
Inference in a Natural Language Front End for

Databases

Final Report on SERC Grant GR/C/98825; Alvey Project IKBS 019
(Natural language processing)

Ann Copestake and Karen Sparck Jones
Computer Laboratory, University of Cambridge

New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK

Febuary 1989

Abstract

This report describes the implementation and initial testing of knowledge repre-
sentation and inference capabilities within a modular database front end designed
for transportability.
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Chapter 1

Preface

This grant was for a programmer to support the Computer Laboratory group
working on natural language processing, for whom database access was a key
test area. In the event, the need for miscellaneous, general-purpose support was
somewhat less than envisaged, and we concentrated on following up a particular
approach to database access that had been developed under earlier serc projects
(Sparck Jones and Boguraev 1983, Boguraev and Sparck Jones 1984, 1985). In
the group as a whole there are several lines of work involving database query, but
the philosophies being pursued are somewhat different, and there was no obvi-
ous way of combining them in a single project, particularly given the additional
constraints represented by other factors like the projects’ various goals, timings,
and administrative structures. The particular line we followed had been the ma-
jor focus of effort in the group’s previous research, and the immediately prior
project had been a design study for further work. The research we have carried
out has therefore been to implement and evaluate this design, with the group’s
other work as a local comparative context.

Thus in the project we have taken our earlier model for a database front
end aimed at transportability and involving first application-independent syn-
tactic and semantic processing and then application-dependent processing, and
extended it to allow the inference often needed to interpret natural language data-
base questions in complex domains. Consideration of these inference needs and
other requirements of transportable front ends has led us to build a new system,
which retains the old modular structure but which also incorporates a knowledge
base and inference component. Some difficulties with computing resources meant
that we have not done as much testing as we wanted, but we have tested the new
system in a not completely trivial way on two domains, including one complex
one.

We have therefore demonstrated that it is feasible to use restricted domain-
independent knowledge combined with domain-dependent knowledge and limited
inference to extend the range of user input which can be interpreted by the
system. This architecture also shows potential as the basis of a system with
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expanded capabilities, such as handling user misconceptions. However we have
had problems in our attempt to use an existing formalism for our knowledge base
and the issue of knowledge acquisition remains problematic.

Chapter 2 of the Report summarises the framework and starting point for
the project and describes the new structure for the front end which has followed
from the provision of knowledge representation and inference capabilities. Chap-
ter 3 discusses the knowledge base and inference components in detail, indicating
the problems to be addressed using the proposed representation scheme and the
strategies adopted to solve these, and describing the nature of the inference spe-
cialists implemented and the way these figure in input question processing. This
was the core work of the project, and this chapter includes some comparisons with
other approaches to representation and inference. The front end inference oper-
ations are concentrated in the translation and conversion stages in processing,
where input question elements are transformed to concepts in the application do-
main and then to concepts in the database itself; Chapter 4 describes the other
processing modules. Chapter 5 presents test examples, illustrating the perfor-
mance of the new front end. The concluding Chapter 6 considers the project as a
whole, compares it with other approaches and suggests some directions for future
research.

5



Chapter 2

Introduction

This chapter summarises the essential features of our starting point for the project
and outlines the overall structure of the final system. Section 2.1 characterises
the existing front end design and describes the town-planning domain from which
most of the examples mentioned are taken. Section 2.2 describes the inference
needs to be met, the form of knowledge base we proposed to use, and the way
we suggested this should be used for inference. This material is presented at
length, with numerous illustrations, in Boguraev, Copestake and Sparck Jones
1986, and we have reproduced sections 1 - 3 of this paper for convenient refer-
ence as Appendix A here. Section 2.3 more explicitly specifies the requirements
that a system such as ours should ultimately address and mentions some of the
restrictions imposed by the application. Section 2.4 describes the effects the im-
plementation of the knowledge representation and inference capabilities had on
the overall structure of the front end.

2.1 Background: the existing system

Our research aim was to test the approach to the provision of an inference ca-
pability for natural language front ends for databases proposed in a previous
study project (Boguraev and Sparck Jones 1985). In earlier work we had built a
front end based on the idea that a significant part of the work of input question
interpretation could be done using general semantic as well a syntactic informa-
tion, with important gains for front end transportability (Boguraev and Sparck
Jones 1983, 1984). The disambiguated input in the form of an explicit mean-
ing representation would then be processed using domain- and database-specific
knowledge. The overall front end design was therefore modular, with two ma-
jor application-independent and application-dependent sub-systems each in turn
with two constituent processors, as shown in Figure 2.1. The processing tech-
nique involved was a form of pattern matching, which allowed transformation of
a varied range of input forms into a database query. The functions of the modules
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and the different representations which they output, which apply to the current
work, are summarised here; for further details see Section 1 of Appendix A.

The application-independent modules produce a logical form which is essen-
tially independent of the application domain. Thus the logic representation out-
put by the extractor has the general form of the quantified expressions produced
by lunar (Woods 1972) but contains predicates corresponding to ordinary word
senses; these are represented by labels such as ‘own1’ for example. The query
representation that the translator produces contains domain-referring predicates
which are indicated by an ‘&’ preface and a tag indicating the particular domain;
&own-GH for example, refers to the Green Hills domain (see below). Especially
because of the severe limitations on the relational data model’s ability to express
the semantics of the data represented, it is necessary to provide a model of the
application which is not tied to the relational model; this is what we refer to as
the domain level description. By contrast the schema level incorporates the de-
scription in terms of the relational data model. The search representation finally
produced by the convertor is in the syntax of a relational database query lan-
guage and therefore contains expressions referring to the names of relations and
columns in the particular schema. For clarity, items in the domain and schema
languages are indicated by a bold font in the text of this report.

Note that domain is being used here, and throughout the rest of this report, in
a rather restricted way, to refer to the coverage of the actual application database
and not to some broader area which might be regarded as involving specialist
knowledge and vocabulary (such as computing or town planning). Thus even
vocabulary which might have a specialised use (eg “bus”, “compiler” ) is not
domain-specific in the sense we are using here.

Our modular design though motivated, as in other front end projects, by
the need for transportability, had other advantages: in particular the different
representations formed a base for different kinds of feedback to the user (Boguraev
and Sparck Jones 1984).

In the earlier work the front end was developed and tested on a very simple
domain, Suppliers and Parts (Date 1977), and a first pass port was done to a
more complex one, involving town planning. Problems arose because the com-
plexity of this new domain allowed for more variation and, more importantly,
more indirection, in the expression of queries. It became clear in these cases that
interpretation required inference on supporting and amplifying knowledge. The
results of the study project, which described the inference needs and the proposed
system extensions to deal with them, are summarised in the next section.

Though some of the examples in the current report refer to Suppliers and
Parts, most are taken from the richer town planning domain. This application,
Green Hills, is roughly based on the ibm tqa Project’s White Plains (Damerau
1980, 1985); our aim was to use some real, rather than trivial, material. Dr
Damerau kindly supplied the complete tqa attribute list, but as we could not,
for proprietary reasons, use any actual White Plains data, we invented data for
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an imaginary English village, Green Hills. The essential structure of the Green
Hills domain is that it deals with parcels of land and their owners; the parcels
are grouped into blocks which are themselves organised into wards. Most of the
information is about the parcels: area, number of stories, assessment for taxes,
and land use codes (LUCs), for example. The LUC is a three digit code which
specifies the parcel use (for example 541 might be the land use code corresponding
to a supermarket).

Some of the possible queries on this domain (taken from the tqa project)
include:

How many dwelling units are on Craven Lane?
Who owns the vacant land in Hillair Circle?
What is the parcel area of Roane’s property?
Where are the gas stations in Fisher Hill?

The complete schema for Green Hills is included in Appendix A. A subset
was created for initial test purposes which incorporated a cross-section of the
different types of attributes and relationships within the domain; this is used in
the examples in this report and is shown in Figures 2.3 and 2.2. Some changes
were made to normalise the full schema given in Appendix A to avoid unnecessary
problems with the same information being accessible by multiple paths.

2.2 The need for inference

This section summarises the material in Sections 2 and 3 of Appendix A which
give examples of inference needs to be met by a database front end and describes
a possible approach towards meeting them, put forward in the previous study
project.

It was evident that there are what may be described informally as different
types of processing requirement, although the proposal was to meet them opera-
tionally in an integrated way. In transforming one representation into another it
is necessary to find equivalent elements and also to meet constraints, which may
involve inferring additional information.

Consider, for example, the stages involved in transforming

Which owners are in Market Place?

into a valid database query. The output of the extractor is:

(For THE VARA1/OWNER1

: (For THE VARA3/PLACE2

: (NAME2 VARA3 "Market Place")

- (BE5 VARA1 VARA3))

- (Display VARA1))
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Wid ward number
Bid block number
Pid parcel number
Oid owner identifier
Surnam owner surname
Inits owner initials
Strnum street number
Strnam street name
Luc land use code
Park number of parking spaces
Dwell number of dwelling units
Fl number of floors
Cityv assessment for city district
Sqft parcel area

Figure 2.2: Attributes in the Green Hills database

OWNER OOid OSurnam OInits
OWNERSHIP OWOid OWPid
PARCEL PPid PBid PStrnum PStrnam PLuc

PPark PDwell PFl PCityv PSqft
BLOCK BBid BWid
WARD WWid

Keys are underlined, foreign keys are in bold type.

Figure 2.3: Relations in the Green Hills database
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To translate this into domain terms it is necessary to find the domain equivalents
of owner1, place2, name2 and be5. Some of these concepts may have domain
equivalents which have been explicitly specified, but in other cases, such as place2
in this example, finding the domain equivalent (&street-GH) requires inference
on knowledge which need not all be domain-specific. It is then necessary, since
there is no information about owners’ locations in the domain, to find some
plausible connection between &owner-GHs and &street-GHs. The query can
be interpreted as the equivalent of

Which owners own properties which are in Market Place?

which links owners and streets through the concept of property. The translated
expression should therefore be:

(For THE VARB1/&OWNER-GH

: (For SOME VARB9/&PARCEL-GH

: (For THE VARB3/&STREET-GH

: (&STREET-NAMED-GH VARB3 "Market Place")

- (&PARCEL-IN-STREET-GH VARB9 VARB3))

- (&OWN-GH VARB1 VARB9))

- (Display VARB1 ))

Converting the translated expression to a database query involves finding the
intermediate relation which represents ownership, and the correct columns to join
over. The output search representation expressed in quel is:

range of VARC14 is OWNERSHIP

range of VARC9 is PARCEL

range of VARC1 is OWNER

retrieve unique (VARC1.ALL)

where (VARC9.PSTRNAM = "MARKET PLACE"

and (VARC1.OOID = VARC14.OWOID

and VARC9.PPID = VARC14.OWPID))

As this example shows different types of inference on three levels of information
(domain-independent, domain-dependent and schema-dependent) are needed, and
the information on the different levels has to be linked.

The primary reason for suggesting the use of a single knowledge base linking
different kinds of knowledge was to avoid duplication of information in order
to maintain integrity and simplify knowledge acquisition. It also appeared that
cross access from one module to the type of information naturally associated with
another might be needed, and specifically access from application-independent
modules to application knowledge. (The general issues thus raised for the front
end philosophy are mentioned later in Section 6.2.) However it was not initially
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apparent exactly what these access needs would be. Furthermore a single, general
purpose knowledge base seemed more likely to support further expansion of the
capabilities of the system, to allow dialogue rather than single-shot questions, for
example.

The need was therefore for a form of knowledge base which would allow an
easy linking of one piece of information to another and of one representation
level and language to another, and also a form that would naturally support
what appeared to be the relatively shallow characterisation of knowledge and
limited types of operation on it that seemed appropriate in the transportable
front end case.

We proposed, at least as a starting point, to use Alshawi’s Memory knowledge
base formalism (Alshawi 1987) which had already been exploited in a front end
to databases, albeit one designed for database creation rather than querying.
We envisaged a set of general-purpose inference specialists built from primitive
network operations, which could be invoked in a parametrised way from different
processing modules. Thus the general structure of the new front end would be
as shown in Figure 2.4. Each of the successive representations generated by
the processing stages in question interpretation can be viewed as being couched
in some meaning representation language referring to some real or model world
(Sparck Jones 1983). The knowledge base would link concepts and expressions
both for any one representation language and across languages, and so allow
inferences required to transform one representation of an input question into
another.

2.3 The (ultimate) aims of our approach

The study report did not give much attention to what was actually meant by the
portability of the system. It was stated that it should be possible to transport
the system to a new domain by adding new information, but did not suggest
strategies for acquiring the new knowledge or what might be involved. The type
of end user involved was to some extend implicit in the examples given but was
not explicitly stated. The following section therefore attempts to summarise what
we assumed in this project would be the (longer term) requirements for a portable
natural language interface to databases, since these had major implications for
the design of the current system. Even though actually achieving these objectives
was way beyond the scope of the project, if we had produced a design that did
not attempt to take them into account we could only have built a system with an
inherently limited architecture and scope. Such a system would have had better
performance than ours, certainly on the test domains, but the goal of this project,
given its very limited human resources, was rather to investigate an approach, so
the actual system was only relevant as a test-bed for ideas.

A design for a portable natural language interface must consider two classes
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of users; end users and those responsible for transporting the system to new
domains. The interface must interpret natural sentences1 produced by an end user
who has no knowledge of the database schema, and a less than perfect knowledge
of the domain. This implies that the system must have some inference capability,
some way of describing the domain to the user, and some means of detecting
and correcting user misconceptions. The person responsible for porting the front
end to a new domain can be expected to have extensive domain knowledge and
knowledge of the particular database schema, but should not have to spend a
large amount of time learning how to use the system and in doing the actual
porting, and should not need expertise in linguistics or knowledge representation
(other than that which is appropriate to databases). A problem here is that
the knowledge encoded in the conventional data models (the relational model
for example) is only a small fraction of the domain-specific knowledge needed to
actually understand the data.

There are also requirements that arise from interfacing to a traditional data-
base as opposed to a Prolog knowledge base (for example). It must be possible
to handle existing databases and conventional commercial dbms; so to retain
efficiency, as far as possible, a single question should only result in one query to
the dbms. No data which is stored in the dbms should be duplicated in the front
end. Large and complex databases, where natural language interfaces may really
become preferable to the alternatives, must be handled. If these requirements
cannot be met the advantages of a traditional database (efficiency, consistency)
will be lost.

Unfortunately the requirements of the two types of user conflict directly. To
cope with the näıve end user a large amount of knowledge is needed; but the
domain-specific part of this at least must be provided by the user responsible
for porting the interface. The need for inference is especially awkward given the
limited access possible to the data; the interaction between the interface and the
database is very restricted. Everything is made worse by the problems of scale; it
is not possible, for example, to copy the database’s contents into the interface’s
knowledge base and maximising efficiency of access becomes very important.
However what may make this type of enterprise feasible is that the knowledge
which databases handle is restricted, and it is possible to represent to scope of
that knowledge without copying the entire database. The hypothesis that has to
be tested eventually is that it is possible to acquire the restricted domain specific
knowledge and to link it to limited general purpose knowledge (the acquisition of
this must also be feasible), and that this will provide significantly greater ability
to interpret user input than is possible if such knowledge is not present. The
goal of the current project was to look at a particular architecture; a greatly
expanded system and a much larger project would be needed to investigate the
main hypothesis properly.

1Ideally both querying and updating the database.
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The ways in which our system currently addresses some of the points men-
tioned above are brought out in Chapters 3, 4 and 5; the incorporation of other
necessary extensions into this architecture is discussed in Chapter 6.

2.4 Overview of current system

Originally we made the assumption that inference was something to be invoked
when the operation of the original modules failed, and that an inference compo-
nent would be added on to the existing system. However we subsequently realised
that the sort of operations that had been performed by pattern matching in the
modules could be validly regarded as a type of inference. This would remove the
need for specific triggers of inference and, more importantly, avoid duplicating
knowledge. We also wanted to investigate the use of a completely different type
of analyser, and to extend the capabilities of the convertor. It therefore seemed
reasonable to completely reimplement the system based on these new approaches.

The structure of the current system is more closely described by Figure 2.5
than by Figure 2.4. The staged processing with the various intermediate repre-
sentations has been retained. The convertor is explicitly split into three parts:
the function of the first part is described in Chapter 3, that of the second and
third parts in Chapter 4. In fact the convertor was divided in the old system, but
the division is stressed here since it affects knowledge base access. The transla-
tor module and the first stage of the convertor essentially just call the inference
component on their input, as is discussed in Chapter 3. The knowledge base is
also accessed by the analyser, extractor and the second stage of the convertor, as
described in Chapter 4, but such access is much more specific to the functioning
of the individual modules and inference in the same sense is not required. The
knowledge base and the different levels of information it contains are described
in the next chapter.

The main testing has been done with the Green Hills town planning domain.
But as a check we have also continued with the suppliers and parts material
of our first project, allowing information about both domains to coexist in the
knowledge base as a way of checking the hypothesis that for new applications
it should only be necessary to add new knowledge. Some test examples are
described in Chapter 5.
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Chapter 3

Knowledge representation and
inference components

Section 3.1 describes the general issues of the design of the knowledge base which
were important for this project. Section 3.2 goes on to illustrate how the mem-
ory formalism was used to implement the knowledge base. Section 3.3 covers
the types of knowledge represented and considers their acquisition. Section 3.4
details the various types of inference implemented and Section 3.5 compares our
strategy with other systems and mentions some of the problems of our approach.
Suggestions for future work based on this experience are given in Chapter 6. Note
that in this discussion, we use ‘relationship’ rather than ‘relation’ as a general
term, to avoid confusion with database relations.

3.1 Knowledge base design

As was mentioned earlier an interface to a conventional dbms must, for efficiency,
produce a single database query for each input question, if this is possible. This
is an important difference from a system which interfaces with a theorem prover,
such as tacitus (Hobbs et al. 1986), since access to the ground clauses in the
database has to be limited; however, as will be seen later, certain of our inference
specialists do perform operations with direct analogues in tacitus. The com-
plete system’s information source had to be considered; that is the combination
of the target database and whatever knowledge base we provided for the front
end. It is necessary to avoid duplicating any of the contents of the database in the
knowledge base; to do so would have serious consequences for the consistency of
the database. We therefore make two types of distinction between the two com-
ponents; the first is between the extensional and intensional parts (Reiter 1978);
the database contains the extensional information and the front end’s knowledge
base contains purely intensional information. Secondly we also considered that
the knowledge base should primarily contain definitional or terminological infor-
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mation, rather than assertions, which should be stored in the database. The
division between the front end’s knowledge base and the database (or databases)
is therefore analogous to the split between the T-box and A-box in krypton
(Brachman, Gilbert and Levesque 1985).

