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The JPEG algorithm

Parameters:

I Quantization: Q L (luma), QC (chroma)

I Sub-sampling: 1× 1 (luma), 2× 2, 2× 2 (chroma)
also known as 4:2:0 sub-sampling

I Colour space: Y CbCr
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JPEG compression history estimation

I Probabilistically estimate settings used in the previous
compression step

I Input: raw image in colour space F

I Output: compressed representation colour space G ∗,
sub-sampling scheme S∗ and quantization tables Q∗

{G ∗, S∗,Q∗} = arg max
G ,S ,Q

P(Image,G ,S ,Q)

= arg max
G ,S ,Q

P(Image|G , S ,Q)P(G ,S ,Q)



Terminology of inverse probability

Unknown parameters θ, data D, assumptions H

P(θ|D,H) =
P(D|θ,H)P(θ|H)

P(D|H)

posterior =
likelihood× prior

evidence

The quantity of P(D|θ,H) is a function of both D and θ. For
fixed θ it defines a probability over D. For fixed D it defines the
likelihood of θ.2

2More in David J. C. MacKay: Information Theory, Inference and Learning
Algorithms, Cambridge University Press.



Maximum a posteriori estimation

We wish to estimate θ on the basis of data D. The maximum
likelihood (ML) estimate of the parameters from the data is

θ̂ML(D) = arg max
θ

P(D|θ)

and maximum a posteriori (MAP) estimate is

θ̂MAP(D) = arg max
θ

P(D|θ)P(θ)



Expectation maximization

ML estimate requires the marginal likelihood, if we have hidden
variables.

θ̂ML(D) = arg max
θ

P(D|θ)

P(D|θ) =
∑
Z

P(D|z ,θ)P(z |θ)

Evaluating the sum is sometimes computationally infeasible. The
expectation-maximization algorithm can be used instead.

Expectation: Q(θ|θ(t)) = EZ |x ,θ(t) [log L(θ; x ,Z )]

Maximization: θt+1 = arg max
θ

Q(θ|θ(t))

No guarantees of convergence



Interpolation characterisation as an expectation
maximization problem

Expectation: Q(θ|θ(t)) = EZ |x ,θ(t) [log L(θ; x ,Z )]

Maximization: θt+1 = arg max
θ

Q(θ|θ(t))

I x : the observed image samples f (x , y)

I θ: the interpolation kernel ~α and variance σ2

I Z : the p-map, an array of probabilities with the same
dimensions as the image, where each probability indicates
P(f (x , y) ∈ M1)



Compression history estimation as MAP problem

θ̂MAP(D) = arg max

θ

P( D | θ )P( θ )

{G ∗,S∗,Q∗} = arg max

G , S ,Q

P( Image | G , S ,Q )P( G , S ,Q )



Estimating quantization tables Q∗ (1)

I Small set of possible values for G and S .

I C’space to G ∗, sub-sample with S∗, then forward DCT gives a
near-periodic distribution of coefficients ΩG ,S over image.

I G , S , Q and X̃G ,S ∈ ΩG ,S independent

{G ∗,S∗,Q∗} = arg max
G ,S ,Q

P(ΩG ,S |G ,S ,Q)P(G )P(S)P(Q)

{G ∗,S∗,Q∗} = arg max
G ,S ,Q

∏
eXG ,S∈ΩG ,S

P(X̃G ,S |G ,S ,Q)P(G )P(S)P(Q)



Estimating quantization tables Q∗ (2)
Since the decompressor’s dequantization,

I DCT coefficients X̄q were IDCT’ed;

I the results were up-sampled if necessary; and

I the image was converted to the RGB colour space.

I We received the image, and applied a forward colour space conversion;

I we downsampled the planes, if appropriate; and

I we applied the forward DCT to get eX .

Rounding errors accumulate during every stage of this process.
Therefore, we model the DCT coefficient values

X̃ = X̄q + Γ

where original DCT coefficients X̄q are modelled by a sampled

zero-mean Laplace distribution x

P(x)

and rounding error Γ is

drawn from a truncated normal distribution x

P(x)

.



