
Pathfinding through Congruences

Alexander J. T. Gurney and Timothy G. Griffin

Computer Laboratory, University of Cambridge, UK

Abstract. Congruences of path algebras are useful in the definition and
analysis of pathfinding problems, since properties of an algebra can be
related to properties of its quotient. We show that this relationship can
apply even when the algebraic objects involved satisfy weaker forms of
the semiring or path algebra axioms. This is useful, since it is just these
algebras and their quotients which we need to analyze pathfinding prob-
lems characterized by the need to obtain multiple paths even when path
preferences are inconsistent, and paths can be filtered out arbitrarily, as
in Internet routing.

1 Introduction

For finding optimal paths in graphs and networks, there is a standard theory
grounded in linear algebra [2], [3], [4], [11], [15].

But for certain kinds of pathfinding, including some which are important for
Internet routing, it seems to be difficult to take advantage of this theory. These
situations are problematic because the information sought may not be a single
path, because the criteria for path quality may not result in the existence of
an optimal solution, or because the routing algorithms are implemented in a
distributed and asynchronous fashion. All of these are difficult to incorporate
into the theoretical model.

Nonetheless, in recent years there has been an effort to bring the algebraic
theory up to speed with the strange and diverse nature of Internet routing. The
mathematical language is ultimately not too different, in terms of the signatures
of the algebraic objects involved: we will always need some way to compare
paths, and some way to compose them out of arcs. The difference comes in
the axioms and derived properties that these structures might have. Whereas
conditions such as distributivity have historically been assumed for rings and
semirings, our new structures may lack distributivity but instead be endowed
with other helpful properties [5]. Analogous methods can then be used to treat
their structure theory, and in particular the way that important properties are
derived compositionally. From a theoretician’s perspective, this demonstrates
that the unusual features of Internet pathfinding are not so unusual after all,
since they are amenable to similar correctness analysis as in the familiar case.

This paper is about the use of congruences as a definitional tool for these
new routing algebras. Of course, congruences and quotients are part of the stan-
dard abstract algebraic apparatus for familiar structures; the theory of varieties

yields profound insights into how equational properties relate to algebraic con-
structions. The surprise for our structures is that our most important property
is in fact inequational, but relates well with quotient constructions even so.

In particular, we apply congruences to practical problems including the find-
ing of multiple paths, in the presence of filtering, all the while in a world where
path preferences do not follow the usual semiring model, but instead satisfy
alternative stability criteria.

Much of this material derives from the first author’s doctoral thesis [8].

2 Internet Pathfinding in the Abstract

We first summarize the algebraic approach to the analysis of Internet routing,
and relate it to the particular features of that problem which differ from more
conventional pathfinding.

From a theory perspective, the main issue with interdomain routing is that
it is not in fact solving a shortest path problem, and so the usual mathematical
apparatus cannot be applied [6]. The use of semirings and related structures for
finding best paths in a labelled graph is well understood. The general pattern is
that a semiring (S,⊕,⊗) can be used to encode path preferences: the elements of
S label the arcs of the graph; these are composed with the binary operator ⊗ to
form path weights, and the best paths emerge when alternatives are summarized
with the ⊕ operator.

Algorithms based on this pattern solve the best-path problem by computing
the closure A∗ of the adjacency matrix A of the graph: a matrix whose entries
come from S and where matrix addition and multiplication are defined in terms
of the operators of S. The facts that the (i, j) entry of

A∗ = I + A + A2 + A3 + · · · (1)

contains the weight of the optimal path from node i to node j, and that this
matrix can be computed in finite time, depend on algebraic properties of S. In
particular, a distributive law is required for the two operators:

∀a, b, c ∈ S : c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b). (2)

Commonly-considered semirings for this purpose include (N,min,+) for com-
puting shortest paths, (N,max,min) for computing widest paths, and (N,+,×)
for counting paths.

The distributive law encodes the idea that the path choice made by a node
(between paths a and b) will be compatible with that made by a neighbour
(between c⊗a and c⊗b). If the first node always behaves as the neighbour would
want, then it is algorithmically acceptable for it to make that choice greedily.
Therefore, the algorithms of Dijkstra or Bellman-Ford really do compute the
best paths, while avoiding the need to enumerate all paths.

Unfortunately, this compatibility of preferences does not hold for Internet
pathfinding, where nodes may be controlled by entities in commercial conflict.

In such a situation, it may be that when some node chooses path a over b, its
neighbour would have preferred it to take b instead, since c⊗ b could be better
than c ⊗ a. Due to the requirements of hop-by-hop forwarding, a node has no
option but to endure its neighbours’ choices.

