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ABSTRACT
Internet routers can obtain distinct routes to the same desti-
nation from multiple routing protocols. A mechanism called
administrative distance (AD) has evolved to implement
route selection in such cases. AD simply imposes a pref-
erence ranking among routing protocols. A related mech-
anism called route redistribution (RR) is used to increase
connectivity by injecting routes from one protocol into an-
other. Recent research has shown that the current design of
RR with AD mechanisms can give rise to routing and for-
warding anomalies that are difficult to debug. We present
a new algebraic model that captures not only RR with AD,
but also sub-protocol interactions that exist within protocols
such as OSPF and IS-IS. Compared with previous work, our
model provides a clearer view of the issues and trade-offs
involved.

1. MOTIVATION
If a router calculates more than one route to the same

destination using distinct routing protocols, then some
mechanism is needed to determine which routes are ac-
tually used for forwarding. The most common mecha-
nism used today is called administrative distance (AD).
This means that each protocol (or sub-protocol) is asso-
ciated with a weight, and routes from the protocol with
the lowest weight are selected. The default configura-
tions of AD values for two vendors are shown in Fig-
ure 1. So for example, both Cisco and Juniper routers
will by default prefer routes from OSPF over routes
from RIP.

Each routing protocol receives routing information
from adjacent routers (details vary between protocols)
and constructs a Routing Information Base (RIB). Then
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Protocol Cisco Juniper
Connected interface 0 0
Static route 1 1
EIGRP summary route 5
External BGP 20 20
Internal EIGRP 90
IGRP 100
OSPF 110 110
IS-IS 115 115
RIP 120 120
EGP 140
ODR 160
External EIGRP 170
Internal BGP 200 200

Figure 1: Common administrative distances.

each protocol exports its best routes to a Forwarding
Information Base (FIB) manager. The FIB manager
implements route selection based on AD values and in-
stalls forwarding entries into the operational forwarding
table.

The FIB manager also implements the inter-protocol
mechanism of route redistribution (RR). That is, routes
can be exported from one protocol into other proto-
cols as implemented by router configuration commands.
The complexity of configuration and management in a
network using RR/AD has been the subject of recent
research [10, 11]. This work shows how today’s RR/AD
mechanisms can give rise to routing and forwarding
anomalies that are difficult to debug, including forward-
ing loops, protocol oscillation, and unexpected loss of
connectivity. Motivated by these problems, a recent pa-
per [12] proposed New Routing Primitives (NRP) that
might be used to improve the reliability and robustness
of RR/AD.

In the current paper we attempt to generalize the
NRP scheme as well as approach the problem in a more
top-down manner. Broadly speaking there are two ap-
proaches to designing a system for RR/AD:

• Tightly coupled approach: Use protocol-specific



details to formulate a model.

• Loosely coupled approach: Construct a model
that works for any routing protocols.

One possible advantage of a tightly coupled approach is
that it may be able provide more guarantees. However,
in an environment like the Internet this would place a
tremendous burden on protocol designers. For example,
the introduction of a new protocol might require modifi-
cations to all existing protocols to ensure compatibility
with RR/AD. Of course this would be avoided with a
loosely coupled approach. The downside of a loosely
coupled design is that the entire routing system could
be corrupted by one misbehaving protocol. Having said
that, it seems that this is the only scalable approach
for an environment such as the Internet. We will argue
that NRP represents a tightly coupled approach.

Section 2 reviews some of the algebraic preliminaries
required in the paper. An advantage of a top-down al-
gebraic approach is that it allows a complete separation
between what set of equations are being solved and how
they are solved using specific routing algorithms (link
state, path vector, FIB mechanisms, and so on).

Section 3 reviews the algebraic distinction between
path metrics and routing metrics recently presented in [4].
This approach echoes the idea of having distinct name
spaces for infrastructure (routers) and destinations (a
range of IP addresses) [5] which has recently been em-
bodied in the Locator/ID split work [14]. Put simply,
path metrics are used to select paths between routers,
while mapping attaches destinations to create routes,
which may have a metric distinct from the path metric.
Routes then results from a combination of path find-
ing and mapping. The distinction between path and
route metrics plays a key role in our algebraic model of
RR/AD.

Section 4 reviews the distinction between global and
local optimality in Internet routing protocols. It is well
known that protocols such as EIGRP [8] BGP [18] find
only locally optimal routes, not globally optimal routes.
This is related to the fact that the metrics of these pro-
tocols violate some of the algebraic rules described in
Section 2. We show that this can complicate the in-
teraction of protocols in a manner not discussed in the
NRP paper.

Section 5 shows how similar problems arise within
some of today’s routing protocols — the interaction of
intra-area and inter-area routing in OSPF and Level
1 and Level 2 routing in IS-IS are shown to replicate
many aspects of RR with AD in miniature. However,
the internal design of each of these protocols is by its
very nature tightly coupled.

Section 6 extends the routing and forwarding model
of [4] to capture today’s RR with AD. The conclusions
are both positive and negative. On the positive side

name S ⊕ ⊗ 0 1 in network

sp N∞ min + ∞ 0 shortest paths

bw N∞ max min 0 ∞ greatest capacity

rel [0, 1] max × 0 1 greatest reliability

Figure 2: Three simple semirings. Here N∞ rep-
resents N ∪ {∞}, where ∞ is used to denote the
absence on arc or a path.

we argue that many of the design decisions made in to-
day’s RR/AD framework are reasonable. On the neg-
ative side, it seems difficult to avoid the fact that a
stable forwarding solutions may depend on the details
of the algorithms used (path-vector vs. link-state) by
the participating protocols.

