On a Formal Correspondence Between

A—C-Terms and Classical Proofs

— Extended Abstract —

Timothy G. Griffin
Department of Computer Science
Rice University
Houston, TX 77251-1892

October 28, 1988

1 Introduction

The propositions-as-types correspondence [How80] relates proofs in con-
structive logic to functional programs. The correspondence has intrigued
those interested in the formal verification of programs with the possibility
of developing programs from proofs of their specifications [BC85, Con86,
Moh86]. However, one drawback of this approach to program development
is that the programming languages involved are purely functional. These
languages cannot express constructs for control of evaluation and for manip-
ulation of state that are so important in practical programming languages.

Functional languages can be extended with constructs for control and
state. For example, the A-C-calculus of Felleisen et al [FFKD86, FFKD87] is
a theory for reasoning about a functional language with control constructs.
The A-C-calculus extends Plotkin’s A,-calculus [Plo75] with two control
constructs, A and C. Roughly speaking, A represents an abort operation
that stops a program and returns with the value of its argument. The
operator C applies its argument to the current continuation, an abstraction
the rest of the computation; it is closely related to the call/cc construct in
Scheme and to the catch/throw mechanism of Lisp.

This paper presents some preliminary results of an attempt to extend the
propositions-as-types correspondence to A-C-programs. The well-known cor-
respondence between natural deduction proofs and A-terms [How80, Ste72]



is extended in such a way that proofs are mapped to A-C-terms. What is
surprising about the mapping is that is takes classical proofs to A—C-terms.
The mapping takes instances of the falsum rule to A-applications and in-
stances of the reductio ad absurdum rule to C-applications. Reduction rules
for classical proofs are defined that correspond to the reduction of associated
A-C-terms.

Given this correspondence between classical proofs and A-C-terms, it
is natural to view certain transformations of A-C-terms as defining proof
transformations. One such transformation is Fischer’s [Fis72] continuation
passing style (cps) transform defined on A,-terms. This transform was ex-
tended to A-C-terms by Felleisen et al [FFKD86]. Meyer and Wand pointed
out that Fischer’s transform can be defined on simply typed terms. This
observation is recast below as a transformation on proofs. This proof trans-
formation is then extended to classical proofs in such a way that the extended
cps transform closely corresponds to a transformation of classical proofs into
intustionistic proofs.

The abstract is organized as follows. Section 2 provides a brief descrip-
tion of the A-C-calculus of Felleisen et al. Section 3 defines a mapping
from classical, natural deduction proofs to A-C terms and defines reductions
on proofs that correspond to the reduction rules of A-C-terms. Section 4
demonstrates that the cps transform is related to a translation of classical
proofs to intuitionistic ones. Finally, Section 5 discusses ongoing research.

2 The A—C-Calculus

A-C-terms are defined with the syntax
M =z | MN | XaM | AM | CM.

The notation M[N/z] denotes the capture-avoiding substitution of N for all
freez in M.

Define a value to be either a variable or an abstraction. The metavari-
ables V, V4, Vs, ... will represent values. The following reduction rules for



A-C-terms are defined in [FFKD86]:

(Az.M)WV 25 Mv/z) (8v)
(AMN 25 AM (AL)
V(AN) 2B AN (AR)
(CM)N L5 CARM(AfE(SN)) (C)
V(CN) L& CAk.N(w.k(Vv)) (Cr)

Let —,, be the compatible closure of the §, rule; —; the compatible
closure of the 8,, Ay, and AR rules; and — . be the compatible closure
of the union of all five rules. With s being either m, 1, or ¢, let —+, be
the reflexive, transitive closure of —,, and =, be the equivalence relation
generated by —~,.

Lemma 1 For s € {m,{,c}, the relation —, is Church-Rosser.

Proof For —,, see Plotkin [Plo75], see Felleisen et al [FFKD87] for the
others. D

3 Classical Proofs and A—C-Terms

Formulas A are defined as
A= 1| P | A-B

where the the P € P are the atomic formula and the formula 1 represents
“false.” Negation is defined in the usual way as “A = A4 — 1.
Formal derivations ¥ are generated using the following rules of natural

deduction:

[A]
: A—- B A
é (-1 _—B (= E)
A—-B
1 Y §
W " (£



Let M be the system generated by the rules — I and — E, I be the system
M extended with the L; rule, and C be the system I extended with then

1. rule. A derivation ¥ with conclusion A will often be written as i .

There is a well-known correspondence between natural deduction deriva-
tions in M and pure A-terms [How80, Ste72). This correspondence is ex-
tended here by defining a function that maps a C-derivation ¥ to a AC-

term.