Remarkably, optimal paths can still be computed in this setting, in an efficient
manner—as long as we change our definition of optimality. We no longer require a
path assignment that is a global optimum, but only a Nash equilibrium, meaning
a state from which no node has any incentive to change its current choice of path.
A state X in Nash equilibrium can be characterised as a fixed point of

X 7→ AX + I. (3)

This operation entails taking each (i, j)-path in X, extending them along the
arcs represented in A, and then choosing the best (according to the criteria
encoded in the algebra S); the addition of the identity matrix I ensures that the
empty path from each node to itself will always be present in the solution. So for
a fixed point, we have X = AX +I, meaning that when the extension and choice
is carried out, each path is the same as it was before. In game-theoretic terms,
no (i, j) has any incentive to deviate from its assigned path in X, assuming a
game where the only choice is among the paths made available by neighbours.
Notably, this equation is the same one which characterises global optimality for
shortest paths, if S is the shortest-path semiring. In the wider context, it still
represents an optimum: but a local optimum rather than a global one.

To compute such an equilibrium, we simply use the same matrix iteration as
in the shortest-path case, with the exception that the underlying algebra is not
a semiring obeying the distributive law. While this iteration is not guaranteed to
terminate in the absence of distributivity, there are other correctness conditions
that are sufficient, and are also consistent with the nature of Internet routing.
One such is the strict inflationary property

∀a, c ∈ S : a = a⊕ (c⊗ a) 6= c⊗ a, (4)

combined with a finite support condition. Even if the distributive law does not
hold for a given semiring, this law ensures the existence of a unique fixed point,
to which the iterative algorithm converges after finitely many steps, from any
starting state [8].

The finite support condition mentioned above is essential for the ‘finitely
many steps’ part of the result. Without this, the possibility remains that the
iteration could continue forever, converging towards a state that could never
actually be reached. In path computation, it is enough to restrict our set of
paths to a some finite subset of the set of all paths in the given graph: so
whenever a path arises in the dynamic computation that is outside this set, it
should be excluded from consideration. A reasonable choice would be the set
of all simple paths in the graph. In terms of weights rather than paths, the
condition is that there be only finitely many permitted path weights. Exactly
how this kind of condition can be achieved is one of the major topics of this
paper, and is explored in Sections 4.1 and 4.2. In brief, the idea is to go from a

possibly-infinite semiring-like structure to a finite one, by taking a congruence
that identifies all forbidden paths. The convergence theorem can then be stated
with the simple precondition that the given algebraic structure be finite.

A further wrinkle is that the semiring multiplication needs to be replaced
with function application, if we are to be capable of expressing the diversity of
Internet routing configurations. So rather than dealing with semiring-like struc-
tures, we are in fact going to use either order transforms (S,�, F) or semigroup
transforms (S,⊕, F), where S and ⊕ are as before; � is a preorder on S; and F is
a set of functions from S to S. These respectively generalize ordered semigroups
(the semigroup ⊗ being replaced by F) and algebras of monoid endomorphisms
(except that our functions need not be endomorphisms). In calculations, the
functions F are attached to arcs whereas values in S are originated at nodes:
path weights are calculated by applying the functions in order to the starting
value. The weights can then be compared with � or summarized by ⊕, as ap-
propriate. The analogous strict inflationary properties here are

∀a ∈ S, f ∈ F : a ≺ f(a) (5)
∀a ∈ S, f ∈ F : a = a⊕ f(a) 6= f(a) (6)

respectively.
The reason for using these functions is to permit a wide range of possibilities

for how path weights can be derived from arc weights. In routing protocols, a
multiplicity of attributes are associated with each route: these are calculated
in potentially very complex ways, to allow network operators to exercise fine-
grained control over the eventual degree of preference each path will receive.

Some options for how functions in F could operate on route data include:

– Adding a numeric arc weight to the path weight.
– Applying ‘bottleneck’ bandwidth to the bandwidth of a path.
– Adding a node identifier to a list or set.
– Adding a node identifier, but also eliminating the path from consideration if

that identifier was already present.
– Adding ‘community’ tags to remotely influence route choice.
– Importing a route from one routing protocol to another, translating route

attributes as appropriate.
– Marking routes based on the business relationship between the systems at

either end of the arc.

The elements of S may also be sets of paths, or other structured collections. In
this case, the functions in F apply to the entire set: they can do any of the above
operations on a per-path basis, but can also operate on the set as a whole. For
example, the set could be reduced to a single best member path, in some way;
and that method need not be the same everywhere in the graph.

In structuring the algebraic theory, we have to consider this complexity, and
ideally find ways of making it not matter. This involves the development of
constructions, that are justified both theoretically and practically, for building
algebras from simpler components. With a good choice of constructions, the task

of deciding whether a particular algebra has the required correctness conditions
should not be too difficult at any stage. This, we believe, is the case for our
congruence-based constructions, which are theoretically pleasant, have a good
computational interpretation, and are useful for several problems which arise in
the modelling of Internet routing.

