ArgPROLEG: A Normative Framework for The
JUF Theory

Zohreh Shams !, Marina De Vos !, Ken Satoh 2

! University of Bath, Dept. of Computer Science, UK
{z.shams, cssmdv}@bath.ac.uk
2 National Institute of Informatics, Principles of Informatics Res. Devision, Japan
ksatoh@nii.ac.jp

Abstract. In this paper we propose, ArgPROLEG, a normative frame-
work for legal reasoning based on PROLEG, an implementation of the
the Japanese “theory of presupposed ultimate facts” (JUF). This the-
ory was mainly developed with the purpose of modelling the process of
decision making by judges in the court. Not having complete and ac-
curate information about each case, makes uncertainty an unavoidable
part of decision making for judges. In the JUF theory each party that
puts forward a claim needs to be able to prove this claim, due to associ-
ated burden of proof. Not being able to provide such a proof for a claim,
enables the judge to discard that claim although she/he might not be
certain about the truth. The framework that we offer benefits from the
use of argumentation theory as well as normative framework in multi
agent systems, to bring the reasoning closer to the user. The nature of
argumentation in dealing with incomplete information on the one hand
and being presentable in the form of dialogues on the other hand, has
furthered the emergence and popularity of argumentation in modelling
legal disputes. The use of multiple agents allows more flexibility for the
behaviour of the parties involved.

Keywords: Legal Reasoning, Normative Framework, Argumentation,
Agents

1 Introduction

Legal reasoning is a rich application domain for argumentation in which ex-
changing dialogues and inferencing are combined [16]. On the other hand, legal
reasoning is a rich domain for agent modelling in which parties can be modelled
as individual agents [13]. In the past two decades, combining argumentation and
agents technology has provided a great modelling tool for legal disputes in which
multiple parties are involved in a dispute and they each try to prove their own
claims [3, 15].

In this work, we offer a normative framework for the JUF theory by means
of argumentation and multi-agent systems. This allows an easier presentation
of this theory, compared to the previous implementation, PROLEG [21]. The

JUF theory is a decision making tool that has already been successfully used in
modelling civil litigation [20]. However, having the users - lawyers and judges - of
the system in mind, some of the semantics of logic programming does not seem
to be fully accessible to the users. We, therefore, have changed the architecture
and algorithm of PROLEG in a way that brings the reasoning process closer
to the users. For this purpose, we have used the dialectical proof procedure as
a reasoning mechanism for parties involved in an argumentation-based dialogue
[23]. The advantage of this mechanism is being close to the human reasoning
process as well as being representable in form of dispute trees.

This paper is organised as follows. In Section 2 we give an overview of the
JUF theory and PROLEG, followed by a brief introduction to argumentation
theory and norms. Section 3 provides the main contribution of this paper, which
is a normative architecture, called ArgPROLEG, for reasoning about JUF in-
cluding an argumentation based implementation of PROLEG. The architecture
and algorithm of ArgPROLEG are both included in this section. This section
also includes an example of a legal dispute modelled by ArgPROLEG. We then
provide a survey of related work in Section 4. Finally we conclude and point out
some directions for future work in Section 5.

2 Background

We provide a brief introduction to JUF, PROLEG and the paper’s key concepts.

2.1 PROLEG: An Implementation of The Ultimate Fact Theory of
Japanese Civil Code

PROLEG [20] is a legal reasoning system based on the Japanese theory of pre-
supposed ultimate facts (JUF). This theory is used for interpreting the Japanese
civil code. It was mainly developed to assist judges to make decisions under the
incomplete and uncertain information they face in the court. This uncertainty
is mainly the result of one party asserting a claim, which is unable to prove due
to the lack of evidence. In such a situation the judge cannot deductively decide
whether the claim is true or false since the “deductive” civil code is based on
the complete information [21].

The JUF theory helps the judge to handle these cases by attaching a burden
of proof [16] to each claim. The burden of proof is assigned to the party that
makes the claim not the judge. Thus, if a party makes a claim that is unable to
prove, the judge can discard the claim without trying to assign a certain true or
false value to it. This way the judge can evaluate the correctness of a legal claim
under a set of incomplete information.