It should be obvious that we are strictly limiting the type of knowledge which
we represent in the knowledge base. This seems to be necessary, for two main
reasons. First, the portability requirement implies that we should at least start
by investigating the use of knowledge which is as limited as possible, and only
extend its scope if it seems essential to improve performance. The terminological
constraint is well-motivated and fits in with considerations about the portability
of general-purpose knowledge which are described later, in 3.3.3. Second, the
single database query restriction limits the type of inference which we can carry
out in principle, but we can certainly validly make some inferences based on
terminological information; this is discussed further in 3.4.2.

In contrast to krypton we have only a very weak coupling of our knowledge
base and the database, in that a query has to be completely specified before
the database is accessed. Coupling of knowledge bases and databases, to allow
inference, has been approached mostly from the viewpoint of expert systems ac-
cessing databases, rather than natural language systems; this is briefly discussed
in Section 6.3.

Our design for a knowledge base assumes that there are three distinct levels of
information; the schema level which contains a description of the target database
in terms of the relational model, the domain level which includes domain-specific
information required to understand the database which cannot be encoded in the
relational model, and the ordinary level which contains general-purpose informa-
tion. We have further assumed that the knowledge involved is encoded separately
for each level, with links between levels which are as simple as possible, to facil-
itate porting. This should be contrasted with the phliqa1 system (Scha 1983),
which used an equivalent separation of levels but had translation rules rather
than essentially self-contained descriptions. This approach seemed to us to be
less suitable for a portable system and not suited to supporting front end func-
tions other than translation. Given the requirement that the various parts of the
knowledge base could be used in different ways by different modules, we had to
represent them in a reasonably uniform manner and build a limited number of
general inference specialists which could perform the required translations.

A further requirement was that we should avoid making the closed world
assumption about the material in the knowledge base. This again follows from
the portability requirement; we did not want to assume completeness where this
could lead to indetectably invalid queries. However it has to be possible to specify
completeness where this is known.

Finally the knowledge base had to be able to incorporate temporary asser-
tions made during the processing of input, preferably in such a way that asser-
tions made during processing of earlier sentences could be accessed for anaphor
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resolution and so on, as required for extended question sequences or dialogue.

3.2 Use of Memory

The Memory formalism is described in full in Alshawi (1987), and is presented
in the context of our proposal to use it for front end inference in Section 3 of
Appendix A. This section summarises its essential relevant features.

The formalism can be treated as characterising a semantic network with two
kinds of relationship between entities defined by specialisation and correspondence
assertions respectively. Thus we may say

(Specialisation A of B)

(Corresponds P to Q as R to S)

If ref(X) is the set of objects in the world to which node X refers then

ref(A) ⊆ ref(B)

and if rel(Y,Z) is the set of pairs of objects to which the role-owner pair Y,Z
refers then

rel(P,Q) ⊆ rel(R,S)

rel(P,Q) ⊆ ref(R) × ref(S)

There is no restriction on the kinds of entity represented — nodes simply stand
for concepts — and though there is some notion of a role-owner directionality
between P and Q and between R and S, this is not reflected in the semantics of
standard correspondence relationships and entities do not have a permanent role
or owner status: an entity can be a role in one assertion and an owner in another.

The assertions can be flagged in ways which add additional constraints; for
example in

(Specialisation C of D (instance))

the instance flag adds the condition

| ref(C)| = 1

to the normal subset constraint. If there is a set of specialisations of some entity
F which are flagged by distinct

(Specialisation E1 of F (distinct))

...

(Specialisation En of F (distinct))
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then:
ref(Ei) ∩ ref(Ej) = 0 if i 6= j

Similarly, if

(Specialisation E1 of F (cover))

...

(Specialisation En of F (cover))

then:
n⋃

i=1

ref(Ei) = ref(F )

Retrieval operations are based on a combination of marking and searching
operations. Some retrieval operations will be general purpose and have results
which are well defined within the formalism. For example marking down the
specialisation hierarchy from a series of nodes, A1 to An, with different marks M1

to Mn, and then searching for nodes marked with all the marks M1 to Mn will
retrieve all nodes Z such that

ref(Z) ⊆
n⋂

i=1

ref(Ai)

However other retrieval operations might be designed for use in more restricted
circumstances. For example, given the following assertions:

(Corresponds blockBWidEntry to blockRelp

as RelpEntry to DbRelp)

(Corresponds wardWWidEntry to wardRelp

as RelpEntry to DbRelp)

(Specialisation blockBWidEntry of &wid-GH)

(Specialisation wardWWidEntry of &wid-GH)

a retrieval operation might consist of marking nodes that were roles of node
blockRelp with one mark, marking all nodes which were below node &wid-
GH in the specialisation hierarchy by another mark, and retrieving all nodes
marked with both marks. In this context the operation corresponds to retrieving
all columns in the BLOCK relation which have entries which are ward identifiers.

So considering the needs outlined in the previous section, although the for-
malism was not suitable for expressing arbitrary predicate logic expressions (and
was never intended to be so), it did seem reasonable to use it for the more lim-
ited type of expressions that it was obviously essential for us to represent. (It
clearly was not going to be possible to express the actual query straightforwardly
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in the formalism, but as will be seen later it was not necessary to do this.) It
appeared possible to implement the different levels of the knowledge base within
the formalism and yet maintain distinctions between them, and since memory
had already been used for a database creation task by Alshawi it seemed suitable
for representing information about relational databases. Since we did not know
exactly what knowledge we would wish to represent the flexibility of the cor-
respondence relationship, when compared to traditional frame representations,
seemed advantageous; and similarly, although the possible retrieval operations
were not fully defined, it seemed that the primitive marking and searching op-
erations could be used, in the manner outlined above, to build up well-defined
operations on larger structures.

3.3 The levels of the knowledge base

The contents of the knowledge base and the use we made of the memory for-
malism will now be described from the perspective of the different levels of the
knowledge base. As will be seen the issues of knowledge representation involved
are significantly different for the individual levels. The knowledge base network
itself is continuous; distinctions between the levels are maintained during process-
ing by partitioning the knowledge base nodes using permanent marks. However
modularity is possible in that the sources for the network are created and stored
separately, so that domain files are independent of the ordinary level file and
schema files independent of both the domain and ordinary level. Currently one
domain must be preselected as the target for a particular sentence but switching
domains takes a negligible time, as it is possible to have more than one domain
in the memory network at once.

For each level we will attempt to characterise the type of knowledge involved,
how this is represented in the system and how such knowledge is or might be
acquired. Since the schema level is the simplest we discuss this first and use it
to show a concrete example of the use of memory assertions to build up larger
structures, in this case the relations of the target database. We then discuss the
domain level, and finally the ordinary level, which provides the greatest problems
for our approach.

3.3.1 The schema level

The schema level characterises the structure of the database in terms of the
relational model. Besides the names and columns of the individual relations,
information about the key and foreign key fields is needed and about the connec-
tions with the domain level. In addition to this we classify relations according to
whether they correspond to kernel or associative entities, in the terminology of
rm/t (Codd 1979). We also need to maintain information about how relations
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are joined to correspond to particular domain predicates — such joins may be
evident from knowledge of the primary and foreign key fields, but in other cases
will have to be specified explicitly.

The acquisition of such information is reasonably straightforward, although it
obviously requires someone with an understanding of the terminology. The name
and columns of each relation are entered (in many dbms this information could
be acquired automatically) and the primary and any foreign keys prompted for.
To make the representation simpler, and connections with the domain smoother,
we use schema predicates. These are generated automatically for the relation-
ships between each kernel or associative entity and the columns in its relation
or relations, and also for the relationships corresponding to associative entities.
Other relationships corresponding to domain predicates which translate to single
joins have to be specified explicitly. The linkage of the relation entities, columns
and predicates to domain nodes will be discussed further in the next section.

In contrast with the approach used in team (Grosz et al. 1987) and other sys-
tems, of specifying virtual relations, we are allowing the indirect specification of
joins which correspond to particular predicates. We rejected the use of views for
several reasons: with a complex database the overhead of specifying and main-
taining all the views corresponding to all the predicates would be large, the view
mechanism does not cater for all the possible manipulations needed, and in the
longer term, update on views is problematic, so the actual relational structure
would need to be accessible for this and other operations where consistency is im-
portant. However we have made some assumptions about the database structure,
in particular that it is in third normal form, and if for some reason an existing
database did not meet these criteria it would be necessary to provide a view of
it that did for the system to access.

In effect we are assuming that domain predicates which are directly repre-
sentable in the schema in the way described correspond to “felicitous joins”.
This mechanism does allow other joins to occur but these would only occur in
questions like:

Which suppliers are in the same city as the parts they supply?

where the columns over which the join occurs are indirectly specified in the query.
Figure 3.1 gives some of the network assertions that correspond to the owner

relation in the Green Hills schema illustrated in Figure 2.3. As mentioned earlier
the individual assertions are in effect being used to build up a larger scale struc-
ture with more specific semantics; such a structure has its own set of procedures
(built up from the basic network operations) both for retrieval and creation. Net-
work assertions are never written directly by the user in producing a schema level
description — the actual form of the assertions created is largely arbitrary and
the only constraint that the memory formalism imposes is that the hierarchy is
preserved.
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(Specialisation ownerRelp of DbRelp)

(Corresponds owner to ownerRelp as

RelationName to DbRelp)

(Specialisation ownerDbEntity of &owner-SGH)

(Specialisation ownerDbEntity of RelpDbKernelEntity)

(Corresponds ownerDbEntity to ownerRelp as

RelpDbKernelEntity to DbRelp)

(Corresponds ownerOOidEntry to ownerRelp as

RelpEntry to DbRelp)

(Corresponds OOid to ownerOOidEntry as

RelpEntryColumn to RelpEntry)

(Specialisation ownerOOidEntry of &oid-SGH)

(Corresponds OOid to ownerRelp as

RelationKeyColumn to DbRelp)

(Corresponds RelpownerOOid to ownerRelp as

RelpStatement to DbRelp)

(Specialisation RelpownerOOid of &owner-identified-SGH )

(Corresponds ownerDbEntity to RelpownerOOid as

&owner-SGH to &owner-identified-SGH)

(Corresponds ownerDbEntity to RelpownerOOid as

RelpDbKernelEntity to RelpStatement)

(Corresponds ownerOOidEntry to RelpownerOOid as

&oid-SGH to &owner-identified-SGH)

(Corresponds ownerOOidEntry to RelpownerOOid as

RelpEntry to RelpStatement)

(Corresponds ownerOSurnamEntry to ownerRelp as

RelpEntry to DbRelp)

(Corresponds OSurnam to ownerOSurnamEntry as

RelpEntryColumn to RelpEntry)

(Specialisation ownerOSurnamEntry of &owner-surname-SGH)

(Corresponds RelpownerOSurnam to ownerRelp as

RelpStatement to DbRelp)

(Specialisation RelpownerOSurnam of &owner-named-SGH)

(Corresponds ownerDbEntity to RelpownerOSurnam as

&owner-SGH to &owner-named-SGH)

(Corresponds ownerDbEntity to RelpownerOSurnam as

RelpDbKernelEntity to RelpStatement)

(Corresponds ownerOSurnamEntry to RelpownerOSurnam as

&owner-surname-SGH to &owner-named-SGH)

(Corresponds ownerOSurnamEntry to RelpownerOSurnam as

RelpEntry to RelpStatement)

Figure 3.1: Network assertions for OWNER relation23



3.3.2 The domain level

The domain level description has to include information which cannot be made
explicit in the relational model (or in any other conventional database model)
but which is nevertheless essential to understand the database. In fact some such
information is added to our schema level description as outlined above and it is
difficult to precisely delimit the information which should be in the domain level.
The specification of the felicitous joins has to be made at schema level because
reorganisations of the schema with no semantic import (splitting a relation like
PARCEL into two, each part with PID as the key for example) could affect such
joins but should not be reflected at domain level. Furthermore, other types of
information may be better specified at domain level rather than at the ordinary
level even though there is some element of general world knowledge involved.

We wanted at least to start off by using a well-founded method of modelling
the domain and therefore decided to use one of the ‘semantic’ database models
as a starting point. Such models have mainly been used as aids to database
design, rather than being implemented to provide dbms. Designing a database
is a process of formalising some part of the real world — going from some real
information to a very restricted description of some of it. Translating natural
language sentences into a database query is a similar process. It therefore seemed
plausible that the methods and models used to facilitate the final description of a
database might be of interest to us. Also, from a practical point of view, porting
to a new domain will be made much easier if a formal description at a suitable
level of abstraction exists or can easily be provided by the database manager and
can be utilised by the natural language interface.

Many semantic data models have been proposed but we are currently using a
binary relationship model. We assume that the domain can be basically described
in terms of entities, attributes and predicates. Entities may be simple (kernel)
or associative, identifiers are a special class of attributes and the predicates may
relate an entity and an attribute or two or more entities. Associative entities
must be postulated if there is a many-to-many relationship between two or more
entities (eg shipments, ownership).

In the simplest case the domain description would be a straightforward ana-
logue of the database schema with entities corresponding to relations, attributes
of those entities corresponding to columns in those relations and inter-entity pred-
icates corresponding to joins. In this case our domain model would map directly
onto our schema model. However more usually the natural domain description
does not match with the actual schema description. We have attempted to clas-
sify some such examples which allows us to give a static description of the domain
and schema and provide a limited number of general conversion specialists rather
than have to encode each case with separate rules. All these cases can be gen-
eralised as examples of objects which are naturally regarded as entities in the
domain but do not have full entity status in the schema; that is they do not
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correspond to a relation or relations.
Such entities may be represented in the schema by their names or identi-

fiers, by numbers representing the cardinality of a certain set of these entities,
by booleans representing their existence, or even by complex attributes which
combine what are more naturally thought of as separate entities. These traces
allow only limited questions to be asked about the entities concerned, but actu-
ally representing them as entities at domain level allows interpretation of queries
which would otherwise cause problems. The most straightforward case is where
individual entity names are present in the schema; for example Part City and
Supplier City in the Suppliers and Parts database. The only way in which
this schema is not equivalent to one in which there is a separate city relation is
that the existence of a particular city in the database may be dependent on the
existence of particular supplier or part tuples. Queries such as

List all the cities!

therefore have a somewhat different status from

List all the suppliers!

since suppliers are not existence-dependent on anything, and the user may need
to be made aware of this. This is far more important when update is being
considered, of course, since adding new suppliers will be supported by this schema,
but adding new cities will not.

There are many examples of entities with more limited representation in the
schema. In the Green Hills database there is an attribute which gives the number
of parking spaces in a particular parcel, in the Ships database used in the team
project there is a boolean value indicating the presence of a doctor on a particular
ship. In general we represent all these cases by a domain entity which has an
attribute corresponding to its name, cardinality or existence, and connect this
attribute to the schema. A query involving such an entity then has to be coerced
into one involving the relevant attribute by an inference specialist invoked from
the convertor module. If this is not possible then the cause of the failure will be
easier to establish and convey to the user than if the entity were not explicitly
represented. It is important to note that the same type of field values (ie sym-
bolic, numerical and boolean) can also occur when denoting concepts which are
naturally thought of as attributes (such as identifier, weight and presence or ab-
sence of a property such as volcanism). Any attempt to directly connect natural
language and database seems to inevitably lead to an ad-hoc or sketchy treatment
of such phenomena, because such distinctions cannot be made straightforwardly.
These types of problems in representation are not a consequence of assuming any
particular database model, but arise out of limitations on the kind of data that
is covered by the database or even because of the restricted availability of the
actual information.
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Predicates which are not part of the schema description, but which corre-
spond to combinations of other predicates, and will correspond to joins over
several relations, can be specified at domain level. For example in the Green
Hills domain &parcel-in-ward-GH can be defined in terms of &parcel-in-
block-GH and &block-in-ward-GH. Obviously all combinations of predicates
will not be specified in this way; but when such a predicate makes sense in the
domain and can be simply expressed in natural language without reference to
its component predicates, such definition will be useful. In some cases a natural
language expression which corresponds to such a predicate which has not been
predefined can nevertheless be interpreted — see 3.4.3 below.

Domain objects can be organised hierarchically; for example &supplier-city-
SP and &part-city-SP can be made specialisations of &city-SP. In other cases
it is useful to define subtypes of domain entities; for example &house-GH might
be a specialisation of &parcel-GH with a value for &num-dwelling-units-
GH of 1. Extending the basic domain model by creating such concepts is not
essential, but allows further links to be made to natural language words. In
a real application it is envisaged that the transporter would provide the basic
domain model and that subsidiary definitions such as that for &house-GH could
be added incrementally, possibly by the end user, given appropriate acquisition
support (teli (Ballard and Stumberger, 1986) illustrates the feasibility of this).

Crude tools for producing the memory description of the domain from a
description in terms of the binary relationship model were implemented for this
project. A graphical interface would make this part of the acquisition easier.
Adding subsidiary definitions to this model might be done using natural language;
this would not involve any significant addition of functionality to the front end —
the difficulties that might arise are in maintaining the consistency of the domain
description.

3.3.3 The ordinary level

The work here was intended not just to supply enough material to support the
test applications’ inference needs, especially as these were expected to arise in
translation, but to provide sufficiently extensive knowledge to avoid the danger of
bias. Thus it was necessary, for methodological reasons, to avoid supplying just
enough material to obtain the desired inferences, but no further material which
could make it harder to be selective in inferencing. In Alshawi’s own experiments
there was little more general material than was needed to organise and motivate
the characterisation of his application knowledge; so lexical sense selection, for
example, though tested, was not very extensively tested.

It was therefore essential to ensure that the ordinary level knowledge covered
a fair range of words and not just those contained in a small sample of test
sentences or corresponding to domain terms, and also covered a proper range
of senses for these words: it is of course impossible to treat all words in detail
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without tackling the entire vocabulary. It was at the same time necessary, to
avoid rigging results, to ensure that even with a fair size sample of words and
senses, there would not be too much conceptual disjunction, so it would be too
easy to operate only within the parts of the network relevant to a given question.

This suggested a strategy of taking a vocabulary which would be comprehen-
sive for the application, but allowing extensions into other subject areas as these
were prompted by other senses for the ‘starting’ vocabulary: if at least some of
these extensions naturally called for fairly solid treatment, or were given it, the
result should be a body of general knowledge which would have some depth in
areas other than those immediately associated with the test applications, even
though there would inevitably be a fair amount of fringe material. There were,
however, unfortunately some limits on the extent to which the various other
senses of words with domain interpretations would be involved in processing, es-
pecially for sense selection, as for this they had to be in the analyser lexicon, and
attempting to include them led to unacceptable degradation in performance due
to the lexical ambiguity (see Chapter 4).