3 Congruences

The notions of congruence and of quotient are critical to the structure theory
of many abstract algebraic objects, including semigroups and semirings. The
general picture is that a congruence is an equivalence relation that is compatible
with the operations of the object; this makes it possible to lift those operations
to deal with equivalence classes rather than elements, thus forming the quotient
algebra [7].

Definition 1. An equivalence relation ∼ on semigroup (S,⊕) is a congruence
if

a ∼ b =⇒ (a⊕ c) ∼ (b⊕ c) ∧ (c⊕ a) ∼ (c⊕ b)

Definition 2. If (S,⊕) is a semigroup and ∼ is a congruence on S, then the
quotient (S/∼,⊕/∼) is also a semigroup. Here, S/∼ is the set of ∼-classes. If
the class of a is denoted by [a] then the operation of the new semigroup is

[a]⊕/∼ [b] = [a⊕ b]

The fact that ∼ is a congruence makes this operation well-defined and associative.

The point of these congruences is that in many cases, properties of S/∼ can be
related to properties of S. This is important for understanding Internet routing
from an algebraic perspective: it would be convenient if our key correctness
properties were preserved under taking congruences, and if congruences turned
out to be useful for modelling certain details of Internet pathfinding problems.

Unfortunately, the inequality in our strict inflationary condition means that
a quotient algebra is not guaranteed to have that property, even if the starting
algebra did. However, there are some important cases where we are able to use
congruences to define new algebras with this property being preserved.

We see this most clearly when considering multipath routing; that is, the
idea that for each source and destination we want to find as many good paths
as possible, as opposed to a single best path. Algebraically, we just need to
choose S to contain not path weights, but sets of path weights, and lift the
other operations in the obvious way. We prefer to think of this process as a
construction on S, because that allows us to examine the relationship between
the single-path and multipath cases.

There are other ways of dealing with the presence of multiple best paths. One
could also use a conventional single-path algorithm, with some rule for discrimi-
nating between otherwise equivalent paths. For example, either the oldest or the

newest path seen could be selected; though these methods introduce undesirable
nondeterminism into the path selection process, making the correctness much
less tractable to analyze algebraically. Alternatively, a partial order on paths
could be linearized to a total order: this amounts to the introduction of some
deterministic tiebreaking method. But this does not suffice even for conventional
shortest-path finding, since we can construct order transforms which have one
of the required correctness properties (monotonicity), but where no linearization
has this property ([8], Theorem 3.1).

In the end, the most serious criticism of any of these ideas is that for some
purposes, we want to receive multiple routes. Trying to force the use of a single-
path algorithm would be inappropriate: a case of solving the wrong problem. The
failure of these strategies should make use of our construction more attractive,
provided that it does have the right algebraic properties. So we now need to
understand how to define algebras that make use of this idea, and how these
behave in terms of the properties we need for correctness.

In the case of an order transform (S,�, F), we want to derive the algebra of
minimal sets of S, written minset(S). The elements will be subsets of S under
the condition that everything in a set is either equivalent or incomparable under
�. We can also define a lifted version of F , and endow this structure with a
semilattice join operation (or an equivalent partial order). This amounts to a
free distributive lattice construction. In other words, to obtain minset(S) we

1. form the power set of S, which is a distributive lattice under inclusion,
2. take a quotient of this lattice by a congruence derived from �; this yields

the required order or binary operator,
3. and define lifted versions of the functions in F .

Later, we will vary the second step to obtain other useful constructions. These
first two steps, taken together, result in the formation of the distributive lattice
corresponding to upper sets in S, as in the representation theorem of Birkhoff [1].

Theorem 1 (Birkhoff’s theorem). A finite distributive lattice is isomorphic
to the lattice of upper sets of the partial order of its meet-prime elements.

We quote the theorem in this form (using meet-prime rather than join-prime
elements, and upper sets rather than lower sets) because it is the most directly
applicable to our purpose, given the conventional interpretation of path prefer-
ence where a ≺ b means that a is more preferred than b.

If (S,�) is a partial order, then we can form a corresponding free distributive
lattice, whose elements are the upper sets of S, and where the order is the subset
order. If the partial order, moreover, has no infinite descending chain, then an
equivalent construction takes all sets of the form

A = min(A) (7)

where
min(A) = {x ∈ A | ∀y ∈ A : ¬(y ≺ x)}. (8)

The equivalence comes from the fact that this min operation determines the
same congruence as the taking of upper sets [8].

We end up with the same distributive lattice (up to isomorphism). The dif-
ference is that using min is a more natural representation of sets for our path
problems: min(A) will (for us) always be a finite set, and its elements have
an obvious interpretation as the ‘best’ things in A. As an alternative, use of a
well-quasi-order would guarantee that min(A) was always a finite set, nonempty
unless A were empty [9]. This is because well-quasi-orders, in addition to the
lack of infinite descending chains, also lack infinite antichains.