In Section 7 we examine the NRP scheme. The NRP
paper seems to argue that only a tightly coupled design
can address the issues raised by [10, 11]. We argue for
a loosely coupled approach.

Among other things, we believe the paper reveals
some of the complexities associated with Internet rout-
ing protocols. Section 8 considers possible applications
to protocol design as well as open problems.

2. ALGEBRAIC PATH PROBLEMS
The algebraic approach to describing and solving path

problems in graphs is well developed in Operations Re-
search where it is applied to wide variety of problems
including scheduling and planning. An excellent survey
can be found in [7]. Algebraic models can also capture
a broad range of routing metrics. We recommend [3]
as an introduction to algebraic techniques for network
routing.

The classical shortest-paths problem can be general-
ized to a large class of algebraic structures called semir-
ings, of the form (S, ⊕, ⊗, 0, 1). Figure 2 presents
three simple semirings. Semirings must obey the axioms
of Figure 3. For the classical shortest-paths semiring the
additive operation is ⊕ = min and the multiplicative
operation is ⊗ = +. The additive identity is 0 = ∞,
while the multiplicative identity is 1 = 0. Thus the
standard abstract notations may seem strangely per-
verse, until we realize that, historically, this derives
from viewing semirings as generalizing rings, and the
classical ring from linear algebra is (R,+,×, 0, 1). In-
deed, many path finding algorithms using semirings have
analogs in linear algebra. For example, Bellman’s algo-
rithm is closely related to Jacobi’s method from linear
algebra ([7], Chapter 4).

Given a semiring (S,⊕,⊗, 0, 1) and a graph G =
(V, E), a weight function for G is a mapping w ∈ E →
S. We will represent this function with an adjacency
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A =


a b c d e

a ∞ 2 1 6 ∞
b 2 ∞ 5 ∞ 4
c 1 5 ∞ 4 3
d 6 ∞ 4 ∞ ∞
e ∞ 4 3 ∞ ∞


(b) Adjacency matrix

A∗ =


a b c d e

a 0 2 1 5 4
b 2 0 3 7 4
c 1 3 0 4 3
d 5 7 4 0 7
e 4 4 3 7 0


(a) Shortest paths from node a in bold (c) Solution matrix

Figure 4: Example of finding best paths using the sp semiring. The bold arrows indicate the shortest-
paths tree rooted at node a.

(sr.a.asso) a⊕ (b⊕ c) = (a⊕ b)⊕ c
(sr.a.comm) a⊕ b = b⊕ a

(sr.a.id) a⊕ 0 = 0⊕ a = a
(sr.m.asso) a⊗ (b⊗ c) = (a⊗ b)⊗ c

(sr.m.id) a⊗ 1 = 1⊗ a = a
(sr.m.anni) a⊗ 0 = 0⊗ a = 0
(sr.l.dist) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(sr.r.dist) (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a)

Figure 3: Semiring (sr) axioms for structures of
the form (S,⊕,⊗, 0, 1). All free variables are uni-
versally quantified over S. Abbreviations: ad-
ditive (a), multiplicative (m), associative (asso),
commutative (comm), identity (id), annihilator
(anni), left (l), right (r), distributive (dist).

matrix A, where A(u, v) = w(u, v) when (u, v) ∈ E
and A(u, v) = 0 when (u, v) 6∈ E. If p = v0, v1, · · · , vk
is a path in G, then the weight of p, denoted w(p), is
the product of arc weights,

w(vo, v1)⊗ w(v1, v2)⊗ · · · ⊗ w(vk−1, vk).

The “empty path” from a node v to itself using no arcs
is given the weight 1.

For most semirings useful in networking, and all of the
examples in Figure 2, the ⊕ operation is idempotent —
that is, ∀s ∈ S : s ⊕ s = s. In such cases, the relation
defined as

a ≤ b ≡ a = a⊕ b (1)

is a partial order. When ⊕ is also selective (i.e., ∀s, t ∈
S : s ⊕ t ∈ {s, t}), then ⊕ represents a total order
(again, this is true of all examples in Figure 2).

2.1 The all-pairs problem

Given a weighted graph, the all-pairs best-paths prob-
lem is to find the best path weight over all possible paths
from i to j for all i, j ∈ V . Put another way, we would
like to find a matrix A∗ such that

A∗(i, j) =
⊕

p∈P(i, j)

w(p). (2)

where P(i, j) is the set of all paths from node i to node
j. Note that in general the A∗ may not exist, or may
not be computable. We can read Equation 2 as seek-
ing globally optimal paths weights, since ⊕ represents
minimization with respect to ≤.

Figure 4(a) presents a simple example using the shortest-
paths semiring sp. This graph is represented with the
adjacency matrix A in Figure 4(b). The matrix A∗ is
presented in Figure 4(c).

Any semiring S can be used to define a semiring of
n × n matrices over S. If X and Y are two matrices,
then

(X⊕Y)(i, j) = X(i, j)⊕Y(i, j), (3)

and

(X⊗Y)(i, j) =
⊕

1≤q≤n

X(i, q)⊗Y(q, j). (4)

We often write XY instead of X⊗Y.
The matrix A∗ can also be specified as the solution

of the matrix equation

X = AX⊕ I. (5)

With semirings, X = A∗ is a in some sense the best
solution to Equation 5 (see [7]).

2.2 Algorithms
Letting Ak represent k-fold matrix product of A, it

is not difficult to show that Ak(i, j) is the best weight



over all paths from i to j having exactly k arcs. There-
fore, when A∗ exists it can be expressed as

A∗ = I⊕A⊕A2 ⊕ · · · ⊕Ak ⊕ · · · (6)

For many semirings useful in networking (and all of the
examples in Figure 2) the multiplicative identity is also
an annihilator for ⊕:

(sr.a.anni) s⊕ 1 = 1⊕ s = 1

In this case we need not inspect paths containing loops,
so

A∗ = I⊕A⊕A2 ⊕ · · · ⊕An−1. (7)

There are many algorithms for computing A∗ more ef-
ficiently.

