
MockDroid: trading privacy for
application functionality on smartphones

Alastair R. Beresford
Computer Laboratory,

University of Cambridge,
15 JJ Thomson Avenue,
Cambridge. CB3 0FD

United Kingdom
arb33@cam.ac.uk

Andrew Rice
Computer Laboratory,

University of Cambridge,
15 JJ Thomson Avenue,
Cambridge. CB3 0FD

United Kingdom
acr31@cam.ac.uk

Nicholas Skehin
Computer Laboratory,

University of Cambridge,
15 JJ Thomson Avenue,
Cambridge. CB3 0FD

United Kingdom
ns476@cam.ac.uk

Ripduman Sohan
Computer Laboratory,

University of Cambridge,
15 JJ Thomson Avenue,
Cambridge. CB3 0FD

United Kingdom
rss39@cam.ac.uk

ABSTRACT
MockDroid is a modified version of the Android operating
system which allows a user to ‘mock’ an application’s ac-
cess to a resource. This resource is subsequently reported
as empty or unavailable whenever the application requests
access. This approach allows users to revoke access to par-
ticular resources at run-time, encouraging users to consider
the trade-off between functionality and the disclosure of per-
sonal information whilst they use an application. Existing
applications continue to work on MockDroid, possibly with
reduced functionality, since existing applications are already
written to tolerate resource failure, such as network unavail-
ability or lack of a GPS signal. We demonstrate the prac-
ticality of our approach by successfully running a random
sample of twenty-three popular applications from the An-
droid Market.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls; J.7
[Computers in Other Systems]: Consumer products;
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Mobile, Phone, Security, Privacy

Keywords
Android, MockDroid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile ’11 Mar 01-03 2011, Phoenix, AZ, USA
Copyright 2011 ACM 978-1-4503-0649-2/11/03 ...$10.00.

1. INTRODUCTION
In the last couple of years, third-party applications for

smartphones have become very popular for users and devel-
opers alike. For example, Apple has nearly 250,000 appli-
cations in its store [3] and has served over 3 billion down-
loads [1]. This is due to the confluence of several technical,
business and economic factors, including the availability of
good mobile data connectivity, high-performance low-power
hardware, an online application store, and an integrated
billing system which allows application developers to col-
lect payment for applications easily. Many modern mobile
phone vendors have applications stores, including the App
Store (Apple), App World (Blackberry), Android Market
(Google), Windows Marketplace for Mobile (Microsoft) and
the Ovi Store (Nokia).

All the major platforms provide programming APIs which
allow access to many of the core services of the smartphone,
including: communication capabilities (e.g. IP connections,
phone calling and text messaging), databases of personal in-
formation (e.g. address book and calendar data), and sensor
information (e.g. microphones, cameras, phone location, and
accelerometer data). Unfettered access to these data sources
is a real privacy concern for users.

Smartphone operating system vendors are aware of the
potential for poorly written or malicious programs to com-
promise privacy. Several different approaches have been de-
veloped to reduce the risk. Application vetting is a popu-
lar technique, used for a long time by Symbian, and now
adopted by Nokia and Apple. In this model, the developer
writes and tests an application on a specific device. Once
the application is complete, the developer submits the ap-
plication to a trusted party for testing; this might be the
operating system vendor themselves or a third party. Typi-
cally, testing checks for adherence to published design guide-
lines in addition to checking for malicious behaviour. If the
trusted party approves the application, it digitally signs the
application; phone handsets will not install an application
unless it is signed by a trusted key.

The vetting process is often opaque and suffers from both
false accepts and false rejects. As the largest store, appli-
cations written for the iPhone provide several high-profile
examples, although other application stores also suffer from
similar problems. Once recent example is the latest version
of the Facebook application for Apple’s App Store. The
Facebook application uploads all the contacts in the user’s
phone address book and then pattern matches these entries
with the user’s friends on Facebook. Newspaper reporters
have discovered these numbers are not just stored on Face-
book; they are also associated with the profiles of matching
friends, and therefore a phone number which is only avail-
able to a small number of people is shared more widely [4].
In the first release of the application users were not made
aware of this new feature and it cannot be disabled easily in
the phone application.