The fact that we have a distributive lattice allows us to deduce immediately
that certain computationally useful facts are true of min. In particular, we have

min(A) = min(min(A)) (9)
min(A ∪B) = min(min(A) ∪B) (10)

for all A and B. These will influence the implementation of algorithms, by al-
lowing applications of min to be elided in some circumstances.

Essentially the same construction can be carried out if (S,�) is only a pre-
order. We again obtain ‘minimal sets’ of elements of S, and a join operator

A⊕B = min(A ∪B). (11)

The functions f in F are lifted to

f(A) = min{f(a) | a ∈ A}; (12)

note the use of min to put the result set into canonical form. This completes the
construction of minset(S) for an order transform S: the resulting structure is
suitable for use in path algorithms. Sets of paths are combined, via ⊕, by finding
the best paths out of either set; the f functions now operate on every path in
the given set, and only the best paths are allowed to remain.

This idea of canonicalization is central to our understanding of congruence-
based constructions. Beginning with min, we can derive an equivalence relation

A ∼ B ⇐⇒ min(A) = min(B) (13)

on subsets of S, and so obtain the appropriate distributive lattice by a quotient
of the free lattice. The point is that the min operator is a natural one from the
perspective of pathfinding algorithms, but it is not the only choice. In general,
whenever we have a way of putting elements of S into a canonical form, we would
like to be able to derive a congruence so that a version of the above construction
can be applied. This is not always possible, but there are sufficient conditions on
the canonicalization function which ensure that the derived equivalence relation
is a congruence. In fact they are the same as the properties of min from above.

Definition 3. If (S,⊕) is a semigroup and r is a function from S to S such
that

1. r(a) = r(r(a))
2. r(a⊕ b) = r(r(a)⊕ b) = r(a⊕ r(b))

for all a and b in S, then r is a reduction [13],[14].

In the case of a monoid, the first of these axioms is not needed, since we
already have r(a ⊕ 1) = r(r(a) ⊕ 1) from the second axiom, where 1 is the
identity for ⊕. Similarly, the second axiom can be simplified to a single equality
in the case of a commutative semigroup.

A function on a semiring is called a reduction if it is a reduction with re-
spect to both of the semiring operations. Similarly, a reduction on a semigroup
transform (S,⊕, F) is a function r from S to itself, such that r is a reduction on
(S,⊕) and

r(f(a)) = r(f(r(a))) (14)

for all a in S and f in F . (This replaces the second axiom from Definition 3, for
the multiplicative part of the structure.)

A reduction might also be an endomorphism on a semigroup (and similarly,
on a semiring), if it additionally satisfies

r(a⊕ b) = r(a)⊕ r(b) (15)

for all a and b in the carrier set. Furthermore, not every endomorphism of a
semigroup will be a reduction, since not all endomorphisms are idempotent.

The min operation with respect to a preorder (S,�) is a reduction on the
semigroup (2S ,∪). Note, however, that it is not a homomorphism. For any func-
tion f on S, and any A ⊆ S, we also have

min {f(x) | x ∈ A} = min {f(x) | x ∈ min(A)} (16)

which demonstrates that min is always a semigroup transform on (2S ,∪, F), no
matter which set of functions F is used.

We now show that a canonicalization or reduction operation defines a con-
gruence, and that conversely every congruence can be used to define a reduction.
This also demonstrates that although endomorphisms are not generally reduc-
tions, it is always possible to find a reduction that generates the same congruence
as a given endomorphism.

Lemma 1. For any reduction r on (S,⊕), define a relation ∼r on S by

a ∼r b
def⇐⇒ r(a) = r(b).

This ∼r is a congruence.

Proof. This is obviously an equivalence relation. To prove that it is a congruence,
suppose that a ∼r b, so that r(a) = r(b). Then

r(a⊕ c) = r(r(a)⊕ c) = r(r(b)⊕ c) = r(b⊕ c)

and likewise for r(c⊕ a) = r(c⊕ b). Hence ∼r is indeed a congruence. ut

We can also produce a reduction from a congruence. In fact, there will typ-
ically be many choices of reduction for a different congruence. Between S and
S/∼ there is a homomorphism ρ\ called the natural map, taking each element of
S to its ∼-equivalence class. If we choose a function going in the other direction,
taking each equivalence class to some representative element within the class,
then the composition of these two functions will be a reduction. The choice of
representatives means that there may be multiple reduction functions, although
they all correspond to the same congruence and define the same equivalence
classes.

Lemma 2. Let (S,⊕) be a semigroup, ∼ a congruence, and ρ\ the natural map.
If θ : S/∼ −→ S is such that ρ\ ◦ θ = id, then θ ◦ ρ\ is a reduction; and ∼ is
equal to ∼θ◦ρ\ .

