows during the training
phase using micro benchmarks and the powermeter. Figure 16(a)
plots the effective receiving rate for a window of 20KB measured
under different signal strength. We see a sharp decrease of the ef-
fective rate from -70dBm, which captures the effect of lower bit
rate and higher retransmission rate in the link layer, as shown in
§5.2. The window spike power pw is a function of signal strength
and is directly measured during training phase. The values will be
the same as in the packet-driven power model, i.e., in Table 3.



Table 5: Website traffic used in the validation experiments.
Website Flow # Total size RTT

Amazon 10 164.1KB 28ms
Gmail 6 852.2KB 37ms
Wikipedia 9 176.4KB 91ms
Youtube 13 341.2KB 37ms

 0

 15

 30

 45

 60

 75

Amazon Gmail Wiki Youtube

P
re

d
ic

ti
o
n
 e

rr
o
r 

(%
)

Old model
New model

(a) WiFi

 0

 15

 30

 45

 60

 75

Amazon Gmail Wiki Youtube

P
re

d
ic

ti
o
n
 e

rr
o
r 

(%
)

Old model
New model

(b) 3G

Figure 17: Model validation result for Nexus One at poor signal

strength locations.

Modeling multiple system calls. Once the power behavior for in-
dividual transfer is derived, we integrate them to model the power
behavior for concurrent system calls. A second transfer may begin
before the first transfer’s power trace finishes. There are two possi-
ble scenarios: (1) If the second transfer starts when the first transfer
is in final PSM tail state, then the resulting power trace can be gen-
erated by taking the maximum power of the overlapped period and
keeping other periods unchanged. (2) If the second transfer starts
when the first transfer has not finished all of its windows, then the
window spikes of the two transfers may overlap. Whenever two
window spikes overlap, the spike that starts later will be push back,
till after first spike finishes. All the subsequent window spikes of
that transfer will also be pushed back by the same offset.

6.3 3G Model
Extending the system-call-driven model for 3G follows the same

process as for WiFi, with the following slight complication. The
3G power state machine has two productive states, and accordingly
two promotion and two tail transition states. Hence in modeling
a data transfer system call, we need to keep track of the transi-
tions among those states. We infer the conditions, e.g., data transfer
bytes, for different transitions following the methodology in [21].
We then apply these conditions in modeling the power behavior of
the consecutive windows of a transfer. Figure 16(b) plots the effec-
tive receiving rate under different signal strength for T-Mobile and
AT&T 3G network.

6.4 Model Validation
We have incorporated the newmodel forWiFi and 3G into eprof [18]

with 1K lines of code.
To validate the model, we place the phone with the powerme-

ter in locations with different signal strength, and run benchmarks
to generate network traffic, while logging the system calls, signal
strength and server RTT. We then feed the logs into eprof and com-
pare the predicted energy consumption on wireless interfaces with
the energy reading from the powermeter.
Since Android apps generally consume considerable amount of

energy on display, CPU and other components (e.g., GPS), which
complicates the energy validation, we resort to trace driven experi-
ment to generate traffic. We first load several popular mobile web-
sites using the Android browser and record the size and RTT of
each flow, as summarized in Table 5. We then host the same con-
tents on our local servers, emulate the RTT using tc and write a
simple Android app to perform the downloading.

Figure 17 shows the validation result for the old model (i.e.,
without incorporating signal strength and RTT) and the new model
for Nexus One at poor signal strength locations, where the WiFi
signal is below -80dBm and 3G signal is below -100dBm. We see
that for WiFi, while the error rate of old model ranges from 16.1%
to 61.0%, the new model prediction error stays within 5.4%. Sim-
ilarly, for 3G the new model has an error rate of less than 7.2%, in
contrast to 19.3% to 52.1% of the old model.

7. WHAT-IF ANALYSIS
In this section, we show how our new, signal-strength-aware

system-call-driven power model enables what-if analysis for the
effectiveness of energy optimization techniques that explore sig-
nal strength dynamics. In particular, we study how much energy
could be saved for a subset of the users from our 3785-user trace
by exploring the simple technique of delaying background network
traffic to a later time when the signal strength is good.

Trace. We selected three subsets, each containing 5 user traces over
a 20-day period, who experienced primarily poor, moderate, and
good 3G signal conditions. Similarly we selected three subsets of
user traces for WiFi. Recall the user trace contains network usage
in 5-minute bins, and the signal strength upon every change.