The matrix A∗ can be computed with distributed al-
gorithms. With link-state protocols each node j knows
A(j, ) and this information is flooded throughout the
network. Eventually, each node i learns A and then
computes one row A∗(i, ) of A∗ using an algorithm
such as Dijkstra’s.

Another approach is to distribute the computation,
keeping data local, which typically employs algorithms
in the Bellman-Ford family often called distance vec-
tor or path vector algorithms. At a high level of ab-
straction, we can view these algorithms as implementing
an iterative method of computing A∗ from Equation 7:

A[0] = I

A[k+1] = AA[k] ⊕ I.

It is easy to see, courtesy of the distributivity axioms,
that A∗ = A[n−1] (assuming sr.a.anni). Note that for
i 6= j we have

A[k+1](i, j) =
⊕
q

A(i, q)A[k](q, j),

which says that at each iteration node i constructs the
best paths it can given the best paths at its neigh-
bors. Of course this abstract view of vectoring pro-
tocols ignores many important implementation details
(session management, hard-state vs. soft state, and so
on). In particular, each algorithm can be modified to
record path information, which we are ignoring here.
For example, Internet routing protocols compute next-
hop routers for best paths.

Algorithms in the distributed Bellman-Ford family
exhibit a problem often referred to as counting to infin-
ity. This can be easily explained algebraically. Suppose
the Bellman-Ford iteration starts in an arbitrary state
represented by the matrix Z,

A
[0]
Z = Z

A
[k+1]
Z = AA

[k]
Z ⊕ I.

By induction we can see that for all k we have

A
[k+1]
Z = AkZ ⊕ A[k],

and so q such that n ≤ q we have

A
[q]
Z = Aq−1Z ⊕A∗.

Now suppose that Z represents the best paths of the
network just before some link failures, and A is the
new adjacency matrix after the failures. It could be
that there are two nodes i and j such that A∗(i, j)
is much larger than Aq−1Z(i, j), so the iteration will
continue until A∗(i, j) wins. This may never happen if
the failures partitioned the network and i and j are no
longer connected.

One solution is to make infinity very small, as with
RIP. Another approach is to add paths (such as with
BGP’s ASPATH) and modify the algorithm to only con-
sider loop-free paths. This works because for n− 1 < k
the each entry in the matrix Ak represents the weight
of a path with a loop. A third approach is used in
Cisco’s EIGRP — the iteration is performed with addi-
tional communication between neighbors to ensure only
consistent states are explored [6].

3. PATH VS. ROUTING METRICS
Close inspection of Internet routing protocols reveals

that they often employ distinct metrics for selecting
paths and for selecting routes. This is especially true
for current link-state protocols. However, ongoing work
in the IETF associated with the Locator/ID Separa-
tion Protocol (LISP) is attempting to introduce the
path/route distinction into BGP (see [14] for an intro-
duction). For current link-state protocols the interac-
tion of path and route selection is described informally
in an RFC or buried in code. We need to make this
interaction explicit in a way that integrates well with
an algebraic theory of routing. We adopt a solution
recently proposed [4] which employs semi-modules to
model this distinction.

Consider the network of Figure 5 where two exter-
nal destinations, x and y, are attached to the graph of
Figure 4. Using the terminology of LISP, it might be
helpful to think of x and y as identifiers and the node
names {a, b, c, d, e} as locators. Each attachment is as-
sociated with a mapping metric m, which is presented
as [m] to distinguish it from the routing metric.

Figure 5(a), (b), and (c) present the simplest case
where attachment metrics are integers used simply to
extend shortest-paths weights. Figure 5(a) shows the
shortest paths in bold arrows from node a, while Fig-
ure 5(b) captures the associated path weights in matrix
form. Finally, Figure 5(c) presents the (network-wide)
forwarding tables associated with these paths. For ex-
ample, the forwarding table at node c would tradition-
ally be presented as

destination next-hop(s)
x e
y d, e
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Rsim =


x y

a 4 6
b 2 6
c 4 5
d 8 1
e 1 2


(b) Matrix of simple routing metrics

Tsim =


x y

a {b} {c}
b {x} {e}
c {e} {d, e}
d {c} {y}
e {x} {y}


(a) Simple paths from node a (c) Simple forwarding tables (next-hops)
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6

5 4 [(0, 1)]

[(0, 1)]

2

1

4

3

[(0,2)]

[(0,2)]

Rhot =


x y

a (2, 2) (4, 2)
b (0, 2) (4, 2)
c (3, 1) (3, 2)
d (7, 1) (0, 1)
e (0, 1) (0, 2)


(e) Matrix of hot-potato routing metrics

Thot =


x y

a {b} {c}
b {x} {e}
c {e} {e}
d {c} {y}
e {x} {y}


(d) Hot-potato paths from node a (f) Hot-potato forwarding tables (next-hops)

a

b

c

d

e

x

y

6

5 4

[(2, 0)]

[(2, 0)]

2

1

4

3

[(1, 0)]

[(1, 0)]
Rcold =


x y

a (1, 4) (1, 5)
b (1, 4) (1, 7)
c (1, 3) (1, 4)
d (1, 7) (1, 0)
e (1, 0) (1, 7)


(h) Matrix of cold-potato routing metrics

Tcold =


x y

a {c} {c}
b {e} {a}
c {e} {c}
d {c} {y}
e {x} {c}


(g) Cold-potato paths from node a (i) Cold-potato forwarding tables (next-hops)

Figure 5: Illustrating the difference between path metrics and routing metrics. Destinations x and y
are attached to the graph of Figure 4 and three different routing and forwarding tables are constructed
from the same set of shortest paths. In each scenario routes from node a to destinations x and y,
are shown in bold arrows. The matrix of routing metrics R can be specified as R = A∗ �M using
an appropriately defined semi-module (U,2,�, 0̂) over the semiring sp. Here M is an appropriately
constructed mapping matrix representing the attachment of destinations x and y to the graph. (The
definitions can be found in Figure 6.) Section 3.1 shows that the matrix of routing metrics can be
defined as the solution to the matrix equation R = (A�R) 2 M. Section 5 explains how OSPF and
IS-IS each employ similar techniques.