PROLEG was introduced in an attempt to replace an existing translation of
the JUF theory into logic programming [21]. The reason of this shift was the un-
familiarity of the users, namely judges and lawyers, with logic programming and
negation as failure [5] in particular. According to negation as failure, if a claim
is unknown or not known to be true, it is considered to be false. By definition,

negation as failure makes a perfect choice for a mathematical formalisation of the
JUF theory in which failing to provide a proof for a claim results in discarding
the claim. However, the fact of not being conceptually accessible for the users,
lead to a new implementation of JUF called PROLEG.

Instead of negation as failure, PROLEG uses the Ito’s explanation of JUF
which is based on the openness of the ultimate facts [20]. In openness theory, facts
are divided into two categories; those that result in a conclusion and those that
represent an exceptional situation. The latter category are open to challenge
meaning they do not have a certain truth value and are therefore undecided
form the judge point of view. The burden of proof of these facts is on the party
claiming them. Judges are therefore able to make decisions based on known facts
and exceptions that are explicitly proven by one of the parties.

PROLEG consists of a rulebase and a factbase. The former stores the rules
and the exceptions while the later stores the performed actions of both parties
as well as the judge’s judgement about their truth value. Equations (1), (2) and
(3) are examples of a rule, an exception and a fact in PROLEG, respectively.

deliver_good(X,Y,Good) <= purchase_contract(X,Y,Good, Price) (1)

exception(deliver_things(X,Y, Good, Price),

claim_of _simultaneous_per formance(Y, X, Price)) (2)

allege(claim_of _simultaneous_per formance, plaintif f) (3)

Rule (1) states that party X can expect party Y to deliver a Good if there
is a purchasing contract between them including the agreed Price and Good.
However there could be an exception to this expectation, which is defined in rule
(2). The exception is as follows: if there is a contract between two parties, one
may refuse to perform her/his obligation until the other party performs her/his
obligation. Moreover, equation (3) shows a performed action by the plaintiff
party, which is claiming an exception to deliver_things(X,Y, Good, Price) by,
claim_of _simultaneous_per formance.

According to the claims and proofs that two parties - Plaintiff and Defendant
- assert, PROLEG produces a trace of derivation in the form of an dialogue
between them. The plaintiff tries to prove a claim while the defendant tries
to find an exception for that claim. If the exception is proven successfully, the
plaintiff has to find another exception for the former exception and so on.

2.2 Argumentation

Argumentation theory was initially studied in philosophy and law. During the
past two decades it has been extensively researched in distributed systems. Argu-
mentation Frameworks (AF) have particularly gained a popularity in multi-agent
systems as an aid for the agents’ reasoning and decision making process.

®<—®/@
N

Fig. 1. A Graphical Representation of AF'

The first AF was introduced by Dung [7] and it is known as Dung’s Argumen-
tation Framework (DAF)!. According to DAF, an AF is a pair AF = (Ar, R)
where R C Ar x Ar. Ar is a set of arguments and R is a set of attack relations
between arguments. We assume a attacks b if (a,b) € R. Figure 1 displays an AF
with four arguments and three attack relations between them. Nodes represent
the arguments while edges represent the attack relations among them.

AF = {{a,b,c,d},{(b,a),(c,b),(d,b)})

The evaluation of arguments in an AF depends on the argumentation seman-
tic of choice. The purpose of argumentation semantics is to determine a set of
justified and coherent arguments based on the arguments’ interactions. If two
arguments attack each other then an entity - which could be an agent for ex-
ample - cannot believe in both of them at the same time. Therefore, the role of
argumentation semantics is to examine the acceptability of a set of arguments.

The most basic argumentation semantic is the conflict-free semantics [7] in
which none of the arguments attack each other. This is the minimum criteria
for a set of arguments to be considered as coherent. The rest of argumentation
semantics (e.g. complete extension, preferred extension, stable extension and
etc.) are a version of conflict-free semantic that satisfy some form of optimality
[6]. As an example, the conflict-free extensions of Figure 1 are provided below:

C-F:{{}{a}{b} {c} {d} {a, ¢} {a,d} {c,d} {a,c,d}}

One of the reasons of developing argumentation theory in multi-agent society
is being able to present interactions in the form of dialogues, specially among
participants with potentially conflicting viewpoints. Dung [8] states argumenta-
tion as a form of reasoning for dispute resolution in which two parties, proponent
and opponent, engage in a discussion as a form of proof for their claims. In fact,
dialectical proof procedure can be viewed as a reasoning mechanism for parties
involved in an argumentation-based dialogue [23]. In such a dialogue, the pro-
ponent puts forward an argument with the purpose of proving it. However, the

! DAF can also be referred to as an Abstract AF because it abstracts away the internal
structure of arguments and instead, it merely focuses on attack relations among
arguments.

