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Abstract— We use the term policy-based routing to refer collec-
tively to the Stable Paths Problem, Sobrinho’s Routing Algebras,
and to classical Path Algebras (semi-rings used to generalise
minimum-weight routing). These theories all contain sufficient
conditions that ensure the existence of solutions (stable routings)
for labelled graphs. We attempt to provide a unified theory from
which all of these seemingly disparate sufficient conditions can
be derived. Our theory is based purely on abstract relations and
their properties and not on the syntactic or axiomatic details of
the policy-based theories.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [1] has stimulated
renewed interest in routing protocols and in formal methods to
prove their convergence properties. The Stable Paths Problem
(SPP) [2] grew out of an effort to formalise the underlying
semantics of BGP in terms of a simple graph problem. Another
approach was taken by Sobrinho with his definition of routing
algebras [3], [4], which form the basis of metarouting [5].
Routing algebras can be seen as further generalisation of
minimum-weight routing [6], [7] in the tradition of path
algebras introduced over thirty years ago as the theoretical
basis for generalised routing problems [8]–[10].

We will refer to path algebras, routing algebras, and the
Stable Paths Problem as theories of policy-based routing. Each
of these theories presents sufficient conditions on labelled
graphs that ensure a solution to a given routing problem (stable
routing) exists. We call such a condition an instance condition.
For SPPs one instance condition is the lack of a structure
called a dispute wheel, for routing algebras there is notion
of a free graph, and for path algebras we have the absorptive
graph condition (these and other conditions will be restated in
the paper). For example, in classical minimum-weight routing,
the instance condition is that there exists no negative-weight
directed cycles.

In addition, path algebras and routing algebras have system-
level sufficient conditions that ensure that the instance con-
dition will hold in every labelled graph. We call this type
of condition a universal condition. (The SPP formalism is
restricted to instances, so it is not associated with a universal
condition.) In path algebras the conditions nilpotent and super-
unitary serve as universal conditions. In routing algebras,
one universal condition is called monotonicity. For classical
minimum-weight routing the constraint that all link-weights
be non-negative serves as a universal condition. Note that
in this case no cycles can have negative weight, so the

instance condition holds for all labelled graphs. However, a
particular labelled graphs could satisfy the instance condition
even though negative link-weights are allowed in general.

In this paper we attempt to unify these three policy-based
routing theories into a single theory. How this might be done
was first hinted at in [11], where the instance condition on
SPPs was stated in terms of properties of a certain derived
relation on paths. Two instance-specific relations were defined
on paths — one a sub-path relationship and the other a
preference relationship — and the derived relation was then
defined as the transitive closure of a combination of the
instance-specific relations. The instance condition was stated
in terms of the derived relation being “almost” a partial order
(see [11] for the technical details).

Here we take a similar, although more general, approach.
We start with policy structures, which are sets together with
two relations and another relation derived from them. Our
universal condition is that the derived relation be anti-reflexive.
For each labelled graph (paths labelled with values associated
with a policy structure), we construct a routing structure made
up of paths, two relations on sets of paths, and a derived
relation. The instance condition is again that the derived
relation be anti-reflexive. We then show that any anti-reflexive
instance has a solution (stable routing) and that if the universal
condition (anti-reflexivity) holds, then the instance condition
(again, anti-reflexivity) holds in all labelled graphs.

In what sense does this provide a unified theory of policy-
based routing? Take routing algebras as an example. For
each routing algebra we construct a policy structure, and
we show that if the universal condition holds on the routing
algebra, then the policy structure has an anti-reflexive derived
relation. We then show that if the routing algebra’s instance
condition on labelled graphs holds, then the corresponding
routing structure has an anti-reflexive derived relation and so
has a solution. Finally, we show that a solution to the routing
structure must also contain a solution to the original labelled
graph. These results are summarised in Table I.