It also seemed to be necessary, as an anchor for the input material, to provide
some high level structure relating abstract concepts. The natural way of provid-
ing this ‘upper’ structure was via the semantic primitives and primitive classes
used to characterise word senses and semantic restrictions for the analyser and
figuring in its output text representation. Wilks’ own grouping of the primitives
(cf Sparck Jones 1984) provided a specialisation hierarchy, but it appeared that
other relationships like those associated with linguistic case structures and their
analogues in the world also needed a schematic high-level characterisation, under
which more specific correspondence assertions could be inserted. Again the se-
mantic case labels, or relation primitives, of the analyser’s output, had to provide
the basis for this.

Essentially, whether or not inference would need to ‘back up’ to high levels, it
appeared that some view of the essential general concepts and their relationships
was needed to ensure consistency, coherence and coverage in the treatment of the
more particular knowledge on which effective detailed inference would be based.
Our belief was that some worked-out higher-level structure was required for the
same reason that high-level frames characterising the essential semantic structure
of some body of knowledge are required, given that the formalism itself, with its
very abstract assertion types, did not provide much guidance here. In particular
it was desirable to have some view of abstract nodes essentially functioning as
node types, and of standard ways of combining these in assertions, to compensate
for the fact that the formalism, when compared with kl-one for example, has
only two link types, one of which is very unconstraining.

The strategy we adopted in building the general part of the knowledge base
was to work from a dictionary, and specifically from Longman’s Dictionary of
Contemporary English (ldoce) (Procter 1981). We thought it appropriate, as
a general principle, to treat the knowledge base as language-oriented, ie as char-
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acterising the world as this is done through language. So we sought, as far as
possible, to have natural language word senses as node names in the general
knowledge base, as a way of anchoring the base, though it is of course impossible
to ensure that words are used in established ways, and in fact some artificial node
names had to be invented.

This view was based partly on the fact that the front end is oriented towards
language processing, mapping or transforming expressions in one language into
those in another, and partly on the fact that the front end is designed for lan-
guage interpretation of a relatively restricted kind for which we hypothesise that
deep knowledge and intensive reasoning are not normally required; it is indeed
not obvious how these resources, if they were needed, could be provided in a
way compatible with transportability. (We assume that when the system proves
inadequate to deal with a particular query this would be best dealt with by inter-
action with the user.) These points suggested that the knowledge base could and
should be built by using dictionary definitions of word senses in a fairly straight-
forward way. This would mean that the knowledge of the world incorporated in
the network would be of a relatively agreed and stable, ie public, kind and at
an appropriate, ie plausibly middling, level of detail. The use of the basic defin-
ing vocabulary of the ldoce definitions would in particular serve to encourage
coherence and connectivity in the treatment of ordinary world knowledge.

It further appeared that it would be both natural and not too difficult to make
the representation of the definitional information more transparent and more con-
sistent if definitions were treated as case structures (either directly or indirectly
via their upward links); this would also make the information more accessible to
searches driven by the representations of input questions. The representations
output by the analyser/extractor include case role information, following Bogu-
raev’s earlier work on the analyser; and further work had been done on extending
and consolidating the initial set of cases (Boguraev and Sparck Jones 1987). The
set was motivated by work on prepositional phrase attachment, so the cases were
primarily suited to verb-argument structures, but allowed for some nominal rela-
tionships, and appeared to offer a good foundation for our knowledge base work.
The approach we proposed to adopt, therefore, was to unpick dictionary entries
into case structures, but to avoid as far as possible going further than this: we
wanted to avoid any misconceived attempt at radical reductionism and even more
the sort of seeking after the truth of the physical world which is too liable to turn
into a long term and probably never ending search for the holy grail.

The vocabulary for which we had at least one sense in the lexicon - the starting
vocabulary - is given in Appendix B.1. The set of primitives and their speciali-
sation structure is shown in Appendix B.2, and the case list we had available is
given in Appendix B.3.

The way ldoce definitions could be partially converted to specialisation as-
sertions for simple taxonomic cases, and into correspondence assertions for defi-
nitions with an identifiable case structure, is illustrated for some straightforward
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examples in Figure 3.2. As noted, the presumption is that taxonomic links can

property1 That which is owned (and has some value): possession(s).

property2 Land, buildings or both together.

own1 To possess (something) esp. by lawful right

owner1 A person who owns something, especially one who possesses something
by lawful right.

(Corresponds property1 to own1Object as WordForm to VerbCase)

(Specialisation property1 of possession3)

(Specialisation property2 of property1)

(Specialisation land5 of property2)

(Specialisation building1 of property2)

(Specialisation own1 of have)

[ Note - LDOCE defines possess1 in terms of own, so we

connect own1 up to the primitive "have" instead ]

(Corresponds own1Agent to own1 as VerbAgent to Verb)

(Corresponds own1Object to own1 as VerbObject to Verb)

(Corresponds owner1 to own1Agent as WordForm to VerbCase)

Figure 3.2: Network assertions for some ldoce definitions

be continued upwards to primitives, and that more specific correspondence as-
sertions will be similarly subsumed under higher pairs of a more abstract kind,
for example,

(Corresponds own1Agent to own1 as VerbAgent to Verb)

(the implications of this last assumption are considered further below). The
illustrations of Figure 3.2 show successful applications of our strategy.

We did encounter a number of generic problems, some of them variants, for
our representation scheme, of well-known ones. We were able to propose solutions
to these, though we did not always carry our implementations very far and in
general were not able to evaluate them very fully, because of system development
and testing limitations (see Chapter 5).

Thus we had to develop a strategy for dealing with morphological variants as
these were encountered in entries like “owner: a person who owns something”.
We can either construct a direct correspondence relation like ‘owner1 is to own1 as
VerbAgent is to Verb’ or an indirect one with ‘owner1’ in this relation replaced by
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‘own1Agent’ and ‘owner1’ being related to this new node. The second approach
was adopted since although it proliferates nodes it means that the procedures for
accessing the knowledge base can be made simpler and that the knowledge base
is less dependent on the particular words which happen to be morphologically
well-formed. This leads to structures like that shown in Figure 3.2. Note that we
cannot rely on the sometimes arbitrary sets of forms lexicographers have chosen
to list; instead we attempt to include as nodes all words that can be regularly
derived from a stem. It is also necessary to allow for structures representing
linguistic as well as substantive relations, so that, for example, ‘assessment1 is to
assess1 as NounAction is to Verb’.

We also had some problems (as one always does) with missing case roles.
The case set we used had been developed partly following earlier work with the
analyser, which focussed on sentence analysis, and partly through a systematic
analysis of English prepositions, so it did not always provide the means of han-
dling definitions consisting of noun phrases which implicitly only invoked a weak
verb like “be”, for example ones containing “of”. An example of this is

floor: a lower limit of prices (sense 4 in ldoce)

Existing cases like ‘poss-by’ and ‘state’ needed interpreting as necessary rather
than optional relations, and some new cases, like ‘part-of’ had to be supplied.

It was further not always easy to handle definitions necessarily linking several
concepts with forms like “x: p with a q for doing r”.

block: a piece of wood or metal with words or line drawings cut into
the surface of it, for printing (sense 3 in ldoce)

For the assertions to be connected to the correct concept it may be necessary to
adopt arbitrarily-labelled nodes as in Figure 3.3, which conflicts with the general
strategy of having actual word-senses as node labels, though experience suggested
common patterns for such structures.

Finally, though the emphasis was on the more specific part of the ordinary
level base, ie that involving word-senses, since the structures there ‘hang off’
higher-level ones some thought had to be given to the latter. But it was difficult,
given the heterogeneity of the concepts involved (which ranged from ones covering
objects, relations and properties in the ‘real world’ represented by Wilks’ prim-
itives and their higher-level group labels to language-oriented ones like ‘Verb’),
their generally abstract character, and the very general relationships available,
to develop any clear idea about what might be desirable, even on the Hobbsian
basis that concepts like ‘beast’ and ‘predicate’ are equally real. So apart from
simply taking over Wilks’ hierarchy, we adopted a somewhat schematic and place-
holding approach to the higher-level structure, putting in a few relationships as
was felt necessary to justify proposed lower structures from a descriptive point
of view: our approach indeed means that an elaborate high-level structure is not
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(Corresponds petrol-selling-garage to petrol-sold-by-garage

as sell3Loc to sell3Object)

(Specialisation petrol-sold-by-garage of petrol1)

(Specialisation petrol-selling-garage of garage2 (cover))

(Specialisation car-repairing-garage of garage2 (cover))

(Corresponds car-repairing-garage to cars-repaired-by-garage as

repair1Loc to repair1Object)

(Specialisation cars-repaired-by-garage of car1)

These assertions are part of an attempt to define garage2 as a place
where cars are repaired or petrol is sold. Note that nodes like cars-
repaired-by-garage are necessary to avoid stating that all cars are
repaired by some garage.

Figure 3.3: Network assertions for the definition of garage

appropriate. But the weakness of the formalism made it difficult to see whether
what was provided was in principle adequate.

There were also problems which are independent of the knowledge represen-
tation. Since we have restrict our coverage to the most straightforward concepts
possible, there are many aspects of the ldoce definitions that we had to exclude;
it would be pointless to include entries for words such as “belief”, for example.
In many cases it was not clear what we should attempt to represent and what
we should leave out. But the converse problem also applies; extra knowledge,
not just interpretation of the definition, may have to be provided; for example
to explicitly connect sell1 to buy1. ldoce definitions cannot be more than a
skeleton which has to be filled in by the knowledge base constructor. There are
also some peculiarities of ldoce itself; the number of senses given for a particular
word sometimes seems excessive, and in a few cases at least the number of word
senses has been halved between the first and second editions.

We felt that our provision of general knowledge for the base was very much a
first pass, though we believe we have built enough general network to withstand
accusations of total triviality or undue bias. The 120 open class words in the
starting vocabulary typically had several senses, some words as many as 20,
the starting vocabulary was also not an aggressively technical one. We covered
morphological variants of the starting words having their own entries in ldoce.
It is true that we did not have the range of starting words outside the application
areas we would have wished, though we did some preliminary work on a larger
vocabulary; but the senses of the words in the starting vocabulary ranged far
outside the applications, and we imported many senses of other words via the
starting definitions. We did not, therefore, build only relevant net, though our
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experiments in selecting the correct senses of words occurring in input sentences
were, as noted earlier, limited. Overall, the work with ldoce that was fully
incorporated into the knowledge base generated some 1500 assertions involving
840 nodes. The extent to which we actually exploited this information in our
tests is discussed in Chapter 5.

We would have liked to have build more of the ordinary knowledge base, to
see what kind of, and how much, work was involved. But we found the work
very time consuming, and we had to concentrate on the starting words relevant
to the application, without having any time left for more. We wanted in any
case to see how well what we did construct performed, before continuing the ef-
fort. It was also clear that some net building tools, for producing the standard
network assertions to describe case structures for example, and more generally
for displaying created material, were required to support large scale work, but
we did not have the time to provide them. This should be contrasted with the
provision of the domain and schema levels, where we were able to completely
define the knowledge base structures that were to be used and so to provide tools
to construct the network assertions from higher-level descriptions. We envisage
that tools based on machine-readable dictionaries would be provided to support
large scale acquisition of the type of knowledge that we are using; however, as
mentioned above, these can only be tools; it is not feasible to construct a com-
plete knowledge base automatically from a dictionary and therefore building the
ordinary level of the knowledge base for a useful system would be a significant
undertaking.

In Section 3.5 below we consider the lessons we learnt about the adequacy
and convenience of Alshawi’s formalism when building our knowledge base and
inference specialists; in Chapter 6 we examine its capacity to meet our needs,
and the implications of our work with it for our generic front end design.

3.4 Inference operations

This section describes how inference on the knowledge described in the previous
sections is carried out, in order first to translate the logic representation into
the query representation and then to convert this into terminology appropriate
for the schema. Inference specialists to carry out particular inference operations
were built out of combinations of retrieval operations of the type described in
Section 3.2. The expressions they transform may arise either directly from the
query or from the result of previous application of a specialist. The first three
parts of this section describe our three classes of inference specialist; the fourth
describes the control of specialist application.
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3.4.1 Transformations between levels

An essential feature of our system is the division of the knowledge base into
levels. As mentioned above this is motivated by the desire for portability of as
much of the knowledge as possible. The most important function of the inference
component is to transform the query into an expression that is appropriate for
the particular target level. Links between levels have to be specified by the person
responsible for porting the database; the approach adopted is to keep such links
to a minimum. If O is the set of all objects in the higher level and D is the set
of all those in the lower level, the meaning of links between concept O1 and the
concepts D1 . . . Dn is

D1 ∪ D2 ∪ . . . Dn ≡ O1 ∩ D

.
Such links are indicated by specialisation relationships between nodes which

refer to sets of concepts; for example

(Specialisation &supplier-SP of supplier1)

where supplier1 is marked as part of the ordinary level and &supplier-SP is part
of the domain level. If a one-to-one link is not possible several domain concepts
may be linked to a single ordinary level concept. For example

(Specialisation &supplier-name-SP of name1)

(Specialisation &part-name-SP of name1)

It can be seen that transformations between levels based on these direct links
are valid provided the assumption that the query does in fact pertain to the lower
level is valid. For example a transformation of name1(X) to &supplier-name-
SP (X) ∨ &part-name-SP(X) is valid if the query is actually intended to be
of the Suppliers and Parts domain. (We will assume here that the database to
be queried is in fact always known.) The set of objects may of course be further
restricted by other parts of the query. Furthermore it is possible to make valid
transformations from concepts that are more general than those linked directly
to the lower level. For example in the Green Hills domain there is a concept
&street-GH which would be linked to street1. The concept street1 is a subset
of road1 and no other subsets of road1 are specified as being in the domain. The
transformation road1(X) to &street-GH(X) is therefore valid, if we assume
that the knowledge base is complete for hierarchies involving domain concepts.
In large complex domains the validity of this assumption will be dubious, but the
assumptions being made are weaker than the full closed world assumption.

This mechanism also handles the transformation of cases, such as LOC (loca-
tion), into the appropriate domain predicate. The extreme case of this mechanism
is involved in the interpretation of compound nominals; in the general case noth-
ing may be known about the relationship and so the set of possibilities is all
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the two-place predicates in the domain, constrained because the entities involved
must match the restrictions on the arguments.

Since the representation of the intra-level subset relationships is also by spe-
cialisation links, this is all implemented straightforwardly, by marking down the
specialisation hierarchy from the concept to be transformed and finding the most
general concept(s) so marked which are also marked as being at the appropri-
ate level, and which meet any other known constraints. This general constraint
satisfaction mechanism is therefore the most basic part of the operation of the
translator and convertor and simple queries will be transformed without any other
operations being involved. The operations that follow will only be invoked if it
fails.

3.4.2 Terminological transformations

The second type of transformation is between concepts that have been specified
to be equivalent. This is where the definitional aspect of the knowledge base
introduced in Section 3.1 is most evident. Transformations based on straight
implication are not made: though for example, in Green Hills

ref(&shop-GH) ⊆ ref(&parcel-GH)

we would not transform a query about all the parcels into a query about all the
shops. We wish to avoid making the closed world assumption about the knowl-
edge base so if &shop-GH and &postoffice-GH are the only specialisations of
&parcel-GH this does not imply that &shop-GH and &postoffice-GH are
the only types of &parcel-GH that exist. The specialisation flag type, cover,
is intended to allow this type of assertion where it is needed, for example in the
Suppliers and Parts domain to specify that

ref(&supplier-city-SP) ∪ ref(&part-city-SP) = ref(&city-SP)

Restricting ourselves to such definitional assertions allows us to guarantee
that we can maintain the same retrieval set and thus produce a single database
query. For example an expression involving &shop-GH is transformed into one
about &parcel-GHs with a &luc-GH of 566; and a query about &city-SPs,
such as,

List all the cities!

where no other constraints implied that the retrieval set should be further re-
stricted, would be transformed into a query about &supplier-city-SPs ∨&part-
city-SPs.

A variety of network structures are involved in expressing such information,
as was indicated in 3.3.2 and 3.3.3, and it is difficult to produce a stable set
of operations on them. Actually encoding this class of specialists has therefore
proved to be unnecessarily complicated, and there seems little point in detailing
the operations involved here.
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3.4.3 Heuristics

Some of the inference specialists actually embody heuristics which are pragmat-
ically motivated1. All of these operations correspond to those used in other
systems (for example team’s pragmatic specialists) — we have attempted to in-
corporate them within our standard framework of knowledge representation and
inference rather than dealing with each case in isolation.

The most important group of heuristics are those associated with coercions.
There is a class of questions where interpretation can be made by inserting an
additional predicate or predicates, on the basis that in this particular domain
there is only one way to connect the entities that are represented in the query.
The example discussed in the introduction is of this type, where the question

Which owners are in Market Place?

is transformed into the equivalent of

Which owners own properties which are in Market Place?

This appears to be a very standard method but cannot be said to be very well mo-
tivated because, although it will allow transformations of questions which may be
genuine examples of metonymy (possibly the example above) and ellipsis, it will
also allow transformations which may be the result of a user misconception about
the contents of the database (again, possibly the example above). Furthermore
the use of this heuristic has masked the need for genuine deductive inference, for
example in Grosz(1982) it is stated that inference would be required to transform

Is there a doctor within 200 miles of Philadelphia?

to

Is there a doctor on board a ship which is within 200 miles of Philadel-
phia?

yet Ginsparg(1983) suggests using this heuristic to perform this transformation.
This will obviously fail on more complex domains, where there may be many
connections between the entities for example. Unexpected results also arise; for
example,

Is every supplier white?

will be transformed into the equivalent of

Does every supplier supply white parts?

1ie hacks

35



It does not seem useful to classify all examples of this type as metonymy
(Hobbs and Martin, 1987), and this approach is not going to work well for com-
plex knowledge bases. However we have not found any well motivated way of
restricting the application of this heuristic.

In team, words (like “France”) that are associated with a sort which is a
subsort of NAME in the conceptual schema can be coerced into the sort of the
object named. Hobbs and Martin also apparently regard this as metonymy. In
our system such words have to be assumed to be ambiguous, because of the
semantic constraints in the analyser; the invalid interpretation is excluded either
by the general-purpose selectional restrictions or later during translation by the
domain predicate constraints.

A heuristic which may be slightly better motivated involves avoidance of some
tautologies. Consider the example query

Where is the post office in Market Place?

It is obviously inappropriate to give the answer “Market Place” rather than the
block identifier or full address, for example. In this case it is simple to detect
that the query produced is of something for which the answer is already known.
This heuristic could, of course, be given an air of respectability by reference to
Grice, but since we are so far off understanding how an interface might observe
his maxims this would be somewhat bogus.