Definition 1 (A (X)) The A-C-term A () is defined by induction on L.

1. A (A) = z4, for any formula A,
2. UK(A§3)=MandK(a2)=N,

- P P
thenA| A—B A =MN,

B
A [A]
3. ifK( s | =M then X g = AAM
B A— B
4 IIA(L)=M’ thenA | L =AM,
A
5. !'fA( ):MMCHA Y =CM.
A -

The variables z4 of this definition are understood to be untyped variables
that have been tagged with a formula. This extends the propositions-as-

types principle of Howard in such a way that if M =A i then M can

be said to have type A. Note that a given A-C-term M may have many
1

types. For example, Az. Az =A ( A ) for any formula A.

1-4



“suoIyRALIaP-0) IO] SI[NJ UOHINPIY :T N3y

q
Y
=
Y- V-
T g
q lg-]
vl g«v
v
q
Y =
=
(g —Vv)- (g — V)
T 7
q (g+-]
Vv [g<vV]
e
g
T
g
g
T
Iz

LA ]

q
Vv <V
| v
g

q

VvV g<V
IR (g~ V)
Iz

AR T
q

<
_l

q4<
HnRQ




Next, define reduction relations, =>,, for s € {m,i,c}, on derivations

such that if ¥ =, X, then K () —,» K (X,). First, a notion corre-
sponding to value needs to be defined for derivations.

Definition 2 A derivation i is a value derivation if £ = A, that is, an

assumption, or if A= B — C and — I is the last rule application in .

Clearly, if T is a value-derivation, then 7\ (¥) is a value. The metavariables
A,Ay, A,,. .. will represent value-derivations.
Figure 1 presents the reduction rules for C-derivations corresponding to

the reductions of A-C-terms. Let =>,, be the compatnble closure of the -é:»

rule; =>; the compatible closure of the => é, and => rules; =>. the
compatible closure of the union of all five rules of Figure 1. With s being
either m, i, or ¢, let =%, be the reflexive, transitive closure of =>,, and =,
be the equivalence relation generated by =%,.

Theorem 2 The relation =>, is Church-Rosser, where s € {m,i,c}.
Proof Sketch. The proof follows from Lemma 1 and the following facts:
1, To=%,%, implies K (Ez)—H,X (22).

2. If My = A (%)) and M; —, My, then there exists a I, such that
Ti=>,Zand Ma=A (22)

4 The CPS Transform as a Proof Transform

The continuation transform M was introduced by Fischer [Fis72]:

T = Ak.kz
M = Ak(Az)
MN = M.M(Am.N(An.mnk))

It was extended to A-C-terms by Felleisen et al [FFKD86}:

x|
S

A

= Ak.MJ
= M.M(Om.m(Av. MK .kv)J)

o
S

6




where J was defined to be Az.z.

Although this cps transform is defined for the untyped A-terms, Meyer
and Wand [MW85) have shown that Fischer’s transform can be seen as defin-
ing a transform of simply-typed terms. Assuming there is one distinguished
formula (type) O, define the transformation A* on formulae (types).

o =0
P = P
(A= B) = A*—=(B*-0)-0.

Then, if M is a pure A-term that can be assigned type A, M can be assigned
type (A* = 0)—= 0.

This section recasts the Meyer/Wand observation as a transformation on
derivations. The proof transformation is extended to C-derivations using the
extended cps transform where J is defined to be Az.Az.

For S being either M, I, or C, let T I-g A represent the assertion that
there exists an S-derivation for A, all of whose undischarged assumptions
are in the set of formulae I'. Let I'* = {A* | A € T}. It can now be seen
that the cps transform corresponds to a transformation taking derivations
in C to derivations in I.

Theorem 3 If there is a proof £ of T’ k¢ A then there erists a proof Z* of
I* kg (A* = O) — O such that

A(D)=A (D).

Proof. By induction on X.

A [A*> 0]
Case 1: f £ = A then let £* = [é]
A* = 0> 0
Case2: f ¥ =
L I
cC—-A C
A



0+ (0+—.Y)

o
0~T 0+(+-T)
[} i
T
¥
=, P WY T =ZJ:pased
cd
0—(0+—.g+-2)
0
0—(0—.8)—.0 [0~ .(g+0I)]
0+~ {0+ .9)
S
[.0]
=, 19] U3y}
g<D
g
g
(ol
= z _].’I :8 GS‘BO
‘Q0—(@—.v)
0
0+~ (Vv+—0) 0—(0+— . v—2))
0o 03
Q—.D o~ (+.0)
) =3
o~ _0—(0—.¥)
ol [.(v 0]

= oK 19[ wd[]



by}
Case5: f X = -=-A thenlet X*=

A
4] [A—0)
(V)
L=0)-0
(mmA) A= (L—-0)—0
1T-0)-0
L [¢]
((-l—lA)‘ -0)—=0 (ﬂ—lA)‘ — 0
[
@S0 =0

It is easy to check that in each case A (E) = A (Z*).