Simple Hot-potato Cold-potato

(U, 0̂) (N∞, ∞) ((N× N) ∪ {∞}, ∞) ((N× N) ∪ {∞}, ∞)
2 min min ~×min min ~×min
� + s�hot (t, u) = (s+ t, u) s�cold (u, t) = (u, s+ t)

M Msim =


x y

a ∞ ∞
b 2 ∞
c ∞ ∞
d ∞ 1
e 1 2

 Mhot =


x y

a ∞ ∞
b (0, 2) ∞
c ∞ ∞
d ∞ (0, 1)
e (0, 1) (0, 2)

 Mcold =


x y

a ∞ ∞
b (2, 0) ∞
c ∞ ∞
d ∞ (1, 0)
e (1, 0) (2, 0)


Figure 6: Semi-modules and mapping matrices for each scenario of Figure 5.

(lsm.a.asso) u 2 (v 2 w) = (u 2 v) 2 w
(lsm.a.comm) u 2 v = u 2 w

(lsm.a.id) u 2 0̂ = 0̂ 2 u = u
(lsm.m.asso) (a⊗ b)� u = a� (b� u)

(lsm.m.id) 1� u = u

(lsm.m.anni) a� 0̂ = 0� u = 0̂
(lsm.l.dist) a� (u 2 v) = (a� u) 2 (a� v)
(lsm.r.dist) (a⊕ b)� u = (a� u) 2 (b� u)

Figure 7: Axioms for left semi-module (sr) of
the form (U,2,�, 0̂) over a semiring (S,⊕,⊗, 0, 1).
All axioms are universally quantified over a, b ∈ S
and u, v, w ∈ U .

Figure 5(d), (e), and (f) present a more interest-
ing and very familiar scenario called hot-potato routing.
Here routing metrics are of the form (s, u), where s rep-
resents a path metric and u represents an attachment
metric. Such metrics are compared lexicographically,
with path metric being more significant. For example,
consider how node c selects a route to destination x.
The routing metric associated with the route from c to
x via b is (3, 2), while the routing metric associated with
the route from c to x via e is (3, 1). Since (3, 1) < (3, 2)
lexicographically, node e is c’s hot-potato egress point
to destination x.

Figure 5(g), (h), and (i) present cold-potato routing,
where routing metrics are of the form (u, s), again
compared lexicographically left-to-right. In this case,
the attachment metric is more significant than the path
metric. For example, to reach destination x every node
v will construct a route metric of the form (1, sv), where
sv is the shortest path weight from v to e.

The main idea of [4] is that the matrix of routing
metrics R, such as those of Figure 5, can be described
using semi-modules. Given a semiring S of path metrics,
a (left) semi-module over S is a structure of the form
(U,2,�, 0̂) that satisfies the axioms of Figure 7. Just as
semirings generalize rings, semi-modules over semirings

generalize modules over rings, which in turn generalize
vector spaces over the classical ring (R,+,×, 0, 1). In
that familiar case, U is the set of n-vectors over R, 2
is vector addition, and � is scalar multiplication (the
axioms are explained in [7], but not applied to routing).

As a semiring S can be lifted to a semiring of n× n-
matrices, so a semi-module U over S can be lifted to
the set of n×m-matrices over U , and this turns out to
be another semi-module over the semiring of matrices.
Lifting 2 to matrices is point-wise as with lifting ⊕. If
A is an n×n-matrix over S and M is an n×m-matrix
over U , then A�M is an n×m-matrix over U defined
as

(A�M)(i, d) =
m

1≤q≤n

A(i, q)�M(q, d). (8)

With the appropriately defined semi-module, each ma-
trix of routing metrics of Figure 5 can be defined as

R = A∗ �M, (9)

where A is the adjacency matrix (over semiring S) for
the router graph, and M is an appropriately constructed
mapping matrix that captures the attachment of desti-
nations to the router graph. From Equation 8, this gives
us

R(i, d) =
m

1≤q≤n

A∗(i, q)�M(q, d). (10)

Note that the best routes are selected using 2, not ⊕.
If an egress node q is associated with the best routing
metric R(i, d), then we can be sure that the best paths,
according to A∗, are used to reach q.

Figure 6 presents the semi-modules and mapping ma-
trices for each of the three scenarios of Figure 5. For
example, Rcold = A∗�cold Mcold can be easily verified.

3.1 Algorithms
The matrix of routing metrics can be specified as the

solution to the following matrix equation.

R = (A�R) 2 M. (11)



It is not hard to show that this equation is solved by
R = A∗ �M, assuming A∗ exists:

(A� (A∗ �M)) 2 M

= (A⊗A∗)�M)) 2 M (by lsm.m.asso)

= ((A⊗A∗)⊕ I)�M (by lsm.r.dist)

= A∗ �M (by definition of A∗)

The matrix R can also be computed with a a Bellman-
Ford iteration

R[0] = M,

R[k+1] = (A�R[k]) 2 M.