3.4.4 Control of application

The classification of inference specialists given above is a result rather than a
starting point of our project. Originally the nature of the type of inference that
was involved in processing examples such as those given in Appendix A was far
less clear and in implementing the new system it therefore seemed appropriate
to adopt a control strategy that was as flexible as possible. The blackboard
model (Nii 1986) influenced this: each type of inference operation was encoded
as a separate specialist which could be applied to part of the expression to be
transformed. Intermediate results and control information are kept in the network
for ease of access by other specialists — the network is therefore analogous to the
blackboard. Several simple control strategies were tried; currently each specialist
contains a test to check whether it is appropriate to invoke it; if more than one
specialist can be invoked specialists which make transformations between levels
of the knowledge base (see 3.4.1) have priority over those which make normal
transformations within a level (see 3.4.2) which have priority over the heuristics
(in 3.4.3). The specialists only access information in the network itself (via the
lower level access functions) plus a flag which indicates whether translation or
conversion is occurring.

It would be possible to implement a better defined control structure in the
light of our experiences. It would also seem sensible to use a more conventional
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language for representing the queries output by the extractor, translator and first
stage of the convertor than that of Woods, since we are not using the procedu-
ral aspect of his representation at all and it is somewhat over-restrictive and
cumbersome to manipulate.

3.5 Evaluation of our approach to knowledge

representation and inference

Our system’s knowledge base is designed to be more extensive than those of pre-
vious natural language interfaces to databases, both in allowing a wider range of
domain-specific knowledge to be given and especially in attempting to utilise more
general-purpose knowledge. Compared with the team “conceptual schema” and
“database schema”, for example, the knowledge base contains more detailed infor-
mation (although it is not entirely clear what types of knowledge could be encoded
in team’s “pragmatic properties”) and is also more general. Ginsparg’s (1983)
system is more similar because of the attempt to use a more general-purpose form
of knowledge representation and to support inference, but the details are too un-
clear to make a detailed attempt at comparison worthwhile. The recent use of
the nikl knowledge representation in irus (Stallard 1986) to support termino-
logical transformations addresses a more limited class of inference than we have
attempted to, in a more rigorous manner. It does seem as though it would be
possible to expand the use of the domain model in irus to fill many of the needs
which we are considering. irus does not contain an equivalent of our ordinary
level, but some of the functions of this are filled by the IRules. The tools provided
for knowledge acquisition for complex domains (Ayuso, Shaked and Weischedel,
1987) indicate the sort of support that would be needed before any practically
useful experiments could be carried out to evaluate the utility of general purpose
knowledge within our architecture. Even with these tools customising irus for
a new domain is obviously a considerable effort; the question that would have
to be considered is how many such transfers would be needed before any benefit
was seen from adopting the use of extensive domain-independent knowledge.

In contrast, customising team has been reported to be a relatively trivial op-
eration, but it is far from clear how well this would scale up to complex domains.
Customisation is driven by the database schema, and therefore the conceptual
schema is very dependent on it. As mentioned earlier a database schema can be
very unnatural, furthermore this approach is tied to the relational data model,
and so we think that the approach (adopted in irus) of concentrating on the
provision of a good domain model is preferable.

It is not possible for us to draw any hard conclusions as to whether the lim-
itations we have imposed on the type of knowledge we encode and the types of
deductive inference we make are too severe. Since the capability of our system
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in this respect is in theory greater than previous systems it seems plausible that
a system with these restrictions could be practically useful, even though it is
also possible to think of situations that cannot, in principle, be dealt with. It
is not obvious how to increase the scope of the inferences without removing the
single query requirement. However what seems to be the more important issue is
the acquisition of the knowledge; we ourselves have found making the knowledge
base to be a very time-consuming operation and although this might be allevi-
ated in various ways there is really no way of telling whether the cost of acquiring
extensive domain-independent knowledge would be acceptable without conduct-
ing experiments on a greatly enhanced system. Although we cannot make any
strong conclusions as to the validity of our general approach we have encountered
problems with the particular formalism we have used, as follows.

While the formalism we have been using is not necessarily inadequate in
principle for the task, our use of it has become very strained as we have attempted
to utilise it for purposes for which it was not designed. In fact since no limitations
are imposed on the possible operations on the network, it is difficult to see how
memory could be formally inadequate, which has made it difficult to decide
at what point we really should not attempt to represent something, and very
difficult to decide on an optimum representation. As stated earlier we have in
effect been using the knowledge representation to build up other structures which
themselves have (implicitly if not explicitly) defined semantics. But achieving
modularity of operations on these substructures efficiently is difficult, if we rely
on the marking and searching primitives which are designed to be efficient for
operations with a much larger scope, and it has proved necessary to allow direct
retrieval without marking. As illustrated in 3.3.3 the actual structures that have
to be produced if the specialisation hierarchy is maintained can become very
complex and unintuitive, and often involve the introduction of nodes with no
natural name.

In general the problem is that the flexibility that we thought we would gain
to investigate different types of knowledge representation and inference strategy
by building on memory as a base has not materialised. Both because the repre-
sentations built up in this way are not inherently completely defined and because
individual operations cannot be combined efficiently, it is in fact more difficult
to modify the operations that are performed on the knowledge base (in order to
experiment with adding new specialists, for example) than it would have been if
there were no underlying structure. As discussed in Chapter 6 any subsequent
work should involve producing a knowledge base which would allow represen-
tation of the knowledge we have ended up with, using a well-defined language,
which could be expanded later as required.
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Chapter 4

The rest of the system

In this chapter we discuss the analyser, extractor and the second and third stages
of the convertor. These modules are discussed here mainly from the viewpoint of
their needs for knowledge base access (see Figure 2.5 above).

4.1 The analyser

In the current system Boguraev’s original atn analyser (Boguraev 1979) was
replaced by a parser based on patrii (Shieber et al. 1983) modified to use a
case structure grammar incorporating semantic selectional restrictions based on
Wilks’ (1975) semantic primitives which were used in the original analyser. De-
spite the fact that Boguraev’s analyser allowed lexical entries to be arbitrarily
complex groupings of primitives it had been found in practice, especially when it
was used for applications like the database one, that nearly all the disambigua-
tion was dependent on either the head primitive alone or on the head primitive
plus a single modifier in a few standardised cases. Therefore only this informa-
tion was extracted from the old lexical entries. The approach adopted was to
incorporate selectional restrictions in the grammar rules and lexical entries so
that the semantic checks were applied as part of each grammar rule.

The lexical entry for each word consists of one or more syntactically different
entries each of which has one or more semantically different word-senses associ-
ated with it. The semantic senses are assumed to be in some preference order.
The unifications specified by each grammar rule are in two parts; the first is
applied to the syntactic component of each daughter and if unification succeeds
the second set of unifications is applied to the semantic components in order of
preference. If no successful unification is found the grammar rule application
fails. Information about the less preferred structures is stored so that if a rule
application subsequently fails because of selectional restrictions it is possible to
backtrack. This approach avoids duplicating syntactic information that may be
common to several different word senses.
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Originally the information needed to allow unification of semantic primitives
was encoded in the dag associated with each word sense. However since Wilks’
primitive classes do not form a tree-structured hierarchy this was extremely cum-
bersome (each primitive class had to have a separately specified binary value).
The unification algorithm was therefore modified so that the knowledge base was
accessed when attempting to unify primitives.

The knowledge base is also used to allow the preference order of the word
senses to be modified depending on the domain being accessed. Thus when the
domain is changed word senses which correspond directly to some domain concept
are marked and preferred over unmarked word senses. The analyser passes the
highest priority structure to the extractor; if subsequent processing fails lower
preference structures are tried.

Both these uses of the knowledge base improve speed but are not essential
for the functioning of the system. The earlier work identified some cases in
which it was essential to access the domain specific information if the query was
to be processed; in general the need is to identify domain specific ‘words’ (for
example “3/2” is a block number in the Green Hills domain, “541” is a land use
code). It is not possible to include all such items, and also proper nouns, in the
lexicon; acquisition by reading the database is hardly viable if update is frequent
and anyway failure to parse sentences which include proper nouns that are not
database values leads to rejection of some valid queries. The approach adopted
here is to allow the morphology of domain-specific strings to be specified as part of
the knowledge base, so this is accessed by the parser to check whether such items
are valid in the domain and also to retrieve enough information to construct the
equivalent of a lexical entry for them. Assertions incorporating the given string
are then made in the network so that the subsequent process of translating such
items simply involves retrieving this previously determined information. Proper
nouns are assigned a dummy lexical entry with a rather general primitive class
(*ent) as the only semantic information. Unification will often result in a more
specific instantiation of this head primitive slot and this extra information may
be used by the translator, which will determine which sort of domain entity the
name refers to.

Another use for the knowledge base suggested in the earlier report was to
allow disambiguation of structures for compound nouns, by access to the domain
specific knowledge. In fact we do not attempt such disambiguation at this stage;
instead, as in the old system, a single structure is produced, in effect packing the
ambiguous structures, which are then resolved if possible at translation.

In general this work has revealed problems with attempting to achieve fully
disambiguated meaning representations using general purpose semantic informa-
tion of this type. If a separate entry is produced for each word sense in ldoce
it is very unclear how it is possible to disambiguate them using a limited range
of semantic primitives. For example five of the senses which are given for ‘land’
are identical as far as the parser is concerned, so at least five structures could
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eventually be produced for any sentence including ‘land’ (and having no other
ambiguity); these structures would be identical apart from the sense number of
land.1 Passing such structures to the translator obviously leads to a great deal
of repetition of processing. Applying a preference order alleviates the problem
slightly but it has proved impractical in general, in this project, to put all the
different word senses in the lexicon. There is also the problem of PP-attachment
ambiguity which cannot be resolved by general-purpose selectional restrictions.
This is seen quite well in the Green Hills domain which is mostly about places
and locations.

Who owns a house in a street with parcels in Block 3/2?

is unambiguous in the domain, but highly ambiguous to the analyser. Possible
solutions to these problems will be discussed in Section 6.2.

4.2 The extractor

The extractor transforms the output of the analyser (the text representation) into
one or more quantified expressions (the logic representation). The expressions
which can be displayed to the user, as illustrated in Section 2.2 for example,
do not show the case structure information, as indeed was the case with the
earlier system; this information is retained for subsequent processing by making
temporary assertions in the network at this stage.

The algorithm used by the extractor is based on that used in lunar and
described in Woods (1978), in that the process of transforming the unscoped
logical form into a scoped logical form involves collecting the quantifier terms into
a “store” from which they are extracted when the scope is determined. However
we have only implemented very simple scoping rules since very little of what
we were primarily interested in investigating depended on input questions with
complex quantified structures. As determining correct scoping is such a difficult
problem in general it seemed that it would be an unnecessary distraction from the
main aims of the project to attempt to deal with it more fully. Compared with
systems such as team and even lunar, therefore, our treatment of quantifiers is
rudimentary. However, as is mentioned in the next section, the limited support
for quantification found in certain so-called relational database systems suggests
that even a practically useful system could be built with little attention being
paid to quantifier scoping in natural language.

We have not tested the assertion, made in the earlier study report, that
domain-specific knowledge could be used to disambiguate possible alternative
structures in the extractor. However, it seems improbable that it would be sen-
sible to attempt such disambiguation before translation, since transformation of

1From the viewpoint of the selectional restrictions they would have been identical even if
the fuller lexical entries of the old analyser were used.
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the ordinary word senses into their domain equivalents would have to occur before
the expressions could be compared with the domain-specific part of the knowl-
edge base. Any domain-dependent inference for scoping would therefore have to
be done as part of translation. This would require additional, specific inference
processes and also require that the current translator be modified to accept un-
scoped logical forms, and so it would, in effect, take over much of the function
of the extractor. At the moment translation would fail on structures where the
quantifier scope violates the domain restrictions, but this is an inefficient way of
dealing with ambiguities.

Currently therefore the extractor only accesses the knowledge base in a very
straightforward way and does not use any of the inference functions accessed by
the translator and the first stage of the convertor.

4.3 The convertor: stages II and III

The structure produced by the first stage of the convertor can be regarded as
mixing domain- and tuple- oriented relational calculus in that the variables can
range over relations or domains. The relations and columns over which joins have
to be made have not been directly specified. For example, the query which has
been used in previous examples

Which owners are in Market Place?

results in

(For THE VARC1/OWNERDBENTITY

: (For SOME VARC9/PARCELDBENTITY

: (RELPPARCELPSTRNAM VARC9 "Market Place")

- (RELPOWNS VARC1 VARC9))

- (Display VARC1 ))

being output by the first stage of the convertor. The second stage of the convertor
produces a generalised form of tuple-oriented calculus with a syntax similar to
that given in Date (1977).

range (VARC14 OWNERSHIP)

range (VARC9 PARCEL)

range (VARC1 OWNER)

retrieve ((VARC1 ALL))

where (exists VARC9

(and ((VARC9 PSTRNUM) = "MARKET PLACE")

(exists VARC14

(and ((VARC1 OOID) = (VARC14 OWOID))

(VARC9 PPID) = (VARC14 OWPID)))))
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Two main operations are involved: the explicit introduction of variables rang-
ing over any intermediate relations involved in particular relationships (such as
VARC14 in the example above), and the transformation of any variables ranging
over domains. An algorithm for all of this had to be devised; access to the knowl-
edge base is necessary but the requirements are quite different from those of the
translator and the first stage of the convertor. No attempt is made to optimise
the query and sometimes redundant variables are introduced. Obviously any
practical natural language interface would have to address the general problem
of query optimisation; although dbms like ingres perform some optimisations,
“semantic” transformations (King 1981) are outside their scope, because they
require knowledge of semantic constraints which are not expressible in the stan-
dard relational model. In an ideal system a semantic optimiser would utilise the
same knowledge base as the natural language front end, but since optimisation
needs are not peculiar to natural language interfaces they should be investigated
in a wider context. An issue which is related because of the requirement for
frequency information, is the detection of queries which are infelicitous because
of the processing cost or amount of data involved. For example if a user of the
Green Hills database asks

What parcels are there?

and output is being sent to a terminal it is desirable to block the query. This
is more likely to be a problem with natural language interfaces than others, not
only because of the more näıve user expected, but because such queries may have
more restricted interpretations in the context of a dialogue.

Unlike the earlier convertor which could only deal with the select-project-join
subset of relational algebra, the current convertor is believed to cope with any
valid relational expression. Algorithms for producing relational algebra expres-
sions from the relational calculus are well-known (“Codd’s reduction algorithm”)
and so little point would have been served in this project by reimplementing one
of them; therefore relational algebra queries are not produced, although they were
in the earlier system.

The relational calculus expression is then converted to a quel query. Since
quel does not really support universal quantification2 some queries cannot be
correctly transformed. Although this is annoying it does suggest that for practical
database access a detailed treatment of quantifiers does not have the importance
that is sometimes supposed.

2See Stonebraker et al. (1976). The example given in Date (1977) page 221 of such a query
using ANY(. . . )= 0 apparently does not work in University ingres.
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Chapter 5

Testing the system

Testing was aimed at investigating the range of examples that could be processed
with varying types of information in the knowledge base and with different in-
ference specialists, rather than attempting to get as wide a coverage as possible
on the specific test domains. In this chapter we discuss first the various limita-
tions on system coverage and second the contribution various types of knowledge
and particular inference specialists make to processing; the discussion is illus-
trated with examples of questions actually handled. We conclude the chapter by
comparing the coverage achieved with the proposals in the study report.

5.1 Limitations on coverage

The most obvious limitation of the system is the restriction to single sentences;
no dialogue capabilities were implemented. (This was simply because the project
was not intended to do this; more dialogue capabilities are clearly a desideratum
for front ends.) The extent of the lexicon has already been discussed; grammar
coverage was aimed at providing a reasonably well-motivated treatment of a suf-
ficient fragment of English to cope with fairly natural test examples, but is not
nearly as complete as that in team, for example. From the point of view of
this project it is more important to discuss the types of sentences which were
mentioned as requiring inference in the earlier study report but which could not
be handled by the current system.

The provision of facilities for calculation was considered but not implemented
so queries like:

What is the average height of Norwich Road?

cannot be handled. This type of question does not seem to raise any problems
which will require radically different or difficult techniques to solve; for example
the above question has to be transformed into the equivalent of

What is the average height of the properties on Norwich Road?
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but the query

What are the heights of Norwich Road?

while less natural, poses much the same difficulties without involving calculation.
Working out the correct expression in a particular database query language would
involve access to the schema level of the knowledge base, so the third stage of the
convertor which currently only involves a very simple syntactic transformation
would have to be more complex; unfortunately since computational facilities are
not part of the relational data model and differ considerably between dbms, such
code could not be general purpose.

Some more interesting sentences are those which were given as examples in the
study report, but which we would not now suggest our system should translate.
We considered it impossible to deal with some questions in a sufficiently general
manner without great extensions to the capability of the system; it is possible that
these questions should be treated as user misconceptions for which the system
should not attempt to produce a database query, but should react in some other
appropriate way. For example it was suggested in the study project that the
query

Has the second school in Ward 2 been demolished yet?

could be transformed into the equivalent of

Is the number of schools in Ward 2 equal to 1?

Handling this sort of query in a remotely motivated manner would require very
considerable extensions to the knowledge base and inference mechanisms to allow
reasoning about time, for example. What is at issue here is not the theoretical
basis for such reasoning, but whether such extensions would lead to an unreason-
able increase in complexity both of the implementation and, more importantly, of
the knowledge to be acquired. However it is not obvious that the system should
make an attempt to transform such a query, even if the user is given the feedback
of a natural language sentence generated from the transformed query (Boguraev
and Sparck Jones 1984). The point is that although the eventual database query
may be as close as possible to the original query, if, as in this case, the results
might very well be misleading, the user must be told explicitly what the coverage
of the database with respect to the question asked actually is, and what aspects
of the input query do not correspond with the domain. In the case above, for
example, the user needs to be told that the database only contains information
about the current situation. In general, given such information, it seems likely
that the user will be better at reformulating the question than the system. Han-
dling user misconceptions is a (very difficult) area for future research (cf. Sparck
Jones 1988); in general in the current system inference is not designed to cope
with user input that probably indicates a serious misconception of the coverage
of the domain.
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5.2 Examples of question types handled

This section illustrates question types that the system does process successfully.
The set of test sentences was partly adapted from some sentences handled by the
tqa system (Damerau 1980, 1981) and partly from sentences used to illustrate
different types of inference in the earlier study report.