Our unification is not all-encompassing — we are required
to restrict routing algebras to those using total orders, rather
than the more general preference order on paths defined by So-
brinho, and we require that our path algebras satisfy additional
constraints that ensure they correspond to distributive lattices.
We argue that these constraints are in some sense natural, and
that most path algebra examples conform to these constraints.
Finally, our unified theory requires a slight generalisation of
the SPPs beyond those defined in [2].



TABLE I
SUMMARY OF SUFFICIENT CONDITIONS FOR POLICY-BASED THEORIES.

Minimum-weight Path Algebra Stable Paths Sobrinho’s Policy/Routing
Routing Problem Routing Algebra Relation

Universal Non-negative Super-unitary/ – Monotonicity Anti-reflexivity
Condition Weights Nilpotent Algebra
Instance No Negative Absorptiveness No Dispute Freeness Anti-reflexivity

Condition Cycle Wheel

II. RELATIONS AND ORDERS

Given a set X , a relation over X is any subset of X ×X .
If R is a relation, then we write (x, y) ∈ R (resp. (x, y) /∈ R)
as xRy (resp. xR/y). We use the following terminology for
relations R:

• reflexive, if xRx for all x ∈ X ,
• anti-reflexive, if xR/x for all x ∈ X ,
• total, if xRy or yRx for all x, y ∈ X ,
• transitive, if (xRy and yRz ⇒ xRz) for all x, y, z ∈ X ,
• anti-symmetric, if (xRy and yRx⇒ x = y) for all x, y ∈
X .

The strict relation of R is RS , {(x, y) ∈ R | yR/x}. We will
be interested in relations that have various combinations of
these properties.

• A preorder is a reflexive and transitive relation.
• A partial order is an anti-symmetric preorder.
• A total order is a total partial order.
• A preference order is total preorder.
Given two relations R1 and R2 over the same set X , we

define the join of R1 with R2 to be the relation R where xRz
if and only if there exists some y ∈ X such that xR1y and
yR2z. We use the notation

R , R1 on R2

to denote this relation.
If R is a preorder with a strict relation RS over X and

A ⊂ X , then we define

minRA , {x ∈ A | there exists no y ∈ A such that yRSx}.

Note that if R is total, then

minRA = {x ∈ A | for all y ∈ A, xRy}.

For a partial order ≤, the elements of min≤A will be mutually
incomparable, and for preference orders ≤, the elements of
min≤A will be equally preferred.

III. A BRIEF SURVEY OF ROUTING THEORIES

The simplest routing theory is minimum-weight routing,
which is implemented by attaching a number to each connec-
tion in the network, and the task is to decide a path for each
vertex to a specific origin with the smallest sum of weights
on all the connections along the path. It is well-known that
there are two conditions that guarantee the existence of routing
solutions — non-negative weights and absence of a negative
cycle. The condition of non-negative weights is universal to
all instances of networks, whereas the absence of a negative

cycle is instance-specific. Many routing theories are motivated
to generalise minimum-weight routing by developing different
formalisms. A common goal among them is to estabish
generalised versions of non-negative weights and absence of
a negative cycle.

A. Graphs
A network is represented as a rooted directed graph G =

〈V , E , v0〉, with a designated vertex v0 ∈ V , called the origin,
where V and E are finite sets, and every v ∈ V is connected to
v0. Let P(v2, v1) be the set of all the paths in G from v2 to v1
(including non-simple paths). Let P(v0) =

⋃

v∈V P(v, v0).
We denote v1, v2, ..., vk as some vertices in V . A (directed)

path is a string ekek−1 · · · e1 where ek, ek−1, ..., e1 ∈ E , and
ei is an edge from vi+1 to vi for some v1, v2, ..., vk+1 ∈ V . We
also write vkvk−1 · · · v1 as a path that sequentially transverses
from vk to v1. A simple path in G is a path with no repeated
vertex. Sometimes, we write v as a path consisting no edge
and a single vertex v.

If P ∈ P(v3, v2) and Q ∈ P(v2, v1), then PQ will denote
the path in P(v3, v1) that corresponds to the concatenation
of paths P and Q.