Proponent Opponent Proponent

O

Fig. 2. Dialectical Proof Procedure

opponent tries to attack this claim. The dispute goes on by the proponent and
opponent alternating in attacking each others previous arguments until one of
them runs out of arguments. The winner of the dispute is the party who speaks
last. Therefore, the original claim by proponent is proved if the dialectical proof
procedure ends with an argument by proponent. Figure 2 shows an example of
this nature in which the proponent claim is accepted due to the opponent run-
ning out of arguments.

2.3 Norms

Norms are defined as social rules which control the agent society of by regulating
agents’ behaviour [24]. Each norm is a rule of form (4) consisting of literals Li.

Lo+ LiN---ANL,, m >0 (4)

The left hand side of the arrow Lg is called head or conclusion of the rule
and the right hand side Ly A - -+ A L,, is called body or premises of the rule. Lg
holds if L1, Ls,- - -, and L,, are all true. Take for example the norm:

pay fine(AgX) + delay(AgX,Y) A reserved(Y) (5)
This norm can be read as: Agent AgX has to pay fine if it delays returning book
Y to the library and the book is reserved by someone else.
Since we aim to use norms in a legal reasoning context, using the JUF ap-
proach presented by PROLOG, we require a second type of norm called an
exception norms. These are denoted as:

Exception(Q, P) (6)

Stating that there is an exception, namely P for) which is the head of another
norm. Exception norms substitute the facts representing exceptional situations
in PROLEG (see Section 2.1). For example the norm:

Exception(pay fine(AgX), available(Y/)) (7)

Assuming Y’ is a second version of book Y, norm (4) reads as AgX does not
have to pay fine if another version of book Y is available.

3 ArgPROLEG: A Normative Framework for Legal
Reasoning

The JUF theory was first implemented in logic programming followed by an im-
plementation in prolog called PROLEG. The main advantage of PROLEG over
the original system is its accessibility to lawyer and judges. In this section we pro-
pose a normative framework to model the JUF theory which is even closer to the
natural human reasoning process. This framework uses multi-agent systems and
argumentation theory to represent a legal dispute between two parties, namely
plaintiff and defendant. We first introduce the overall architecture followed by
the algorithm.

3.1 The Framework Architecture

We suggest an architecture (see Figure 3) in which the two parties in a legal dis-
pute, plaintiff and defendant, are presented by two agents A and B, respectively.
The arbitrator plays the role of the judge in the court and the set of norms
models the law book. The arbitrator receives the claims and evidences of each
parties and judges them by referring to the set of norms.

Below is a narrative on how the communication works between the various
parties:

— The session starts by agent A submitting a claim to the arbitrator.

— The arbitrator checks the set of norms to find out how agent A should
support this claim. In other words, what are the requirements of this claim
from the legal viewpoint.

— The arbitrator passes the requirements to agent A.

— If agent A fails in providing the requirements, the claim is rejected.

— If it succeeds then, the arbitrator contacts the set of norms to see if there
are any exceptions for this claim. If not, the claim is accepted.

— Otherwise the arbitrator passes the exceptions to agent B to see if it can
provide any of them.

— If agent B has any of those exceptions, it will then pass it to the arbitrator.

— Subsequently, the arbitrator tries to find out how this exception can be
supported from the law viewpoint by referring to the set of norms.

— The arbitrator informs agent B about the required support.

— If agent B cannot provide the necessary support for any of the exceptions,
agent A’s claim is accepted.

— But if agent B can prove at least one of the exceptions, the arbitrator tries
to find out what are the exceptions for that by checking the set of norms.

— If there is any they will be passed to agent A and the same procedure will
be repeated.

— This procedure is repeated until either an exception to the original claim
cannot be ignored (the plaintiff cannot counteract) or all exception to the
original claim turn out to be unsupported by the defendant.

‘ Norms ‘

|

Arbitrator

‘ Agent A ‘ ‘ Agent B ‘

Fig. 3. The Framework Architecture

3.2 The ArgPROLEG Algorithm

The ArgPROLEG algorithm (Figure 4) consists of six functions: Main(C),
prove(S,P), provide-evidence(M), claim(A,B), reverse(X) and
except(F,Q). The task(s) that each function fulfils is explained below.