A popular alternative approach to vetting is to use manda-
tory access control. This technique is used by Android and
also the J2ME platform, which are both available on many
different mobile device handsets. In this model, the devel-
oper declares which APIs the application will use and the
system runtime prevents the application from accessing any
APIs it does not explicitly list. The set of permissions re-
quested by the application can be reviewed by the user. On
the Android platform, the permissions are displayed when
the application is installed, and the user has to make a stark
choice: grant the permissions and install the application, or
don’t use the application at all. The J2ME model is slightly
more flexible: some platforms allow the user to select op-
tions such as “always”, or “ask every time” for some APIs,
although applications may fail to run correctly if access is
denied. Some J2ME platforms only allow access to certain
APIs if the application has been vetted and signed, building
a hybrid combination of the vetting and mandatory access
control models.

The problem with the the mandatory access control model
is the user must give permission to access communication
features or data without necessarily being able to under-
stand when and why this access is required, or what hap-
pens with their data. On Android this is especially difficult
since there is no “ask every time” option; after installation,
applications can access any requested API without further
user intervention.

In this paper we propose an alternative approach: allow
the user to provide fake or ‘mock’ data to applications in-
teractively as the application is being used. In other words,
the user may provide different information on the status of
communication capabilities, personal databases and sensors
to each application and over time. For example, consider an
application which requests IP connectivity, access to loca-
tion data from the GPS sensor, and read-write access to the
calendar database. On MockDroid, the user may choose to
provide ‘mock’ GPS data, such as always reporting a spe-
cific latitude and longitude, or reporting “no location fix
available” regardless of the actual status of the GPS device.
Similarly, IP connectivity may always “time out” for specific
network addresses, or even all requests for communication.
Access to the calendar may only return a subset of events, or
perhaps an initially empty database which is actually sepa-
rate from the main phone calendar database.

Providing fake data may impair a piece of application
functionality. For example, providing “no location fix avail-
able” to the Google Maps application, regardless of the ac-

tual state of the GPS device, prevents the application from
providing search results based on accurate location data, or
showing the current location of the user on the map; other
features of the application, such as directions, continue to
function as normal. Therefore, providing fake data allows
the user to explore the trade-off between functionality and
privacy for any given application. Lying in this way offers a
number of advantages over simple mandatory access control:

Controlling optional features It is common for applica-
tions to request access to a specific API to provide a
feature which is optional; for example, the Skype appli-
cation on Android allows the user to choose whether to
integrate Skype contacts with the main phone address
book. This kind of feature selection can be enforced by
the operating system rather than by the application.

No unwarranted sharing of personal data Many appli-
cations which access personal data upload it to remote
servers without the user realising. For example, a re-
cent analysis of thirty Android applications which re-
quested Internet connectivity along with location data
or device ID found that twenty shared location data
with content servers or third-party advertising net-
works without seeking user consent [6]. Allowing ac-
cess to be mocked puts the user back in control.

Data separation For some data sources, it might be use-
ful to provide a subset of the data, such as providing
only public calendar events to a specific application.
Similarly, it may be useful to control the quality of the
data provided; for example, rather than providing the
precise location of the phone to an application which
shares such data with friends, the user might provide
the location of the nearest city. Users could even main-
tain a separate database of personal information for
each application if they wish.

Controlling expensive operations Access to some APIs
cost money, and therefore lying helps control costs.
For example, if the 3G data connection costs money,
lying allows a user to prevent a data-hungry applica-
tion from using the network whilst other applications
continue to work as normal.

Enabling new features Many applications make use of
sensor readings or information from personal databases
to control the user experience. By allowing users to
mock certain information, new features are automat-
ically enabled. For example, accelerometers are often
used to control the orientation of the screen. By pro-
viding fake accelerometer data to a specific application
the user can manually rotate the application screen in-
dependently of the actual phone orientation.

Testing Developers can use mock resources to test their
applications to make sure they work correctly with the
full range of possible inputs.

We explored this idea by modifying the Android operating
system. In the remainder of this paper we describe why An-
droid is a good starting point (Section 2) and the changes re-
quired (Section 3). We demonstrate the effectiveness of our
approach by examining a random sample of twenty-three ap-
plications on the Android Market (Section 4), compare our
approach to prior work (Section 5) and discuss the merits of
our approach and potential areas for future work (Section 6).

