
Scientific Programming
Editors: Konrad Hinsen, konrad.hinsen@cnrs-orleans.fr | Matthew Turk, matthewturk@gmail.com

102 Computing in Science & Engineering 1521-9615/16/$33.00 © 2016 IEEE Copublished by the IEEE CS and the AIP January/February 2016

Scientific Programming
Editors: Konrad Hinsen, konrad.hinsen@cnrs-orleans.fr | Matthew Turk, matthewturk@gmail.com

Units-of-Measure Correctness in Fortran
Programs

Mistral Contrastin, Andrew Rice, and Matthew Danish | University of Cambridge
Dominic Orchard | Imperial College London

M
uch of mathematics’ use in science revolves
around measurements of physical quantities,
both abstractly and concretely. Such measure-
ments are naturally classified by their dimen-

sion, that is, whether the measurement is of distance, energy,
time, and so on. Dimensionality is further refined by a mea-
surement’s units-of-measure (or units, for short), such as
meters, Joules, seconds, and so on. Units-of-measure distin-
guish magnitudes from each other, giving additional mean-
ing, but despite their extensive use in the practice of science,
units-of-measure don’t see widespread adoption in tools for
scientific computing. Here, we demonstrate how our freely
available, open source tool, CamFort, provides a low-effort
and automated way of detecting mismatched units-of-mea-
sure in code. This feature of CamFort is an example of a

lightweight, nonbinding specification and analysis tool that
can help find bugs in programs before they strike. We hope
that, in general, these kinds of program analysis tools will be-
come more widely used by scientists to save time and reduce
grief during the development process, as well as increase
confidence in results of numerical models.

Ensuring the consistent use of units is an important
sanity check in scientific computing. For example, adding a
value in kilograms to a value in liters is a nonsensical opera-
tion. As trivial as that error may seem, in large enough proj-
ects, such errors can go unnoticed by human eyes. One such
famous incident was the Mars Climate Orbiter spacecraft,
which disintegrated in the Martian atmosphere because one
part of the critical mission-control software provided val-
ues in imperial units whereas another part expected values

www.computer.org/cise 103

in metric units.1 This seemingly simple error cost nearly
US$330 million and delayed the scientific mission of Mar-
tian exploration.

That isn’t to say that scientific programmers neglect
units in their source code. In fact, we see many pieces of
scientific computing code using comments to record infor-
mation for major variables, equations, and functions. These
comments, however, are of limited efficacy because develop-
ers must manually check the consistency of every variable’s
units with respect to their use—and repeat this process ev-
ery time a change is made. What if it were possible to use
these same comments to automatically check the entire sys-
tem’s consistency?

Checking the consistency of units-of-measure is akin
to type checking, and solutions to the problem have been
developed on this basis. Type checking systems ensure that
certain illegal operations, such as dividing a Boolean value
by a string value, don’t occur. This class of illegal operations
is similar in nature to that of adding a kilogram to a liter (an
inherently meaningless statement) and thus should be auto-
matically prohibited by the programming language.

Arguably, the most established language in scientific
computing is Fortran, which contains a large body of librar-
ies and expertise. To date, however, Fortran has lacked a sys-
tem for checking units. CamFort is a multifaceted tool that
provides various kinds of analysis, verification, and refactor-
ing techniques for Fortran code aimed at scientific comput-
ing. CamFort operates on Fortran programs compatible
with at least the Fortran 66 standard or newer. In this arti-
cle, we demonstrate CamFort’s automated units-of-measure
consistency checking system. We designed this system with
existing codebases in mind: CamFort minimizes the effort
to introduce units to existing code, uses comments to record
annotations (short specifications on variable declarations),
and uses only static checks to validate units and so imposes
no performance overhead at runtime.

The rest of this article consists of a brief introduction to
computing total mechanical energy, followed by its imple-
mentation in Fortran 90. We then give a tutorial on how
CamFort can be used to add units-of-measure specifications,
check unit consistency, and eliminate units-of-measure bugs,
using the total mechanical energy program as an example.

Example: Total Mechanical Energy Computation
Total mechanical energy is the sum of a point object’s kinetic
and potential energy. The relevant equations to calculate total
mechanical energy for a point object in free fall are as follows:

Epotential = mass × gravity × height,

Ekinetic = 1/2 mass × velocity2, and

Emechanical = Epotential + Ekinetic.

