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Chapter 1

Introduction

Xen allows the hardware resources of a machine to be virtualized and dynamically
partitioned, allowing multiple different guest operating system images to be run si-
multaneously. Virtualizing the machine in this manner provides considerable flexibil-
ity, for example allowing different users to choose their preferred operating system
(e.g., Linux, NetBSD, or a custom operating system). Furthermore, Xen provides se-
cure partitioning between virtual machines (known as domains in Xen terminology),
and enables better resource accounting and QoS isolation than can be achieved with a
conventional operating system.

Xen essentially takes a ‘whole machine’ virtualization approach as pioneered by IBM
VM/370. However, unlike VM/370 or more recent efforts such as VMware and Virtual
PC, Xen does not attempt to completely virtualize the underlying hardware. Instead
parts of the hosted guest operating systems are modified to work with the VMM; the
operating system is effectively ported to a new target architecture, typically requiring
changes in just the machine-dependent code. The user-level API is unchanged, and so
existing binaries and operating system distributions work without modification.

In addition to exporting virtualized instances of CPU, memory, network and block
devices, Xen exposes a control interface to manage how these resources are shared
between the running domains. Access to the control interface is restricted: it may
only be used by one specially-privileged VM, known as domain 0. This domain is a
required part of any Xen-based server and runs the application software that manages
the control-plane aspects of the platform. Running the control software in domain 0,
distinct from the hypervisor itself, allows the Xen framework to separate the notions
of mechanism and policy within the system.
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Chapter 2

Virtual Architecture

In a Xen/x86 system, only the hypervisor runs with full processor privileges (ring 0
in the x86 four-ring model). It has full access to the physical memory available in the
system and is responsible for allocating portions of it to running domains.

On a 32-bit x86 system, guest operating systems may use rings 1, 2 and 3 as they see
fit. Segmentation is used to prevent the guest OS from accessing the portion of the
address space that is reserved for Xen. We expect most guest operating systems will
use ring 1 for their own operation and place applications in ring 3.

On 64-bit systems it is not possible to protect the hypervisor from untrusted guest code
running in rings 1 and 2. Guests are therefore restricted to run in ring 3 only. The guest
kernel is protected from its applications by context switching between the kernel and
currently running application.

In this chapter we consider the basic virtual architecture provided by Xen: CPU state,
exception and interrupt handling, and time. Other aspects such as memory and device
access are discussed in later chapters.

2.1 CPU state

All privileged state must be handled by Xen. The guest OS has no direct access to CR3
and is not permitted to update privileged bits in EFLAGS. Guest OSes use hypercalls
to invoke operations in Xen; these are analogous to system calls but occur from ring 1
to ring 0.

A list of all hypercalls is given in Appendix A.
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2.2 Exceptions

A virtual IDT is provided — a domain can submit a table of trap handlers to Xen via
the set trap table hypercall. The exception stack frame presented to a virtual trap
handler is identical to its native equivalent.

2.3 Interrupts and events

Interrupts are virtualized by mapping them to event channels, which are delivered
asynchronously to the target domain using a callback supplied via the set callbacks
hypercall. A guest OS can map these events onto its standard interrupt dispatch mech-
anisms. Xen is responsible for determining the target domain that will handle each
physical interrupt source. For more details on the binding of event sources to event
channels, see Chapter 8.

2.4 Time

Guest operating systems need to be aware of the passage of both real (or wallclock)
time and their own ‘virtual time’ (the time for which they have been executing). Fur-
thermore, Xen has a notion of time which is used for scheduling. The following notions
of time are provided:

Cycle counter time. This provides a fine-grained time reference. The cycle counter
time is used to accurately extrapolate the other time references. On SMP ma-
chines it is currently assumed that the cycle counter time is synchronized be-
tween CPUs. The current x86-based implementation achieves this within inter-
CPU communication latencies.

System time. This is a 64-bit counter which holds the number of nanoseconds that
have elapsed since system boot.

Wall clock time. This is the time of day in a Unix-style struct timeval (seconds and
microseconds since 1 January 1970, adjusted by leap seconds). An NTP client
hosted by domain 0 can keep this value accurate.

Domain virtual time. This progresses at the same pace as system time, but only while
a domain is executing — it stops while a domain is de-scheduled. Therefore the
share of the CPU that a domain receives is indicated by the rate at which its
virtual time increases.

Xen exports timestamps for system time and wall-clock time to guest operating sys-
tems through a shared page of memory. Xen also provides the cycle counter time at the
instant the timestamps were calculated, and the CPU frequency in Hertz. This allows
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the guest to extrapolate system and wall-clock times accurately based on the current
cycle counter time.

Since all time stamps need to be updated and read atomically a version number is also
stored in the shared info page, which is incremented before and after updating the
timestamps. Thus a guest can be sure that it read a consistent state by checking the
two version numbers are equal and even.

Xen includes a periodic ticker which sends a timer event to the currently executing
domain every 10ms. The Xen scheduler also sends a timer event whenever a domain
is scheduled; this allows the guest OS to adjust for the time that has passed while it
has been inactive. In addition, Xen allows each domain to request that they receive a
timer event sent at a specified system time by using the set timer op hypercall. Guest
OSes may use this timer to implement timeout values when they block.

2.5 Xen CPU Scheduling

Xen offers a uniform API for CPU schedulers. It is possible to choose from a num-
ber of schedulers at boot and it should be easy to add more. The SEDF and Credit
schedulers are part of the normal Xen distribution. SEDF will be going away and its
use should be avoided once the credit scheduler has stabilized and become the default.
The Credit scheduler provides proportional fair shares of the host’s CPUs to the run-
ning domains. It does this while transparently load balancing runnable VCPUs across
the whole system.

Note: SMP host support Xen has always supported SMP host systems. When using
the credit scheduler, a domain’s VCPUs will be dynamically moved across physical
CPUs to maximise domain and system throughput. VCPUs can also be manually
restricted to be mapped only on a subset of the host’s physical CPUs, using the pinning
mechanism.

2.6 Privileged operations

Xen exports an extended interface to privileged domains (viz. Domain 0). This allows
such domains to build and boot other domains on the server, and provides control
interfaces for managing scheduling, memory, networking, and block devices.
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Chapter 3

Memory

Xen is responsible for managing the allocation of physical memory to domains, and
for ensuring safe use of the paging and segmentation hardware.

3.1 Memory Allocation

As well as allocating a portion of physical memory for its own private use, Xen also
reserves s small fixed portion of every virtual address space. This is located in the
top 64MB on 32-bit systems, the top 168MB on PAE systems, and a larger portion in
the middle of the address space on 64-bit systems. Unreserved physical memory is
available for allocation to domains at a page granularity. Xen tracks the ownership and
use of each page, which allows it to enforce secure partitioning between domains.

Each domain has a maximum and current physical memory allocation. A guest OS
may run a ‘balloon driver’ to dynamically adjust its current memory allocation up to
its limit.

3.2 Pseudo-Physical Memory

Since physical memory is allocated and freed on a page granularity, there is no guaran-
tee that a domain will receive a contiguous stretch of physical memory. However most
operating systems do not have good support for operating in a fragmented physical
address space. To aid porting such operating systems to run on top of Xen, we make a
distinction between machine memory and pseudo-physical memory.

Put simply, machine memory refers to the entire amount of memory installed in the
machine, including that reserved by Xen, in use by various domains, or currently
unallocated. We consider machine memory to comprise a set of 4kB machine page
frames numbered consecutively starting from 0. Machine frame numbers mean the
same within Xen or any domain.
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Pseudo-physical memory, on the other hand, is a per-domain abstraction. It allows a
guest operating system to consider its memory allocation to consist of a contiguous
range of physical page frames starting at physical frame 0, despite the fact that the
underlying machine page frames may be sparsely allocated and in any order.