2. ANDROID
We chose Android since it is open source, already has

a fine-grained permission system, and can be installed and
tested on a real mobile phone handset.

Android applications are called packages and execute in
a custom Java virtual machine running on a Linux kernel.
Typically applications interact through the Android API in-
side the virtual machine. However it is possible to integrate
native libraries written in C or C++ into a package and
consequently it is normal for each package to run with its
own kernel user identity to ensure strong privilege separa-
tion. Applications are built from multiple components that
provide specific functionality.

Components are classified by type: activity components
define a user interface; service components perform back-
ground processing; content providers provide data storage
and retrieval facilities; and broadcast receivers receive mes-
sages from other applications. Components interact by send-
ing messages called intents. Intents may be sent explicitly
to named components or implicitly using a named action
string. Android will redirect implicit intents to appropriate
components automatically. Components use intent filters to
subscribe to specific action strings. Inter-Component Com-
munication (ICC) is restricted by access permission labels.
If a component exposes an API with a specific label, any
application which wants to use this API must declare this
as a required permission in the package manifest file.

Android has four types of permission label: normal per-
missions (e.g. triggering the vibrate feature) are granted to
any package; dangerous permissions alert the user to poten-
tially insecure or fiscally expensive operations (e.g. making
phone calls); signature permissions are only granted to pack-
ages that are signed with the same key as the package defin-
ing the permissions; and signature or system permissions
mimic signature permissions, but exist for legacy reasons.

3. MOCKDROID
Our prototype is based on Android 2.2.1 and runs on

the Google/HTC Nexus One handset. Whilst we have not
tested it on other handsets, we expect that our modifications
will run with minor adjustments on other Android devices
which support the 2.2.1 version of the operating system.
The patches, compiled firmware, and our permission control
application are available on the project website.1

In MockDroid, the choice of lie depends on the API call
under consideration. We have explored a wide range of API
calls in order to demonstrate the feasibility of our approach.
In particular, we provide support to mock the following:

Coarse- and fine-grained location if read requests are
mocked, then the application never receives a callback
with a location fix, simulating lack of available location
information.

Internet if Internet connectivity is mocked then the socket
never connects and always times out, simulating the
lack of an available wireless network.

SMS/MMS, calendar, contacts if read requests or write
requests are mocked, then they access a database which
is in the same state as a brand new device (i.e.“empty”),
and write requests fail by notifying the application that

1
http://www.cl.cam.ac.uk/research/dtg/android/mock/

zero lines of the database were updated, simulating a
full file system.

Device ID if read requests are mocked, then a fake con-
stant value is returned.

Broadcast intents if the permission required to send a
broadcast intent from a package is mocked, the broad-
cast intent is never sent; likewise, if the permission
required to receive a broadcast intent by a package is
mocked, it is never received. We have used this method
to prevent an application from receiving notification of
incoming SMS/MMS messages.

3.1 Package Manager modifications
The Package Manager service is the focal point for per-

missions management in Android. When a new application
is installed from the Market, the set of dangerous permis-
sions the application has requested are displayed and the
user is asked to provide consent prior to installation. If the
user agrees, the set of granted permissions are stored in an
in-memory data structure and also serialised to disk.

Every Android API call which requires a permission (e.g.
read access to the address book) first checks whether this
permission has been granted to the calling package. This
is done by using an internal ICC mechanism which ulti-
mately checks the in-memory data structure maintained by
the Package Manager. If an application attempts to use an
API call without permission, an exception is thrown which
propagates from the API call into the package runtime.

We modified the permission check performed at the start
of each dangerous API call. Our modified implementation
first checks whether the permission was requested by the
package at installation time; if not, then an exception is
thrown in the same manner as standard Android system. If
the permission was requested at installation time, our modi-
fied implementation also checks whether the user has mocked
the permission. We maintain separate state for each appli-
cation so the user can prevent access to a resource by one
application, but enable it for another.

If a permission was requested at install time and is not
mocked, then the API call completes in the same manner
as the standard Android system. If a permission is mocked
then the API call provides a plausible but incorrect result
to the application, as described earlier.