An example Fortran program using these formula might
be as follows:

1 program energy

2 real, parameter :: mass = 3.00, gravity =

9.81, height = 4.20

Units Support in Other Languages

Tools for checking units-of-measure consistency in modern

languages can be broadly categorized as either static or

dynamic analyses.

Static analysis of units-of-measure means that consistency

is guaranteed at compilation time. Hence, if the tool statically

confirms that units are used consistently, with respect to annota-

tions in the source code, then unit consistency won’t be violated

by any execution path the program may take. For example, F#

allows variables to be annotated and statically checked for units-

of-measure consistency. C++ programmers can use the Boost

Units library, which uses C++ templates to statically ensure

that units are used appropriately. The Osprey project provides

another solution with an external tool.1 Haskell has various forms

of units-of-measure typing provided internally by building on

Haskell’s rich type system.2,3

The other option is dynamic analysis, in which consistent

use of units is checked when the program runs. This means

that no guarantees can be made before running the program.

Instead, safety violations are caught as they happen. This has

the additional downside of adding runtime overhead. Python’s

Pint library is an example of a dynamic units-of-measure

analysis.

Libraries and tools also exist for assisting with the management

or conversion of units. The udunit C library provides support for

converting between units and has a large database of standard

units-of-measure. This library is also available to R programmers

through the udunits2 package. The difference here is that these

libraries aim to provide routines for helping with the conversion

of units rather than for detecting their misuse.

References
1. L. Jiang and Z. Su, “Osprey: A Practical Type System

for Validating Dimensional Unit Correctness of C Pro-

grams,” Proc. Int’l Conf. Software Eng. (ICSE), 2006,

pp. 262–271.

2. A. Gundry, “A Typechecker Plugin for Units of Measure,”

Proc. ACM SIGPLAN Symp. Haskell, 2015, pp. 11–22.

3. T. Muranushi and R.A. Eisenberg, “Experience Report:

Type-Checking Polymorphic Units for Astrophysics Re-

search in Haskell,” Proc. ACM SIGPLAN Symp. Haskell, 2014,

pp. 31–38.

Scientific Programming

104 January/February 2016

3 real, parameter :: half = 0.5, velocity =

4.00

4 real :: kinetic_energy, potential_energy,

total_mechanical_energy

5

6 potential_energy = mass * gravity * height

7 kinetic_energy = half * mass * (velocity**2)

8

9 total_mechanical_energy = potential_energy +

kinetic_energy

10 end program energy

This program calculates the total mechanical energy for
a point object of 3 kg mass in free fall, traveling at 4 meters
per second toward the Earth from a height of 4.2 meters.
The resulting total mechanical energy is 148 Joules.

Building a Unit Annotated Program for the Task
It’s easy to integrate CamFort with an existing codebase.
CamFort can first analyze a codebase and report a minimal
set of variables that can be annotated by the programmer
to gain the maximum amount of unit information in the
rest of the program. Once the programmer inserts the ini-
tial annotations, further unit annotations can be added as
developers write more code. In our experiments, a typical
program requires roughly only 18 percent of its declared
variables to be annotated before CamFort can automati-
cally infer the rest.2

We consider first a subset of the mechanical energy pro-
gram for just the potential energy:

1 program energy

2 real, parameter :: mass = 3.00, gravity =

9.81, height = 4.20

3 real :: potential_energy

4

5 potential_energy = mass * gravity * height

6 end program energy

We find the minimal set of variables to annotate by
invoking the criticalUnits analysis feature of CamFort
(passing the source directory as an argument):

$ camfort criticalUnits energy_src

Inferring critical variables for units

inference in directory “energy_src”

energy_src/energy.f90: Critical variables:

potential_energy,gravity,mass

The output from CamFort tells us we need to anno-
tate the variables potential_energy, gravity, and mass.
CamFort can then deduce the units for other variables in
the program. Annotations are similar to Fortran 90 variable

declaration syntax but inside of a comment (that is, preced-
ed by an exclamation point !). The syntax is of the form

!= unit <unit_name> [:: variable_name]

Starting a comment with an exclamation point ! has
been valid only since Fortran 90, so for earlier Fortran stan-
dards, we replace ! with c or C.