Estimating quantization tables Q∗ (3)

The Laplace distribution for DCT coefficient values has scale
parameter λ, determined from the observations. The probability
distribution of coefficient values after quantization/dequantization
with factor q is

P(X̄q = t|q ∈ Z+) =
∑
k∈Z

δ(t − kq) ·
∫ (k+0.5)q

(k−0.5)q

λ

2
exp (−λ|τ |) dτ

Rounding errors are independent, so we convolve this distribution
with our error term’s distribution and normalize:

P(X̃ = t|q) ∝
∫

P(X̄q = τ |q)P(Γ = t − τ) dτ



Estimating quantization tables Q∗ (4)

If we assume a uniform prior P(q) for quantization factors, we can
now find the most likely value for a particular quantization factor
q = Q∗i ,j by maximizing P(X̃ |q). This is repeated for each
quantization factor Q∗i ,j for (i , j) ∈ {(0, 0), . . . , (7, 7)}:

q∗ = arg max
q∈Z+

∏
eX∈Ω

P(X̃ |q)





Evaluation

I Allows for arbitrary colour space conversion, sub-sampling and
quantization table parameters

I Not implementation specific

I Partially recovered quantization tables could be used to
determine quality factor
Quality factors q ∈ {1, . . . , 100} map onto quantization tables in many

compressor implementations

I Statistical rather than exact

I Can’t recover bitstream

I Tikhonov deconvolution filter introduces errors

I Errors in the quantization table when most DCT coefficients
at a particular frequency are zero

I No data for the quantization table when all are zero (low
quality factors)



Exact recompression

I Can we recover the original bitstream (including the
quantization tables) when given the result of decompression?

I Due to rounding and mismatch between the compressor and
decompressor operations, simplying invoking the compressor
with the same parameters will not work.

I Can we provide a guarantee that if the provided image was
produced by a particular JPEG decompressor, we will recover
that bitstream?
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Applications of exact recompression

I The input to JPEG compressors is often previously
compressed image data. Detecting this and recompressing
exactly will reduce the information loss from recompression.

I Hinder forensic analysis – double compression detection, JPEG
‘ghosts’, . . .

I Detect tampered regions in an uncompressed image, when the
background was output by a JPEG decompressor

I Some copy-protection schemes rely on the fact that copies will
be recompressed, lowering the quality.



Information loss in the decompressor

I Model sources of uncertainty (rounding, range limiting) when
inverting operations in the decompressor using intervals of
integers. We store intervals for all intermediate values in the
decompressor.

I Because we are modelling the exact computations, exact
recompressors are implementation-specific.



Chroma down-sampling example (1)

IJG chroma upsampling filter weights contributions from neighbouring
samples by 1

16 (1, 3, 3, 9) in order of increasing proximity.

×3 ×1

×9 ×3 ×3

×1

×9

×3

×3×1

×9×3 ×3

×1

×9

×3

vx,y =

⌊
1

16
(8 + α · wi−1,j−1 + β · wi,j−1 + γ · wi−1,j + δ · wi,j)

⌋
,

with weights

(α, β, γ, δ) =


(1, 3, 3, 9) x = 2i , y = 2j

(3, 1, 9, 3) x = 2i − 1, y = 2j

(3, 9, 1, 3) x = 2i , y = 2j − 1

(9, 3, 3, 1) x = 2i − 1, y = 2j − 1.



Chroma down-sampling example (2)

We need to solve for the down-sampled weights wi ,j :

vx ,y =

⌊
1

16
(8 + α · wi−1,j−1 + β · wi ,j−1 + γ · wi−1,j + δ · wi ,j)

⌋
Interval arithmetic rules give

w̄i ,j =

[⌈
1

δ
(vx ,y ⊥ × 16− (8 + α · w̄i−1,j−1 + β · w̄i ,j−1 + γ · w̄i−1,j))

⌉
,⌊

1

δ
(vx ,y > × 16 + 15− (α · w̄i−1,j−1 + β · w̄i ,j−1 + γ · w̄i−1,j))

⌋]



Chroma down-sampling example (3)

k ← 0
w̄0

x ,y ← [0, 255] at all positions −1 ≤ x ≤ w
2 ,−1 ≤ y ≤ h

2
repeat

k ← k + 1
change scan order of (x , y) ( , , , )
for each sample position (x , y) in the upsampled plane do

for (i ′, j ′) ∈ {(i − 1, j − 1), (i , j − 1), (i − 1, j), (i , j)} do
w̄ ′i ′,j ′ ←

⋃
s∈v̈ c

x,y
ā :

Equation satisfied with ā for wi ′,j ′ , s for vx ,y

and current estimates w̄x ,y for other w values.

w̄k
i ′,j ′ ← w̄k−1

i ′,j ′ ∩ w̄ ′i ′,j ′
end for

end for
until w̄k = w̄k−1

w̄ c
x ,y ← w̄k



Performance
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Figure: Recompression performance for a dataset of uncompressed
images from the UCID. 1338 colour images were compressed and
decompressed at quality factors q ∈ {40, 60, 70, 80, 82, 84, 86, 88, 90},
then recompressed. The proportion of blocks at each quality factor which
were not possible to recompress due to an infeasible search size is shown.