The Main(C) function returns the output of prove(S,P) function for the
plaintiff’s original claim C. The prove(S,P) function is used to prove a claim
or the support of an exception by either party. If a party P puts a claim or an
exception forward, the arbitrator will check the the set of norms to see how the
claim or exception can be proven. The arbitrator then asks the agent for the proof
by showing evidence. If the agent can provide the necessary evidence by means
of provide-evidence(M) function, the evidence is passed to the claim(A,B)
function to see if there is any indirect attack to the original claim C. By indirect
attack, we mean an exception to any part of the evidence of C.Therefore, the
proof is successful if evidence is provided and all claims agaist it rejected. The
provide-evidence(M) function is a function that is used by each single agent
collecting all the rules that have M as their head. It then recursively, traces back
each rule to find all its atoms. The output of this function is a set of sets. Each
set provides a possible way to proof the claim. For example in the case provided
below, the agent has to provide {pl,p2, p3, p4, p5, p6, M} or {q1, M}.

R1: M < pl,p2 R4 : p2 < p4, pb R7:p3 <
R2: M < ql R5 : p4d < p6 RS : pb <
R3:pl < p3 R6:ql < R9 : p6 <

Function claim(A,B) takes the responsibility of the rest of the dispute after
the first claim by plaintiff is proven to be true. This function then give chances to
the defendant and the plaintiff to attack each others last announcement. If any of

the exceptions against an argument remains unattacked by the other party, that
means that the dispute is over and the winner is the claimer of this argument. The
output of this function is true if B who made the first claim/argument A is the
last who speaks. Otherwise the output is false. The reverse(X) function takes
one of the parties, either the plaintiff or the defendant as input and returns the
opposite party as output. This function will be called in claim(A,B) function,
when the parties have to take turn in attacking each other. The except(F,Q)
function tries to find the exceptions for a certain claim or exception, F. If F
is provided by one party, the opposite party Q needs to show evidence and
consequently prove the exceptions for F. Thus, the arbitrator checks the set of
norms to see whether there is any exceptions for F. In case of existence, the
exceptions will be passed to Q. This party has to firstly show an evidence of
such an exception and secondly prove it by calling prove(S,P) function. If it
fails either of them, then the exception is rejected. The output of this function
is either @, which means there is no exception or not any proven one for F; or
it is set provenE which is a set of proven exceptions for F.

3.3 Contract Scenario

In this scenario, we aim to model a legal dispute between to parties by means
of the architecture and the algorithm we introduced in Sections 3.1 and 3.2.
Imagine a situation in which a lessor wants to cancel his property contract with
the lessee. She claims that the lessee has subleased the property to somebody
else and therefore, she wants to end the contract. Both the lessor and the lessee
agree that there was a contract between them in first place and subsequently
the property was handover to the lessee. The lessee also admits her contract of
sublease with a third person which was followed by handing over some parts
of the property to the sublessee. The lesser believes that the sublease has used
the property to make profit, thus she maked the announcement of cancelling the
contract. However, the lessee believes that she already informed the lessor and
she has approved of the sublease before she made the announcement of cancelling
the contract. Moreover, the period of subleasing was so short that this does not
count as abuse of confidence of the owner. However, the owner considers the
case as abuse of confidence since she has received some complaints from the
neighbours regarding the noise during the subleasing period. Figure 5 displays
the formalisation of this case based on the AnsProleg architecture.

Figure 6 illustrates the graphical representation of Contract Scenario based
on the ArgPROLEG algorithm. The plaintiff claims that she wants to cancel the
contract . The arbitrator then check the set of norms to find out the support
for this claim. N1 provides this information which will be passed to the plaintiff.
Plaintiff is able to provide the required support. Thus the first argument (a)
appears. the arbitrator checks the set of norms to see if there is any exception
for this claim. Exceptions 1 and 2 provide two options for the defendant to make
an attack against the plaintiff’s claim. The options obtained from the exceptions
are b : get_approval_of _sublease and c : nonabuse_of _con fidence. N2 and N3
contains the necessary supports for each of the exceptions, respectively. The