The advantage of using comments for program annota-
tions is that they don’t interfere with compilation in any way.
This means CamFort can be added or removed from the devel-
opment process at any point with no need to alter the source
code. Possible unit annotations for the above program are then

1 program energy

2 != unit kg :: mass

3 != unit m/s**2 :: gravity

4 real, parameter :: mass = 3.00, gravity =

9.81, height = 4.20

5 != unit kg m**2/s**2

6 real :: potential_energy

7

8 potential_energy = mass * gravity * height

9 end program energy

This highlights some properties of unit annotations:

 ■ The declaration of unit names is implicit (lines 2, 3, and
5 implicitly declare noncompound units kg, m, and s for
use in the program).

 ■ A variable name in an annotation is optional (line 5) in
which case any variable declarations after the annotation are
assigned that unit (potential_energy on line 6 in this case).

 ■ Annotation comments must always precede the related
variable declaration (line 3) but can be separated from
a variable declaration by other unit annotations (line 2
separated from the mass variable declaration (line 4) by
the line 3 annotation).

We can now apply CamFort’s automatic units-of-mea-
sure inference, which will check the consistency of the units
in the program and insert any inferred units—in this case,
for height, which was unspecified. This is invoked by the
units feature (which requires an output directory to be
specified for the updated source files):

$ camfort units energy_src energy2

Inferring units for “energy_src”

 energy_src/energy.f90: Added 1 unit

 annotation: m

 energy_src/energy.f90: Checked/inferred 4

 user variables

 Writing refactored files to directory: energy2/

Writing energy2/energy.f90

www.computer.org/cise 105

CamFort generates a modified program in the output di-
rectory. Source code is changed only to insert the annotation
comment, while the rest of the source code lines—includ-
ing spacing and indentation—are preserved. In the resulting
program, we can see on line 4 that CamFort has inferred
that height must have units m to be consistent and has thus
inserted this annotation:

1 program energy

2 != unit kg :: mass

3 != unit m/s**2 :: gravity

4 != unit m :: height

5 real, parameter :: mass = 3.00, gravity =

9.81, height = 4.20

6 != unit kg m**2/s**2 :: potential_energy

7 real :: potential_energy

8

9 potential_energy = mass * gravity * height

10 end program energy

We can extend the program to compute the total me-
chanical energy and demonstrate how a unit error is caught
by CamFort:

1 program energy

2 != unit kg :: mass

3 != unit m/s**2 :: gravity

4 != unit m :: height

5 real, parameter :: mass = 3.00, gravity =

9.81, height = 4.20

6 != unit kg m**2/s**2 :: potential_energy

7 real :: potential_energy

8

9 != unit 1 :: half

10 != unit m/s :: velocity

11 real, parameter :: half = 0.5, velocity = 4.00

12 real :: kinetic_energy, total_energy

13

14 potential_energy = mass * gravity * height

15 kinetic_energy = half * mass * velocity

16

17 total_energy = potential_energy + kinetic_energy

18 end program energy

Note the use of the special unit 1 for the variable half.
When 1 is used for type annotation, it signifies a unitless (or
scalar) quantity.

Our implementation of kinetic energy contains a pro-
gramming error: velocity should have been squared on
line 15. CamFort detects this bug as a unit error. If we
attempt to run either the units or criticalUnits analy-
sis, CamFort will display a warning that the system is in-
consistent because we’re adding potential_energy to

kinetic_energy, which have different units in the existing
implementation:
$ camfort units energy energy_out

Inferring units for “energy”

 energy/energy.f90: inconsistent units of

 measure:

 line 17: cannot match units ‘kg

 m**2/s**2’ and ‘kg m/s’

 energy/energy.f90: checked/inferred 8 user

 variables

The fix is thus to square the velocity. For further illus-
tration, we do this with a user-defined squaring function,
rather than just the built-in ** operator:

1 program energy

2 != unit kg :: mass

3 != unit m/s**2 :: gravity

4 != unit m :: height

5 real, parameter :: mass = 3.00, gravity =

9.81, height = 4.20

6 != unit kg m**2/s**2 :: potential_energy

Unitless vs. Polymorphic Units

A unitless value is a scalar quantity. Some operators require

a unitless value—for example, exponentiation requires that

the exponent is a unitless quantity (it doesn’t make sense to

raise a value to the power of 2 meters). For other operators, a

unitless operand gives flexibility: it’s valid to multiply a value of

any unit by a unitless scaling factor.