Which parcels are in 2/1?
Who supplies green parts?
What is the value of Blake’s parcel?
What is in Baker Street?

are examples of the sort of straightforward query which can be handled by the
system when a minimal ordinary level knowledge base is present, when the domain
description is straightforwardly analogous to the database schema (see 3.3.2), and
only simple transformations between levels are used (as described in 3.4.1). By a
minimal ordinary level knowledge base we mean one which connects up the words
which are defined as having straightforward domain equivalents to the semantic
primitives and cases. Some compound nouns can be interpreted with the same
knowledge base and a slight extension of the transformation mechanism to allow
translation of a dummy predicate. Examples are

Which 541 properties are in 2/1?
Who are the bolt suppliers?

This actually involves finding all the domain predicates that can apply between
two known entities first, rather than restricting a set of predicates found by
transforming some item that exists in the network. This is just done for efficiency;
the general technique could be used if some most general predicate DUMMY
was in the network. This level of capability is approximately equivalent to that
of the earlier system.

Adding to the domain description and allowing terminological transformations
(see 3.4.2) allows the use of a wider vocabulary in queries such as

Who owns the houses on Baker Street?
Which shops are in Ward 1?

A more extensive ordinary level description allows vocabulary to be interpreted
even though it is not anticipated by the person responsible for porting the system
to a new domain.

Which roads are the shops on?
Where is petrol sold?

The first example relies on road1 being a more general term than street1 (which
is connected to the domain concept of &street-GH), and thus only requires
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straightforward transformations; the second example relies on recovering the con-
cept of garage2, which is connected to the domain.

The heuristics mentioned in 3.4.3 depend on the domain description alone
and allow processing of queries such as

Who are the post office block shop owners?
What are the assessments on Baker Street?

by finding indirect connections between entities. Redundant parts of queries can
be discovered;

Where is the shop in Baker Street?

generates a query about the block that the shop is in or about its street position
rather than just the street; in some cases parts of a query may be removed
altogether,

Which houses in Market Place have land use codes?

will be transformed into the equivalent of

Which houses are in Market Place?

since all parcels have land use codes. The user is told about the redundancy and
may abort the query. As can be seen from these examples multiple applications
of different inference specialists may be necessary to transform a query into an
appropriate form. However the specialists in the set we have built are able in
combination to handle a wide range of ‘indirect’ input questions.

These questions are examples of large classes of sentences; however our clas-
sification of types of inference requirement now differs considerably from that of
the original study report which was somewhat woolly and heterogeneous. We
conclude this chapter by discussing the coverage of our system compared with
that envisaged in the original report.

5.3 Comparison with the study report propos-

als

Inference during analyser and extractor operations was discussed in Sections 4.1
and 4.2. In contrast to what was originally suggested we do not carry out any
domain-dependent disambiguation of compound nominals, quantifier structures
and so on at these stages, since this is not possible before translation. Disam-
biguation is carried out by excluding incorrect structures as a normal part of
the translation process (ie no special inference is needed); “packing” structures
would make this more efficient. As suggested previously certain domain-specific
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lexical items (called “value words” in the study report although actually they
could in principle be words of any type) have to be accessed by the analyser;
however we would not now regard this as a type of inference. The way in which
we handle proper nouns and the use of the knowledge base in order to assign a
domain-dependent preference order to word senses were not suggested originally,
but are very straightforward extensions of the architecture.

As can be seen from the examples we can handle questions which were orig-
inally categorised as needing “coercion” and “conceptual completion”. We can
also quite straightforwardly make some “negative” inferences in that we can block
queries which violate domain constraints, but we would not attempt to block
queries which appeared contrary to common sense knowledge, on the grounds
that the user is more likely to know whether a question makes sense in the real
world than the system is! Although we handle some types of question that the
study report suggested needed “causal reasoning”, we do not think it sensible to
attempt to treat some others, as was discussed in the previous section.

The study report mentioned inferences in the convertor which might arise
because the schema model was less rich than the domain model. As illustrated
in 3.3.2 we have investigated this in some depth, and we can handle, in a general
way, several types of questions that some previous systems have dealt with in a
somewhat ad-hoc manner. The study report suggested that inference might be
needed in the convertor to determine such things the specification of joins and
columns which particular domain concepts map onto. This does not actually
seem to be necessary; our current schema model is slightly more than a simple
expression of the relation and column structure of the database, as was described
in 3.3.1, and so once the query is transformed into the schema terminology, by the
first stage of the convertor, subsequent processing, by the later convertor stages,
does not require inference. As mentioned earlier, calculations are not supported
in the current system, but we do not regard providing this facility as requiring
any significant alterations to our design.

So of the questions considered as requiring inference in the original report,
the only significant types which we could not translate, in a transportable way,
within our current architecture are some of those involving “causal reasoning”;
and, as just mentioned, we think that attempts to produce search queries from
such questions would be misguided.
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Chapter 6

Conclusions

This small-scale project was an attempt to investigate a particular design for a
natural language interface to databases and not a full test of our main hypothesis
about the utility of general purpose knowledge. We can therefore only evalu-
ate our design, and in conclusion attempt this, comparing it briefly with some
previous work on natural language interfaces to databases. We then discuss the
problems that have arisen and conclude with some suggestions for future work.

6.1 An evaluation of our system’s design

We can conclude that the general design of the system is a good foundation on
which to base future work. Splitting the knowledge base into levels seems to
work well and the explicit provision of an independent domain level based on
semantic data modelling techniques has several advantages. It makes it much
easier to tackle schemata which are in some sense unnatural or incomplete, and
therefore to handle queries which do not map directly onto the database struc-
ture. The domain model is independent of particular database models (eg the
relational model), and the interface could therefore be adapted for different types
of database systems by replacing the schema level of the knowledge base and the
convertor module. It could not, however, be adapted in this way to provide a
front end for an expert system, which carries out inference on its own knowledge
base, because there would then be no principled way of making the distinction
between the two knowledge sources. Because the concepts of the domain model
are mostly those which are commonly used in semantic database models, and we
strictly limit the type of knowledge involved, the provision of the domain level
of the knowledge base by someone with database expertise, but limited train-
ing in other forms of knowledge representation, ought to be feasible. As will be
mentioned later a domain level of this type is necessary if the natural language
interface for querying databases is to be seen in the wider context of extended
database interfaces.
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The utility of limited, definitional, general-purpose knowledge has been demon-
strated, although our testing did not have the extent which we would have liked.
The limitations on the general knowledge which we incorporated were partly due
to the greater emphasis we have put on the feasibility of knowledge acquisition
than was done in the study report, and partly due to problems with the knowl-
edge representation that we used, as discussed in the next section. However we
have shown that limited general-purpose knowledge allows a wide range of queries
to be processed even though only a minimal number of word senses are directly
linked to the domain. As the knowledge which we provided reflects dictionary
entries from ldoce we think it reasonable to assume that it was not specific
to a particular application. We have demonstrated the system with two appli-
cations, meeting the original transportability requirement that new knowledge
should only have to be added when moving to a new domain. (In fact we have
gone further than this; the system can be set up to act as an interface to both
our test databases at the same time.)

We have demonstrated the utility of limited inference on these types of limited
knowledge. Of course the whole enterprise is only possible because we assume
that questions are to be interpreted with respect to specific databases, and that
the knowledge that the databases contain can be delimited by the domain models.
It is very important that we do not abuse this and make heavy use of heuristics
which will fail with complex domains. Examples from the loki project (Binot
et al, 1988) illustrate the effect that a small domain can have on limiting the
interpretation of input.

The concepts of the study report have been refined in several ways. We have
a much better idea of what sort of information should be in the knowledge base,
and have classified the types of inference to be carried out on it, as was explained
in Chapter 3. The notion of regarding the current system’s knowledge base in
conjunction with the actual database as a hybrid system was very important in
developing our ideas. We have shown that inference is not in fact required from
all modules, as was originally envisaged. The access to the domain-dependent
part of the knowledge base from the analyser is limited to the recognition of
domain-specific lexical items (such as 541 which is a land use code) and the
principle of initial domain-independent analysis of the input question is therefore
compromised as little as possible.

Our two main problems have been with ambiguity and our chosen knowledge
representation. Discussion of this, and some suggested solutions, are in the next
section.

We cannot attempt to compare the capabilities of our system directly with
those of team and irus for example, since we have not been attempting to pro-
duce a practically usable front end. This was inevitable, given the small scale of
the project, but may also have been advantageous, since we were not constrained
by the need to produce a full-scale system for a particular application, which
might have led us to adopt some techniques which are not generally applicable.
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Since we are advocating the use of a large body of general-purpose knowledge, our
design obviously differs from most other systems. Various comparisons have been
made in the text of the report, and other systems were discussed in the report
on the previous study project from the viewpoint of their utilisation of inference.
We therefore just attempt to summarise what we see as the most revealing points
here.

Our system has more similarities with irus than team since irus empha-
sises the domain model far more, and permits limited inference to occur on it.
Although our implementation of knowledge acquisition tools is limited, the ap-
proach we envisage is again similar to that of irus, where kreme is used to
aid the provision of the domain model, as opposed to team, where acquisition
is driven by the database schema. We also assume the availability of syntactic
information from machine-readable dictionaries, and so do not think that the
complex techniques used in team for getting this from the user would be needed.
Ginsparg’s (1983) system might seem to be more similar to ours, both in the
claim to use general-purpose knowledge, and in the use of a semantic network
knowledge representation. Because of the paucity of information about this sys-
tem we have found it difficult to evaluate; the use of an expert system to carry
out inference is mentioned but no details are given, for example. It is far from
obvious how portable the system actually is, or how well it could cope with com-
plex domains. The rejection of the use of any logical representation certainly
leads to problems; the treatment of universal quantifiers suggested will not deal
with all cases, for example.

There is little point in attempting comparisons between this work and natural
language systems which evaluate logical forms against knowledge bases, such as
that used to illustrate the functioning of the sri Core Language Engine (cle) (Al-
shawi et al., 1988). As has been mentioned earlier, especially in Chapter 3, there
are significant differences between accessing conventional databases and access-
ing knowledge bases; there is also a considerable difference between attempting
to interface to some body of information which has been collected and organised
for independent purposes and providing one’s own information. Although our
analyser and extractor are analogous to the cle, and have some similarities with
it, as their provision was not the main part of this project we shall not discuss
this further here.

6.2 Problems

6.2.1 The knowledge representation

As discussed in Section 3.5 we have not found memory to be an easy knowledge
representation to work with. Essentially the problem is that it is underspecified;
although we had hoped to avoid having to design our own knowledge represen-
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tation, in order to use memory for our purposes we have in effect built up other
knowledge representations on top of it. While this was fairly successful in the case
of the domain and schema levels, where we decided at a relatively early stage what
sort of knowledge we were attempting to represent, it caused severe problems with
the ordinary level. It should be emphasised that Alshawi did not regard memory
as being suitable for inference and that the original study only suggested taking
it as a starting point, which is what we have, in effect, done. Given that the
study report did not specify the types of knowledge needed to support inference,
using a very flexible knowledge representation might have been reasonable, al-
lowing experimentation with different types of knowledge while keeping the same
underlying formalism. But, because of these tactics, the semantics of the system
that we built up were insufficiently declarative to support work even on the rela-
tively small-scale which we were attempting. The problems are of usability, not
of power, and we do not see memory being used in any future work along these
lines.

As mentioned previously we have much more concrete ideas about the needs
for inference and the knowledge to support it than we did originally. The flexi-
bility of access to inference processes from each module, suggested in the study
report, is not in fact required. We have limited the type of knowledge that we
attempt to provide to relatively straightforward definitional information, not be-
cause we cannot think of examples which fuller knowledge might be necessary to
interpret, but because of the impossibility of providing extensive knowledge, in
a portable manner, in the foreseeable future. We would therefore suggest that
future work could make use of nikl, at least as a starting point; nikl seems to
meet many of our requirements, at least for the ordinary and domain levels of
the knowledge base. It has been used to implement the domain model in irus
and is designed to represent the sort of terminological information which we are
considering. The schema level, since it contains very specific knowledge, might be
better implemented in a special purpose knowledge representation, rather than
attempting to force nikl into a use for which it is not designed.

6.2.2 Ambiguity

Ambiguity is a serious problem for any natural language interface which produces
an initial interpretation of the input sentence (such as a logical form) using a
grammar and a lexicon which are not specific to the application. As mentioned
in 4.1 using a lexicon with senses corresponding to those in ldoce vastly increases
the number of representations output by the analyser, since the general-purpose
selectional restrictions are not sufficient for disambiguation. This problem would
also have arisen with the old system if an attempt had been made to incorporate
such fine sense distinctions in the lexicon.

The suggestions in the study report about carrying out domain-specific dis-
ambiguation in the analyser and extractor were not implemented, since to do this
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translation would have to have been interwoven with parsing. As mentioned in
Section 4.1 word senses which are specified as having a straightforward domain
equivalent are preferred over those which do not; it would be possible to extend
this to allow the domain-specific selectional restrictions to overwrite the general
purpose ones and backtrack if parsing failed (cf Ginsparg 1983). This would not
work well if much of the vocabulary being used were not directly translatable;
since this is what we are assuming may in fact be the case, this approach is un-
acceptable. Less straightforward translation of part of a sentence is frequently
heavily dependent on accumulation of constraints from other sentence elements,
and so genuine interweaving of parsing and translation would pose difficulties.
(It would not necessarily compromise modularity or transportability, but would
increase the complexity of the interface between modules.) There are limits to
the extent to which disambiguation can be postponed; it would not be efficient
to do a database search to allow disambiguation of a structural ambiguity, for
example.

We therefore propose a simpler approach, which should at least be tried be-
fore changing the architecture of the system to the extent suggested above. Word
senses which are distinguished in ldoce and therefore in the network could be
“packed” together in some way and full disambiguation only attempted dur-
ing translation. If the general-purpose selectional restrictions were retained this
would involve amalgamating in the lexicon all the senses of a word which have
the same semantic primitive, to avoid replicating structures differing only in lex-
ical sense numbering; however this seems very messy. Since it is already far
from evident that having selectional restrictions of the sort with which we have
been working in the analyser is worthwhile (see Section 4.1) it might be prefer-
able to only maintain distinctions between syntactically different word senses at
the analyser level and combine this with techniques for representing structural
ambiguity.

6.3 Future work

The needs of a natural language front end should be considered in the context
of the more general requirements of systems which access large databases. There
is a need for more semantic information about databases to be provided to in-
crease the capabilities of interfaces of all types. Natural language interpretation
(for querying and update), dealing with defective input, response and description
generation, query optimisation, consistency maintenance, interfacing with expert
systems, database design: all may require more extensive knowledge of the data-
base than can be provided in existing, commercial, dbms. It is absurd to consider
these needs in isolation from one another. The utility of a natural language in-
terface without other extended capabilities is dubious, and if a domain-specific
knowledge base, once set up, can be used for a variety of different functions, the
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cost is much more likely to be acceptable. The idea of such integrated systems is
of course not new, Kellogg, Klahr and Travis (1978) describe a deductive retrieval
system with a natural language component, though of course the portability re-
quirement, which they do not address, complicates the problem. However the
AI literature on natural language interfaces almost completely ignores even the
directly relevant work in the database literature (see Brodie 1988). It is very
important to decide which issues are specific to natural language interfaces to
databases, and which can be investigated in the more general contexts, either
of non-natural language portable interfaces to databases, or of general natural
language processing. Because of the restrictions on the database query task, nat-
ural language interfaces to databases may not be suitable for investigating many
issues in computational linguistics, but they can obviously adopt some techniques
that are investigated in a more general context.

Future work on portable natural language interfaces to databases with in-
ference capabilities should probably initially involve a detailed investigation of
existing work on coupling knowledge base systems and databases. The type of
loose coupling we envisage is similar to that described in Jarke (1986). A new
representation language for describing the domain, drawing on the results of the
current project, might be based on nikl; the combination of this and a database
model would again form a hybrid knowledge representation. A system imple-
mented on this basis would provide a suitable starting point for investigating an
integrated interface system.

But we are mainly interested in investigating the utility of general-purpose
knowledge for natural language processing. There is obviously no point in at-
tempting to use general-purpose knowledge if adding knowledge for a new domain
is more difficult than replacing the existing knowledge would be, so we would
have to control the experiment by comparing the two strategies on a number of
domains. Experiments on multiple, truly different, domains are also essential to
ensure that the ways in which we take advantage of the restrictions on the knowl-
edge covered by a database are, in fact, generally applicable. It is obvious that
we could not hope to genuinely interpret unrestricted natural language sentences,
so we would have to find out whether the degree of competence we can achieve is
acceptable given the effort that has to be put into knowledge acquisition. Since
there will be a trade-off between processing ability and ease of acquisition of
knowledge, we would need to investigate different extents of knowledge provi-
sion.

The system outlined above would be a suitable basis for this. Natural lan-
guage processing capability would first be added using minimal general-purpose
knowledge. We would then have to provide the tools necessary to aid knowledge
acquisition, before attempting to carry out experiments on the lines suggested
above. By attempting to separate the issues of general inferential access to data-
bases from those of natural language interpretation, we would hope to make it
easier to see how deficiencies could best be corrected; whether expanding the
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ordinary level knowledge or the domain-specific knowledge was necessary or, or-
thogonally, whether the natural language processing or the database interfacing
modules needed alteration. Our existing architecture has gone some way towards
making these distinctions clear, but it will be necessary to make them even clearer
if in providing natural language interfaces to databases we take advantage of both
database and computational linguistic research.
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Appendix A

Extract from Boguraev,
Copestake and Sparck Jones
(1986)

This appendix reproduces, for convenience of reference, Sections 1–3 of the pa-
per by B.K. Boguraev, A.A. Copestake and K. Sparck Jones presented at IFIP
TC2 Working Conference on Knowledge and Data (DS-2) organised by Working
Group 2.6 and held in Aldeia das Açoteias, Portugal, November 1986. Pro-
ceedings published in ‘Data and Knowledge (DS-2)’, editors R.A. Meersman and
A.C. Sernadas, North-Holland, 1988.

A.1 The original Cambridge front end

A.1.1 System structure

This front end has been very fully described elsewhere (see Boguraev and Sparck
Jones 1983, 1984), particularly from the language processing point of view. The
description below is therefore intended only to outline the essential, relevant
features of the front end. In this account domain will be used to refer to the world
of objects, properties and relations of which the database is an instantiation.
Domain description and database schema (or description and schema for short)
will be used as very general terms for the characterisation of the nature of the
domain and database respectively; domain model and data model will refer to
corresponding formal types of characterisation. We have so far used only the
relational data model: the issue precisely raised by the need for inference has been
that of an appropriate domain model, and more generally, as will be explained
below, that of the type of formalism suited to representing and relating knowledge
about ordinary and special worlds and ordinary and special languages. Database
will be used to refer both to the data model and the actual data, unless an explicit
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distinction between model and data is required. Finally, we shall use the term
application to cover both domain and database, to allow for the fact that the
same domain information and data may have alternative database embodiments.