Plaintiff-Arbitrator: Main(C)
begin

return(prove(C, Plaintif f))
end

prove(S,P)
begin
Arbitrator-P: Provide evidence for S
V' = provide — evidence(s)
if V = O then return(false);
for every v € V'
begin
proven = true
for every v; € v
begin
if claim(v;, P)
proven = false
break
end
if proven = true
return(true)
end
return(false)
end

provide-evidence(M)
begin
Result = {}
R,={M < DeR}
if R, = @ then return(Q)
for every R; € R
begin
if D = @ then add {} to all sets in Result
else if for all D; € D

begin
add provide — evidence(D;) to all sets in Result
end
add {D} to all sets in Result
end
return(Result)
end
claim(A,B)
begin

e = except(A, reverse(B))
if e = @ then return(true)
else for all e; € e
begin
result = claim(e;, reverse(B)
if result = true then return(false)
end
return(true)
end

reverse(X)

begin
if X = Plaintiff then return(Defendant);
else return(Plaintif f);

end

except(F,Q)
begin
Arbitrator-Norms: collect all the exceptions for F
exception(F, E;) in E
if E = 0 then return(Q)
else for every E; € ¥
begin
Arbitrator-Q: evidence(E;)
if Q can provide the evidence
then Arbitrator-Q: prove(E;, Q)
if prove(Q, E;) = true
then provenE = provenE U E;
return(provenE)
else return(Null)
end
end
end

Fig. 4. The ArgPROLEG algorithm

Norms

Norm 1: cancellation_due_to_sublease <= agreement_of_lease_contract, handover_to_lessee,
agreement_of_sublease_contract, handover_to_sublessee, using_leased_thing,
manifestation_cancellation

Norm 2: get_approval_of_sublease <= approval_of_sublease, approval_before_cancellation

Norm 3: _of _ i <= fact_of_nonabuse_of_confidence

Norm 4: abuse_of_confidence <= fact_of_abuse_of_confidence

Exception 1: exception(cancellation_due_to_sublease, get_approval_of_sublease)
Exception 2: exception(cancellation_due_to_sublease, nonabuse_of_confidence)
ion 3: i »_of_ i abuse_of_ i

‘\ /‘

t

(_ Arbitrator /\)

T \

—

Plaintiff Defendant
b1: agreement_of_lease_contract d1: get_approval_of_sublease
b2: handover_to_lessee d2: nonabuse_of_confidence
b3: agreement_of_sublease_contract d3: fact_of_nonabuse_of_confidence

b4: handover_to_sublessee
bS: using_leased_thing
b6: manifestation_cancellation
b7: abuse_of_confidence
\\bs: fact_of_abuse_of_confidence) \)

Fig. 5. Contract Scenario

attack (b) and (c) to (a) remains as a potential attack unless the defendant
can provide the requested support for them. Defendant can only provide this
support in case of argument (c). Therefore, the defendant attacks argument
(a) by argument (c). Now, based on the algorithm, the arbitrator checks the
set of norms to find an exception to this exception. This is going to make a
potential case for the plaintiff to perform an attack to the defendant. There is
one exception available, namely Exception 3, abuse_of_confidence. N4 states
the requirement for this argument which is fact_of _abuse_of _confidence. The
plaintiff successfully support this arguments which results in an attack from
argument (d) to argument (c). The arbitrator looks for another exception to
this later exception. Since such an exception is not available the dispute is over.
The last graph in Figure 6 shows the final argumentation framework for this
dispute. Going back to Section 2.2, in a dialectical proof procedure, the party
who makes the last utterance is the winner which similarly makes the plaintiff
the winner of this case.

4 Related Work

The closest work to ours is PROLEG [20] which is an implementation of JUF
theory by means of the burden of proof. ArgPROLEG has fulfilled two future

plans of PROLEG discussed and listed in [20]. These two features are, bringing
the knowledge representation closer to the natural language and also including
a diagrammatic representation of reasoning in the JUF theory. Using argumen-
tation in designing ArgPROLEG has served both these purposes.

Apart from PROLEG and ArgPROLEG, another translation of the JUF
theory is also available in logic programming [21]. It uses, in contrast to PROLEG
and ArgPROLEG, negation as failure instead of the burden of proof. Negation
as failure is a non-monotonic form of negation that enables logic programming
to formulate problems of non-monotonic reasoning. Kakas [14] had already used
negation as failure for default reasoning. The idea of using negative literals as
abductive hypotheses has also been pointed out by Eshghi and Kowalski [9].
However, among burden of proof and negation as failure, the concept of the
former seems to be easier to grasp for lawyers and judges.