A polymorphic unit represents a generalization over all units—

for example, the abs intrinsic function takes a number and

returns its absolute (positive) value. This function can be applied

to a value of any unit and is thus described as being polymorphic

in its unit. Furthermore, if the input is of some unit α, then the

output value is of the same unit α.

Almost all constant values must have a particular unit (per-

haps inferred by CamFort), or they must be unitless. The excep-

tion to this rule is zero, which can be treated polymorphically

in its unit. To see why this is the case, consider the addition

operation: adding zero to any value preserves the unit of that

value because zero is the additive identity, that is x + 0 = x for

all x. However, it doesn’t make sense to add 1 (or any nonzero

constant) to any other value unless the units match exactly.

In the former case, we can declare a zero constant and safely

add it to any value with any unit. In the latter case, addition of

a nonzero constant with a different unit would cause units-of-

measure inconsistency.

Scientific Programming

106 January/February 2016

7 real :: potential_energy

8

9 != unit 1 :: half

10 != unit m/s :: velocity

11 real, parameter :: half = 0.5, velocity = 4.00

12 != unit kg m**2 / s**2

13 real :: kinetic_energy, total_energy

14

15 potential_energy = mass * gravity * height

16 kinetic_energy = half * mass * square(velocity)

17

18 total_energy = potential_energy + kinetic_energy

19

20 contains

21

22 real function square(x)

23 real x

24 square = x * x

25 end function square

26 end program energy

The user-defined square function is inferred to be
polymorphic in its units due to the lack of any annota-
tions inside the function body. This means that square
can be reused on values of different units, where given
an input x of unit α, then the output has units α2. Its
use on line 16 means that square(velocity) has units
(m/s)**2.

The energy unit kg m2 s–2 is quite long and complicated;
instead, Joule is the preferred name for this unit, abbreviat-
ing the more complicated, derived form. Such complicated
unit terms can be tedious to write and understand. CamFort
provides a solution to this via unit aliases, which allow names
to be given to derived units. In this case, we can declare !=
unit :: Joule = kg m**2 / s**2, which aliases the more
complex unit term to the name Joule. Energy annotations
can now be expressed more succinctly and clearly in terms
of Joule.

Moving toward Modern Fortran with Units
The 2015 Fortran standard includes a proposal for extend-
ing Fortran with unit annotations in the N1969 report.3
The new proposal suggests introducing a UNIT attribute for
variable annotations and a UNIT statement for unit declara-
tions. Unlike CamFort, unit declarations are obligatory. The

potential energy computation would look like this, accord-
ing to N1969:
1 program energy

2 UNIT kg, m, s

3 UNIT a = m/s**2

4 real, parameter, unit(kg) :: mass = 3.00

5 real, parameter, unit(a) :: gravity = 9.81

6 real, parameter, unit(m) :: height = 4.20

7 UNIT Joule = kg * m**2 / s**2

8 real, unit(Joule) :: potential_energy

9

10 potential_energy = mass * gravity * height

11 end program energy

We originally considered the N1969 syntax for Cam-
Fort, but we later decided on the comment notation to
enable support for older versions of Fortran without
maintaining both the annotated and the compilable ver-
sions of source code. The other important differences
are that N1969 features compulsory explicit unit decla-
ration, lack of derived unit annotations, and conversion
units.

Every unit used in an annotation in N1969 needs to
be declared explicitly. Further derived (composite) units
such as m/s**2 can’t be used in annotations directly;
they must first be declared and given a name. CamFort
similarly allows names to be given to composite (de-
rived) units as this can increase clarity (discussed ear-
lier). Always requiring this naming, however, can also
hinder clarity. For example, in the code above, accelera-
tion is declared as a composite unit a to be used in the
annotations; however, m2 s–2 is more familiar to scien-
tists and programmers. Therefore it’s more natural to
use it directly in annotations rather than introducing a
unit name.

Conversion units allow units in the same dimension
to be exchanged automatically. For example, variables
annotated with the units “meters,” “centimeters, and
“inches” all belong to the same dimension. Conversion
units, regardless of their original declaration unit, can
be used alongside other variables in the same dimension
inside any expression. This is achieved through the in-
sertion of implicit conversion functions. Although this
is a useful tool, it doesn’t fall into the scope of the Cam-
Fort project or its design philosophy. Such an extension
requires additional compiler support to implicitly insert

Although adding unit annotations is an additional task for the
programmer, the overall effort is reduced (less time debugging) and
programmers can be more confident in their code’s correctness.

www.computer.org/cise 107

conversions. Furthermore, automated conversion be-
tween units often requires a chain of conversions such
as meters to centimeters and then centimeters to inches.
Lack of transparency in this conversion means any f loat-
ing-point error introduced during the conversion is hid-
den from the programmer.