To achieve this, Xen maintains a globally readable machine-to-physical table which
records the mapping from machine page frames to pseudo-physical ones. In addition,
each domain is supplied with a physical-to-machine table which performs the inverse
mapping. Clearly the machine-to-physical table has size proportional to the amount of
RAM installed in the machine, while each physical-to-machine table has size propor-
tional to the memory allocation of the given domain.

Architecture dependent code in guest operating systems can then use the two tables to
provide the abstraction of pseudo-physical memory. In general, only certain special-
ized parts of the operating system (such as page table management) needs to under-
stand the difference between machine and pseudo-physical addresses.

3.3 Page Table Updates

In the default mode of operation, Xen enforces read-only access to page tables and
requires guest operating systems to explicitly request any modifications. Xen validates
all such requests and only applies updates that it deems safe. This is necessary to
prevent domains from adding arbitrary mappings to their page tables.

To aid validation, Xen associates a type and reference count with each memory page.
A page has one of the following mutually-exclusive types at any point in time: page
directory (PD), page table (PT), local descriptor table (LDT), global descriptor table
(GDT), or writable (RW). Note that a guest OS may always create readable mappings
of its own memory regardless of its current type.

This mechanism is used to maintain the invariants required for safety; for example,
a domain cannot have a writable mapping to any part of a page table as this would
require the page concerned to simultaneously be of types PT and RW.

mmu update(mmu update t *req, int count, int *success count, domid t domid)
This hypercall is used to make updates to either the domain’s pagetables or to the
machine to physical mapping table. It supports submitting a queue of updates, allowing
batching for maximal performance. Explicitly queuing updates using this interface will
cause any outstanding writable pagetable state to be flushed from the system.
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3.4 Writable Page Tables

Xen also provides an alternative mode of operation in which guests have the illusion
that their page tables are directly writable. Of course this is not really the case, since
Xen must still validate modifications to ensure secure partitioning. To this end, Xen
traps any write attempt to a memory page of type PT (i.e., that is currently part of a
page table). If such an access occurs, Xen temporarily allows write access to that page
while at the same time disconnecting it from the page table that is currently in use.
This allows the guest to safely make updates to the page because the newly-updated
entries cannot be used by the MMU until Xen revalidates and reconnects the page.
Reconnection occurs automatically in a number of situations: for example, when the
guest modifies a different page-table page, when the domain is preempted, or whenever
the guest uses Xen’s explicit page-table update interfaces.

Writable pagetable functionality is enabled when the guest requests it, using a vm assist
hypercall. Writable pagetables do not provide full virtualisation of the MMU, so the
memory management code of the guest still needs to be aware that it is running on
Xen. Since the guest’s page tables are used directly, it must translate pseudo-physical
addresses to real machine addresses when building page table entries. The guest may
not attempt to map its own pagetables writably, since this would violate the memory
type invariants; page tables will automatically be made writable by the hypervisor, as
necessary.

3.5 Shadow Page Tables

Finally, Xen also supports a form of shadow page tables in which the guest OS uses
a independent copy of page tables which are unknown to the hardware (i.e. which are
never pointed to by cr3). Instead Xen propagates changes made to the guest’s tables
to the real ones, and vice versa. This is useful for logging page writes (e.g. for live
migration or checkpoint). A full version of the shadow page tables also allows guest
OS porting with less effort.

3.6 Segment Descriptor Tables

At start of day a guest is supplied with a default GDT, which does not reside within its
own memory allocation. If the guest wishes to use other than the default ‘flat’ ring-1
and ring-3 segments that this GDT provides, it must register a custom GDT and/or
LDT with Xen, allocated from its own memory.

The following hypercall is used to specify a new GDT:

int set gdt(unsigned long *frame list, int entries)
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frame list: An array of up to 14 machine page frames within which the
GDT resides. Any frame registered as a GDT frame may only be mapped
read-only within the guest’s address space (e.g., no writable mappings,
no use as a page-table page, and so on). Only 14 pages may be specified
because pages 15 and 16 are reserved for the hypervisor’s GDT entries.

entries: The number of descriptor-entry slots in the GDT.

The LDT is updated via the generic MMU update mechanism (i.e., via the mmu update
hypercall.

3.7 Start of Day

The start-of-day environment for guest operating systems is rather different to that
provided by the underlying hardware. In particular, the processor is already executing
in protected mode with paging enabled.

Domain 0 is created and booted by Xen itself. For all subsequent domains, the ana-
logue of the boot-loader is the domain builder, user-space software running in domain
0. The domain builder is responsible for building the initial page tables for a domain
and loading its kernel image at the appropriate virtual address.

3.8 VM assists

Xen provides a number of “assists” for guest memory management. These are avail-
able on an “opt-in” basis to provide commonly-used extra functionality to a guest.

vm assist(unsigned int cmd, unsigned int type)
The cmd parameter describes the action to be taken, whilst the type parameter de-
scribes the kind of assist that is being referred to. Available commands are as follows:

VMASST CMD enable Enable a particular assist type

VMASST CMD disable Disable a particular assist type

And the available types are:

VMASST TYPE 4gb segments Provide emulated support for instructions that rely
on 4GB segments (such as the techniques used by some TLS solutions).

VMASST TYPE 4gb segments notify Provide a callback to the guest if the above
segment fixups are used: allows the guest to display a warning message during
boot.

VMASST TYPE writable pagetables Enable writable pagetable mode - described
above.
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Chapter 4

Xen Info Pages

The Shared info page is used to share various CPU-related state between the guest
OS and the hypervisor. This information includes VCPU status, time information
and event channel (virtual interrupt) state. The Start info page is used to pass build-
time information to the guest when it boots and when it is resumed from a suspended
state. This chapter documents the fields included in the shared info t and start info t
structures for use by the guest OS.

4.1 Shared info page

The shared info t is accessed at run time by both Xen and the guest OS. It is used to
pass information relating to the virtual CPU and virtual machine state between the OS
and the hypervisor.

The structure is declared in xen/include/public/xen.h:
typedef struct shared_info {

vcpu_info_t vcpu_info[MAX_VIRT_CPUS];

/*
* A domain can create "event channels" on which it can send and receive
* asynchronous event notifications. There are three classes of event that
* are delivered by this mechanism:
* 1. Bi-directional inter- and intra-domain connections. Domains must
* arrange out-of-band to set up a connection (usually by allocating
* an unbound ’listener’ port and avertising that via a storage service
* such as xenstore).
* 2. Physical interrupts. A domain with suitable hardware-access
* privileges can bind an event-channel port to a physical interrupt
* source.
* 3. Virtual interrupts (’events’). A domain can bind an event-channel
* port to a virtual interrupt source, such as the virtual-timer
* device or the emergency console.
*
* Event channels are addressed by a "port index". Each channel is
* associated with two bits of information:
* 1. PENDING -- notifies the domain that there is a pending notification
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* to be processed. This bit is cleared by the guest.
* 2. MASK -- if this bit is clear then a 0->1 transition of PENDING
* will cause an asynchronous upcall to be scheduled. This bit is only
* updated by the guest. It is read-only within Xen. If a channel
* becomes pending while the channel is masked then the ’edge’ is lost
* (i.e., when the channel is unmasked, the guest must manually handle
* pending notifications as no upcall will be scheduled by Xen).
*
* To expedite scanning of pending notifications, any 0->1 pending
* transition on an unmasked channel causes a corresponding bit in a
* per-vcpu selector word to be set. Each bit in the selector covers a
* ’C long’ in the PENDING bitfield array.
*/

unsigned long evtchn_pending[sizeof(unsigned long) * 8];
unsigned long evtchn_mask[sizeof(unsigned long) * 8];

/*
* Wallclock time: updated only by control software. Guests should base
* their gettimeofday() syscall on this wallclock-base value.
*/

uint32_t wc_version; /* Version counter: see vcpu_time_info_t. */
uint32_t wc_sec; /* Secs 00:00:00 UTC, Jan 1, 1970. */
uint32_t wc_nsec; /* Nsecs 00:00:00 UTC, Jan 1, 1970. */

arch_shared_info_t arch;

} shared_info_t;

vcpu info An array of vcpu info t structures, each of which holds either runtime in-
formation about a virtual CPU, or is “empty” if the corresponding VCPU does
not exist.

evtchn pending Guest-global array, with one bit per event channel. Bits are set if an
event is currently pending on that channel.

evtchn mask Guest-global array for masking notifications on event channels.

wc version Version counter for current wallclock time.

wc sec Whole seconds component of current wallclock time.

wc nsec Nanoseconds component of current wallclock time.

arch Host architecture-dependent portion of the shared info structure.