In this case we have, again courtesy of the distributivity
axioms, that R[n−1] = A∗ � M. Distributed imple-
mentations (distance-vector and path-vector routing)
require additional path information to avoid counting-
to-infinity problems.

In a link-state approach, each node q would flood the
entries of the entries of M(q, ) in addition to A(q, ).
Node i computes A∗(i, ) as before, and then computes
R(i, d) as in Equation 10.

4. GLOBAL VS. LOCAL OPTIMALITY
It is well known that protocols such as EIGRP [8]

and BGP [18] violate some of the algebraic rules of the
previous sections. In particular the distributivity rules
are often violated. We will see in Section 5 that this is
true even of OSPF and IS-IS.

With the loss of distributivity, some of the arguments
of previous sections no longer hold. In particular, the
routing matrix R in the equations

(I) X = AX⊕ I F = X�M
(II) F = (A� F) 2 M
(III) X = AX⊕ I F = (X� F) 2 M

may now have distinct solutions. Informally this means
that a “link-state” solution (I) may be different from
a “path vector” solution (II) for the same adjacency
matrix and mapping matrix.

The results of [18] can be used to show that the iter-
ative method (Bellman-Ford algorithms) will converge
strictly inflationary holds in the algebraic structure.
That is, when the following rule holds.

(sr.s.inf) a 6= 0̂→ a <⊕ b⊗ a
(lsm.s.inf) u 6= 0̂→ u <2 s� u

where x ≤⊕ y ≡ x = x ⊕ y and u ≤2 w ≡ u = u2w.
Again, the iteration is restricted to simple paths (so
an implementation needs to keep track of paths and
not consider those paths with loops). Equation 5 and
Equation 11 can be read as the specification of a local
optima.

By (hop-by-hop) Forwarding Consistency (FC) we
mean that every path associated with F(i, d) that tran-
sits node j 6= i is an extension to some path associated
with F(j, d). It is not hard to see that solutions to
Equation 11 (that is Equation (II) above) will always
be FC exactly when the algebra is strictly inflationary,
even when distributivity is violated. However, if any
distributivity is violated, then solving Equations (I) or
(III) can lead to a loss of FC. Put another way, link-state
routing seems to be inherently susceptible to violations
of FC when used in conjunction with � functions that
violate distributivity. This suggests that hop-by-hop
forwarding should be replaced with some kind of tun-
nelling in such situations to avoid this kind of problem.

5. IS-IS AND OSPF
In this section we present an algebraic framework to

model OSPF [15, 16] and IS-IS [1] protocols. We do
this to demonstrate that these protocols are not sim-
ple, since this will complicate the AD/RR picture when
these protocols are participating. In addition, we see
that both OSPF and IS-IS employ internally mecha-
nisms very similar to RR/AD.

5.1 Lexicographic amalgamation
Route selection based on AD and the preference for

intra-area over inter-area routes in OSPF and IS-IS can
be modeled using a lexicographic choice.

Suppose we have routing algebras (Ui,2i,�i, 0̂i) for
0 ≤ i ≤ m. We define the lexicographic amalgamation
of the additive components to be (U,2, 0̂) as follows:

U = {(i, u) | u ∈ Ui ∧ u 6= 0̂i} ∪ {0̂}

where x20̂ = 0̂2x = 0̂ and

(i, u) 2 (j, v) =

 (i, u) (i < j)
(j, v) (j < i)
(i, u 2i v) (i = j)

Note that this is very much like the lexicographic prod-
uct [9] except here the type of u in the pair (i, u) de-
pends on the value of the first component. This might
be called a dependent lexicographic product. We can
think of this construction as tagging the elements of the
Ui so that (non-0̂i) element of Ui is preferred over every
element of Uj for all i < j.

If u ∈ Ui, then we will use the notation 〈i, u〉 ∈ U to
mean

〈i, u〉 ≡
{

(i, u) if u 6= 0̂i
0̂ otherwise

For matrix X the notation 〈i, X〉 denotes that matrix
with entries 〈i, X〉(i, j) = 〈i, X(i, j)〉.

5.2 Ships-in-the-night routing
We need an algebraic way of solving multiple inde-

pendent path problems over the same graph. This will



be used to model independent routing protocols, or dis-
tinct algorithms within the same protocol (as with IS-IS
and OSPF in the next section).

Suppose a network is partitioned into m regions and
region i is using the semiring (Si,⊕i,⊗i, 0i, 1i) as its
path algebra. We then define the ships-in-the-night
routing algebra (S,⊕,⊗, 0, 1) for the entire network as
follows:

S ≡ S1 × S2,× · · · × Sm

0 ≡ (01, 02, · · · , 0m)

1 ≡ (11, 12, · · · , 1m)

(s1, s2, · · · , sm)⊕ (t1, t2, · · · , tm) =
(s1 ⊕1 t1, s2 ⊕2 t2, · · · , sm ⊕m tm)

(s1, s2, · · · , sm)⊗ (t1, t2, · · · , tm) =
(s1 ⊗1 t1, s2 ⊗2 t2, · · · , sm ⊗m tm)

It is easy to show that (S,⊕,⊗, 0, 1) is a semiring, but
partially ordered. This lack of totality helps explain why
the direct product is rarely encountered in the network
routing literature.