Proof. Note that the condition ρ\ ◦ θ = id simply expresses that the represen-
tative for a class should be an element of that class. There is always at least
one such θ, because there can be no empty classes. This condition also provides
that θ must be one-to-one, for if θ(P) and θ(Q) are equal, then (ρ\ ◦ θ)(P) and
(ρ\ ◦ θ)(Q) must also be equal; and then P = Q.

Now, θ ◦ ρ\ satisfies the axioms for a reduction. Firstly, it is idempotent:

(θ ◦ ρ\)2 = θ ◦ (ρ\ ◦ θ) ◦ ρ\ = θ ◦ ρ\.

The second reduction axiom is also fulfilled

(θ ◦ ρ\)(a⊕ b) = θ(ρ\(a)⊕ ρ\(b)) since ρ\ is a homomorphism

= θ(ρ\(θ(ρ\(a)))⊕ ρ\(b)) since ρ\ ◦ θ = id

= (θ ◦ ρ\)((θ ◦ ρ\)(a)⊕ b) since ρ\ is a homomorphism.

and symmetrically for the second equality.
Furthermore, the congruence derived from this reduction is ∼ again:

a ∼θ◦ρ\ b ⇐⇒ θ(ρ\(a)) = θ(ρ\(b))

⇐⇒ ρ\(a) = ρ\(b) since θ is one-to-one
⇐⇒ a ∼ b by definition of the natural map.

Hence for any congruence there is at least one equivalent reduction. ut

We can therefore choose to represent any reduction r as a pair (∼, θ), since
this is enough to determine all of the values of the function. The interpretation
of reductions in terms of congruences is helpful because it clarifies the true role
of a reduction as well as often being more algebraically useful. A reduction is not
an arbitrary transformation that fulfils some unusual axioms, but instead arises
as the combination of a congruence—to say which distinctions between elements
are being ignored—and a choice of representative element from each equivalence
class. In some contexts, the reduction function may be the more natural way of

thinking about the operations being modelled. This justifies using the reduction
idea in the first place, as opposed to making use of congruences throughout. The
use of a functional viewpoint rather than a relational one may be more natural
from the point of view of implementing a routing protocol, because it provides
a direct answer to the question of how to deal with route data. On the other
hand, the algebraic theory associated with congruences is much more extensive,
which suggests that they should be the preferred representation when trying to
prove facts about these algebraic structures.

In terms of algebraic constructions, the picture is that for a given reduction
on one of our algebraic objects we can define the corresponding congruence and
therefore the quotient.

Specifically, for a given (S,⊕, F) and reduction r : S −→ S we can define the
quotient S/r as follows.

1. The carrier consists of r-equivalence classes of elements of S; we can choose
the canonical representative of each class to be a fixed point of r.

2. The semigroup operation is given by ρ\(a)⊕/r ρ\(b) = ρ\(a⊕ b).
3. The functions in F are lifted: f(ρ\(a)) = ρ\(f(a)).

This can be verified to be a semigroup transform. The minset construction is
clearly a special case, where r is min, S is a set of sets, and ⊕ is set union.

4 Applications in Routing

Aside from the use of min-like operations, our main application of congruences
is in the handling of pathfinding errors. In practical situations, it is often not
enough to have an algorithm simply throw its hands up and declare that no
suitable solution exists. Instead, we would like to retain detailed information
about what kinds of errors occurred. For example, in interdomain routing there
are several reasons why a path might be considered erroneous:

– The same node is visited more than once.
– The path is intended to be filtered out.
– The path violates known economic relationships between networks.
– The path is too long (exceeding a maximum size for routing announcements).
– The origin is unexpected (given neighbours are only anticipated to advertise

certain addresses).
– Route data is otherwise malformed.

Any or all of these could be true of a given path.
We believe that from a correctness point of view, it is not enough to sweep

all of these under the implementers’ rug. Many of the anomalies we observe in
Internet routing today can be traced back to the handling of erroneous routes.
Error handling is an integral part of the path selection process, and must be
dealt with in the algebraic model, just as we deal with ordinary, non-erroneous
routes. If not, then the correctness result we obtain is merely ‘As long as nothing
bad happens, protocol convergence is guaranteed’, whereas we would prefer to

be in a position to make stronger statements about the resilience of the routing
system even in the presence of errors.

A reduction operation is a suitable way to begin encoding error-handling.
These functions are all about putting route data into a canonical form: this in-
cludes mapping certain routes to error values. In an algebra which includes such
values, less preferred than ‘ordinary’ routes, we obtain the desired behaviour
automatically. Erroneous routes are removed from consideration, since they can-
not ever be more preferred than a non-erroneous route. Information about the
error can still be propagated through the algorithm, enabling diagnosis, but this
propagation is suppressed if an alternative route exists. All of this is totally
compatible with multipath routing, via minset and related constructions.