4.1.1 vcpu info t

typedef struct vcpu_info {
/*
* ’evtchn_upcall_pending’ is written non-zero by Xen to indicate
* a pending notification for a particular VCPU. It is then cleared
* by the guest OS /before/ checking for pending work, thus avoiding
* a set-and-check race. Note that the mask is only accessed by Xen
* on the CPU that is currently hosting the VCPU. This means that the
* pending and mask flags can be updated by the guest without special
* synchronisation (i.e., no need for the x86 LOCK prefix).
* This may seem suboptimal because if the pending flag is set by
* a different CPU then an IPI may be scheduled even when the mask
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* is set. However, note:
* 1. The task of ’interrupt holdoff’ is covered by the per-event-
* channel mask bits. A ’noisy’ event that is continually being
* triggered can be masked at source at this very precise
* granularity.
* 2. The main purpose of the per-VCPU mask is therefore to restrict
* reentrant execution: whether for concurrency control, or to
* prevent unbounded stack usage. Whatever the purpose, we expect
* that the mask will be asserted only for short periods at a time,
* and so the likelihood of a ’spurious’ IPI is suitably small.
* The mask is read before making an event upcall to the guest: a
* non-zero mask therefore guarantees that the VCPU will not receive
* an upcall activation. The mask is cleared when the VCPU requests
* to block: this avoids wakeup-waiting races.
*/

uint8_t evtchn_upcall_pending;
uint8_t evtchn_upcall_mask;
unsigned long evtchn_pending_sel;
arch_vcpu_info_t arch;
vcpu_time_info_t time;

} vcpu_info_t; /* 64 bytes (x86) */

evtchn upcall pending This is set non-zero by Xen to indicate that there are pending
events to be received.

evtchn upcall mask This is set non-zero to disable all interrupts for this CPU for
short periods of time. If individual event channels need to be masked, the
evtchn mask in the shared info t is used instead.

evtchn pending sel When an event is delivered to this VCPU, a bit is set in this se-
lector to indicate which word of the evtchn pending array in the shared info t
contains the event in question.

arch Architecture-specific VCPU info. On x86 this contains the virtualized CR2 reg-
ister (page fault linear address) for this VCPU.

time Time values for this VCPU.

4.1.2 vcpu time info

typedef struct vcpu_time_info {
/*
* Updates to the following values are preceded and followed by an
* increment of ’version’. The guest can therefore detect updates by
* looking for changes to ’version’. If the least-significant bit of
* the version number is set then an update is in progress and the guest
* must wait to read a consistent set of values.
* The correct way to interact with the version number is similar to
* Linux’s seqlock: see the implementations of read_seqbegin/read_seqretry.
*/

uint32_t version;
uint32_t pad0;
uint64_t tsc_timestamp; /* TSC at last update of time vals. */
uint64_t system_time; /* Time, in nanosecs, since boot. */
/*
* Current system time:
* system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
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* CPU frequency (Hz):
* ((10ˆ9 << 32) / tsc_to_system_mul) >> tsc_shift
*/

uint32_t tsc_to_system_mul;
int8_t tsc_shift;
int8_t pad1[3];

} vcpu_time_info_t; /* 32 bytes */

version Used to ensure the guest gets consistent time updates.

tsc timestamp Cycle counter timestamp of last time value; could be used to expolate
in between updates, for instance.

system time Time since boot (nanoseconds).

tsc to system mul Cycle counter to nanoseconds multiplier (used in extrapolating
current time).

tsc shift Cycle counter to nanoseconds shift (used in extrapolating current time).

4.1.3 arch shared info t

On x86, the arch shared info t is defined as follows (from xen/public/arch-x86 32.h):
typedef struct arch_shared_info {

unsigned long max_pfn; /* max pfn that appears in table */
/* Frame containing list of mfns containing list of mfns containing p2m. */
unsigned long pfn_to_mfn_frame_list_list;

} arch_shared_info_t;

max pfn The maximum PFN listed in the physical-to-machine mapping table (P2M
table).

pfn to mfn frame list list Machine address of the frame that contains the machine
addresses of the P2M table frames.

4.2 Start info page

The start info structure is declared as the following (in xen/include/public/xen.h):
#define MAX_GUEST_CMDLINE 1024
typedef struct start_info {

/* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */
char magic[32]; /* "Xen-<version>.<subversion>". */
unsigned long nr_pages; /* Total pages allocated to this domain. */
unsigned long shared_info; /* MACHINE address of shared info struct. */
uint32_t flags; /* SIF_xxx flags. */
unsigned long store_mfn; /* MACHINE page number of shared page. */
uint32_t store_evtchn; /* Event channel for store communication. */
unsigned long console_mfn; /* MACHINE address of console page. */
uint32_t console_evtchn; /* Event channel for console messages. */
/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */
unsigned long pt_base; /* VIRTUAL address of page directory. */
unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames. */
unsigned long mfn_list; /* VIRTUAL address of page-frame list. */
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unsigned long mod_start; /* VIRTUAL address of pre-loaded module. */
unsigned long mod_len; /* Size (bytes) of pre-loaded module. */
int8_t cmd_line[MAX_GUEST_CMDLINE];

} start_info_t;

The fields are in two groups: the first group are always filled in when a domain is
booted or resumed, the second set are only used at boot time.

The always-available group is as follows:

magic A text string identifying the Xen version to the guest.

nr pages The number of real machine pages available to the guest.

shared info Machine address of the shared info structure, allowing the guest to map
it during initialisation.

flags Flags for describing optional extra settings to the guest.

store mfn Machine address of the Xenstore communications page.

store evtchn Event channel to communicate with the store.

console mfn Machine address of the console data page.

console evtchn Event channel to notify the console backend.

The boot-only group may only be safely referred to during system boot:

pt base Virtual address of the page directory created for us by the domain builder.

nr pt frames Number of frames used by the builders’ bootstrap pagetables.

mfn list Virtual address of the list of machine frames this domain owns.

mod start Virtual address of any pre-loaded modules (e.g. ramdisk)

mod len Size of pre-loaded module (if any).

cmd line Kernel command line passed by the domain builder.
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Chapter 5

Event Channels

Event channels are the basic primitive provided by Xen for event notifications. An
event is the Xen equivalent of a hardware interrupt. They essentially store one bit of
information, the event of interest is signalled by transitioning this bit from 0 to 1.

Notifications are received by a guest via an upcall from Xen, indicating when an event
arrives (setting the bit). Further notifications are masked until the bit is cleared again
(therefore, guests must check the value of the bit after re-enabling event delivery to
ensure no missed notifications).

Event notifications can be masked by setting a flag; this is equivalent to disabling
interrupts and can be used to ensure atomicity of certain operations in the guest kernel.

5.1 Hypercall interface

event channel op(evtchn op t *op)
The event channel operation hypercall is used for all operations on event channels /
ports. Operations are distinguished by the value of the cmd field of the op structure.
The possible commands are described below:

EVTCHNOP alloc unbound Allocate a new event channel port, ready to be con-
nected to by a remote domain.

• Specified domain must exist.

• A free port must exist in that domain.

Unprivileged domains may only allocate their own ports, privileged domains
may also allocate ports in other domains.

EVTCHNOP bind interdomain Bind an event channel for interdomain communi-
cations.

• Caller domain must have a free port to bind.

