Probability Questions

Bogdan Roman
http://www.cl.cam.ac.uk/~abr28/prob/
r21 - 26/02/2012

Q1. There are three cards. One has both faces white, one has both faces black, and the other has one face white and one face black. A card is chosen at random and its face is white. What is the probability that the other face is black?

Q2. In a town, all households have exactly two children. You meet a family that has a girl. What is the probability that she has a brother? How about if the girl is born on a Tuesday?
Q3. Three evenly matched chess players A, B, C are in a tournament. A plays B first, and then the winner plays C. The winner always plays against the waiting player until a player wins twice in a row, becoming the champion. Find the probability that A is the champion. What average number of games plays C knowing that A is the champion?

Q4. Are less, equal or more tosses of a Heads/Tails coin needed on average to get HTH as opposed to HTT? Justify analytically. Find the average number of tosses to get M consecutive heads. How many tosses it takes on average to get one heads and two tails consecutively but in no particular order?

Q5. The real numbers x and y are chosen randomly in the $(0,1)$ interval. Find the probability that the distance between x and y is greater than x.

Q6. The real numbers x and y are chosen randomly in the $(0,1)$ interval. Find the probability that $\lfloor y / x\rfloor$ is an even number, where $\lfloor\cdot\rfloor$ is the floor function.
Q7. A stick is broken at two random points. Find the probability that the three pieces can form a triangle.
Q8. A stick is broken at one random point. Then, the longer resulting piece suffers the same fate. Find the probability that the three pieces can form a triangle.

Q9. A needle of length l is dropped on a floor of infinitely long parallel tiles of width w. Find the probability that the needle falls on a tile edge when $l \leq w$ and also $l \geq w$.

Q10. An $m \times n$ grid has every cell painted at random red or blue. We say that two blocks A and B are
in the same region if there is a sequence of blocks of the same colour starting at A and ending at B , successively adjacent to each other (regions of 1 block are valid). Find a lower bound for the average number of regions. Hint: try first with $m=1$.

Q11. N people board a plane. The first has lost his boarding pass and takes a random seat. Each subsequent passenger takes their assigned seat if available, or else a random free seat. Find the probability that the last passenger finds his seat occupied.

Q12. The real numbers x, y, z, t are chosen randomly in the interval $(0,1)$. Find the probability that the interval formed between x and y intersects the one between z and t.

Q13. The real numbers x, y, z, t are chosen randomly in the interval $(0,1)$. Let I_{1} be interval between x and y, and I_{2} between z and t. Define $|I|$ as the length of interval I. Find the probability that $\left|I_{1} \cup I_{2}\right|>\lambda \in(0,1)$. Recall $|A \cup B|=$ $|A|+|B|-|A \cap B|$.

Q14. The first $2 n$ naturals are paired up at random to form n intervals. Find the probability there is at least one interval that intersects all others (which we call a super interval).
Q15. Extension. Find the probability that there are exactly k super intervals, $k=0, \ldots, n$.

Q16. $2 n$ reals are randomly chosen in $[0,1]$ and then paired to form n intervals. Find the probability that their intersection is not empty.

Q17. How many throws of one die are needed on average until all 6 numbers show? How many throws until each number shows at least twice?

Q18. How many coin tosses are needed on average until the number of heads equals the number of tails?

Q19. How many coin tosses are needed on average until you get n heads, not necessarily consecutively?

Q20. What is the probability that k consecutive tails never occurs in n tosses of a coin?

Q21. What is the probability that k consecutive tails occurs for the first time at the n-th toss? Use the answer to find the average number of tosses needed to get M consecutive tails.
Q22. Three points are taken at random on an infinite plane. Find the probability that they form an obtuse triangle. In other words, are most triangles obtuse?

Q23. How many coin tosses are needed on average until you get an odd number of heads?
Q24. How many throws of one die are needed on average until each face appears at least n times?
Q25. The real numbers x and y are chosen randomly in the $(0,1)$ interval. Find the probability density function of the distance between x and y.
Q26. A stick is broken at two random points. Find the probability density function of the longest piece.

Q27. A stick is broken at one random point. Then, the longer resulting piece suffers the same fate. Find the probability density function of the longest piece.