We represent the ships-in-the-night adjacency matrix
A as a combination of of individual adjacency matrices
Ai, and use the notation

A = LA1,A2, · · · ,AmM

where

A(i, j) = (A1〈i, j〉,A2〈i, j〉, · · · ,Am〈i, j〉)

and

Ak〈i, j〉 ≡
{

Ak(i, j) if i and j are in the domain of Ak

0k otherwise

It is then not hard to check that

A∗ = LA∗1,A
∗
2, · · · ,A∗mM,

which can be interpreted as a single matrix represent-
ing the computation of m sub-matrices in parallel. Of
course the the set of matrix indices may need to be ad-
justed properly to make this work, but we ignore the
details here.

5.3 OSPF and IS-IS metrics

IS-IS OSPF
L1 u = (1, x)
L2/L1→L2 u = (2, x)
L2→L1 u = (3, x)
internal (0, u)
external (0, v, u)

intra-area u = (1, x)
inter-area u = (2, x)
internal (0, u)
type-I external (1, u)
type-II external (2, v, u)

Figure 8: OSPF and IS-IS routes and their pref-
erence, ordered lexicographically from top to
bottom.

Both OSPF and IS-IS can be used to partition a net-
work into regions, called levels in IS-IS and areas in
OSPF. Although many think of these protocols as sim-
ple shortest path protocols, based on the semiring sp,
the metrics employed are actually quite complex as is
illustrated in Figure 8. Both protocols use “nested”
amalgamated lexicographic constructions to rank dis-
tinct kinds of internal routes (denoted by u in the Fig-
ure), as well as making a distinction between internal
and external routes. OSPF type-II external external
routes and IS-IS external routes both employ a cold
potato choice — the external metric (actually originat-
ing from configuration) is more significant than the in-
ternal metric.

5.4 IS-IS routing algebra
We will take a closer look at IS-IS. For a similar de-

scription of OSPF as well as example configurations, see
the first author’s dissertation [2].

IS-IS computes three distinct types of internal routes
– L1 routes, L2 or L1→L2 routes, and L2→L1 routes –
and prefers L1 routes over L2 or L1→L2 routes which
are preferred over L2→L1 [13].

In IS-IS the same shortest-paths algebra is used in all
the regions including the backbone. However, they treat
backbone routes differently from non-backbone routes.
We use one ships-in-the-night algebra for all the non-
backbone areas and represent the all-region adjacency
matrix as follows:

Ar = LA1,A2, · · · ,AmM.

Suppose, Ab represents the adjacency matrix of the
backbone region. We then represent the adjacency ma-
trix of an OSPF or IS-IS network as follows:

A = LAr,AbM
= LLA1,A2, · · · ,AmM,AbM

(~sr, sb)�I (1, x) =

mm

j=1

〈1, sj + x〉 2 〈2, sb + x〉

(~sr, sb)�I (2, x) = [~sr �1,3 ρ3(2, x)]

(~sr, sb)�I (3, x) = ∞

(~sr, sb)�E (1, u) = 〈1, (~sr, sb)�I u〉
(~sr, sb)�E (2, v, u) = 〈2, v, (~sr, sb)�I u〉

Figure 9: Multiplicative operations of IS-IS for-
warding algebra.

Figure 9 presents the multiplicative component. It is
defined in terms of a �I for internal routes and a �E

for external routes. We also need to define “redistri-
bution” functions for the IS-IS forwarding algebra —



define ρk(i, x) for k > i as follows:

ρ2(1, x) = (2, x)

ρ3(2, x) = (3, x)

Since IS-IS uses the same shortest-paths algebra at dif-
ferent levels, we do not need type coercion functions for
redistributing routes from one level into another.

Let us look at each of the definitions of Figure 9 to
see what it does in IS-IS routing. The first multiplica-
tive operation says that when a L1 route is extended by
a L1 link, it remains L1 route but when a L1 route is
injected into the backbone and is extended by a L2 link,
it becomes a backbone route. The second multiplicative
operation defines how to inject routes downward in the
preference level; that is, when a backbone route (L2 or
L1→L2) is leaked down to a non-backbone area and is
extended by an non-backbone link, it becomes a leaked
route. Note that injecting routes downward does not
need to introduce a new preference level. Integrated IS-
IS gives leaked routes a different preference level in order
to avoid any conflict with the original IS-IS route selec-
tion. Finally, the third multiplicative operation says
that a leaked route cannot be be injected back into the
routing system.

In order to compute forwarding table entries with ex-
ternal routes, IS-IS needs to define two RR functions
– ρint for injecting external routes with internal met-
rics and ρext for injecting external routes with external
metrics. We can define ρint for IS-IS as follows

ρint(v) = (1, ci(v)),

where v is an external route and ci : V → U is a coercion
function and ρext as

ρext(v) = (2, v, u
′
)

for cold-potato forwarding, where u
′
is a locally assigned

internal metric.
With the forwarding algebra defined above, IS-IS builds

network-wide forwarding tables by solving the semi-
module equation of the form

F = LA∗1, A∗2M�E F 2E M (12)

using the iterative algorithm III discussed in Section 3.
Note that the hub-and-spoke topology of areas makes
an IS-IS network a 3-hop network and the forwarding
algebra defined above captures this constraint. For in-
stance, a L1 route can only be extended by a L2 route,
which results a L1→L2 route. A L2/L1→L2 route can
only be extended by a L1 route, which results in a leaked
route. A a leaked route cannot be extended further lim-
iting IS-IS route computations within three hops. These
topological restrictions obviate the need for paths in this
distributed Bellman-Ford computation.

6. EXPLORING RR/AD DESIGNS
We consider only two protocols, P1 and P2, which

interact through the FIB. Each node i is computing one
row F(i, ) of the network-wide forwarding matrix F.
Our observations extend in a natural way when there
are more than two protocols.

Figure 10 illustrates two routers, i and j, that are
both running protocols P1 and P2. Protocol P1 is con-
structing RIB R1 while protocol P2 is constructing RIB
R2. We attempt to model this picture with a high-level,
network-wide, algebraic model.