17



• Remote domain must exist.

• Remote port must be allocated and currently unbound.

• Remote port must be expecting the caller domain as the “remote”.

EVTCHNOP bind virq Allocate a port and bind a VIRQ to it.

• Caller domain must have a free port to bind.

• VIRQ must be valid.

• VCPU must exist.

• VIRQ must not currently be bound to an event channel.

EVTCHNOP bind ipi Allocate and bind a port for notifying other virtual CPUs.

• Caller domain must have a free port to bind.

• VCPU must exist.

EVTCHNOP bind pirq Allocate and bind a port to a real IRQ.

• Caller domain must have a free port to bind.

• PIRQ must be within the valid range.

• Another binding for this PIRQ must not exist for this domain.

• Caller must have an available port.

EVTCHNOP close Close an event channel (no more events will be received).

• Port must be valid (currently allocated).

EVTCHNOP send Send a notification on an event channel attached to a port.

• Port must be valid.

• Only valid for Interdomain, IPI or Allocated Unbound ports.

EVTCHNOP status Query the status of a port; what kind of port, whether it is bound,
what remote domain is expected, what PIRQ or VIRQ it is bound to, what VCPU
will be notified, etc. Unprivileged domains may only query the state of their own
ports. Privileged domains may query any port.

EVTCHNOP bind vcpu Bind event channel to a particular VCPU - receive notifica-
tion upcalls only on that VCPU.

• VCPU must exist.

• Port must be valid.

• Event channel must be either: allocated but unbound, bound to an interdo-
main event channel, bound to a PIRQ.
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Chapter 6

Grant tables

Xen’s grant tables provide a generic mechanism to memory sharing between domains.
This shared memory interface underpins the split device drivers for block and network
IO.

Each domain has its own grant table. This is a data structure that is shared with Xen;
it allows the domain to tell Xen what kind of permissions other domains have on its
pages. Entries in the grant table are identified by grant references. A grant reference
is an integer, which indexes into the grant table. It acts as a capability which the grantee
can use to perform operations on the granter’s memory.

This capability-based system allows shared-memory communications between unpriv-
ileged domains. A grant reference also encapsulates the details of a shared page, re-
moving the need for a domain to know the real machine address of a page it is sharing.
This makes it possible to share memory correctly with domains running in fully virtu-
alised memory.

6.1 Interface

6.1.1 Grant table manipulation

Creating and destroying grant references is done by direct access to the grant table.
This removes the need to involve Xen when creating grant references, modifying ac-
cess permissions, etc. The grantee domain will invoke hypercalls to use the grant
references. Four main operations can be accomplished by directly manipulating the
table:

Grant foreign access allocate a new entry in the grant table and fill out the access
permissions accordingly. The access permissions will be looked up by Xen when
the grantee attempts to use the reference to map the granted frame.

End foreign access check that the grant reference is not currently in use, then remove
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the mapping permissions for the frame. This prevents further mappings from
taking place but does not allow forced revocations of existing mappings.

Grant foreign transfer allocate a new entry in the table specifying transfer permis-
sions for the grantee. Xen will look up this entry when the grantee attempts to
transfer a frame to the granter.

End foreign transfer remove permissions to prevent a transfer occurring in future. If
the transfer is already committed, modifying the grant table cannot prevent it
from completing.

6.1.2 Hypercalls

Use of grant references is accomplished via a hypercall. The grant table op hypercall
takes three arguments:

grant table op(unsigned int cmd, void *uop, unsigned int count)
cmd indicates the grant table operation of interest. uop is a pointer to a structure
(or an array of structures) describing the operation to be performed. The count field
describes how many grant table operations are being batched together.

The core logic is situated in xen/common/grant table.c. The grant table operation
hypercall can be used to perform the following actions:

GNTTABOP map grant ref Given a grant reference from another domain, map the
referred page into the caller’s address space.

GNTTABOP unmap grant ref Remove a mapping to a granted frame from the caller’s
address space. This is used to voluntarily relinquish a mapping to a granted page.

GNTTABOP setup table Setup grant table for caller domain.

GNTTABOP dump table Debugging operation.

GNTTABOP transfer Given a transfer reference from another domain, transfer own-
ership of a page frame to that domain.
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Chapter 7

Xenstore

Xenstore is the mechanism by which control-plane activities occur. These activities
include:

• Setting up shared memory regions and event channels for use with the split de-
vice drivers.

• Notifying the guest of control events (e.g. balloon driver requests)

• Reporting back status information from the guest (e.g. performance-related
statistics, etc).

The store is arranged as a hierachical collection of key-value pairs. Each domain has a
directory hierarchy containing data related to its configuration. Domains are permitted
to register for notifications about changes in subtrees of the store, and to apply changes
to the store transactionally.

7.1 Guidelines

A few principles govern the operation of the store:

• Domains should only modify the contents of their own directories.

• The setup protocol for a device channel should simply consist of entering the
configuration data into the store.

• The store should allow device discovery without requiring the relevant device
drivers to be loaded: a Xen “bus” should be visible to probing code in the guest.

• The store should be usable for inter-tool communications, allowing the tools
themselves to be decomposed into a number of smaller utilities, rather than a
single monolithic entity. This also facilitates the development of alternate user
interfaces to the same functionality.
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7.2 Store layout

There are three main paths in XenStore:

/vm stores configuration information about domain

/local/domain stores information about the domain on the local node (domid, etc.)

/tool stores information for the various tools

The /vm path stores configuration information for a domain. This information doesn’t
change and is indexed by the domain’s UUID. A /vm entry contains the following
information:

ssidref ssid reference for domain

uuid uuid of the domain (somewhat redundant)

on reboot the action to take on a domain reboot request (destroy or restart)

on poweroff the action to take on a domain halt request (destroy or restart)

on crash the action to take on a domain crash (destroy or restart)

vcpus the number of allocated vcpus for the domain

memory the amount of memory (in megabytes) for the domain Note: appears to
sometimes be empty for domain-0

vcpu avail the number of active vcpus for the domain (vcpus - number of disabled
vcpus)

name the name of the domain

/vm/<uuid>/image/
The image path is only available for Domain-Us and contains:

ostype identifies the builder type (linux or vmx)

kernel path to kernel on domain-0

cmdline command line to pass to domain-U kernel

ramdisk path to ramdisk on domain-0

/local
The /local path currently only contains one directory, /local/domain that is
indexed by domain id. It contains the running domain information. The reason to have
two storage areas is that during migration, the uuid doesn’t change but the domain id
does. The /local/domain directory can be created and populated before finalizing
the migration enabling localhost to localhost migration.

/local/domain/<domid>

This path contains:
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cpu time xend start time (this is only around for domain-0)

handle private handle for xend

name see /vm

on reboot see /vm

on poweroff see /vm

on crash see /vm

vm the path to the VM directory for the domain

domid the domain id (somewhat redundant)

running indicates that the domain is currently running

memory the current memory in megabytes for the domain (empty for domain-0?)

maxmem KiB the maximum memory for the domain (in kilobytes)

memory KiB the memory allocated to the domain (in kilobytes)

cpu the current CPU the domain is pinned to (empty for domain-0?)