3.2 Storing mocked permissions
We have modified the Package Manager and duplicated

the set of permissions so that each permission has both a
‘real’ and a ‘mocked’ version. When the application is in-
stalled, all requested permissions are granted and none are
mocked.

To support control of mocked permissions at runtime, we
have added an additional Unix group, called mock, to the
Android OS. This group has read and write permissions to
a directory on disk which stores the mocked permissions for
all packages. Our modified version of the Package Manager
service uses the Linux kernel inotify service to watch for
changes to files in this directory, and updates its in-memory
cache of mocked permissions as and when the file contents
change.

We have also added an additional system permission to the
Android OS. Any application which is granted this permis-
sion is placed in the mock group and can therefore read and

(a) (b) (c)

Figure 1: Paper Toss: (a) installation asks for permissions which seem unnecessary; (b) if a mocked permission
is used, the user is informed through an unobtrusive notification; (c) mocked permissions can be edited.

write the mocked permissions which are stored on the file
system. We have written an additional application, called
Mocker, which has this system permission enabled. This
application allows the user to configure and change mocked
permissions whilst programs are running.

We have also modified our prototype so that every time
a mocked permission is checked, a broadcast intent is fired.
This is received by the Mocker application and is currently
used to display a notification to the user in the notification
bar. It would be relatively easy to extend this to provide
an archive of all requests, broken down by application and
time, to allow more careful monitoring of API use by specific
applications.

3.3 Internet Permissions
Internet Permissions are handled differently from other

dangerous API calls in Android. This is because IP con-
nectivity is exposed both through API calls via the Java
virtual machine and through the underlying Linux kernel,
the latter being available to an application library written
in C or C++. The Android developers therefore modified
the Linux kernel to check whether a process attempting to
access the Internet is in the inet group. When the Android
Activity Manager starts an application, it adds the appli-
cation process to the inet group if the Internet Permission
was requested at install time.

Mirroring this approach, we added an additional Linux
group called mock_inet. When the Activity Manager starts
an application it adds the application to the mock_inet

group if the Internet Permission for the application is cur-
rently mocked; if the user attempts to change the status of
this permission (say, from ‘mocked’ to ‘real’) then our mod-
ified implementation of the Package Manager restarts the

application with the new group settings.

4. EVALUATION
We begin our evaluation with an example usage of Mock-

Droid. Alice decides to install Paper Toss, a popular game
on the Android Market. On installation, the application
asks for permission to read the coarse- and fine-grained lo-
cation data from her handset, connect to the Internet, and
read the phone state and identity as shown in Figure 1(a).
Alice does not understand why the application requires any
of these permissions, so after installing the application, she
uses the Mocker application to disable access to all these
features and then runs the application.

Alice finds the game runs acceptably with all permissions
mocked. After some time, Alice wishes to submit her high
score to the on-line high score table. Unfortunately this does
not work, as the Internet permission is currently mocked.
The Mocker application informs Alice that the application
wishes to use the Internet permission by placing a notifica-
tion in the Android notification bar as shown in Figure 1(b).
Alice can click on this notification and enable the Internet
permission as shown in Figure 1(c). After her score has been
submitted, Alice can then return to the Mocker application
and disable access to the Internet if desired.

Displaying a red circle in the notification bar whenever
a permission is mocked is relatively unobtrusive, and pro-
vides good visual feedback to the user when an action is
likely to have affected the current foreground application’s
behaviour. Nevertheless, this user interface has its draw-
backs, a topic we revisit in Section 6.

The authors of TaintDroid analysed thirty free popular
applications on the Android Market which required Internet

Internet Local
3001 Wisdom Quotes ABC – Animals
BBC News Live Stream Antivirus
Coupons Astrid
Dastelefonbuch Blackjack
Horoscope Bump
Layar Cestos
Manga Browser Evernote
Movies Probasketball
Ringtones Solitaire
The Weather Channel Traffic Jam
Yellow Pages Trapster
Wertago

Table 1: Applications tested under MockDroid

communication along with permission to access either loca-
tion, camera or audio data [6]. They found that twenty of
these applications violated the users privacy, primarily by
sending the device ID or location to content or advertise-
ment servers.