Our front end design takes linguistic transportability further than systems
like team (Grosz 1983, Martin et al 1983) and irus (Bates and Bobrow 1983).
Semantic grammar-based front ends can be very effective for individual appli-
cations, but are not transportable; linguistic transportability is increased, as in
team and irus, by separating the syntactic and semantic components of the
language processor, since the syntactic component can be made application in-
dependent, and an independent component is useful when the variety of allowed
input forms makes it worth exploiting syntax. The Cambridge front end design
was based on the belief that a substantial amount of the semantic processing of
an input question could also be done using application-independent semantics.
Specifically, if an initial syntactic and semantic interpretation could be carried
through without reference to the application, to provide an unambiguous and
normalised representation of the input, working on this to derive the required
application representation of the question would be easier than working on the
raw input; at the same time processing could be carried through with a more
restricted application-dependent semantic apparatus than is required to handle
the variety of natural language inputs directly, and one which is therefore easier
to supply. The possible penalties are in not getting enough interpretive leverage
from domain knowledge in working on the initial linguistic input, and in hav-
ing to provide a more careful domain characterisation and processor to eliminate
independently plausible, but irrelevant, interpretations of the input.

The front end therefore has two major components, the first application inde-
pendent and the second application dependent. The input question is interpreted
in two stages, to determine its meaning as an ordinary expression of English, and
then to determine its more specialised database reading. The two stages in fact
take two steps each, as shown in Figure A.1, so the front end as a whole involves
four processors, each delivering its own characteristic representation of the in-
put. The first processor within the application-independent analysis component,
the analyser, combines syntactic parsing using an augmented transition network
and conventional grammar with semantic procedures exploiting semantic prim-
itives, to achieve lexical and structural disambiguation of the input question.
The output text representation is a dependency tree whose components are case
structures linking word senses, defined by formulae using semantic category prim-
itives, through semantic relation primitives. The second application-independent
processor, the extractor, works over the dependency tree to pull out the ‘atomic’
propositions it contains, and to determine the question’s quantification structure.
The resulting logic representation has the general form of the quantified expres-
sions of lunar (Woods 1972), with the detailed semantic information given by
the formulae and case labels embedded in it as hooks for the subsequent domain-
dependent operations. This subcomponent can be viewed as task-oriented in the
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Figure A.1: System structure
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sense that the item at the focus of the question dominates the representation;
but this is only in the broad sense that question-answering in general, without
reference to coded databases, is deemed a natural language processing task.

In the second major stage of interpretation, involving application-dependent
operations, the logic representation for the question is processed first to estab-
lish its domain meaning, and then to derive a suitable form for the database
instantiation of this domain. The initial translator substitutes domain-referring
terms and expressions for those referring to the ordinary world that were handed
to it by the extractor. As explained in detail in Boguraev and Sparck Jones
(1983), the grounds for this substitution are the semantic primitive characteri-
sations of the elements and the explicit and implicit relations determining the
structure of the question. As the terms and expressions of the high-level data,
or domain, language used for the translator’s output query representation can
in principle be similarly characterised, implicit commonalities in the characteri-
sations of sentences in the two languages motivate the translation. The second
application-dependent processor, and final front end module, the convertor, in
turn relates domain-referring terms and expressions to those of the low-level lan-
guage used to search the actual application database. This processor in fact first
produces a relational algebra form of the query, and subsequently the final search
representation of the input question in the specific language accepted by the local
dbms (in our case primarily salt — see King 1983, and quel — Stonebraker
1976).

The essential properties of this front end are a strongly modular design with
each processor undertaking a well-defined interpretive task and generating a cor-
respondingly ‘oriented’ representation of the question; and the uniform applica-
tion of pattern matching as the processing technique driving each module. It
might be more appropriate to use the expression “pattern mapping” rather than
“pattern matching”, reserving “pattern matching” as the term for the wholly
abstract, formal operation. “Pattern mapping” in the present context would
make the contrast, in linguistic interpretation, between transformations mapping
one linguistic expression onto another without provision for inference and those
for which inference may be invoked. However we will continue to use “pattern
matching”, albeit in the sense of pattern mapping just described.

The sequence of representations produced for one input natural language ques-
tion is illustrated in Figure A.2. The details of the various forms of representation
are given in Sparck Jones (1984). For present purposes it is sufficient to notice
that in the text representation items such as ‘own1’ are word sense labels; the
expressions following these are the primitive formulae (with head elements at the
right emphasised in bold) — thus

((*org subj) ((*ent obje) have))

is the formula for ‘own1’, denoting the “possess” sense of “own”; and items
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User Query: Which Norwich Road properties do International Stores Ltd own?

Text Representation:

(clause (type question) (query identity) (tns present)

(v (own1 ((*org subj) ((*ent obje) have)))

(@@agent (n (International Stores Ltd (this (*org ent))))

(@@object

(n (property1

(((*org subj) have)

(obje ((where spread) thing))))

(@@number many)

(@@nmod

(((n (Norwich Road

(this (line (where spread)))))))))))))

Logic Representation:

(For Every $Var1/property1

:(AND (For The $Var2/Norwich.Road - (dummy $Var1 $Var2))

(For $Var3/International.Stores.Ltd - (own1 $Var3 $Var1)))

-(Display $Var1))

Query Representation:

(For Every $Var1/&property

:(AND (For The $Var2/Norwich.Road - (&location $Var1 $Var2))

(For $Var3/International.Stores.Ltd - (&own $Var3 $Var1)))

-(Display $Var1))

Search Representation:

(Range of (Q1-var2, Q1-var1) is (Parcel, Owners)

Retrieve into Terminal (Q1-var2.Pid)

where (Q1-var2.Pid = Q1-var1.Pid)

and (Q1-var2.Strnam = ’Norwich Road’)

and (Q1-var1.Surnam = ’International Stores Ltd’).

Reformulated Query:

Show me the properties in Norwich Road which International Stores Ltd own.

Figure A.2: Sequence of representations
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prefaced by @@, for example @@agent, are case labels, i.e. semantic relation
primitives. In the logic representation the formulae and case labels associated
with word senses are not given, but it must be emphasised that they are retained
by the system. In the query representation domain-referring items in the high-
level query language are prefaced by ‘&’, as in ‘&own’. The various elements of
the search representation are of course those of the dbms query language: thus
‘Owners’ is a relation name and ‘Surnam’ an attribute. Note that for clarity in
the text of this paper, items in specialised languages, like the domain and data
languages, are indicated by the use of bold, along with e.g. underlining for data
attributes. Thus we write &own, Owners and Surnam.

The representations of Figure A.2 are not merely the means of communication
between one module and the next. They embody different views of the question
which are of value in their own right and can be exploited, for example, as sources
of feedback to the user showing how the question is being handled (see Boguraev
and Sparck Jones, 1984). Thus generating an English equivalent of the initial
text representation can show how lexical and syntactic ambiguities have been
resolved, while generating from the final search representation can show how the
database access path has been constructed (see also Figure A.2). It should be
noted, however, that feedback is still within the context of single-shot questions
and answers; we are not attempting extended dialogue where the interpretation
of questions is context-dependent.

A.1.2 System testing

Our initial tests were with a toy database, Date’s (1977) Suppliers and Parts.
It should be emphasised that we were not concerned with any dbms operations,
and so with the implications of database scale: we were therefore not interested in
the kind of query optimisation issues addressed in the natural language context by
Warren and Pereira (1982). It should also be emphasised that while the Suppliers
and Parts domain is trivial, very varied input forms of the same search query can
occur when unrestricted natural language is allowed, as Figure A.3 shows. Even

Which is Blake’s city?

Give me the city for Blake!

Where is Blake located?

Where does Blake live?

I want the place Blake lives?

Where does Blake operate from?

Where is Blake?

Figure A.3: Varied input forms of the same search query

a front end relying on domain semantics in processing would have a good deal
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of syntactic and semantic work to do to map the varied sentences of Figure A.3
onto a domain predicate “have” with arguments “Blake” and “city”. However
we recognise that our initial processing involves extra work because we are in
principle allowing any ordinary meanings of “live” and “operate”, for example,
to hold, and hence have to allow for analysis effort and text representations which
would not be allowed possibilities in the domain-specific case. From this point
of view Suppliers and Parts is a more serious test of our front end than it would
be for those following a more conventional approach: our return for the extra
effort in any individual case should be the simple transportability of the first
component across applications (with additional lexical entries as needed).

However it was necessary, both to test the front end more fully, and to be-
gin to investigate the transportability claim, to look at a second more serious
application. For this we chose Green Hills, an English reflection of the ibm
tqa Project’s White Plains application (Damerau 1980). Actual White Plains
data could not be made available to us for proprietary reasons, but we are using
the same form of database description, i.e. set of attributes, applying them to an
imaginary village in East Anglia. The database has been set up in relational form,
rather more thoroughly than the tqa Project was able to do, given the practical
constraints of their use of a large, existing database. A few of the attributes, es-
pecially identifying numbers, have also been treated slightly differently, to avoid
some arbitrary low-level coding features of the White Plains implementation.

The detailed descriptions of the attributes and relations of the full Green
Hills database are given in Figures A.4 and A.5. (We have used only a subset
of the attributes, and some in a simple form, in our tests so far, but this is
irrelevant here.) The essential structure of the domain is that it deals with
parcels of land. These are located in the progressively more embracing areas
of block and ward, and themselves may include lots. Most of the attributes
are those distinguishing parcels: they include area properties like square feet,
volume properties like number of stories in buildings, valuation properties like
the assessment for school taxes, and use properties like the number of residential
floors and land use codes (lucs). Blocks also have a range of properties including
physical area and a variety of administrative areas, for example census tract
and traffic zone. The most difficult attribute is luc (strictly attribute type,
since there are separate luc assignments for different floors). Individual building
functions e.g. pets hospital, school, etc are subsumed under specific codes via
an independent list, presenting many problems for the recognition of equivalent
forms e.g. “pets hospital”/“animal hospital”/“veterinary centre”. There are also
complex implicit interactions between different attributes, for example different
area measurements; and there are some nasty incomplete interactions hinging on
the fact that luc3 can refer not only to floor 3 specifically, but to floor 3 and all
the higher floors.

The kinds of question that the ibm tqa system could process are illustrated in
Figure A.6 (see also Damerau 1981). The tqa implementation clearly involved a
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Wno/Bno/Pno/Lno ward/block/parcel/lot number
Strnum/Strnam street number/name
Zone planning zone class code
Type assessor’s property type No.
Stcode state code
Stor number of stories
LUCi land use code for the i-th floor (i ≤ 3)
Park number of parking spaces
Dwell number of dwelling units
Resfl number of residential floors
Comfl number of commercial floors
Landv land assessment (ie valuation)
Imprv improvement (building) assessment
Exemv assessment exemption
Cityv assessment for city district
Schv assessment for school district
Sewv assessment for sewer district
Sqft parcel area
Gflsqft ground floor area
Censt census track number
Censb census block number
Plarea planning area number
Schzone school zone number
Nbarea (1962 plan) neighbourhood planning area number
Xgrid X grid coordinate
Ygrid Y grid coordinate
Drarea drainage area number
Splarea subplanning area number
Trzone traffic zone number
Neigh1 neighbourhood association 1 number
Neigh2 neighbourhood association 2 number
Bid combines Bno and Pno
Pid combines Wno, Bno and Pno
Lid combines Wno, Bno and Lno
Inits initials
Surnam surname

Figure A.4: Green Hills attributes
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BLOCK Bid Wno Censt Censb Plarea Schzone
Nbarea Xgrid Ygrid Drarea Splarea Trzone Neigh1 Neigh2

PARCEL Pid Wno Bno Pno Strnum Strnam Zone Type
Stcode Stor LUC1 LUC2 LUC3 Park Dwell Resfl Comfl
Landv Imprv Exemv Cityv Schv Sewv Sqft Gflsqft

LOT Lid Wno Bno Lno Pno

OWNERS Pid Inits Surnam

Figure A.5: Green Hills relations structure (keys in bold)

How many two family houses are there in the Oak Ridge Residents Assn.?

What is the account number of the parcels that DelVecchio owns?

How many dwelling units are on Craven Lane?

What parcels in Planning Area 8 have more than 79 dwelling units?

Who owns the vacant land in Hillair Circle?

What is the average assessment of the apartments on Lake St.?

Where are the gas stations in Fisher Hill?

What is the gross floor area of the commercial buildings?

Figure A.6: Sample TQA queries

great deal of very specific program unique to that application, sufficient to resolve
many of the problems we shall consider, albeit in an ad hoc way. The user could
also be assumed to be very knowledgeable about the domain, and indeed the
database, so questions leading to processing difficulties might well not get asked.

Many of the questions which would ordinarily be addressed to Green Hills,
like those addressed to White Plains, would not require inference. But Green
Hills questions can produce inference problems, serving to emphasise the fact that
inference is required, so we must be prepared for it. Thus though it is evident that
interpretation requirements we would have to meet by inference could often be
finessed by the type of application-dependent semantics and very powerful lexical
apparatus used in the TQA implementation, inference needs can arise within the
framework of a front end relying on application semantics, so it is necessary to
address the question of how inference mechanisms can be provided for natural
language front ends. These needs can arise even where nothing more than the
literal interpretation of the input question is required; as soon as any attempt
to make more powerful database front ends dealing, e.g., with meta- as well as
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object-level questions, or with more complex domains, inference is increasingly
needed (see, e.g. Bates 1984). This is even more the case as we progress from the
simple database case to consultative interfaces to software and expert systems
(see e.g. consul — Mark 1981 — and ham-ans — Hoeppner et al 1983).

A.2 Inference needs

In general we assume that inference on information about the ‘ordinary’ or non-
specialised world will be needed to support full text interpretation, as it has been
found necessary in other work on language processing. Thus we may suppose
that the analyser in particular, and possibly the extractor, may call for inference
on general world knowledge in the same way as these modules call on general
linguistic knowledge. However the problems presented for our front end design
stem essentially from the fact that the analyser and extractor modules also need
to access information about the application. The translator and even convertor
may also require more application information than a purely application-specific
front end. Our primary focus will therefore be on the way application information
is needed, and on how this need can be met. In fact there is no hard and fast
line between general and application knowledge, so the proposals we make for
handling the application case involve the general case, as discussed in Section 3.
The same applies to linguistic inference, i.e. inference on linguistic information:
the proposals we put forward for dealing with non-linguistic information involve
dealing with linguistic information.

This section illustrates the way inference needs can arise in the processing
carried out by the front end’s different modules, and the forms of these needs.
As the modules use distinctive kinds of information, when we refer to inference
types we are labelling inference needs by their source modules and associated
information. Some other distinctions, for example between the functions infer-
ences serve, or the bases for the links established, are also necessary, as will be
explained.

A.2.1 Analyser inferences

Analyser inference arises from the need to resolve ambiguities in the user’s input.
Most of these ambiguities are linguistic, but analysis can only be completed
through reasoning about the domain. Constructions like compound nominals
(“... city school district gas station owners...” — owners of gas stations in the
district with the city school in it), and post-modifier phrase attachment (“Do any
owners who own properties located in Market Place also own parcels in ward 2?”
— is it the owners or the properties that are located in Market Place?) belong
here.

One approach to dealing with this type of problem is to interface inference
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using the domain description or database schema with parsing, so alternative
interpretations are weeded out during analysis: this is the strategy represented
by the team ‘pragmatic functions’ (see Grosz 1983, or for a similar approach,
Ginsparg 1983). Another approach is to pass all the alternatives forward to the
domain translation phase, where an application-based selection can be made, as
it was by the pattern-matching processes of our initial front end.

Apart from the general problems presented by having to forward many al-
ternative initial interpretations (or, using another technique, under-interpreted
chunks of input representation), there are particular problems with the post-
ponement strategy in the database case. These are connected with the explicit
use of value words. The same database value can take many linguistic forms,
or figure in many linguistic constructions, and in any particular case what may
look like a simple character or digit string can have a very complex semantics. A
non-committal analysis strategy may in some cases allow for the later specialised
interpretation, but there is a danger with our analyser strategy that an ordinary
world interpretation could be obtained which would, exclude the possibility of
any alternative. Consider, for example, the Green Hills request

Which 541 properties have parking lots?

Unless the analyser is aware that properties in the database are identified, among
other things, by Land User Codes and “541” is a valid luc which means “su-
permarket”, it will produce, by default, the obvious interpretation leading to the
subsequent output of a list of 541 properties which satisfy the specified condi-
tion, i.e. have parking lots; the question will not retrieve, as intended, only certain
supermarkets.

Similar problems are exemplified by:

Print the parcel areas of Land User Codes 300 to 399.
Print the parcel areas of Norwich Road 300 to 399,

where the semantic impact of the numbers, and therefore the structural analysis
of the questions, can only be established on the basis of specific knowledge of
the properties of the domain. If the analyser does not take these into account,
it may completely fail to deliver the correct analysis of the input question; and
subsequent domain reasoning cannot be relied on to recover from failures like
this.

Thus in general, as Grosz (1982) notes, it may be necessary to interleave
domain reasoning with the linguistic analysis of the input to determine the par-
ticular way in which what in final database terms is a field value (or any of its
synonyms) figures in the user question. It may appear as a noun phrase modifier
(consider the problems of analysis of “shop buildings” vs. “school buildings”,
where there is a complete luc reserved for the concept of a “shop building”,
but the database offers separate encoding for “school” only); or as a head noun
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referring to entities which, viewed from the angle of a particular attribute, have
this particular value in the corresponding field (e.g. “Market Place” really means
properties for which the street-name attribute is equal to Market Place).

This problem also affects referring pronouns and similar expressions, which
can occur even within ‘single shot’ questions. Consider, for example,

List all the properties with parking spaces together with their assessed
values.

What makes this question unambiguous is the fact that in the database it is
properties (in fact, parcels) which have assessed values. There is a different field
specifying how many parking lots (if any) are associated with a parcel, but no
assessment for these is available. (If, on the other hand, the question was

List all the properties with parking lots together with their assessed
values.

it would be genuinely ambiguous, since there are fields both for the value of the
land and for its improvement, i.e. the building(s) on it.)