cpu weight the weight assigned to the domain

vcpu avail a bitmap telling the domain whether it may use a given VCPU

online vcpus how many vcpus are currently online

vcpus the total number of vcpus allocated to the domain

console/ a directory for console information

ring-ref the grant table reference of the console ring queue

port the event channel being used for the console ring queue (local port)

tty the current tty the console data is being exposed of

limit the limit (in bytes) of console data to buffer

backend/ a directory containing all backends the domain hosts

vbd/ a directory containing vbd backends

<domid>/ a directory containing vbd’s for domid

<virtual-device>/ a directory for a particular virtual-device on do-
mid

frontend-id domain id of frontend

frontend the path to the frontend domain

physical-device backend device number

sector-size backend sector size

info 0 read/write, 1 read-only (is this right?)
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domain name of frontend domain

params parameters for device

type the type of the device

dev the virtual device (as given by the user)

node output from block creation script

vif/ a directory containing vif backends

<domid>/ a directory containing vif’s for domid

<vif number>/ a directory for each vif

frontend-id the domain id of the frontend

frontend the path to the frontend

mac the mac address of the vif

bridge the bridge the vif is connected to

handle the handle of the vif

script the script used to create/stop the vif

domain the name of the frontend

vtpm/ a directory containin vtpm backends

<domid>/ a directory containing vtpm’s for domid

<vtpm number>/ a directory for each vtpm

frontend-id the domain id of the frontend

frontend the path to the frontend

instance the instance of the virtual TPM that is used

pref instance the instance number as given in the VM configuration
file; may be different from instance

domain the name of the domain of the frontend

device/ a directory containing the frontend devices for the domain

vbd/ a directory containing vbd frontend devices for the domain

<virtual-device>/ a directory containing the vbd frontend for virtual-
device

virtual-device the device number of the frontend device

backend-id the domain id of the backend

backend the path of the backend in the store (/local/domain path)

ring-ref the grant table reference for the block request ring queue
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event-channel the event channel used for the block request ring queue

vif/ a directory containing vif frontend devices for the domain

<id>/ a directory for vif id frontend device for the domain

backend-id the backend domain id

mac the mac address of the vif

handle the internal vif handle

backend a path to the backend’s store entry

tx-ring-ref the grant table reference for the transmission ring
queue

rx-ring-ref the grant table reference for the receiving ring queue

event-channel the event channel used for the two ring queues

vtpm/ a directory containing the vtpm frontend device for the domain

<id> a directory for vtpm id frontend device for the domain

backend-id the backend domain id

backend a path to the backend’s store entry

ring-ref the grant table reference for the tx/rx ring

event-channel the event channel used for the ring

device-misc/ miscellanous information for devices

vif/ miscellanous information for vif devices

nextDeviceID the next device id to use

store/ per-domain information for the store

port the event channel used for the store ring queue

ring-ref - the grant table reference used for the store’s communication channel

image - private xend information
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Chapter 8

Devices

Virtual devices under Xen are provided by a split device driver architecture. The
illusion of the virtual device is provided by two co-operating drivers: the frontend,
which runs an the unprivileged domain and the backend, which runs in a domain with
access to the real device hardware (often called a driver domain; in practice domain
0 usually fulfills this function).

The frontend driver appears to the unprivileged guest as if it were a real device, for
instance a block or network device. It receives IO requests from its kernel as usual,
however since it does not have access to the physical hardware of the system it must
then issue requests to the backend. The backend driver is responsible for receiving
these IO requests, verifying that they are safe and then issuing them to the real device
hardware. The backend driver appears to its kernel as a normal user of in-kernel IO
functionality. When the IO completes the backend notifies the frontend that the data is
ready for use; the frontend is then able to report IO completion to its own kernel.

Frontend drivers are designed to be simple; most of the complexity is in the backend,
which has responsibility for translating device addresses, verifying that requests are
well-formed and do not violate isolation guarantees, etc.

Split drivers exchange requests and responses in shared memory, with an event chan-
nel for asynchronous notifications of activity. When the frontend driver comes up, it
uses Xenstore to set up a shared memory frame and an interdomain event channel for
communications with the backend. Once this connection is established, the two can
communicate directly by placing requests / responses into shared memory and then
sending notifications on the event channel. This separation of notification from data
transfer allows message batching, and results in very efficient device access.

This chapter focuses on some individual split device interfaces available to Xen guests.
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8.1 Network I/O

Virtual network device services are provided by shared memory communication with
a backend domain. From the point of view of other domains, the backend may be
viewed as a virtual ethernet switch element with each domain having one or more
virtual network interfaces connected to it.

From the point of view of the backend domain itself, the network backend driver con-
sists of a number of ethernet devices. Each of these has a logical direct connection to
a virtual network device in another domain. This allows the backend domain to route,
bridge, firewall, etc the traffic to / from the other domains using normal operating
system mechanisms.

8.1.1 Backend Packet Handling

The backend driver is responsible for a variety of actions relating to the transmission
and reception of packets from the physical device. With regard to transmission, the
backend performs these key actions:

• Validation: To ensure that domains do not attempt to generate invalid (e.g.
spoofed) traffic, the backend driver may validate headers ensuring that source
MAC and IP addresses match the interface that they have been sent from.

Validation functions can be configured using standard firewall rules (iptables
in the case of Linux).

• Scheduling: Since a number of domains can share a single physical network
interface, the backend must mediate access when several domains each have
packets queued for transmission. This general scheduling function subsumes
basic shaping or rate-limiting schemes.

• Logging and Accounting: The backend domain can be configured with clas-
sifier rules that control how packets are accounted or logged. For example, log
messages might be generated whenever a domain attempts to send a TCP packet
containing a SYN.

On receipt of incoming packets, the backend acts as a simple demultiplexer: Packets
are passed to the appropriate virtual interface after any necessary logging and account-
ing have been carried out.

8.1.2 Data Transfer

Each virtual interface uses two “descriptor rings”, one for transmit, the other for re-
ceive. Each descriptor identifies a block of contiguous machine memory allocated to
the domain.
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The transmit ring carries packets to transmit from the guest to the backend domain.
The return path of the transmit ring carries messages indicating that the contents have
been physically transmitted and the backend no longer requires the associated pages
of memory.

To receive packets, the guest places descriptors of unused pages on the receive ring.
The backend will return received packets by exchanging these pages in the domain’s
memory with new pages containing the received data, and passing back descriptors
regarding the new packets on the ring. This zero-copy approach allows the backend to
maintain a pool of free pages to receive packets into, and then deliver them to appro-
priate domains after examining their headers.

If a domain does not keep its receive ring stocked with empty buffers then packets
destined to it may be dropped. This provides some defence against receive livelock
problems because an overloaded domain will cease to receive further data. Similarly,
on the transmit path, it provides the application with feedback on the rate at which
packets are able to leave the system.

Flow control on rings is achieved by including a pair of producer indexes on the shared
ring page. Each side will maintain a private consumer index indicating the next out-
standing message. In this manner, the domains cooperate to divide the ring into two
message lists, one in each direction. Notification is decoupled from the immediate
placement of new messages on the ring; the event channel will be used to generate
notification when either a certain number of outstanding messages are queued, or a
specified number of nanoseconds have elapsed since the oldest message was placed on
the ring.

8.1.3 Network ring interface

The network device uses two shared memory rings for communication: one for trans-
mit, one for receieve.

Transmit requests are described by the following structure:
typedef struct netif_tx_request {

grant_ref_t gref; /* Reference to buffer page */
uint16_t offset; /* Offset within buffer page */
uint16_t flags; /* NETTXF_* */
uint16_t id; /* Echoed in response message. */
uint16_t size; /* Packet size in bytes. */

} netif_tx_request_t;

gref Grant reference for the network buffer

offset Offset to data

flags Transmit flags (currently only NETTXF csum blank is supported, to indicate
that the protocol checksum field is incomplete).
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id Echoed to guest by the backend in the ring-level response so that the guest can
match it to this request

size Buffer size

Each transmit request is followed by a transmit response at some later date. This is
part of the shared-memory communication protocol and allows the guest to (poten-
tially) retire internal structures related to the request. It does not imply a network-level
response. This structure is as follows:
typedef struct netif_tx_response {

uint16_t id;
int16_t status;

} netif_tx_response_t;

id Echo of the ID field in the corresponding transmit request.

status Success / failure status of the transmit request.

Receive requests must be queued by the frontend, accompanied by a donation of page-
frames to the backend. The backend transfers page frames full of data back to the
guest
typedef struct {

uint16_t id; /* Echoed in response message. */
grant_ref_t gref; /* Reference to incoming granted frame */

} netif_rx_request_t;

id Echoed by the frontend to identify this request when responding.

gref Transfer reference - the backend will use this reference to transfer a frame of
network data to us.