Setup. Since the system-call-driven power model requires network
system call trace as input, we synthesize a flow trace from the 5-
minute bin network usage trace as follows. We first divide the traf-
fic in each 5-minute bin into flows with an exponential flow size
distribution with a mean of 4344 bytes, and assign the start time
for each flow following a uniform distribution within the 5 minutes
period. Then we assign end-to-end RTTs to each flow following a
uniform distribution between 5ms to 100ms forWiFi [7] and 100ms
to 700ms for 3G [12].

Delayed flow scheduling. Our simple signal-strength-aware flow
scheduling works as follows. For each flow, we determine if it be-
longs to background traffic following a probability of BG_RATIO.
For each background flow, if the signal strength at its start time
is below RSSI_THRESHOLD and the signal strength increases to
above the threshold within the following MAX_DELAY_TIME,
the flow will be delayed till when the signal condition crosses the
threshold. We assume signal strength can be predicted, following
techniques such as [23]. The RSSI_THRESHOLD is set to -80dBm
and -100dBm for WiFi and 3G, respectively.

Results. We use the new power model to calculate each user’s
energy consumption on data communications, with and without
the delay scheduling. Figure 18 plots the energy reduction from
the delay scheduling for 15 users over the 20-day period, with
MAX_DELAY_TIME of 2 hours and 12 hours, respectively. We
see almost linear increase in energy saving as the background traf-
fic increases. We also observe a large variation in energy reduction
across different users, ranging from 0.002% to 23.7% under WiFi
and from 1.1% to 21.5% under 3G, with BG_RATIO of 40% and
MAX_DELAY_TIME of 12 hours. To understand the reason, we
plot the RSSI over time for three selected 3G users, who have little,
moderate and a lot of energy saving (not shown due to page limit).
We clearly observe that the more fluctuation the signal strength over
time, the more energy saving from the delay scheduling.

8. RELATEDWORK
We have already discussed related work on WiFi and 3G power

modeling and how our new model differs from them in §4. To
our best knowledge, our work is the first measurement study of 3G
and WiFi signal strength experienced by a large number of users in
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(a) WiFi users, 2-hr max delay.
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(b) WiFi users, 12-hr max delay.
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(c) 3G users, 2-hr max delay.
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(d) 3G users,12-hr max delay.

Figure 18: Energy reduction from delay scheduling. Each line represents a unique user.

daily life. In the following, we focus on previous work on the im-
pact of poor signal strength on mobile device energy consumption.
Schulman et al. [23] observe that cellular signal varies by loca-

tion, and strong signal reduces energy cost of communicating, and
develop track-based signal strength prediction and energy-aware
scheduling algorithms for two specific workloads by deferring or
prefetching data during good signal conditions. In [9], the authors
measure the power draw of WiFi-based phones to increase slightly
under poor signal strength, when dynamic power control is enabled.
In [6], the authors perform an in-depth study of power dissipation
of smartphone components and find GSM dissipates 30% more en-
ergy when transferring at poor signal strength. Different from these
work, we systematically quantify and break down the impact of
poor WiFi and 3G signal strength on all relevant layers of the net-
work stack, and for varying flow sizes and server RTTs.

9. CONCLUSION
In this paper, we have performed the first measurement study of

3G and WiFi signal strength experienced by a large number (3785)
of smartphone users over 1 to 19 months of daily usage. Our anal-
ysis has shown that smartphone users are routinely experiencing
significant 3G and WiFi signal variations during daily active phone
usage. Further, the 3785 users we studied performed on average
43% and 21% of their foreground data transfers during poor 3G and
WiFi signal strength, respectively. Our trace analysis motivates the
need for diagnosing cellular network services to improve the user
experience.
We further performed controlled experiments to quantify the en-

ergy impact of poor signal strength on data transfers, and drew
implications on energy-efficient app design. We then developed
a new system-call-driven power model that improves the accuracy
over the previous state of the art by taking into account the impact
of signal strength and RTT. Using our new model, we show that
simply delaying of background traffic can reduce the total energy
consumption of data communication by up to 23.7% and 21.5% un-
der WiFi and 3G, respectively, assuming a maximum delay of 12
hours. Our new power model enables more accurate energy pro-
filing for smartphone apps [18] and what-if analysis of current and
future optimization techniques that explore signal strength dynam-
ics. We plan to explore these avenues in our future work.
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