The safety of these schemes depends on the interaction between

– the nature of path preferences;
– the operations extending paths; and
– the reduction function.

In the remainder of this section, we examine some simple examples of how the
language of reductions and congruences can be used to prove required safety
properties.

4.1 Forbidden Paths

Presentations of pathfinding algorithms tend to focus on computation of path
weight, as opposed to returning the identity of each path. In the case of Dijkstra’s
algorithm, for example, a simple modification allows the recording of path infor-
mation alongside weight information: this path information is not used while the
algorithm is running, but is an additional output. But in our context, the degree
of preference associated with a path depends upon the identity of that path—
the nodes and arcs that make it up. In particular, we need to exclude, explicitly,
paths that are not simple, whereas for conventional shortest path problems, this
happens automatically. So we will, by default, want to include path information
as part of the algebra.

Other paths may also be forbidden, even if they are simple. Network opera-
tors are able to make essentially arbitrary decisions about which paths will be
unacceptable to them: in protocol implementations, they can be excluded from
consideration as soon as they are received. This is equally the case in a multipath
context.

Both of these cases can be handled by defining appropriate reductions. The
obvious alternative would be to modify each algorithm to have the required
behaviour, rather than seeking to encode this within the algebra. The problem
with this idea is that it breaks the relationship with the theory of pathfinding
based on linear algebra: if this link is not maintained, then we can no longer
take advantage of existing theory in understanding the termination or efficiency
of algorithms. In terms of convergence proof, our experience has been that it is
a great help to make the algorithm as generic as possible, eliminating special
cases by putting them into the algebra instead.

The general principle is to define a reduction which will eliminate forbidden
paths, by mapping them onto a greatest element. This mirrors the conventional
shortest-path model, where non-existent paths are given ‘infinite’ length. Be-
cause any path that is actually present will have finite length, these infinities
will only persist in the algorithm if there is no path connecting the nodes in
question. Equally, our forbidden paths will be worse than any permitted path,
regardless of any of their other merits.

If (S,⊕, F) is a semigroup transform, with ⊕ commutative and having iden-
tity 0, and E is a subset of S containing 0, then define a function rE on S
by

rE(x) =

{
x x 6∈ E

0 x ∈ E.
(17)

For this to be a reduction, it is required that E satisfies the property

∀e ∈ E, x ∈ S : (x ∈ E ∧ e⊕ x ∈ E) ∨ (x = e⊕ x). (18)

It is then possible to define a new structure based on rE . This criterion makes
operational sense. It states, in effect, that the forbidden paths have to be worse
than the non-forbidden paths: if x does not emerge from e ⊕ x, then all of e, x
and e⊕ x are in the error set. So if we forbid a certain path, then we also have
to forbid any path for which it is a prefix: once in the error set, we cannot get
out.

Definition 4. Let err(S, E) be the semigroup transform (SE ,⊕E , FE), where

– SE consists of those elements of X for which rE(x) = x,
– x⊕E y is rE(x⊕ y), and
– FE consists of functions fE for each f in F , and fE(x) = rE(f(x)).

This ⊕E can be verified to be associative, since rE is a reduction. The other
properties of err(S, E) will depend on the choice of S and E.

We have reduced the error set E to a single element in the quotient. Anything
in E is mapped to 0, the topmost element of the order; consequently, forbidden
paths will be excluded from consideration, in favour of non-forbidden paths of
any quality. This mapping is associated with each arc; operationally speaking,
this means that on import or export, the forbidden paths are removed from the
candidate set.

The congruence associated with such a reduction is related to the notion of
a Rees congruence on a semigroup. A subset E of (S,⊕) is an ideal if

∀x ∈ S, e ∈ E : (x⊕ e ∈ E) ∧ (e⊕ x ∈ E). (19)

For a given ideal E, the relation

x ∼E y
def⇐⇒ x = y ∨ (x ∈ E ∧ y ∈ E) (20)

is a congruence, called the Rees congruence with respect to E [7]. In the case
of our rE , the congruence may not be a Rees congruence because E may not

satisfy (19). This is in line with our general principle of not enforcing conditions
which can be inferred: the definition of err(S, E) makes sense even when E is
not an ideal, though it may not have desirable properties.

The relationship between reductions and congruences suggests that other
representations of err(S, E) are possible. Specifically, we could preserve some
information about the forbidden path, rather than limiting the available data to
merely ‘an error occurred’. As long as the correct rules are followed for F and ⊕,
no difficulty arises. That is, we have to ensure that whatever representation we
choose is equivalent under r to the semigroup transform err(S, E) above. Instead
of mapping everything in E to a single 0, we could have many possibilities, drawn
from a subset A of S. This will be acceptable if A is an upper set of S, and if
r maps elements of A to elements of A. The correctness argument is the same,
but the resulting solution state is perhaps more informative than previously, in
the case when the only available path from i to j was forbidden.