In terms of formalisation of the burden of proof, other works exist [12,17, 19,
25]. Gordon et al. offer an argumentation-based system, called Carneades [12],
which implements the burden of proof as well the burden of persuasion. The main
difference of this approach to ours that the burden of proof for a premise can
be assigned to a different party rather than the one who has uttered the claim.
The plaintiff has the burden of production for the facts of its claim, whereas the
defendant has the burden of production for exceptions. The same applies to the
burden of persuasion.

Another example of logic programming being used for expressing and apply-
ing legislation is [22]. This work however, focusses on specific legal cases related
to British Nationality Act. They describe how complicated regulations such as
British Nationality Act can be translated into simple form of logic so that the
consequences of each act can be determined.

5 Conclusion and Future Work

In this paper we introduced ArgPROLEG, a normative framework for legal rea-
soning, using a dialectical proof procedure to support legal parties to resolve
their conflict. It offers an alternative approach to PROLEG [20]. We believe that
ArgPROLEG is closer to natural language compare to PROLEG. Additionally,
ArgPROLEG is able to offer a diagrammatic representation of the plaintiff’s
and the defendant’s reasoning which enhances the ability of non-expert users to
follow the procedure as it unfolds

For the future, we would like to extend our framework to be able to cope with
more than two parties. In real cases a dispute can involve multiple parties.The
main challenge in this will be to determine who can or should offer counter-
arguments to a given claim.

For the implementation we consider an architecture similar to the Governor
approach presented in [1]. Balke et al, use an institution to collect the norms and
the normative results of the agent’s actions. To make this information accessible
via queries the authors introduce the Governor, an agent that acts as a relay
between the norms and their (possible) consequences and the agent’s query.

In our case, the arbitrator would have take the role of the Governor. Apart
from simply relaying queries to the institution/norms, it will actively retrieve
information to pass on to the agents, e.g. the exception to the claim. [1] uses
the Jason BDI architecture [4] for setting up the multi-agent system and InstAL
based on answer set programming [2, 11] for the institution/norms. We would be
able to do the same. The use of a BDI architecture [18] has the added advantage
of being able to model agent reasoning in more detail. Currently, our agents’
mental model contains only beliefs or a knowledge base. In a BDI architecture
we could express the goals and intentions of the agents more efficiently and take
them into account when they put forward their claim.

For the dialectical proof procedure, we are considering also an implemen-
tation using answer set programming. Dung’s argumentation framework and
conflict-free semantic have already been implemented by answer set program-
ming [10], giving us a good indication that this approach is worth considering.

This paper only investigates the use of argumentation for conflict resolution
in a legal domain. For the future, we wish to extend it to other domains. With
an institution rather than a set of norms, we would be able to keep track of
normative states and allow agents to reason about conflicts that appear after a
period of time. Having more expressive agents, give us the chance to investigate
different strategies for agents to deal with the norm compliance, as they could
decide whether the gain of breaking a norm is worth the sanction.

References

1. Tina Balke, Marina De Vos, Julian Padget, and Dimitris Traskas. On-line reasoning
for institutionally-situated bdi agents. In Yolum, Tumer, Stone, and Sonenberg,
editors, 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), pages 1109-1110. IFAAMAS, May 2011.

2. Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem
Solving. Cambridge University Press, New York, NY, USA, 2003.

3. Trevor Bench-Capon, Henry Prakken, and Giovanni Sartor. Argumentation in
Artificial Intelligence, chapter Argumentation in Legal Reasoning, pages 363—382.
Springer, 2009.

4. Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hiibner. Programming
Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technol-
ogy). John Wiley & Sons, 2007.

5. Keith L. Clark. Negation as failure. In Jack Minker, editor, Logic and Data Bases,
volume 1, pages 293—-322. Plenum Press, New York, London, 1978.

6. Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Prudent semantics
for argumentation frameworks. In 17th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI), pages 568-572. IEEE Computer Society, 2005.

7. Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321-358, 1995.

8. Phan Minh Dung and Phan Minh Thang. A unified framework for representa-
tion and development of dialectical proof procedures in argumentation. In Craig
Boutilier, editor, Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence(IJCAI), pages 746-751, 2009.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Kave Eshghi and Robert A. Kowalski. Abduction compared with negation by
failure. In ICLP, pages 234254, 1989.

Sarah Alice Gaggl. Solving argumentation frameworks using answer set program-
ming. Master’s thesis, Technische Universitt Wien, 2009.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. pages 1070-1080. MIT Press, 1988.