Our earlier paper on units-of-measure offers a more
thorough comparison of features between CamFort and
N1969, and demonstrates the support for N1969 syntax in
CamFort.2

A lthough adding unit annotations is an additional task
for the programmer, the overall effort is reduced (less

time debugging) and programmers can be more confident
in their code’s correctness. The units-of-measure annota-
tions we showed here are a kind of lightweight specification,
which, coupled with the CamFort automated checker, pro-
vide a simple form of program verification.

Formal specification and verification techniques
are increasingly important to the practice of scientific
computing4,5 by increasing confidence in the program’s
correctness, reducing the amount of time spent debug-
ging, aiding understanding and communication of
ideas, and avoiding embarrassing errors in publications.
Lightweight formal specification mechanisms, such as
CamFort’s units feature, don’t require a complete speci-
fication beforehand, making them easier than ever to de-
ploy. Nor do they hinder the development cycle, as unit
information is often already included in the source code
for documentation. In general, these kinds of local and
incremental specifications can help prevent common
classes of errors from occurring without unduly burden-
ing the programmer. Thus, we hope that computational
scientists will embrace current and future means of light-
weight specification and verification to help produce soft-
ware that’s quicker to write, easier to understand, and
with fewer bugs than ever before. Furthermore, we hope
for increased interaction between scientists and computer
scientists, such that new lightweight verification tech-
niques can be developed to aid computational science
programming.

For more information, including the CamFort source
code, please visit www.cl.cam.ac.uk/research/dtg/naps.
The source code and data supporting this article are free
to download and available at https://www.repository.cam.
ac.uk/handle/1810/251380.

Acknowledgments
This work was supported by the Engineering and Physical Sci-
ences Research Council (EP/M026124/1). Dominic Orchard
additionally thanks the Software Sustainability Institute for its
support.

References
1. A.G. Stephenson et al., “Mars Climate Orbiter Mishap

Investigation Board Phase I Report,” tech. report, NASA,
1999.

2. D. Orchard, A. Rice, and O. Oshmyan, “Evolving Fortran
Types with Inferred Units-of-Measure,” J. Computational
Science, vol. 9, 2015, pp. 156–162.

3. W.V. Snyder, “ISO/IEC JTC1/SC22/WG5 N1969,”
tech. report, Int’l Organization for Standardization,
2013; ftp://ftp.nag.co.uk/sc22wg5/N1951-N2000/
N1969.pdf.

4. K. Hinsen, “Writing Software Specifications,” Computing in
Science & Eng., vol. 17, no. 3, 2015, pp. 54–61.

5. D. Orchard and A. Rice, “A Computational Science Agenda
for Programming Language Research,” Procedia Computer
Science, vol. 29, 2014, pp. 713–727.

Mistral Contrastin is a research assistant at the University of
Cambridge. His research interests include (de)obfuscation of bi-
naries, static and dynamic malware analysis, and static analysis of
source code. Contact him at mojpc2@cam.ac.uk.

Andrew Rice is a senior lecturer at the University of Cambridge.
His current research is on the application of programming lan-
guage design and theory to scientific computing. Rice works in
the Computing for the Future of the Planet framework. Contact
him at acr31@cam.ac.uk.

Matthew Danish is a research associate at the University of
Cambridge. He's interested in program verification using type
systems of programming languages. Danish has a PhD in com-
puter science from Boston University. Contact him at mrd45@
cam.ac.uk.

Dominic Orchard is a research associate at Imperial College Lon-
don and a fellow of the Software Sustainability Institute. He’s
interested in the intersection between semantics, program analy-
sis, and type theory. Orchard has a PhD in computer science
from University of Cambridge, where he was also a postdoctoral
researcher on the CamFort project. Contact him at d.orchard@
imperial.ac.uk.

Selected articles and columns from IEEE Computer Society pub-
lications are also available for free at http://ComputingNow.

computer.org.