5 Ongoing Research

The addition of an unrestricted » rule to the untyped A,-calculus causes the
theory to become inconsistent. It is conjectured that this is not the case
when 7 is added to the reduction rules for C-derivations.

Conjecture 1 The reduction relation =, remains Church-Rosser with the
addition of the n rule.

If this conjecture is true, then the following theorem can be proved by a
straightforward, but tedious, case analysis.

Theorem 4 If &; and I are closed C-derivations with ¥, =>. X3, then
3t =1 ",

Prawitz [Pra65] proves a normal form theorem for classical proofs where
the reduction rule pushes instances of the L. rule further from the root
of a proof, rather than closer to the root, as is the case with the =
rules. A A-C analogue to Prawitz’s rule could be written as C(Az.M) —
AnC(Ak.(Az.M)(Af.k(fn))). We conjecture that the reduction relation =,
is strongly normalizing.

Conjecture 2 The reduction relation => is strongly normalizing.
Finally, applications of the correspondence between A-C-terms and clas-

sical proofs to program development are being investigated.

9



References

[BC8S]

[Cong6)

Joseph L. Bates and Robert L. Constable. Proofs as programs.
ACM Trans. Prog. Lang and Sys., 7(1):113-136, 1985.

Robert L. Constable, et al. Implementing Mathematics with
the Nupr!l Proof Development System. Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[FFKD86) M. Felleisen, D.P. Freidman, E. Kohlbecker, and B. Duba. Rea-

soning with continuations. In First Symposium on Logic in Com-
puter Science, pages 131-141, IEEE, 1986.

[FFKD87] M. Felleisen, D.P. Freidman, E. Kohlbecker, and B. Duba. A

[Fis72]

[How80])

[Moh86]

[MWS85]

[Plo75)

{Pra65]
[Ste72]

syntactic theory of sequential control. Theoretical Computer Sci-
ence, 52(3):205-237, 1987.

M. J. Fischer. Lambda calculus schemata. In Proc. ACM Con-
Jerence on Proving Assertions About Programs, pages 104-109,
1972. SIGPLAN Notices 7.1.

W. Howard. The formulas-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Es-
says on Combinatory Logic, Lambda-Calculus, and Formalism,
pages 479-490, Academic Press, NY, 1980.

Christine Mohring. Algorithm development in the Calculus of
Constructions. In Proceedings of the First Symposium on Logic
in Computer Science, 1986.

A. R. Meyer and M. Wand. Continuation semantics in typed
lambda-calculi (summary). In R. Parikh, editor, Logics of Pro-
grams, pages 219-224, Springer-Verlag, 1985. Lecture Notes in
Computer Science, Volume 193.

Gordon Plotkin. Call-by-name, call-by-value and the A-calculus.
Theoretical Computer Science, 1:125-159, 1975.

Dag Prawitz. Natural Deduction. Almquist and Wiksell, 1965.

Soren Stenlund. Combinators, Lambda-Terms and Proof Theory.
D. Reidel, Dordrecht, Holland, 1972.

10



L696-08L 81L OQIZ1I J10X MIN "UA[NjOO0Ig "HIOX MIN Jo A]!SJQA!UQ AllD Y], Jo 383“03 U&(mOOJg

\

JTEYO wedagoad
yxraeg 3jryoy

" )

‘AT@Jd80UTS sSJanojx

‘aunp uT SuTtjasw SYj pusajljle TITM NOA 3eyj

adoy I pue 68 SJIT 03 aaded anok JFuT3JTWANS JOJ MOYAU®R NOA Nueyl

‘Teuanofl ® ut afqeystiqnd ATJaeaid

aJam jey3 saaded j3o9fagd 03 PpoadIOJ 2a9M BM Ppuv sjepPOWODIDIN ATqrssod

PInod weajoad ayj uvyy pajjruqns aaam saaded poo§F asaow aey ‘aungp urt

uorjejuasaad

J0J 29833Twwod weagoad ayjz Aq pajda[as 9S0Y3 FuOwWB JOU SEM

RN St R S e "fr'wmgatj WO I I T TTIRREE D)

daded anod j3eyj nod [ia23 03 @2aeY 07 AJJ0S we I
aoyiny aeaq

886L ‘02 Jaquaodaqg

2ud1dg uonewiojuf pue 131ndwao) jo wawuedaqg