Thomas F. Gordon, Henry Prakken, and Douglas Walton. The carneades model of
argument and burden of proof. Artificial Intelligence, 171(10-15):875-896, 2007.
Thomas F. Gordon and Douglas Walton. Legal reasoning with argumentation
schemes. In International Conference on Artificial Intelligence and Law (ICAIL),
pages 137-146. ACM, 2009.

Antonis C. Kakas. Default reasoning via negation as failure. In Gerhard Lakemeyer
and Bernhard Nebel, editors, ECAI Workshop on Knowledge Representation and
Reasoning, volume 810 of LNCS, pages 160-178. Springer, 1992.

Henry Prakken. Formalising ordinary legal disputes: a case study. Artificial Intel-
ligence and Law, 16(4):333-359, 2008.

Henry Prakken and Giovanni Sartor. Formalising arguments about the burden
of persuasion. In Proceedings of the 11th international conference on Artificial
intelligence and law, ICAIL 07, pages 97-106, New York, NY, USA, 2007. ACM.
Henry Prakken and Giovanni Sartor. More on presumptions and burdens of proof.
In Enrico Francesconi, Giovanni Sartor, and Daniela Tiscornia, editors, JURIX,
volume 189 of Frontiers in Artificial Intelligence and Applications, pages 176-185.
10S Press, 2008.

Anand S. Rao and Michael P. Georgeff. Bdi agents: From theory to practice.
In In Proceedings of the First International Conference on Multi-Agent Systems.
(ICMAS-95), pages 312-319, 1995.

Ken Satoh. Logic programming and burden of proof in legal reasoning. New
Generation Comput., 30(4):297-326, 2012.

Ken Satoh, Kento Asai, Takamune Kogawa, Masahiro Kubota, Megumi Nakamura,
Yoshiaki Nishigai, Kei Shirakawa, and Chiaki Takano. Proleg: An implementation
of the presupposed ultimate fact theory of japanese civil code by prolog technol-
ogy. In Takashi Onada, Daisuke Bekki, and Eric McCready, editors, JSAI-isAl
Workshops, volume 6797 of LNCS, pages 153—-164. Springer, 2010.

Ken Satoh, Masahiro Kubota, Yoshiaki Nishigai, and Chiaki Takano. Translating
the japanese presupposed ultimate fact theory into logic programming. In Proceed-
ings of the 2009 conference on Legal Knowledge and Information Systems: JURIX
2009: The Twenty-Second Annual Conference, pages 162-171, Amsterdam, The
Netherlands, The Netherlands, 2009. IOS Press.

M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T.
Cory. The british nationality act as a logic program. Commun. ACM, 29(5):370—
386, May 1986.

Phan Minh Thang, Phan Minh Dung, and Nguyen Duy Hung. Towards a common
framework for dialectical proof procedures in abstract argumentation. Jornal of
Logic and Computation, 19(6):1071-1109, 2009.

Fabiola Loépez y Loépez and Michael Luck. A model of normative multi-agent
systems and dynamic relationships. In Gabriela Lindemann, Daniel Moldt, and
Mario Paolucci, editors, Regulated Agent-Based Social Systems (RASTA), volume
2934 of Lecture Notes in Computer Science, pages 259—280. Springer, 2002.
Hajime Yoshino. On the logical foundations of compound predicate formulae for
legal knowledge representation. Artificial Intelligence Law, 5(1-2):77-96, 1997.

Plaintiff- a: cancellation_due_to_sublease

/" agreement_of_|ease_contract,
handover_to_lessee,
agreement_of_sublease_contract,
handover_to_sublessee,
using_leased_thing,
manifestation_cancellation

Required
Support
N1l ————>

Plaintiff: Argument a supported by b1, b2, b3, b4, b5, b6

Defendant: | b:Exception1 =—3

c:Exception2 —s [buse_of

Defendant: Argument c claimed by d2 and supported by d3

Plaintiff- d: Exception 3 =3 abuse_of_confidence

Plaintiff: Argument d claimed by b7 and supported by b8

N4

Required
ot aporoval of subl \ Support “approval_of_sublease,
getapp - N2 > approval_before_cancellation
Required S\
fid Support " fact_of 1 buse_of
>
Required
Support

|' fact_of_abuse_of_confidence

d

Fig. 6. Contract Scenario Argumentation Framework