A.2.2 Extractor inferences

It is evident that domain-referring inference may be required during the extractor
processing to sort out quantifier scoping. This is particularly obvious with “each”.
While

Who owns each property?

is genuinely ambiguous, since it may properly mean either For each property, who
owns the property, or Who is the owner such that he owns each property, domain
inference would choose only one scoping for

Where is each school in the zone?

if there could be only one school per zone.
There are many difficulties in achieving correct quantification (see, e.g. Woods

1978 and Moore 1982). Our treatment of quantifiers has so far been a rudimentary
application of Woods’ approach, but improving it would clearly lead to the need
to tackle the kind of difficulty illustrated. The same applies to definite and
indefinite referring expressions: thus inference problems can arise in extraction
in connection with definite descriptions (Berry-Rogghe 1984, 1985; see also Woods
1978) as for example in

What is the assessment for Smith’s properties?

which may mean either what is the assessment for each of Smith’s properties or
what is the total of the assessments for all of them.
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A.2.3 Translator inferences

As noted earlier, the requirement for inference can arise even in application-
oriented front ends; and as the application-oriented approach has been the most
common one, most discussions of inference in the database and broader inquiry
and interface context have focussed on the way application, and particularly
domain, information is supplied and handled. Then as it is clear that the domain
characterisation has to be a rich one, embodying a good deal of common-sense
knowledge both of a general kind underpinning the domain and of a more domain-
specific sort, it is also clear that intensional reasoning is required, as well as the
extensional reasoning of typical database implementations.

In general we can identify two inference functions, coercion and conceptual
completion. In the particular context of the translator these arise as follows.

The translation processes connect natural language expressions with domain
concepts (or, strictly, substitute domain language for natural language expres-
sions). They build a conceptual structure centred round a domain verb whose
case (or slot) fillers are objects defined in, and known to, the domain description.
This structure expresses certain relationships between the objects in the domain
and the translation process exploits requirements on the types of argument that
the domain verb expects, and will accept, as slot fillers.

The need for coercion arises when the domain verb’s case preferences are
violated, though all the slots in the domain verb case frame have been filled, and
their fillers are valid domain objects. One obvious reason for this is that the user
has taken a short-cut, so an easily inferred relationship between domain objects
is left implicit. A question like

Where is the Potters Lane car park?

in fact in Green Hills means Where in Potters Lane is the property with a car
park on it, and a coercion process is required to infer the implied relationship
between “car park” and “property”. Similar reasoning has to be carried out to
understand the meaning (in this database context) of questions like

Are there any schools in Ward 2?
What is the average height of Norwich Road?
Which owners in Market place aren’t in Ward 1?

(The last example demonstrates that coercion cannot be reduced to simple ex-
pansions of conceptual slot fillers — what the question really means by “owners”
is “properties”.)

A different class of problems arise when there is an empty slot in the con-
ceptualisation of the domain verb frame, since this typically has to be filled to
obtain a valid query. This calls for conceptual completion inference whose aim is
to deduce a likely filler for the slot. Thus in order to answer a question like
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What’s in Norwich Road?

the system would have to infer that the properties of parcels are sought.
Both coercion and conceptual completion may require arbitrary long chains of

domain reasoning, and specifically of causal reasoning; extended causal reasoning,
in particular, is likely to be needed when there is no obvious domain verb to
hand to guide the whole process. In these cases there is no clear starting point
for the inference needed to establish the relevant domain predicate. The problem
of controlling long chains of (weak) causal reasoning (as in the style of Rieger,
1975) then becomes acute. Consider, for example,

Who could afford to buy International Stores Ltd?

This could be answered by evaluating a query meaning Whose property is assessed
at more than the total assessed value of International Stores Ltd parcel against the
database. The missing conceptual filler here is the “money” (or its equivalent)
required for the purchase, and inferring this gives rise to a chain of reasoning
connecting assets with personal worth and personal worth with buying power.
Similar processes would be required to derive an answer to questions like

How wealthy is Colonel Cribbin?
Can I refuel my car in the Market Place?

The inference engine must be able to handle ‘vague’ concepts (such as “profitabil-
ity” and “wealth”) and to reason about their relationships in the world.

Causal reasoning, i.e. reasoning defined in terms of the base for the pragmatic
relationships it exploits rather than in terms of the system function it performs,
may be stimulated as a means of achieving coercion or conceptual completion.
However for the kinds of reasons just illustrated, causal reasoning may also be
required to allow question interpretation outside the specific functional contexts
associated with coercion and conceptual completion, and indeed may be the main
form of inference employed.

Being able to deal with vague concepts in causal style appears to be particu-
larly important in connection with negative inferences. Here inference is needed
not to deduce the real question to be asked of the database, but to intercept ques-
tions where common-sense reasoning suggests that there is no point in translating
the input, because it does not make sense (at least in the world of the application).
Thus domain reasoning by the translator about e.g. time, place and part-whole
relationships would conveniently block further processing of questions like

How many parcels have land values larger than city values?

It should also be emphasised that if the dbms has restricted facilities, for
example if it cannot respond directly to yes/no questions, it may be necessary
to transform an input question into a derived form with the appropriate syntax,
which can involve causal or other reasoning (see Boguraev and Sparck Jones
1985). Thus inference would be needed for
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Is there a lawyer in the village,

(meaning Is there a property identifiable as a law office), to derive a transformed
form meaning Show me any property which is a law office.

This kind of problem is unavoidable as long as dbmss are as restricted as
they currently tend to be, so even with an application-oriented front end, natural
language question transformations would be required.

There are also specific problems stemming, within our model, from the fact
that, if transportability is to be achieved, the only changes to the lexicon allowed
will be additions. One problem here is that concepts represented by the same
natural language word would be instantiated differently in different domains: thus
a “city” may be an OperationsBase in a Suppliers and Parts database, a Port
in a Naval database, Residence in a Personnel database, and so forth. Esoteric
and/or ambiguous words may also be used to refer to these domain objects,
for example “habitat”, “headquarters”, “domicile” or “residency”. Appropriate
interpretations can be produced with an application-oriented front end; they
cannot be guaranteed with a translator like ours, so coercive inference is more
likely to be needed, especially for the second class of case.

The inference requirements to be met by the translator clearly show the need,
in serving both coercion and completion functions, for inference links which can
only be established by extended causal reasoning. One important base for infer-
ence is thus the causal one. But it is evident that the inference functions to be
supplied for the two previous modules, if not explicitly the same as those of the
translator, can be described as facilitating coercion and completion. Equally, it
is likely that the inference involved will sometimes have a causal base. The same
applies, in a fairly abstract way, to later inference supporting the convertor’s
operations.

A.2.4 Convertor inferences

It is difficult in practice to draw a precise line between reasoning within the
domain and reasoning involving the database (both schema and, in the limit,
actual data). The normal assumption is that if something is present in the domain
it is supported in some way in the schema. If &company is a domain entity then
the translator can assume that it is a concept supported by the schema without
having to access the details of the way in which it is supported. However in some
cases a question will make sense in the domain but cannot be answered because
the actual database schema will not support the generation of a corresponding
search query. In this case the query is blocked by the application of database
knowledge in the convertor.

Consider, for example,

Which shops are adjacent to the Guildhall?
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The concept of adjacency of must be supported in the domain, not only because
it is a natural relationship between areas of land, but more specifically because
it is possible to derive adjacency information about blocks, as block coordinates
are known. However the schema provides no such support for deducing whether
or not two parcels are adjacent, and the question above cannot be answered.

The domain description has to be given in general enough terms to support
the translation of very varied input expressions of queries which the database
can handle, so it is unsurprising that it will sometimes accept questions which
the more impoverished schema cannot support. In some cases the schema may
be obviously conceptually incomplete (for example the lack of land use codes
for specific floors higher than the second in Green Hills). It would be difficult
(and probably unwise) to attempt to construct a domain description that would
accept “Is the first floor of the Guildhall residential?” and “How many residential
floors does the Guildhall have?” but not “Is the fourth floor of the Guildhall
residential?” Such questions should be blocked by the convertor.

Much of the inference carried out with the application-specific component of
the front end can be described as planning inference, designed to identify the
raw data to be extracted from the database, and to determine what operations
on this will derive the required answer. Thus for the convertor, since the actual
domain characterisation of what is wanted has been established, inference may
be required to establish the appropriate database schema mapping of the domain
concepts and structures determined by the translator. For example in the Green
Hills database a decision has to be made whether to map &parcel identifier (Pid)
onto relation Parcel or relation Owners and in some cases inference may be
needed to do this.

Many of the kinds of problem discussed in connection with the translator have
obvious parallels in conversion. In other cases difficulties arising in the translation
stage will probably be only partly handled and will propagate forward to the
convertor. Indeed the assignment of inference problems to one or the other is
ultimately arbitrary as it depends on the specific characteristics of the domain
description and database schema. (The same applies in general to allocation
between the analyser and extractor, of course.)

Further, there may be inference requirements to be met in determining, for
example, the exact role of a value word (and thus its mapping onto the database
schema), or the appropriate relationship between several domain objects with
associated information stored in different files (and thus requiring complex ‘joins’
— sometimes known as the “multipath problem” — see Moore 1979).

There are, however, also convertor inference problems associated with de-
termining specific operations on individual database entries to complete the in-
terpretation of the user’s question. Thus, assuming that the dbms is capable
of supporting some calculation capabilities, for example those required to han-
dle [age = today − birthday], [totalworth = sum of all assets], [distance =
finish− start], [average = sum of n over n]) then a certain amount of reasoning
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will be required in order to generate dbms programs to carry out operations like
giving data summaries:

List all the properties according to their parcel numbers!
What is the total area of Ward 2?

or carrying out implied calculations (e.g. sums, averages, percentages):

What is the average value of a property in Norwich Road?

In conclusion it will be evident that inference becomes even more complex
when more than one inferential process, of the variety presented, is required to
interpret the question. Thus

How wealthy are the 541 owners?

would require analyser inference to handle “541”, extractor reasoning to resolve
“the”, coercion in the translator to handle “541 owners” and also causal inference
for “wealthy”, and finally convertor reasoning for the calculation of totalworth.
Many of the examples in this section are in fact of this mixed sort.

A.3 An approach to inference

A.3.1 Background

There has been relatively little work on incorporating inference facilities in data-
base front ends in a motivated way. Though inference using both semantic and
domain knowledge has been invoked to support a variety of language processing
tasks, including interface-based tasks, there are few projects which address the
question of inference within the framework provided by the constraints of access
to conventional dbmss. team and knobs (Grosz 1983; Pazzani and Engelman
1983), and Ginsparg’s (1983) project are notable exceptions.

One reason for the lack of interest in inference is the common limitation to
single-shot operation. But a more important one is the fact that, for the in-
dividual application, engineering approaches relying heavily on close, low-level
interaction between domain description, and even database schema, and linguis-
tic analyser can work sufficiently well without inference: this is the strategy
embodied in commercial systems like intellect (Harris 1984). This approach
can be pushed so far as to incorporate pragmatic information and inference-type
operations in the system’s semantic descriptions and pattern-matching strategies.
In any case in practical contexts users can rapidly learn to adapt to a system’s
limitations, provided it is reasonably habitable. More importantly, if the limita-
tions of the back end dbms are severe, for example in discriminating quantifiers,
and these limitations are known, there may be little practical call for powerful
natural language processing capabilities whose subtleties are thrown away.
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Thus though the failures of even very modest database front ends may be
non-trivial (see Bates 1984), work on inference to interpret and respond to nat-
ural language inputs has been mainly in the context of more sophisticated tasks
calling for more ‘intelligence’ and ‘cooperation’, as, for example, in Zarri’s (1984)
reseda, Gershman’s (1981) Yellow Pages Assistant, Palmer’s (1983) interpreter
and the consul mail system interface (Mark 1981). But even in these cases the
approaches adopted rely heavily on domain-flavoured or domain-specialised infer-
ence processes. This is a natural response to the greater demands of the task, as
in consul, where, though the formalism used in consul is quite general (as the
system uses klone), the knowledge base the system exploits integrates linguis-
tic and world knowledge in a completely undifferentiated and also domain- and
task-oriented way. The front end’s major knowledge resources are therefore not
transportable. The crux is whether the more effective database front ends that
are required, seen as representing progress towards more general inquiry systems
with the back end dbms as a deliverer of tuples, can only be provided by similar
strategies. Specifically, in the context of the Cambridge front end design, the
questions to be answered are whether the modular structure of the front end can
be genuinely retained, and whether the form of knowledge base exploited to sup-
port inference, and the inference operations themselves, allow a clear separation
for construction and transportation purposes between application-independent
and application-dependent resources.

A.3.2 The front end structure

Maximum separation between resources could clearly be achieved by providing
each module with its own knowledge and inference component, each dealing,
if necessary, with both linguistic and non-linguistic information, and each ex-
ploiting, if appropriate, its own representation formalism. But this strategy is
not feasible, for the reasons represented by the examples discussed in Section 2.
One possible way of overcoming this difficulty could be to allow each module
to call any component, but if the components relied on distinct representation
schemes, this would imply intervening component-dependent ‘transformers’. The
real problem with this solution, however, is the duplication of information over
resources, and also, potentially, that of heterarchical control. A better structure
could be achieved by maintaining separate components (for the different kinds
of information naturally associated with their main user modules), but having a
single transforming ‘differential’: this improves control, but still leaves the prob-
lem of duplication of information. The solution to this, in turn, is to have a
common knowledge base and with this a single inference engine; working out the
implications of Section 2, this engine would subsume a set of inference specialists
serving different inference functions. The assumption behind this scheme is that
the identity of the calling module, and the character of the inputs to inference it
offered, would be sufficient to select the relevant kinds of information from the
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common knowledge base and to invoke, and parametrise, the appropriate infer-
ence specialists. The idea of a single knowledge base and inference engine is of
course not novel; the point of interest here is whether it fits a specific front end
architecture with a particular independent motivation.

Operationally, the question is whether the assumption about module cor-
relation is justified. More generally, the question is whether, with an inte-
grated knowledge base and single engine, the separation between application-
independent and application-dependent information required for transportability
can be readily achieved. We will return to this question after detailing the kind of
representation to be used: this has to be a powerful enough formalism to encode
both the system’s permanent knowledge and the temporary information associ-
ated with a specific input, and flexible enough to be accessed from the distinct
starting points represented by the different modules. Otherwise the proposed
architecture appears to have the merit of simplicity, with the successive proces-
sor modules operating on a common collection of knowledge about the input
question. (This is not a common representation of the input, since the system’s
various representations are distinct; see Sparck Jones 1983.)

A.3.3 The knowledge base

It is obvious that a well-founded representation formalism is needed. The general
requirements such a formalism has to satisfy have been rehearsed, for example, by
Brachman (1979). The relevant point here is that the kinds of natural language
processing purposes described here call for a formalism supporting classification
operations and allowing hierarchical relationships. A hierarchical structure is
required not simply because it provides a base for inference in interpreting the
inputs for any particular application, i.e. for the exploitation of an existing cate-
gorisation, to find existing relationships or to classify new objects and specifically
new instances by assigning them to existing categories. A hierarchy also provides
a means for incorporating application-specific information when the front end
is transported. As noted earlier, the assumption made is that as the front end
is transported new application is incorporated without its being necessary to
remove old information. With a hierarchy it should be easy, if not automatic,
to integrate new information, through either categorisation or class assignment.
(We assume that tangled hierarchy will be needed.) With a properly based for-
malism, moreover, it should be possible to do this consistently. Finally, with a
hierarchical knowledge base it may be possible to derive collocational constraints
which can be deductively exploited in coercion or, if appropriate, in carrying out
‘higher-order’ inference procedures like those exemplified by the “classification”
and “realisation” of Brachman (1982) and Schmolze (1983).

The requirement that is hard to meet is that of making a principled, or at least
visible, distinction between application-independent and application-dependent,
and more particularly between domain-independent and domain-dependent facts.
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The problems presented by the need to have links between the two to support
the translation of the extractor’s output logic representation into the translator’s
query representation, and also the importance for the input question processing
of domain information can be summarised by the example of processing

Which are Blake’s stores in Market Place?.

Beyond translating this into something like

(&own Blake &shop Market Place),

we have to go further to extract all the constituent propositions the question
involves in order to be able to obtain a full query representation of the input
content. Thus the question is: what does it mean for Blake to be an agent in
an ownership relationship with a shop for an object and the Market Square as
location? The answer lies in the expansion of the representation of the domain
predicate to spell out its “implications”. Thus the example predicate implies,
at least in the Green Hills domain, that the statements in Figure A.7 can be
assumed to be true.

(is parcel X)
(eq (&luc X) 566)
(eq (&str name X) Market Place)
(is property owner Y)
(eq (&surname Y) Blake)
(&own Y X)

Figure A.7: Explicit propositional content

In practice, some of these statements will be inferable by coercion (&shop is
clearly coercible to &parcel without too much trouble, using both general semantic
knowledge and the categorisation hierarchy); some of them ought to be pre-
specified as value words (e.g. the land-user code for a shop: “566”); and some of
them ought to be interpretable as such, together with their generalisations in the
concept hierarchy (“Market Place” and “Blake” may fall in this category). The
remaining statements will be instantiated on matching a general inference rule
for &own, and all of the derived predications will be recorded in the temporary
knowledge base as facts associated with the current input. As this example shows,
the needs to be met by formalism capable of supporting this kind of processing
are not trivial.

A.3.4 A knowledge base formalism

The formalism we are using to represent and manipulate knowledge is that de-
veloped by Alshawi (1983). As this is fully described by Alshawi, we will simply
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summarise its main features, and illustrate how the formalism can be used with
Green Hills examples.

Alshawi’s memory represents knowledge in a way that can be realised as a
semantic net. The formalism is not claimed to be a functionally complete one in
the sense intended by Brachman’s (1978) Structured Inheritance Networks, but it
was designed to support non-trivial tasks and has a properly defined set-theoretic
semantics. Alshawi’s own implementation was strongly influenced by efficiency
considerations.

memory defines relations between entities by two types of assertion: special-
isations and correspondences, defining hierarchical and role relations respectively.
Entities can be concepts of any kind, objects, properties, or relationships, and
there is no rigid classification of entities as either role owners or roles: an en-
tity can be viewed either as a concept having its own roles, or as a role in the
description of other entities which may themselves be role-owning concepts or
role concepts. The fact that there can be ‘multiple views’ of entities means that
concepts can be used as primitives to create composites, and that complex com-
posites can be analytically defined.

The typical memory knowledge base can be viewed as a tangled hierarchy of
small, overlapping frame-like structures, each of which represents some concept in
terms of other concepts represented by other nodes elsewhere in the network. The
organisational relationships — i.e. the links between the nodes, defining the global
structure of the knowledge base — map onto specialisations or correspondences.
As noted, specialisation assertions impose a hierarchical order on the concepts
known to the system; correspondence statements further classify the associations
between concepts, essentially by analogy: the relationship that concept A has to
concept B is like the relationship that concept C has to concept D, or A stands
to B as C stands to D, where ‘like’ or ‘stands to’ are primitive notions. Clearly,
such a structure can be seen as saying that A has the same role with respect to
B as C has to D, so in this specific structure A and C are concepts functioning
as roles and B and D are concepts functioning as role owners.