Receive response descriptors are queued for each received frame. Note that these may
only be queued in reply to an existing receive request, providing an in-built form of
traffic throttling.
typedef struct {

uint16_t id;
uint16_t offset; /* Offset in page of start of received packet */
uint16_t flags; /* NETRXF_* */
int16_t status; /* -ve: BLKIF_RSP_* ; +ve: Rx’ed pkt size. */

} netif_rx_response_t;

id ID echoed from the original request, used by the guest to match this response to the
original request.

offset Offset to data within the transferred frame.

flags Transmit flags (currently only NETRXF csum valid is supported, to indicate
that the protocol checksum field has already been validated).

status Success / error status for this operation.

Note that the receive protocol includes a mechanism for guests to receive incoming
memory frames but there is no explicit transfer of frames in the other direction. Guests
are expected to return memory to the hypervisor in order to use the network interface.
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They must do this or they will exceed their maximum memory reservation and will not
be able to receive incoming frame transfers. When necessary, the backend is able to
replenish its pool of free network buffers by claiming some of this free memory from
the hypervisor.

8.2 Block I/O

All guest OS disk access goes through the virtual block device VBD interface. This
interface allows domains access to portions of block storage devices visible to the the
block backend device. The VBD interface is a split driver, similar to the network
interface described above. A single shared memory ring is used between the frontend
and backend drivers for each virtual device, across which IO requests and responses
are sent.

Any block device accessible to the backend domain, including network-based block
(iSCSI, *NBD, etc), loopback and LVM/MD devices, can be exported as a VBD. Each
VBD is mapped to a device node in the guest, specified in the guest’s startup configu-
ration.

8.2.1 Data Transfer

The per-(virtual)-device ring between the guest and the block backend supports two
messages:

READ: Read data from the specified block device. The front end identifies the device
and location to read from and attaches pages for the data to be copied to (typ-
ically via DMA from the device). The backend acknowledges completed read
requests as they finish.

WRITE: Write data to the specified block device. This functions essentially as READ,
except that the data moves to the device instead of from it.

8.2.2 Block ring interface

The block interface is defined by the structures passed over the shared memory in-
terface. These structures are either requests (from the frontend to the backend) or
responses (from the backend to the frontend).

The request structure is defined as follows:
typedef struct blkif_request {

uint8_t operation; /* BLKIF_OP_??? */
uint8_t nr_segments; /* number of segments */
blkif_vdev_t handle; /* only for read/write requests */
uint64_t id; /* private guest value, echoed in resp */
blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */
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struct blkif_request_segment {
grant_ref_t gref; /* reference to I/O buffer frame */
/* @first_sect: first sector in frame to transfer (inclusive). */
/* @last_sect: last sector in frame to transfer (inclusive). */
uint8_t first_sect, last_sect;

} seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
} blkif_request_t;

The fields are as follows:

operation operation ID: one of the operations described above

nr segments number of segments for scatter / gather IO described by this request

handle identifier for a particular virtual device on this interface

id this value is echoed in the response message for this IO; the guest may use it to
identify the original request

sector number start sector on the virtal device for this request

frame and sects This array contains structures encoding scatter-gather IO to be per-
formed:

gref The grant reference for the foreign I/O buffer page.

first sect First sector to access within the buffer page (0 to 7).

last sect Last sector to access within the buffer page (0 to 7).

Data will be transferred into frames at an offset determined by the value of
first sect.

8.3 Virtual TPM

Virtual TPM (VTPM) support provides TPM functionality to each virtual machine that
requests this functionality in its configuration file. The interface enables domains to
access therr own private TPM like it was a hardware TPM built into the machine.

The virtual TPM interface is implemented as a split driver, similar to the network
and block interfaces described above. The user domain hosting the frontend exports
a character device /dev/tpm0 to user-level applications for communicating with the
virtual TPM. This is the same device interface that is also offered if a hardware TPM
is available in the system. The backend provides a single interface /dev/vtpm where the
virtual TPM is waiting for commands from all domains that have located their backend
in a given domain.

8.3.1 Data Transfer

A single shared memory ring is used between the frontend and backend drivers. TPM
requests and responses are sent in pages where a pointer to those pages and other
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information is placed into the ring such that the backend can map the pages into its
memory space using the grant table mechanism.

The backend driver has been implemented to only accept well-formed TPM requests.
To meet this requirement, the length inidicator in the TPM request must correctly
indicate the length of the request. Otherwise an error message is automatically sent
back by the device driver.

The virtual TPM implementation listenes for TPM request on /dev/vtpm. Since it must
be able to apply the TPM request packet to the virtual TPM instance associated with the
virtual machine, a 4-byte virtual TPM instance identifier is prepended to each packet
by the backend driver (in network byte order) for internal routing of the request.

8.3.2 Virtual TPM ring interface

The TPM protocol is a strict request/response protocol and therefore only one ring is
used to send requests from the frontend to the backend and responses on the reverse
path.

The request/response structure is defined as follows:
typedef struct {

unsigned long addr; /* Machine address of packet. */
grant_ref_t ref; /* grant table access reference. */
uint16_t unused; /* unused */
uint16_t size; /* Packet size in bytes. */

} tpmif_tx_request_t;

The fields are as follows:

addr The machine address of the page asscoiated with the TPM request/response; a
request/response may span multiple pages

ref The grant table reference associated with the address.

size The size of the remaining packet; up to PAGE SIZE bytes can be found in the
page referenced by ’addr’

The frontend initially allocates several pages whose addresses are stored in the ring.
Only these pages are used for exchange of requests and responses.
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Chapter 9

Further Information

If you have questions that are not answered by this manual, the sources of informa-
tion listed below may be of interest to you. Note that bug reports, suggestions and
contributions related to the software (or the documentation) should be sent to the Xen
developers’ mailing list (address below).

9.1 Other documentation

If you are mainly interested in using (rather than developing for) Xen, the Xen Users’
Manual is distributed in the docs/ directory of the Xen source distribution.

9.2 Online references

The official Xen web site can be found at:

http://www.xensource.com

This contains links to the latest versions of all online documentation, including the
latest version of the FAQ.

Information regarding Xen is also available at the Xen Wiki at

http://wiki.xensource.com/xenwiki/

The Xen project uses Bugzilla as its bug tracking system. You’ll find the Xen Bugzilla
at http://bugzilla.xensource.com/bugzilla/.
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9.3 Mailing lists

There are several mailing lists that are used to discuss Xen related topics. The most
widely relevant are listed below. An official page of mailing lists and subscription
information can be found at

http://lists.xensource.com/

xen-devel@lists.xensource.com Used for development discussions and bug reports.
Subscribe at:
http://lists.xensource.com/xen-devel

xen-users@lists.xensource.com Used for installation and usage discussions and re-
quests for help. Subscribe at:
http://lists.xensource.com/xen-users

xen-announce@lists.xensource.com Used for announcements only. Subscribe at:
http://lists.xensource.com/xen-announce

xen-changelog@lists.xensource.com Changelog feed from the unstable and 2.0 trees
- developer oriented. Subscribe at:
http://lists.xensource.com/xen-changelog
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Appendix A

Xen Hypercalls

Hypercalls represent the procedural interface to Xen; this appendix categorizes and
describes the current set of hypercalls.

A.1 Invoking Hypercalls

Hypercalls are invoked in a manner analogous to system calls in a conventional oper-
ating system; a software interrupt is issued which vectors to an entry point within Xen.
On x86/32 machines the instruction required is int $82; the (real) IDT is setup so
that this may only be issued from within ring 1. The particular hypercall to be invoked
is contained in EAX — a list mapping these values to symbolic hypercall names can be
found in xen/include/public/xen.h.