First, we assume that in each case the mapping matri-
ces come from routes redistributed from the FIB. That
is,

M1 = U1 �1 F

M2 = U2 �2 F

where, for p ∈ {1, 2}, we want

Mp(q, d) = Up(q, q)�p F(q, d),

for a (diagonal) configuration Up(q, q) and a redistribu-
tion function �p used to model the translation of FIB
routes to mappings of the appropriate type for protocol
p (U stands for Up). Note that we could “disaggregate”
each node in Figure 10, distributing the RIBs and FIBs
to distinct nodes in the graph. However, we will leave
such complications to future work.

In addition, we want the FIB to depend on routes
exported by the two protocols,

F = (D1 �1 R1) 20 (D2 �2 R2) 20 F0

where F0 contains, in some way, the connected routes,
20 represents routes selection on FIB routes, and (diag-
onal) configuration Dp(q, q) and registration function
�p are used to model the translation of RIB routes of
protocol p to FIB routes (D stands for Down).

Our design problem can be summarized as follows.
Given protocols protocols P1 and P2 we would like to
define the type and ordering of FIB routes together
with redistribution and registration functions so that
this system always converges to a unique solution. As
argued in Section 1, we feel a loosely coupled approach
is most appropriate for the design of a general RR/AD
mechanism for Internet routers. This means that RR/AD
designers and implementors may have to know a great
deal about the protocols they intend to support, but
that routing protocol designers can independently de-
velop their systems with little or no coordination.

6.1 Lacking theoretical framework
The design space captured in Figure 10 is enormous.

Can we use routing theory to make progress? Sadly, we
believe that current routing theory (for example, [17])
does not help us directly. To see this, consider the spe-
cial case where both protocols are computed by an it-



U2(i, i)

R1(j, ) R2(j, )
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A2(i, j)

Node i

Node j

A1(i, j)
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F(i, )

F(j, )
U1(j, j)

D1(i, i)

D1(j, j)

D2(i, i)

D2(j, j)

U1(i, i)

Figure 10: General picture of route redistribu-
tion between two protocols constructing RIBs
R1 and R2. The FIB F receives routes from the
protocols, selects the best routes for forwarding,
and redistributes routes back to the protocols.

erative Bellman-Ford algorithm so that we can describe
the system as the simultaneous solution of the following
three equations.

(a) R1 = (A1 �1 R1) 21 (U1 �1 F)

(b) R2 = (A2 �2 R2) 22 (U2 �2 F)

(c) F = (D1 �1 R1) 20 (D2 �2 R2) 20 F0

In order to apply the theory of [17] we would need to
represent the network routing state in a matrix X over
some type, construct a selection operation 2 and a pol-
icy operation �, a network configuration matix A, an
initial mapping matrix M. We then would have to show
that these operations have the properties that ensure

X = A�X 2 M, (13)

has a unique solution that can be arrived at with a
modified Bellman-Ford algorithm.

How could we form such an X? One obvious choice
for X is the direct product construction described in
Section 5.2,

X = LR1, R2, FM.

We would then need to define A and � such that

A� LR1, R2, FM = LR′1, R2,
′ F′M,

where

R′1 = (A1 �1 R1) 21 (U1 �1 F)

R′2 = (A2 �2 R2) 22 (U2 �2 F)

F′ = (D1 �1 R1) 20 (D2 �2 R2)

So far we have not succeeded in making such a con-
struction work, and we leave it as an open problem.

But suppose that we could make some definitions
work. A large problem remains in that the structures
LR1, R2, FM are partially ordered, while all of our the-
ory currently requires either a total order or a total
pre-order. Thus we would still be stuck.

One more word about the design space. We will as-
sume here that both protocols share the same low-level
addressing and forwarding model (such IP’s hop-by-hop
forwarding). A very interesting dimension to the design
space, which is also left for future work, is to consider
the interaction of routing protocols with distinct for-
warding techniques (for example, hop-by-hop forward-
ing and tunneling).

6.2 Special case: Administrative Distance (AD)
Given our current lack of knowledge it seems that

all we can do is make some assumptions and look at
special cases that allow us to reason about this complex
system. A good place to start is with the current use of
Administrative Distance (AD), which can be modeled
abstractly using lexicographic amalgamation described
in Section 5.1. This clearly supports a loosely coupled
design since no relationship between the participating
metrics is assumed.

Suppose that connected routes are most preferred,
then routes from protocol P1, then routes from protocol
P2. We can easily define the registration functions so
that

(c) F = 〈1, R1〉 2 〈2, R2〉2 〈0, M0〉

For a loosely coupled design it is hard to imagine doing
anything other than breaking the dependency between
R1 and R2 by allowing routes to flow in only one di-
rection with respect to the ordering. But once we have
fixed P1 routes as being more preferred (for whatever
reason), allowing routes to flow “downward” from P2 to
P1 causes a direct conflict at the FIB level. Therefore,
we will only allow redistribution “upwards” in the or-
dering. That is, we need to define the functions �p so
that

M1 = U1 �1 F = U1 �′1 〈0, M0〉)
M2 = U2 �2 F = U2 �′2 (〈1, R1〉2 〈0, M0〉))

for some (newly defined) functions �′p.
Now, in a loosely coupled design how could we define

�′2? We cannot require the designers of protocol P2 to
know the details of the metrics of protocol P1, so the



only reasonable solution is to define �′2 (at the element
level, not the matrix level) as

t�′2 0 = 0

t�′2 (0, x) = P2’s way of accepting a connected route.

t�′2 (1, x) = some constant value extracted from t.

