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1 Introduction

The propositions-as-types correspondence [How80] relates proofs in con-
structive logic to functional programs. The correspondence has intrigued
those interested in the formal verification of programs with the possibility
of developing programs from proofs of their specifications [BC85, Con86,
Moh86]. However, one drawback of this approach to program development
is that the programming languages involved are purely functional. These
languages cannot express constructs for control of evaluation and for manip-
ulation of state that are so important in practical programming languages.

Functional languages can be extended with constructs for control and
state. For example, the A-C-calculus of Felleisen et al [FFKD86, FFKD87] is
a theory for reasoning about a functional language with control constructs.
The A-C-calculus extends Plotkin’s A,-calculus [Plo75] with two control
constructs, A and C. Roughly speaking, A represents an abort operation
that stops a program and returns with the value of its argument. The
operator C applies its argument to the current continuation, an abstraction
the rest of the computation; it is closely related to the call/cc construct in
Scheme and to the catch/throw mechanism of Lisp.

This paper presents some preliminary results of an attempt to extend the
propositions-as-types correspondence to A-C-programs. The well-known cor-
respondence between natural deduction proofs and A-terms [How80, Ste72]



is extended in such a way that proofs are mapped to A-C-terms. What is
surprising about the mapping is that is takes classical proofs to A—C-terms.
The mapping takes instances of the falsum rule to A-applications and in-
stances of the reductio ad absurdum rule to C-applications. Reduction rules
for classical proofs are defined that correspond to the reduction of associated
A-C-terms.

Given this correspondence between classical proofs and A-C-terms, it
is natural to view certain transformations of A-C-terms as defining proof
transformations. One such transformation is Fischer’s [Fis72] continuation
passing style (cps) transform defined on A,-terms. This transform was ex-
tended to A-C-terms by Felleisen et al [FFKD86]. Meyer and Wand pointed
out that Fischer’s transform can be defined on simply typed terms. This
observation is recast below as a transformation on proofs. This proof trans-
formation is then extended to classical proofs in such a way that the extended
cps transform closely corresponds to a transformation of classical proofs into
intustionistic proofs.

The abstract is organized as follows. Section 2 provides a brief descrip-
tion of the A-C-calculus of Felleisen et al. Section 3 defines a mapping
from classical, natural deduction proofs to A-C terms and defines reductions
on proofs that correspond to the reduction rules of A-C-terms. Section 4
demonstrates that the cps transform is related to a translation of classical
proofs to intuitionistic ones. Finally, Section 5 discusses ongoing research.

2 The A—C-Calculus

A-C-terms are defined with the syntax
M =z | MN | XaM | AM | CM.

The notation M[N/z] denotes the capture-avoiding substitution of N for all
freez in M.

Define a value to be either a variable or an abstraction. The metavari-
ables V, V4, Vs, ... will represent values. The following reduction rules for



A-C-terms are defined in [FFKD86]:

(Az.M)WV 25 Mv/z) (8v)
(AMN 25 AM (AL)
V(AN) 2B AN (AR)
(CM)N L5 CARM(AfE(SN)) (C)
V(CN) L& CAk.N(w.k(Vv)) (Cr)

Let —,, be the compatible closure of the §, rule; —; the compatible
closure of the 8,, Ay, and AR rules; and — . be the compatible closure
of the union of all five rules. With s being either m, 1, or ¢, let —+, be
the reflexive, transitive closure of —,, and =, be the equivalence relation
generated by —~,.

Lemma 1 For s € {m,{,c}, the relation —, is Church-Rosser.

Proof For —,, see Plotkin [Plo75], see Felleisen et al [FFKD87] for the
others. D

3 Classical Proofs and A—C-Terms

Formulas A are defined as
A= 1| P | A-B

where the the P € P are the atomic formula and the formula 1 represents
“false.” Negation is defined in the usual way as “A = A4 — 1.
Formal derivations ¥ are generated using the following rules of natural

deduction:

[A]
: A—- B A
é (-1 _—B (= E)
A—-B
1 Y §
W " (£



Let M be the system generated by the rules — I and — E, I be the system
M extended with the L; rule, and C be the system I extended with then

1. rule. A derivation ¥ with conclusion A will often be written as i .

There is a well-known correspondence between natural deduction deriva-
tions in M and pure A-terms [How80, Ste72). This correspondence is ex-
tended here by defining a function that maps a C-derivation ¥ to a AC-

term.

Definition 1 (A (X)) The A-C-term A () is defined by induction on L.