On some occasions a set of hypercalls will be required to carry out a higher-level
function; a good example is when a guest operating wishes to context switch to a new
process which requires updating various privileged CPU state. As an optimization for
these cases, there is a generic mechanism to issue a set of hypercalls as a batch:

multicall(void *call list, int nr calls)
Execute a series of hypervisor calls; nr calls is the length of the array
of multicall entry t structures pointed to be call list. Each
entry contains the hypercall operation code followed by up to 7 word-
sized arguments.

Note that multicalls are provided purely as an optimization; there is no requirement to
use them when first porting a guest operating system.
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A.2 Virtual CPU Setup

At start of day, a guest operating system needs to setup the virtual CPU it is executing
on. This includes installing vectors for the virtual IDT so that the guest OS can handle
interrupts, page faults, etc. However the very first thing a guest OS must setup is a pair
of hypervisor callbacks: these are the entry points which Xen will use when it wishes
to notify the guest OS of an occurrence.

set callbacks(unsigned long event selector, unsigned long event address,
unsigned long failsafe selector, unsigned long failsafe address)
Register the normal (“event”) and failsafe callbacks for event processing.
In each case the code segment selector and address within that segment
are provided. The selectors must have RPL 1; in XenLinux we simply use
the kernel’s CS for both event selector and failsafe selector.

The value event address specifies the address of the guest OSes event
handling and dispatch routine; the failsafe address specifies a separate
entry point which is used only if a fault occurs when Xen attempts to use
the normal callback.

On x86/64 systems the hypercall takes slightly different arguments. This is because
callback CS does not need to be specified (since teh callbacks are entered via SYS-
RET), and also because an entry address needs to be specified for SYSCALLs from
guest user space:

set callbacks(unsigned long event address, unsigned long failsafe address,
unsigned long syscall address)

After installing the hypervisor callbacks, the guest OS can install a ‘virtual IDT’ by
using the following hypercall:

set trap table(trap info t *table)
Install one or more entries into the per-domain trap handler table (essen-
tially a software version of the IDT). Each entry in the array pointed to by
table includes the exception vector number with the corresponding seg-
ment selector and entry point. Most guest OSes can use the same handlers
on Xen as when running on the real hardware.

A further hypercall is provided for the management of virtual CPUs:

vcpu op(int cmd, int vcpuid, void *extra args)
This hypercall can be used to bootstrap VCPUs, to bring them up and
down and to test their current status.
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A.3 Scheduling and Timer

Domains are preemptively scheduled by Xen according to the parameters installed by
domain 0 (see Section A.10). In addition, however, a domain may choose to explicitly
control certain behavior with the following hypercall:

sched op new(int cmd, void *extra args)
Request scheduling operation from hypervisor. The following sub-commands
are available:

SCHEDOP yield voluntarily yields the CPU, but leaves the caller marked
as runnable. No extra arguments are passed to this command.

SCHEDOP block removes the calling domain from the run queue and
causes it to sleep until an event is delivered to it. No extra arguments
are passed to this command.

SCHEDOP shutdown is used to end the calling domain’s execution.
The extra argument is a sched shutdown structure which indicates
the reason why the domain suspended (e.g., for reboot, halt, power-
off).

SCHEDOP poll allows a VCPU to wait on a set of event channels with
an optional timeout (all of which are specified in the sched poll extra
argument). The semantics are similar to the UNIX poll system call.
The caller must have event-channel upcalls masked when executing
this command.

sched op new was not available prior to Xen 3.0.2. Older versions provide only the
following hypercall:

sched op(int cmd, unsigned long extra arg)
This hypercall supports the following subset of sched op new commands:

SCHEDOP yield (extra argument is 0).

SCHEDOP block (extra argument is 0).

SCHEDOP shutdown (extra argument is numeric reason code).

To aid the implementation of a process scheduler within a guest OS, Xen provides a
virtual programmable timer:

set timer op(uint64 t timeout)
Request a timer event to be sent at the specified system time (time in
nanoseconds since system boot).

Note that calling set timer op prior to sched op allows block-with-timeout semantics.
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A.4 Page Table Management

Since guest operating systems have read-only access to their page tables, Xen must
be involved when making any changes. The following multi-purpose hypercall can
be used to modify page-table entries, update the machine-to-physical mapping table,
flush the TLB, install a new page-table base pointer, and more.

mmu update(mmu update t *req, int count, int *success count)
Update the page table for the domain; a set of count updates are submitted
for processing in a batch, with success count being updated to report the
number of successful updates.

Each element of req[] contains a pointer (address) and value; the least
significant 2-bits of the pointer are used to distinguish the type of update
requested as follows:

MMU NORMAL PT UPDATE: update a page directory entry or page
table entry to the associated value; Xen will check that the update is
safe, as described in Chapter 3.

MMU MACHPHYS UPDATE: update an entry in the machine-to-physical
table. The calling domain must own the machine page in question
(or be privileged).

Explicitly updating batches of page table entries is extremely efficient, but can require
a number of alterations to the guest OS. Using the writable page table mode (Chapter 3)
is recommended for new OS ports.

Regardless of which page table update mode is being used, however, there are some
occasions (notably handling a demand page fault) where a guest OS will wish to mod-
ify exactly one PTE rather than a batch, and where that PTE is mapped into the current
address space. This is catered for by the following:

update va mapping(unsigned long va, uint64 t val, unsigned long
flags)
Update the currently installed PTE that maps virtual address va to new
value val. As with mmu update, Xen checks the modification is safe
before applying it. The flags determine which kind of TLB flush, if any,
should follow the update.

Finally, sufficiently privileged domains may occasionally wish to manipulate the pages
of others:

update va mapping(unsigned long va, uint64 t val, unsigned long
flags, domid t domid)
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Identical to update va mapping save that the pages being mapped must
belong to the domain domid.

An additional MMU hypercall provides an “extended command” interface. This pro-
vides additional functionality beyond the basic table updating commands:

mmuext op(struct mmuext op *op, int count, int *success count,
domid t domid)
This hypercall is used to perform additional MMU operations. These in-
clude updating cr3 (or just re-installing it for a TLB flush), requesting
various kinds of TLB flush, flushing the cache, installing a new LDT, or
pinning & unpinning page-table pages (to ensure their reference count
doesn’t drop to zero which would require a revalidation of all entries).
Some of the operations available are restricted to domains with sufficient
system privileges.

It is also possible for privileged domains to reassign page ownership via
an extended MMU operation, although grant tables are used instead of
this where possible; see Section A.8.

Finally, a hypercall interface is exposed to activate and deactivate various optional
facilities provided by Xen for memory management.

vm assist(unsigned int cmd, unsigned int type)
Toggle various memory management modes (in particular writable page
tables).

A.5 Segmentation Support

Xen allows guest OSes to install a custom GDT if they require it; this is context
switched transparently whenever a domain is [de]scheduled. The following hypercall
is effectively a ‘safe’ version of lgdt:

set gdt(unsigned long *frame list, int entries)
Install a global descriptor table for a domain; frame list is an array of up
to 16 machine page frames within which the GDT resides, with entries
being the actual number of descriptor-entry slots. All page frames must be
mapped read-only within the guest’s address space, and the table must be
large enough to contain Xen’s reserved entries (see xen/include/public/arch-
x86 32.h).

Many guest OSes will also wish to install LDTs; this is achieved by using mmu update
with an extended command, passing the linear address of the LDT base along with the
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number of entries. No special safety checks are required; Xen needs to perform this
task simply since lldt requires CPL 0.

Xen also allows guest operating systems to update just an individual segment descrip-
tor in the GDT or LDT:

update descriptor(uint64 t ma, uint64 t desc)
Update the GDT/LDT entry at machine address ma; the new 8-byte de-
scriptor is stored in desc. Xen performs a number of checks to ensure the
descriptor is valid.

Guest OSes can use the above in place of context switching entire LDTs (or the GDT)
when the number of changing descriptors is small.