For the purposes of validating our MockDroid implemen-
tation, we repeated the experimental procedure carried out
in the TaintDroid paper by downloading all the applications
in the TaintDroid test set that required access to location
data. Of the original twenty-seven applications that required
location data we were unable to download three (Hearts,
Spongebob slide and Babble) due to Android Market re-
strictions, and one (Knocking) did not function correctly
because the application’s remote server was unavailable at
the time of testing.

Table 1 categorises the twenty-three applications as Inter-
net or local depending on whether they required access to
remote data to provide core functionality. For each applica-
tion, we manually exercised application functionality with
and without mocking coarse-grained location and Internet
access. We were able to successfully mock both location and
Internet access for all applications. All applications continue
to function without failure in the presence of faked location
and Internet state.

Applications in the local category access coarse-grained
location data infrequently. The primary use appears to be
the display of locationally-relevant adverts. Unless the user
wants to see local adverts, mocking access to location data
did not reduce application functionality, it simply increased
privacy. Similarly, disabling access to the Internet prevented
adverts from loading; in most other respects applications
continued to function normally. Access to on-line high-score
tables was one area in which access to the Internet is required
and this represents the primary trade-off between applica-
tion functionality and privacy for local applications.

Applications in the Internet category still run with net-
work access mocked, but only provide limited functionality.
In order to use these applications properly, network access
is required. Many applications which request location data,
such as The Weather Channel and Movies, provided mech-
anisms for manually entering a location in addition to ac-
quiring data from sensors. Therefore, when mocking access
to location data the trade-off is that the user must manually
enter a location if they want the application to operate in a
location-dependent fashion; the frequency at which this up-
date must occur depends on the application, but in the case

of The Weather Channel and Movies, this is likely to be rel-
atively infrequent, and therefore is likely to be an acceptable
trade-off to many users.

In addition to the above tests, we also mocked access to
the contact database for the default SMS messaging applica-
tion which comes with Android. With the contact database
mocked, the message application continues to work, except
that existing stored messages no longer display the sender
name (messages are indexed by phone number instead) and
all new messages require a phone number, as the application
is unable to use the contact database to translate nicknames
into phone numbers.

5. RELATED WORK
The amount of data available to applications running on

mobile phones contrasts starkly with another mainstream
application platform: the world-wide web. Unlike the smart-
phone runtime environment, a web application runtime pro-
vides very limited access to the underlying operating system
and services: a typical web application today cannot ac-
cess databases of personal information or sensor data, and
the web browser limits IP connectivity with the same-origin
policy. This situation is likely to change over time—W3C
have a draft Geolocation API [7] and some smartphone web
browsers, such as the Blackberry Browser [2], already pro-
vide access to the GPS location of the device via Javascript.

Conversely, a typical desktop computing environment of-
fers the user with almost no protection from malicious ap-
plications since all applications and data are accessible by
any application. Some virtual machines such as the Java
Runtime Environment (JRE) support the concept of a Secu-
rity Manager which is able to prevent access to specific API
calls. These access controls are at the level of the program-
ming API, and are often difficult to translate into meaningful
concepts that the user could understand. For example, the
JRE equivalent of the permission to read from the address
book might be translated into permission to read the file
/home/user/contacts.vcf.

The security-by-contract paradigm requires developers to
specify the set of API calls their application requires [5].
This contract is then checked against a user policy which
defines what applications are allowed to access. In essence,
this adds mandatory access control to the .NET framework
for Windows Mobile, but it does not permit the user to
provide ‘mock’ or fake data.

TaintDroid is a real-time information flow analysis tool for
Android [6]. It allows specific data processed by the Java
virtual machine, such as GPS location, to be tracked as it is
passed between processes via ICC. Analysis using this sys-
tem, together with hand inspection, found that twenty out
of the thirty applications under test commited some form of
privacy violation. The system does suffer from false nega-
tives and false positives and is currently only able to track
information flow, not prevent it.