1. A (A) = z4, for any formula A,
2. UK(A§3)=MandK(a2)=N,

- P P
thenA| A—B A =MN,

B
A [A]
3. ifK( s | =M then X g = AAM
B A— B
4 IIA(L)=M’ thenA | L =AM,
A
5. !'fA( ):MMCHA Y =CM.
A -

The variables z4 of this definition are understood to be untyped variables
that have been tagged with a formula. This extends the propositions-as-

types principle of Howard in such a way that if M =A i then M can

be said to have type A. Note that a given A-C-term M may have many
1

types. For example, Az. Az =A ( A ) for any formula A.
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Next, define reduction relations, =>,, for s € {m,i,c}, on derivations

such that if ¥ =, X, then K () —,» K (X,). First, a notion corre-
sponding to value needs to be defined for derivations.

Definition 2 A derivation i is a value derivation if £ = A, that is, an

assumption, or if A= B — C and — I is the last rule application in .

Clearly, if T is a value-derivation, then 7\ (¥) is a value. The metavariables
A,Ay, A,,. .. will represent value-derivations.
Figure 1 presents the reduction rules for C-derivations corresponding to

the reductions of A-C-terms. Let =>,, be the compatnble closure of the -é:»

rule; =>; the compatible closure of the => é, and => rules; =>. the
compatible closure of the union of all five rules of Figure 1. With s being
either m, i, or ¢, let =%, be the reflexive, transitive closure of =>,, and =,
be the equivalence relation generated by =%,.

Theorem 2 The relation =>, is Church-Rosser, where s € {m,i,c}.
Proof Sketch. The proof follows from Lemma 1 and the following facts:
1, To=%,%, implies K (Ez)—H,X (22).

2. If My = A (%)) and M; —, My, then there exists a I, such that
Ti=>,Zand Ma=A (22)

4 The CPS Transform as a Proof Transform

The continuation transform M was introduced by Fischer [Fis72]:

T = Ak.kz
M = Ak(Az)
MN = M.M(Am.N(An.mnk))

It was extended to A-C-terms by Felleisen et al [FFKD86}:

x|
S

A

= Ak.MJ
= M.M(Om.m(Av. MK .kv)J)

o
S
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where J was defined to be Az.z.

Although this cps transform is defined for the untyped A-terms, Meyer
and Wand [MW85) have shown that Fischer’s transform can be seen as defin-
ing a transform of simply-typed terms. Assuming there is one distinguished
formula (type) O, define the transformation A* on formulae (types).

o =0
P = P
(A= B) = A*—=(B*-0)-0.

Then, if M is a pure A-term that can be assigned type A, M can be assigned
type (A* = 0)—= 0.

This section recasts the Meyer/Wand observation as a transformation on
derivations. The proof transformation is extended to C-derivations using the
extended cps transform where J is defined to be Az.Az.

For S being either M, I, or C, let T I-g A represent the assertion that
there exists an S-derivation for A, all of whose undischarged assumptions
are in the set of formulae I'. Let I'* = {A* | A € T}. It can now be seen
that the cps transform corresponds to a transformation taking derivations
in C to derivations in I.

Theorem 3 If there is a proof £ of T’ k¢ A then there erists a proof Z* of
I* kg (A* = O) — O such that

A(D)=A (D).

Proof. By induction on X.

A [A*> 0]
Case 1: f £ = A then let £* = [é]
A* = 0> 0
Case2: f ¥ =
L I
cC—-A C
A
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by}
Case5: f X = -=-A thenlet X*=

A
4] [A—0)
(V)
L=0)-0
(mmA) A= (L—-0)—0
1T-0)-0
L [¢]
((-l—lA)‘ -0)—=0 (ﬂ—lA)‘ — 0
[
@S0 =0

It is easy to check that in each case A (E) = A (Z*).

5 Ongoing Research

The addition of an unrestricted » rule to the untyped A,-calculus causes the
theory to become inconsistent. It is conjectured that this is not the case
when 7 is added to the reduction rules for C-derivations.

Conjecture 1 The reduction relation =, remains Church-Rosser with the
addition of the n rule.

If this conjecture is true, then the following theorem can be proved by a
straightforward, but tedious, case analysis.

Theorem 4 If &; and I are closed C-derivations with ¥, =>. X3, then
3t =1 ",

Prawitz [Pra65] proves a normal form theorem for classical proofs where
the reduction rule pushes instances of the L. rule further from the root
of a proof, rather than closer to the root, as is the case with the =
rules. A A-C analogue to Prawitz’s rule could be written as C(Az.M) —
AnC(Ak.(Az.M)(Af.k(fn))). We conjecture that the reduction relation =,
is strongly normalizing.

Conjecture 2 The reduction relation => is strongly normalizing.
Finally, applications of the correspondence between A-C-terms and clas-

sical proofs to program development are being investigated.
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