A.6 Context Switching

When a guest OS wishes to context switch between two processes, it can use the page
table and segmentation hypercalls described above to perform the the bulk of the priv-
ileged work. In addition, however, it will need to invoke Xen to switch the kernel (ring
1) stack pointer:

stack switch(unsigned long ss, unsigned long esp)
Request kernel stack switch from hypervisor; ss is the new stack segment,
which esp is the new stack pointer.

A useful hypercall for context switching allows “lazy” save and restore of floating
point state:

fpu taskswitch(int set)
This call instructs Xen to set the TS bit in the cr0 control register; this
means that the next attempt to use floating point will cause a trap which
the guest OS can trap. Typically it will then save/restore the FP state, and
clear the TS bit, using the same call.

This is provided as an optimization only; guest OSes can also choose to save and
restore FP state on all context switches for simplicity.

Finally, a hypercall is provided for entering vm86 mode:

switch vm86
This allows the guest to run code in vm86 mode, which is needed for some
legacy software.
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A.7 Physical Memory Management

As mentioned previously, each domain has a maximum and current memory allocation.
The maximum allocation, set at domain creation time, cannot be modified. However
a domain can choose to reduce and subsequently grow its current allocation by using
the following call:

memory op(unsigned int op, void *arg)
Increase or decrease current memory allocation (as determined by the
value of op). The available operations are:

XENMEM increase reservation Request an increase in machine mem-
ory allocation; arg must point to a xen memory reservation struc-
ture.

XENMEM decrease reservation Request a decrease in machine mem-
ory allocation; arg must point to a xen memory reservation struc-
ture.

XENMEM maximum ram page Request the frame number of the highest-
addressed frame of machine memory in the system. arg must point
to an unsigned long where this value will be stored.

XENMEM current reservation Returns current memory reservation of
the specified domain.

XENMEM maximum reservation Returns maximum memory resreva-
tion of the specified domain.

In addition to simply reducing or increasing the current memory allocation via a ‘bal-
loon driver’, this call is also useful for obtaining contiguous regions of machine mem-
ory when required (e.g. for certain PCI devices, or if using superpages).

A.8 Inter-Domain Communication

Xen provides a simple asynchronous notification mechanism via event channels. Each
domain has a set of end-points (or ports) which may be bound to an event source (e.g.
a physical IRQ, a virtual IRQ, or an port in another domain). When a pair of end-points
in two different domains are bound together, then a ‘send’ operation on one will cause
an event to be received by the destination domain.

The control and use of event channels involves the following hypercall:

event channel op(evtchn op t *op)
Inter-domain event-channel management; op is a discriminated union which
allows the following 7 operations:
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alloc unbound: allocate a free (unbound) local port and prepare for con-
nection from a specified domain.

bind virq: bind a local port to a virtual IRQ; any particular VIRQ can be
bound to at most one port per domain.

bind pirq: bind a local port to a physical IRQ; once more, a given pIRQ
can be bound to at most one port per domain. Furthermore the call-
ing domain must be sufficiently privileged.

bind interdomain: construct an interdomain event channel; in general,
the target domain must have previously allocated an unbound port
for this channel, although this can be bypassed by privileged do-
mains during domain setup.

close: close an interdomain event channel.

send: send an event to the remote end of a interdomain event channel.

status: determine the current status of a local port.

For more details see xen/include/public/event channel.h.

Event channels are the fundamental communication primitive between Xen domains
and seamlessly support SMP. However they provide little bandwidth for communica-
tion per se, and hence are typically married with a piece of shared memory to produce
effective and high-performance inter-domain communication.

Safe sharing of memory pages between guest OSes is carried out by granting access on
a per page basis to individual domains. This is achieved by using the grant table op
hypercall.

grant table op(unsigned int cmd, void *uop, unsigned int count)
Used to invoke operations on a grant reference, to setup the grant table
and to dump the tables’ contents for debugging.

A.9 IO Configuration

Domains with physical device access (i.e. driver domains) receive limited access to
certain PCI devices (bus address space and interrupts). However many guest operating
systems attempt to determine the PCI configuration by directly access the PCI BIOS,
which cannot be allowed for safety.

Instead, Xen provides the following hypercall:

physdev op(void *physdev op)
Set and query IRQ configuration details, set the system IOPL, set the TSS
IO bitmap.
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For examples of using physdev op, see the Xen-specific PCI code in the linux sparse
tree.

A.10 Administrative Operations

A large number of control operations are available to a sufficiently privileged domain
(typically domain 0). These allow the creation and management of new domains, for
example. A complete list is given below: for more details on any or all of these, please
see xen/include/public/dom0 ops.h

dom0 op(dom0 op t *op)
Administrative domain operations for domain management. The options
are:

DOM0 GETMEMLIST: get list of pages used by the domain

DOM0 SCHEDCTL:
DOM0 ADJUSTDOM: adjust scheduling priorities for domain

DOM0 CREATEDOMAIN: create a new domain

DOM0 DESTROYDOMAIN: deallocate all resources associated with
a domain

DOM0 PAUSEDOMAIN: remove a domain from the scheduler run queue.

DOM0 UNPAUSEDOMAIN: mark a paused domain as schedulable once
again.

DOM0 GETDOMAININFO: get statistics about the domain

DOM0 SETDOMAININFO: set VCPU-related attributes

DOM0 MSR: read or write model specific registers

DOM0 DEBUG: interactively invoke the debugger

DOM0 SETTIME: set system time

DOM0 GETPAGEFRAMEINFO:
DOM0 READCONSOLE: read console content from hypervisor buffer

ring

DOM0 PINCPUDOMAIN: pin domain to a particular CPU

DOM0 TBUFCONTROL: get and set trace buffer attributes

DOM0 PHYSINFO: get information about the host machine

DOM0 SCHED ID: get the ID of the current Xen scheduler

DOM0 SHADOW CONTROL: switch between shadow page-table modes
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DOM0 SETDOMAINMAXMEM: set maximum memory allocation of
a domain

DOM0 GETPAGEFRAMEINFO2: batched interface for getting page
frame info

DOM0 ADD MEMTYPE: set MTRRs

DOM0 DEL MEMTYPE: remove a memory type range

DOM0 READ MEMTYPE: read MTRR

DOM0 PERFCCONTROL: control Xen’s software performance coun-
ters

DOM0 MICROCODE: update CPU microcode

DOM0 IOPORT PERMISSION: modify domain permissions for an IO
port range (enable / disable a range for a particular domain)

DOM0 GETVCPUCONTEXT: get context from a VCPU

DOM0 GETVCPUINFO: get current state for a VCPU

DOM0 GETDOMAININFOLIST: batched interface to get domain info

DOM0 PLATFORM QUIRK: inform Xen of a platform quirk it needs
to handle (e.g. noirqbalance)

DOM0 PHYSICAL MEMORY MAP: get info about dom0’s memory
map

DOM0 MAX VCPUS: change max number of VCPUs for a domain

DOM0 SETDOMAINHANDLE: set the handle for a domain

Most of the above are best understood by looking at the code implementing them (in
xen/common/dom0 ops.c) and in the user-space tools that use them (mostly in
tools/libxc).

Hypercalls relating to the management of the Access Control Module are also re-
stricted to domain 0 access for now:

acm op(struct acm op * u acm op)
This hypercall can be used to configure the state of the ACM, query that
state, request access control decisions and dump additional information.

A.11 Debugging Hypercalls

A few additional hypercalls are mainly useful for debugging:

console io(int cmd, int count, char *str)
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Use Xen to interact with the console; operations are:

CONSOLEIO write: Output count characters from buffer str.

CONSOLEIO read: Input at most count characters into buffer str.

A pair of hypercalls allows access to the underlying debug registers:

set debugreg(int reg, unsigned long value)
Set debug register reg to value

get debugreg(int reg)
Return the contents of the debug register reg

And finally:

xen version(int cmd)
Request Xen version number.

This is useful to ensure that user-space tools are in sync with the underlying hypervisor.
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