4.2 Only Simple Paths

In the multipath setting, a slightly different definition is necessary. We will show
an example of how to ensure that only simple paths emerge from the algorithm.
The standard algebra of paths is to order them by length: we have a preference
relation rather than a semilattice. A variation on the minset construction will
convert such an algebra into one which can be used in the context of matrix
operations.

Let P be the algebra of paths (N∗,�, C), where p � q if and only if | p |≤| q |,
and C consists of functions cn for all n in N , which concatenate the node n onto
the given path. Let (S,≤, F) be an order transform, which will be responsible
for encoding the path weights.

Now, let E be the subset of S ×N∗ consisting of those pairs which contain
a non-simple path:

{(s, p) ∈ S ×N∗ | p is not simple} . (21)

The err construction cannot be used directly, since E does not satisfy the re-
quired property (18). However, there is a reduction which can be used over
subsets of S ×N∗. Let r be the function

r(A) def= min(A \ E); (22)

where min uses the lexicographic order on S × N∗; this satisfies the reduction
axioms. It is also operationally consistent with the view of path filtering wherein
forbidden paths are removed first, with best-path selection applied to the re-
mainder [12].

Consequently, a semigroup transform can be constructed where

– the elements are those subsets of S ×N∗ which are fixed points of r;
– the operation ⊕ is given by A⊕B

def= r(A ∪B); and

– the functions are pairs (f, cn) for f in F , where

(f, cn)(A) def= r({(f(s), cn(p)) | (s, p) ∈ A}).

It can be seen that this algebra implements the simple paths criterion in the case
of multipath routing: if during the course of computation a non-simple path is
computed, it and its associated S-value will be removed from the candidate set.

It is possible to prove that the restriction to simple paths, together with the
strict inflationary condition on S, suffice to ensure algorithmic convergence to a
unique fixed point [8]. That is, the straightforward algorithm where every node
periodically communicates its best paths to its neighbours, and updates its local
best path data based on path information received from neighbours, is guaran-
teed to terminate; moreover, the final state will be a pure Nash equilibrium in the
sense of Section 2, and is unique. Indeed, this convergence is guaranteed from any
starting state, and so the algorithm can be considered to be self-synchronizing to
the extent permitted by the nature of the underlying inter-node communication.

5 Algebraic Correctness in Finite Structures

The distinction between the finite and the infinite is of considerable practical
importance in network routing. We have already discussed how convergence in
a finite number of steps is greatly to be preferred. Another issue in correctness
analysis where this distinction arises is in consideration of finite data domains.
We almost invariably use the infinite to approximate the finite, working with
an idealized, infinite algebraic structure such as (N,min,+) for shortest paths,
when the actual reality is that routing protocols only allow the expression of a
finite number of distinct path lengths. In the case of the Routing Information
Protocol (RIP), this finite number is fifteen [10].

The problem for algebraic analysis is that it is much easier to prove re-
sults about the infinite structures; indeed, the corresponding ‘theorems’ for finite
structures may even be false. For example, we know that for the lexicographic
product lexprod(S, T) of two semigroup transforms to be distributive, it suf-
fices for S and T to be individually distributive, and for S to be cancellative,
meaning that if f(a) = f(b) then a = b, for any f in the function set of S. Ad-
dition of integers is a perfectly acceptable cancellative operation. But addition
with a finite maximum value is not. On a given graph, our iterative algorithm
could fail to reach a global optimum, due to lack of distributivity associated with
this upper limit being reached. In particular, the problem would be that some
node could be left with the value (∞S , x) rather than the actual global optimum
(∞S , y), where y ≺T x according to the order �T of T , and ∞S denotes the
maximum element of S. This is only a limited form of failure, especially since
the termination of the iteration still occurs, but it does seem to undermine the
promise of the algebraic method for guaranteeing correctness of pathfinding.

As an aside, the infamous ‘counting to infinity’ problem of RIP, whereby
the protocol could take a long time to adapt to loss of connectivity, is not a

product of the handling of ‘infinity’ within RIP. Rather, it derives from the fact
that routing information includes the weight of a path but not its identity, and
that it is therefore possible for nodes to adopt cyclic paths without realizing.
The cycles grow longer and longer, until the limit of sixteen is reached, this
‘infinity’ denoting the absence of a usable path. If RIP had a more generous
notion of infinity, this problem would in fact be even worse, since convergence
to the maximum value would take longer.

Returning to proofs of properties, the use of reductions or congruences can
ease the difficulty here as well. We can use our err operation as part of a larger
construction, and trace the correctness properties through. So for an algebra of
the form err(lexprod(S, T), E), we would use our theorems about the lexico-
graphic product to derive properties of lexprod(S, T), and then use our theo-
rems about err to derive properties of the whole algebra. The existence of these
standard constructions allows many cases to be treated uniformly.