6. DISCUSSION AND FUTURE WORK
The Android security framework has been criticised for

not allowing users to make fine-grained choices about which
permissions to grant to applications. To date, the only al-
ternative example is J2ME which does allow limited runtime
control of permissions by the user, but requires the program-
mer to add additional code to explicitly cope with user de-

cisions. Our approach has identified an alternative. Instead
of writing applications to handle partial access to resources,
the programmer instead writes their application to handle
resource failure; a task which must be accomplished anyway
when writing a robust mobile application.

We also believe that combining the concepts of unavail-
ability through lack of privileges and resource unavailability
at the API level makes the trade-off between privacy and
functionality more visible. Notifications provided to the user
when data is faked facilitate a negotiation between the user
of the device and the application. We have not explored in
any great detail how to best support this negotiation. The
use of the notification bar appears to provide good feedback
in the common case, but in other situations it does not.
Poor examples include: (a) games which use the full screen,
thereby hiding the notification bar; and (b) mocking a re-
source used by a background service, because such a service
may have no visible user interface at the time of notification.
Further work is needed here.

Our prototype has only considered a few of the many per-
missions which an Android application might request. How-
ever, a similar approach could be applied in other areas:
a blank image fed from the camera, silence from the mi-
crophone, and so on. Our examples so far have considered
all-or-nothing decisions, and more fine-grained control might
also be useful for some applications. For example, the ability
to quota or filter an application’s Internet access is a nat-
ural extension. Similarly, data from the GPS device might
be processed to reduce its accuracy, such as returning the
centre of the nearest city as its current location.

Instead of simply limiting an application’s access to re-
sources one could also enforce particular security practices
on to applications. For example, data could be transparently
encrypted and decrypted to disk or before being sent over
the network. This would work in a straightforward manner
for application databases such as the SMS database. By
exploiting existing tools such as Fuse, one could provide a
file system layer which enforces these restrictions for exter-
nal storage, such as the SD card found in Android devices.
Another example is to preserve communication privacy by
routing an application’s Internet traffic over the Tor net-
work.

There are obviously a huge range of policies which could
be applied to applications. In some settings (perhaps cor-
porate environments) this might be proscribed by a central
system administrator to enforce certain restrictions on ap-
plications. Users without the inclination (or expertise) to
make policy decisions might instead share a set of policies
in the manner popularised by tools such as Ad-blocker.

Free-to-download applications on application stores will
commonly display adverts to the user as a means for generat-
ing revenue. However, we have shown that mocking Internet
and location permissions effectively disables this functional-
ity. Users may argue this is a feature, however the appli-
cation publisher will certainly want to persuade the user to
grant permission so their revenue model continues to func-
tion. This might work by offering an incentive to the user
by providing some additional benefit through the availabil-
ity of the resource. It is much harder for the application
developer to force the user to enable access to the Internet,
since the lack of network connectivity or current location
data is a valid system state, however more advanced de-
tection heuristics may become commonplace if systems like

MockDroid become popular.

7. ACKNOWLEDGEMENTS
Thank you to Simon Hay and Alastair Tse for their in-

sightful comments on MockDroid. Many thanks to RedGate
for providing the financial support for Nicholas Skehin, and
Google for donating Nexus One handsets.

8. REFERENCES
[1] http://bits.blogs.nytimes.com/2010/01/05/

apples-app-store-tops-3-billion-downloads/.
Retrieved 17th October 2010.

[2] http://docs.blackberry.com/en/developers/

deliverables/11944/CS_Using_the_Location_API_

using_JavaScript_898722_11.jsp. Retrieved 22th
October 2010.

[3] http:

//www.apple.com/ipad/features/app-store.html.
Retrieved 17th October 2010.

[4] http://www.guardian.co.uk/technology/blog/2010/

oct/06/facebook-privacy-phone-numbers-upload.
Retrieved 20th October 2010.

[5] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts,
F. Piessens, I. Siahaan, and D. Vanoverberghe.
Security-by-contract on the .net platform. Information
Security Technical Report, 13(1):25–32, 2008.

[6] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
Usenix Symposium on Operating Systems Design and
Implementation, pages 393–408, August 2010.

[7] A. Popescu. Geolocation API Specification. Technical
report, W3C, February 2010.
http://dev.w3.org/geo/api/spec-source.html

Retrieved 22nd October 2010.