Illustrating Alshawi’s scheme for the Green Hills application, as the arguments
for assertions can be entities of any kind, we may have some, e.g. own1, agent and
&owner, which are atoms denoting concepts already known to the analysis and
translation components, and others, e.g. PropertyOwner, denoting more general
concepts of potential use in inference.

A specialisation assertion, such as

(Specialisation: PropertyOwner of LegalOrganisation)

(Specialisation: PropertyOwner of HumanIndividual)

states that, depending on which way the classification hierarchy is traversed,
a PropertyOwner may be viewed as a specialisation of a LegalOrganisation,
and, conversely, a LegalOrganisation may be viewed as a generalisation of a
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PropertyOwner. (The example shows why the specialisation hierarchy is tan-
gled.)

A correspondence assertion, for example

(Corresponds: OwnsAgent to own1 as

agent to VerbStatement)

causes certain associations to be established in the system’s hierarchy of role-
concept pairs, thus further augmenting the classification of the relationships
between the known concepts. Starting from the most general association be-
tween two entities — that defined by [role, thing] — the example specifies that
the association relationship between OwnsAgent and own1 can be regarded as a
refinement (where refinement is analogous to, but not the same as, specialisation)
of the one between agent and VerbStatement. As noted earlier, though this cor-
respondence statement can be interpreted as “OwnsAgent fills the agent role of
own1 frame”, memory does not impose any rigid distinction between concepts
and roles, so OwnsAgent need not only be a role. Correspondence assertions can
rather be seen as a pair of specialisation assertions, one providing context for the
other. Thus if A is to B as C is to D, there is an implicit specialisation relation
between A and C and between B and D, and the relation between C and D,
presumed understood, provides a broader context for the more specific relation
between A and B.

As the explicit constraints on structures in memory are very weak, and the
explicit relations between concepts are very abstract, it is possible to use the
memory formalism to encode a variety of different kinds of knowledge, as well
as knowledge at different levels of abstraction.

Thus looking at the knowledge base from the point of view of the different
processor modules, it is possible to represent linguistic concepts and relationships
of the kind used by the analyser in the way illustrated in Figure A.8, which rep-
resents a portion of network concerned with the representation of verb/argument
structure. It is similarly possible to encode properties of and relations between
quantifiers relevant to the operations of the extractor. (Linguistic information
may thus refer to the natural language of input questions, the text representa-
tion language, or the logic representation language.) General world knowledge
about land assumed relevant to the application-independent processors could be
encoded as illustrated in Figure A.9

The memory formalism can be used in the same way for the application-
dependent processors, to encode linguistic information about the data language
(of the query representation) and the search language, and non-linguistic informa-
tion about the domain world and its database subworld. Figures A.10 and A.11
show some data language and domain world assertions.

The fact that distinct classes of processor-relevant knowledge can be repre-
sented with the same formalism is only one side of the use of memory. The
other is that it is easy to link knowledge of one sort with another. Indeed it is
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(Specialisation: TaggedStatement of Statement)

(Specialisation: VerbStatement of TaggedStatement)

(Corresponds: agent to VerbStatement as TagRole to TaggedStatement)

(Corresponds: location to VerbStatement as TagRole to TaggedStatement)

Figure A.8: Descriptions of analyser constructs

(Corresponds: area1 to land1 as

Measurement to MeasuredEntity)

......

(Corresponds: ContainedArea to ContainingArea as

SmallerArea to LargerArea)

Figure A.9: General world knowledge

(Specialisation: GHConcept of thing)

(Specialisation: GHPredicate of GHConcept)

(Corresponds: GHPredicate to GHArgument as

Predicate to Argument)

Figure A.10: Data language assertions

(Specialisation: &street of GHPlace)

(Specialisation: &parcel of GHPlace)

Figure A.11: Domain world assertions

necessary, particularly in relation to world knowledge, to provide a comprehen-
sive characterisation, involving higher-level concepts of the larger world within
which a particular world like that of an individual application domain is em-
bedded. An adequate characterisation of a domain thus involves linking domain
concepts with more broadly applicable ones. At the same time, specifically lin-
guistic concepts can only be given a motivated characterisation through links to
underlying non-linguistic ones (this is seen most obviously in the indication of
word meaning). Thus though it may be convenient, from one point of view, to
regard the knowledge base built with the memory formalism as including knowl-
edge of different kinds, it is equally natural simply to regard the knowledge base
as providing characterisations of concepts and conceptual structures that are put
to particular uses by the calling modules. This also serves to underline the fact
that any kind of knowledge need not, and probably must not, be exclusive to a
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particular processor.
The way in which linguistic and world information may be linked is illustrated

in Figure A.12. Figure A.13 shows how general and domain world information
may be connected so as to allow a natural transition from one to the other.

(Corresponds: containSubject to contain1 as

ContainingEntity to ContainsRelationship)

(Corresponds: containObject to contain1 as

ContainedEntity to ContainsRelationship)

Figure A.12: Linking linguistic and world information

(Specialisation: &own of own1)

(Specialisation: &owner of owner1)

(Corresponds: ownArg1 to &own as ownAgent to own1)

Figure A.13: Linking general and domain information

Thus domain-specific concepts can be ‘rooted’ in domain-independent ones via
specialisation. The fragment shown in Figure A.14 states, in essence, how the
Green Hills Land User Code, which is an attribute of parcels, has restricted values
for particular types of properties.

(Corresponds: &parcel to &luc as

GHEntity to GHAttribute)

(Corresponds: &luc to (100..600) as

GHAttribute to GHAttributeValue)

......

(Corresponds: property-in-parcel to parcel as

ContainsRelationship to ContainingEntity)

(Corresponds: property-in-parcel to property as

ContainsRelationship to ContainedEntity)

......

(Specialisation: &school of &property)

(Corresponds: &school to 248 as

&property to (100..600))

Figure A.14: Structural description of a “Land User Code”

In the same way, the domain description can be linked to the database schema,
via a characterisation of the general properties of relational databases which is
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then specialised to the particular relations in the Green Hills database. Thus
assertions about the concept DbRelp — for example that a relation encodes a
number of relationships (RelpStatement) between objects (RelpDbEntity), and
is defined as a set of entries over a range of columns — can be “instantiated” to
specific domain predications as illustrated in Figure A.15.

(Specialisation: OWNERRelp of DbRelp)

(Specialisation: OWNERSurname of column)

........

(Corresponds: OwnerDbEntity to OWNERRelp as RelpDbEntity to DbRelp)

(Specialisation: OwnerDbEntity of &owner)

........

(Corresponds: RelpOwns to OWNERRelp as RelpStatement to DbRelp)

(Specialisation: RelpOwns of &own)

(Corresponds: OwnerDbEntity to RelpOwns as ownArg1 to &own)

........

(Corresponds: OWNERSurnameEntry to OWNERRelp as RelpEntry to DbRelp)

(Corresponds: OWNERSurnameValue to OWNERSurnameEntry as

RelpEntryValue to RelpEntry)

(Corresponds: OWNERSurname to OWNERSurnameEntry as

RelpEntryColumn to RelpEntry)

(Specialisation: OWNERSurnameValue of &surname)

Figure A.15: Description of the Owner relation

These examples illustrate the hospitability and potential power of the mem-
ory formalism, which suggest it is well suited to our front end needs. In particu-
lar, as the formalism allows the construction of proper hierarchies, and provides
a mechanism for the specification of node rolesets, it is relatively easy to specify
domain-imposed constraints on the arguments of domain verbs, so that much of
the information required to carry out some inference tasks — namely coercion
and conceptual completion — can be encoded as a matter of course. The scheme
also makes it easy to incorporate information about relationships between the
arguments of domain predicates, so reasoning about e.g. part/whole, mass and
measures, becomes more tractable, without loss of simplicity and efficiency. Other
relationships between domain predicate arguments, inferable from the predicate
itself and “spelling out” its meaning in the context of the database could also be
specified. Finally there should be no difficulty about upgrading the knowledge
base continuously, adding new facts on the fly during the course of the system’s
operations, as more of the propositional content of input text(s) is made explicit
and so is available for incorporation in the dynamic part of the knowledge base.

There are also more mundane reasons for adopting memory. First, it was
tested by Alshawi for a language processing task (see Alshawi 1983; in press).
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Second, Alshawi also showed that information contained in the base could be
conveniently and efficiently accessed using sophisticated indexing mechanisms.
Third, because the information for the base can be supplied declaratively, it
would be possible, when transportation is needed, to offer distinct ‘blocks’ of
information as required by individual applications, for automatic integration in
the whole.

A.3.5 Inference with the MEMORY formalism

There is nothing inherent in the memory formalism that forces the adoption
of a particular way in which inferences ought to be drawn. Alshawi himself
exploited memory to support storage and retrieval operations implemented via
marker passing. Such network operations can be regarded as a very weak form
of inference, perhaps one too weak for all our purposes. We nevertheless felt that
the type of representation offered by memory could provide a sensible starting
point both because the inference processes it could support directly would be
useful ones, and because if more powerful mechanisms were required they could
be combined with this formalism (taking krypton (Brachman et al 1985) as an
analogy).

We can exploit Alshawi’s framework directly to meet some inference needs
because drawing simple inferences is essentially establishing new links in the net-
work, and this is like the classification needed to achieve coercion and completion
inference. By combining memory’s standard marker-based retrieval operations,
for example, we could achieve the inferences needed to process

Is there a school in 3/2?

where coercion is needed for the necessary replacement of school by parcel with
LUC 248.

In Figure A.14 we introduced the concept of a Land User Code by its descrip-
tion as an attribute of &property which has restricted values for various property
types including, in particular, &school. The fragment of network illustrated also
indicates that &school is a specialisation of &property which in turn is something
contained by a &parcel.

Thus a retrieval operation like “start from a given entity, find all ways in which
that entity has restricted values of attributes of other entities, which are marked
in a given way” (in this case — a domain entity which can be converted into
schema terms and which is a valid first argument to &location) will easily recover
the concept of a &parcel. The process amounts to starting from the translator
derived predicate

(&location &school 3/2),

and establishing a new link between &school and &parcel, the very existence of
which completes the coercion with a result, explicitly recorded in the dynamic
part of the knowledge base as
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(&parcel X)
(&luc X 248)
(&location X 3/2) 1

(cf. the earlier detailed example in Section 3.3 and Figure 3.1).
Of course it does not follow that all types of inference can be accomplished in

this way, through the standard basic network operations, though we believe ap-
propriate developments can be carried through. memory can, moreover, be used
to support causal reasoning. As the consul project demonstrated (Mark 1981),
individual causal inference rules can be encoded and inference chains constructed,
without losing generality, within a hierarchically organised knowledge base which
contains structured definitions of individual concepts. In Alshawi’s scheme indi-
vidual causal rules are conveniently represented simply as specialisations of the
general concept of mapping (as exemplified in Figure A.16.) With rules encoded

(Specialisation: Mapping of Statement)

(Specialisation: Rule of Mapping)

(Corresponds: LhsRule to MappingSource as RhsRule to MappingTarget)

Figure A.16: Fragment of a structural description of “Rule”

in the knowledge base in this way, the construction of causal inference chains
(in the sense described in section 2.3) is triggered when a predicate without a
direct domain interpretation is encountered, for example wealth derived from
the question How rich is Colonel Cribbin?. Appropriate rules are applied (with
relevant intermediate results recorded) until a related predicate, which is directly
interpretable in the domain, is generated. (The example is too long to illustrate
in full here.)

Moreover as the memory formalism supports the explicit construction of
structures in the knowledge base that resemble frames, these can be used to guide
and control potentially explosive causal chains (an approach initially introduced
in sam (Cullingford 1978) and subsequently applied to the database interface
task in knobs (Pazzani and Engelman 1983)).

A.3.6 Organising inference

One of the major problems of language interpretation is knowing when to make
a decision: e.g. to select from a set of alternative interpretations available for an
input. The example of “Which of the 541 properties have parking lots?” discussed

1This illustration only indicates the content of the propositions recorded in the knowledge
base, and not their format. Also note that further inferences, of essentially similar character,
will be required to establish the exact domain interpretation of “3/2”.
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in Section 2.1 illustrates this problem, and also shows that it is not eliminated by
substituting inference for pattern matching: in extending or replacing a pattern-
matching system with an inference-drawing system, we have still to decide when
to apply inference and, more importantly, use its results.

Given the general strategy which motivates our front end, of proceeding from
general to specific, it would seem rational to invoke inference to see what it
suggests, but to delay committing ourselves to one possible interpretation rather
than another until this is required, in the hope that by then all the relevant
information will have been gathered and that the requirements to be met are
sufficiently specific to be properly selective. A non-committal strategy of this
sort can be seen as accumulating constraints to be satisfied when decisions must
be made.

This strategy follows from the use of successive processor modules: in principle
if the information is available in the knowledge base to make a selection, the
selection could be made immediately; but the front end architecture means that
the interpretive needs to be satisfied by later processors are not yet indicated, so
it is not reasonable to expect the analyser, for example, to do convertor work,
even if it could access the relevant information. The penalty to be paid for this
strategy, on the other hand, is carrying forward many alternatives.

There are also problems with knowing exactly when to do inference, given
that at any point in the processing being done by any module, one might seek
information via inference. Thus while inference may always be possible, it may
not be clear what type of inference, and with what goal, is needed. This implies
that the processors will have to be extended to incorporate ‘triggers’, for example
in the analyser the attempt to attach a modifier could be a trigger calling for
inference to allow interpretation or to proffer alternative interpretations to those
straightforwardly given by semantic pattern matching. The related problem of
inhibiting inference explosions is well known: the natural way of trying to control
it in the front end context is by demand driving, seeking a goal determined by a
trigger.

Solutions to these problems are one aspect of implementing an inference ca-
pability. The other is providing the inference specialists for the engine, to carry
out whatever types of inference are defined in terms of the bases for or functions
of reasoning.

As indicated in the introduction, implementation of an inference capability
for our front end is currently in progress, so we cannot yet claim to have provided
adequate solutions to the problems just listed. What we have done is considered
after the description of our implementation of memory in the next section.
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Appendix B

Lexical Information

Material relating to the construction of the ordinary level knowledge base.

B.1 English vocabulary

This appendix lists the ‘starting vocabulary’ used for work on the ordinary level
knowledge base, consisting of words that happened to be in the existing lexicon.
We investigated all of the senses for all of these words and their morphological
variants as given in ldoce, and made a first pass over writing assertion sets for
them. But we only incorporated material for at least some of the senses of the
words (and categories) marked with * in the actual knowledge base, so the larger
investigation, though useful, was primarily a training exercise. The assertion
set for the selected vocabulary was still quite large, and was sufficiently varied
to provide exercise for our front end processing. We did not proceed further in
base construction partly because we did not want to get involved in providing
new lexical entries, partly because the selected vocabulary was sufficient for a
wide range of test questions, and partly because we needed to consider how
fine sense distinctions should be handled by the analyser. But note that the
whole vocabulary listed below could be used for analysis since the head primitives
provided in the lexicon’s semantic entries automatically link the word senses in
question into the knowledge base, though the sense coverage for the unstarred
words is not complete or fine, and our category coverage for ambiguous words is
not complete.

address * N adjacent * afford
area * ask assess *
assessment * be believe
big block * N blue
bolt box build *
building * business buy
car * car park * carry
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castle cheap city *
code colour contain *
control cost customer
die disc do
doctor drug eat
engineering exist expensive
farm * farmer * farming *
fastening find firm
first fix floor * N
fourth fruit garage * N
gas get give
goods green greengrocer *
grocer * grocery * hammer
hand have heavy
height * high * hospital
house * N identifier item
kiss knight land * N
large lawyer * list
live locate location *
lot love man
manufacture manufacturer measurement
money name neighbourhood
number nut occupation
own * owner * ownership
parcel * N park * parking
parking space * part people
person persuade petrol
place * N position post *
post office * price print
promise property * propietor
receive red region
reside residence residential *
river road run
sash say school
screw sell shipment
shop * N shopkeeper show
sleep space station
status store * N storey
storm street * supplier *
supply * V sword tell
town upset value * N
vicinity village * ward *
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washer * weight

B.2 Semantic primitives

This appendix lists the semantic primitives used by the analyser and their spe-
cialisation structure, derived with modifications from Wilks as given in Sparck
Jones, ‘Basic semantics information’, as incorporated in the ordinary level knowl-
edge base. The interpretation of the list is that in part B.2.1 each primitive is a
specialisation of the classes given for it, if any, eg ‘act’ is a specialisation of ‘*mar’
and ‘*ac’. In addition, the division of the primitives into action and substantive
primitives is indicated by the category code A or S, respectively. In part B.2.2
each left-hand class is a specialisation of its right-hand classes, if any.

B.2.1 Semantic primitives

primitive cat class primitive cat class

act S *mar *ac ask A *do
be A *do beast S *hum *physob
can A cause A *do
change A *do count A *do
do A *do notdo A *do
drop A *do evnt S *ac
feel A *do flow A *do
folk S *hum force A *do
func A *do get A *do
give A *do grain S *org *inan
grasp A (*do) grow A (*do)
hapn A *do have A *do
keep A (*do) let A
life S *any line S *ent
make A *do man S *hum *physob
may A move A *do
must A pair A *do
part S *pot *inan *physob pick A *do

*inst *sof *pla
plant S *pot *physob please A *do

*inst *sof
point S *pla self S *any
sense A *do sign S *ani
spread S *pla *physob *inan state S *mar
strik A *do stuff S *inan *inst
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tell A *do thing S *physob *inan *inst
think A *do this S *any
use A *do want A *do
whole S *sof will A
work A (*do) world S *any
wrap A *do

B.2.2 Semantic classes

specific general specific general
class class(es) class class(es)

*ac *any *act *ent *ac
*ani *animar *ent *animar *pot
*any *do
*ent *any *hum *ani *org
*inan *any *inst *any
*mar *animar *org *ent
*physob *ent *pla *ent
*pot *any *sof *any

B.3 Cases

This appendix lists all the cases used by the analyser; for further details see Bogu-
raev and Sparck Jones, ‘Material concerning a study of cases’, Technical Report
118. In constructing the ordinary level knowledge base we found it necessary to
add a few cases, given at the end of the list.

acc accompaniment act activity
adest abstract-destination aft after
ag agent aloc abstract-location
asour abstract-source attr attribute
bef before comp comparison
dest destination dire direction
force force goal goal
inst instrument loc location
man manner mobj mental-object
obj object poss possessed-by
quant quantity reas reason
rec recipient sour source
state state subj subject
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tloc time-location tspan time-span

Extra cases:

part-of
result
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