In the example above, the real issue is that elements like (∞S , x) do not in
fact denote usable paths: even if the value x is acceptable, the ∞S is certainly
not. Therefore, a way forward is to prohibit such elements from occurring in
the computation at all. Take the subset E = {∞S} × T ⊆ S × T and form
the algebra err(lexprod(S, T), E). All of the problematic elements are now
identified, meaning that they are no longer barriers to the achieving of a global
optimum. We also have a recipe for how to deal with such elements when they
crop up in the path computation: map them to a single overall ‘infinity’ value,
effectively by dropping the T component.

It can be shown that an algebra of this form is distributive, if we have a
distributivity condition for the appropriate subset of lexprod(S, T) (see [8],
Theorem 5.9 and Appendix A.5). The condition is that

(f, g)(s1, t1)⊕ (f, g)(s2, t2) = (f, g) ((s1, t1)⊕ (s2, tt)) (23)

for all (f, g) in the function set of lexprod(S, T), and all (s1, t1) and (s2, t2) in
the subset (S \ {∞S})× T of S × T .

In this way, the required correctness property can be regained, by a modifi-
cation to the algebra and the use of reduction- or congruence-based theorems.

6 Conclusion

There is an ongoing effort to provide a sound theoretical foundation for Internet
routing. While in many cases this task can be tackled on an ad-hoc basis, by
writing new definitions and proofs for each proposed routing scheme, a better
approach is to provide a general theory which can address several such models.
The existing pathfinding theory based on semirings is a sound starting point,
but several adaptations need to be made in order to make it applicable to these
practical examples.

This paper has demonstrated that several such alterations are more mathe-
matically rich than might be suspected. The apparently awkward ‘min’ operation

has been revealed as having a deep connection with lattice theory and with con-
gruences. Related ‘reduction’ operations are also susceptible to explanation in
terms of congruences. We have also shown that these operations are useful in
multipath routing, and for more complex scenarios incorporating route filtering.

The examples in this paper are inspired by interdomain routing. There is con-
siderable scope for applying this theory to the design of future routing systems,
so that they can be not only flexible, but also provably correct with reference to
an underlying optimization problem.

Acknowledgments

This work was supported by grant EP/F002718/1 from the Engineering and
Physical Sciences Research Council (EPSRC). The authors would like to thank
Georg Struth and Philip Taylor for their helpful comments.

References

1. Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1948)
2. Carré, B.A.: Graphs and networks. Oxford University Press, Oxford (1979)
3. Gondran, M., Minoux, M.: Graphs and algorithms. Wiley, Chichester (1984)
4. Gondran, M., Minoux, M.: Graphes, diöıdes et semi-anneaux: Nouveaux modèles

et algorithmes. Tec & Doc, Paris (2001)
5. Griffin, T.G., Gurney, A.J.T.: Increasing bisemigroups and algebraic routing, In:

Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS/AKA 2008. LNCS, vol.
4988, pp. 123–137. Springer, Heidelberg (2008)

6. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-
main routing. IEEE/ACM Trans. Netw. 10(2), 232–243 (2002)

7. Grillet, P.A.: Semigroups: An introduction to the structure theory. Monographs
and Textbooks in Pure and Applied Mathematics, vol. 193. Marcel Dekker, New
York (1995)

8. Gurney, A.J.T.: Construction and verification of routing algebras. PhD thesis,
University of Cambridge (2009)

9. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.
J. Combin. Theory Ser. A 13(3), 297–305 (1972)

10. Malkin, G.: RIP version 2. RFC 2453 (1998).
11. Rote, G.: Path problems in graphs. In: Tinhofer, G., Mayr, E.W., Noltemeier, H.,

Syslo, M. (eds.) Computational graph theory. Computing Supplementa, vol. 7, pp.
155–189. Springer, Heidelberg (1990)

12. Wang, Y., Schapira, M., Rexford, J.: Neighbor-specific BGP: More flexible rout-
ing policies while improving global stability. In: Douceur, J.R., Greenberg, A.G.,
Bonald, T., Nieh, J. (eds.) Proceedings of the Eleventh International Joint
Conference on Measurement and Modeling of Computer Systems, SIGMET-
RICS/Performance 2009, pp. 217–228. ACM, New York (2009)

13. Wongseelashote, A.: An algebra for determining all path-values in a network with
application to k-shortest-paths problems. Networks 6(4), 307–334 (1976)

14. Wongseelashote, A.: Semirings and path spaces. Discrete Math. 26(1), 55–78 (1979)
15. Zimmermann, U.: Linear and combinatorial optimization in ordered algebraic

structures. Annals of Discrete Mathematics, vol. 10. Elsevier North-Holland, Am-
sterdam (1981)