In fact, this is essentially what vendors do today. That
is, metrics are not translated in an order preserving
manner from one protocol to another. Contrary to the
NRP paper, we feel this is a good design choice.

With these definitions we can imagine solving the sys-
tem when both protocols are based on path-vectoring.

(a.pv) R1 = (A1 �1 R1) 21 M1

(b.pv) R2 = (A2 �2 R2) 22 M2

(c.pv) F = 〈1, R1〉 2 〈2, R2〉2 〈0, M0〉
When there are no changes in the network we would
expect protocol P1 to converge first, then protocol P2,
then the FIB F would stabilize. A similar situation
can be imagined with both protocols using a link-state
approach. In this case we would have

(a.ls) R1 = A∗1 �1 (U1 �1 M1)

(b.ls) R2 = A∗2 �2 (U2 �2 M2)

(c.ls) F = 〈1, R1〉 2 〈2, R2〉2 〈0, M0〉.
But note that following the discussion of Section 4 there
is no reason to expect that these two scenarios will result
in the same stable routing solutions.

Note that proving convergence for the RR/AD mech-
anism now reduces to proving convergence separately
for the protocols involved. Imagine for a moment that
this were not the case. This would mean that a col-
lection of routing protocols that are “‘well behaved”
individually might collectively cause a RR/AD system
to misbehave. This is exactly the kind of problem that
would probably arise in the tightly coupled design de-
scribed by NRP.

7. NRP REVISITED
We have modified the notation used in the NRP paper

([12]) to ease comparison.
We start with an ordered structure (U, ≤) where ≤ is

a total order. The NRP model is based on what we call
an embedded amalgamation of ordered structures (Si,≤i

,⊗i), 1 ≤ i ≤ k, where each order ≤i is total. Suppose
there are embeddings ei ∈ Si → U . In addition, there
are projections pi ∈ U → Si. The coercion function
cji ∈ Si → Sj is defined as cji (s) = pj(ei(s)).

The amalgamated carrier is defined as the disjoint
union of all Si, S =

⊎
i Si. An amalgamated order is

defined over S as

a ≤ b =

{
a ≤i b ∀a, b ∈ Si

ej(a) ≤ ei(b) ∀a ∈ Sj ∧ ∀b ∈ Si

Finally, the multiplicative operation is defined as

a� b =

{
a⊗i b a, b ∈ Si

a⊗j c
j
i (b) i 6= j ∧ a ∈ Sj ∧ b ∈ Si

Furthermore, postulate that

(a) ei preserve strict order, a <i b→ ei(a) ≤ ei(b),

(b) a ≤ ei(pi(a)), for all a ∈ U .

The main result of NRP is that when (a) and (b) hold,
and each Si is strictly inflationary, then (S, ≤, �) is
strictly inflationary. The results of [18] are then in-
voked.

We have argued in Section 6.1 that the theory of [18]
does not directly apply here. We believe that is true
for the NRP approach as well. The problem is that the
entire routing state of the network must be modeled in
the Bellman-Ford iterations, and this is not done in [12].
Furthermore, the NRP paper claims that its approach
would require no modifications to existing protocols.
Yet the results of [18] critically depend on paths used
in the Bellman-Ford iterations to prevent consideration
of paths with loops. No such paths are added to the
algorithms of NRP.

In addition, the application of [18] implies that the
NRP approach would use a Bellman-Ford iterations to
reach a solution. But as argued in Section 6.2, there is
no guarantee that this is the solution that the unmodi-
fied protocols would reach.

The existence of (U, ≤) with mappings ei and pi that
satisfy conditions (a) and (b) is in fact a very strong set
of assumptions. This requires a tightly coupled approach
to design, which we have argued against.

Our amalgamated lexicographic model imposes no
such constraints and is therefore better suited to model
real-world protocols. It is hard to imagine how we would
find an embedded amalgamation that unifies such alge-
braically distinct metrics as those of EIGRP and OSPF
or IS-IS from the Section 5. The NRP paper models
OSPF and IS-IS as simply computing shortest paths.

8. RECOMMENDATIONS, PROBLEMS
The work of [10, 11] has described scenarios where

network engineers have employed the RR/AD mecha-
nism to implement complex schemes of region backup
and other types of multi-protocol protection against
failures. However, we would argue that just because
RR/AD is pressed into service to solve problem X, this
does not mean that in designing a new RR/AD mecha-
nism we must embrace solving X as a design goal. The
problem that network engineers face is that the have
too few tools to solve their problems and they simply
must make do with the limited tools at hand.

Our main recommendation is to keep the RR/AD as
simple as possible, as loosely coupled as possible, and



avoid overloading it with additional functionality. If
region backup is needed, perhaps a new IGP would be
a better solution — an intra-domain routing protocols
especially designed to provide inter-protocol backup (a
BGP for IGPs?). Attempting to solve the region backup
problem with RR/AD will inevitably lead to a tightly
coupled design.

The framework presented here is by no means com-
plete. Most importantly, it seems to us that a rigorous
theory of forwarding (both hop-by-hop and tunneled)
must be fully incorporated into the routing theory. The
routing theory tells us which routes (and paths) are
selected, but not how they are used by the low-level
forwarding engine. And problems related to forwarding
interactions seem to be at the heart of most problems
described [10, 11].

In addition, our current model is flat in the sense that
it does not account of route aggregation and other types
of hierarchical routing. We do not account for routing
adjacencies that arise from the connectivity provided
by lower-level protocols. For example, internal BGP
(iBGP) adjacencies (and forwarding paths) depend on
the solutions provided by IGP routing. Another exam-
ple would be PNNI-like routing, where sub-domains of
arbitrary nesting can be treated as nodes.
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