B. Path Algebra
The literature on path algebras (semi-rings) and routing is

vast, and we cite only a representative sample [6], [8]–[10],
[12]–[14].

A path algebra is a system of

B = 〈X , ⊕, ⊗, 0̄, 1̄〉,

where X is a set, ⊕ and ⊗ are binary operations over X , and
0̄ and 1̄ are distinguished elements of X . A path algebra must
conform to the following axioms. For all a, b, c ∈ X ,

• (⊕-Commutivity) a⊕ b = b⊕ a,
• (⊕-Associativity) (a⊕ b) ⊕ c = a⊕ (b⊕ c),
• (⊕-Identity) there exists 0̄ ∈ X such that a⊕ 0̄ = a,
• (⊕-Idempotency) a⊕ a = a,
• (⊗-Associativity) (a⊗ b) ⊗ c = a⊗ (b⊗ c),
• (⊗-Identity) there exists 1̄ ∈ X such that a⊗ 1̄ = a and

1̄ ⊗ a = a,
• (⊗-Annihilator) a⊗ 0̄ = 0̄ where 0̄ is the ⊕-identity,
• (Distributivity) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and

(b⊕ c) ⊗ a = (b⊗ a) ⊕ (c⊗ a).
Table II presents a few familiar examples of path algebras

(these and many others can be found in the literature cited
above). Here ZZ denotes the set of all integers, ZZ

+ denotes



B X ⊕, ⊗ 0̄ 1̄ description
E {0, 1} max min 0 1 usable-path routing (the Boolean semi-ring)
M ZZ ∪ {∞} min + ∞ 0 minimum-weight routing

M+
ZZ

+ ∪ {∞} min + ∞ 0 minimum-weight routing, non-negative weights
R [0, 1] max × 0 1 most-reliable routing
C {0, 1, 2, . . . , k} ∪ {∞} max min 0 ∞ greatest-capacity routing

TABLE II
PATH ALGEBRA EXAMPLES.

the set of non-negative integers, and IR+ is the set of non-
negative real numbers.

For any path algebra B, the natural partial order, 4B, is
defined as

b 4B a iff b⊕ a = b.

The idempotency, commutivity, and associativity of ⊕ ensure
that 4B is a partial order [9], [10]. Note that a 4B 0̄, for
a ∈ X. A path algebra B is said to be super-unitary, if for
every a ∈ X ,

1̄ 4B a.

Note that for a super-unitary path algebra we have

1̄ 4B a 4B 0̄,

and some authors (for example [8]) use the term bounded
instead of super-unitary. We note one source of potential
confusion in that some authors (for example [10]) define the
natural partial order in the other direction, saying that a 4B b
holds if b⊕ a = b.

In the path algebras M and M+ (Table II), we see that
a 4B 0̄ corresponds to min(a, ∞) = a and that 1̄ 4B a
corresponds to min(a, 0) = 0, which holds only in M+.

Denote a2 = a⊗ a. B is called a nilpotent path algebra if
there exists a finite positive integer q such that

aq = 0̄, for all a ∈ X\{1̄}.

The conditions nilpotent and super-unitary are both universal
conditions for path algebras.

For any path algebra B, given G, let LB be a labelling
function mapping the edges of E into X . For each path P =
ekek−1 · · · e1 ∈ P(v0) of G, we define the weight of the P as

LB(ek) ⊗ · · · ⊗ LB(e1),

which we denote as LB(P ), with a slight abuse of notation.
For the trivial path P = v0, we define its weight , LB(P ), to
be 1̄. We also have a special set B ⊆ X of bad, or banned,
values. The tuple I = 〈G, LB, B〉 is called a B-instance.
At times we write I = 〈G, LB〉 in contexts where B is not
important. The intuition is that routing solutions cannot be
associated with paths such that LB(P ) ∈ B. Most often we
will have B = {0̄}, but not always — the choice of B may
depend on the interpretation of a routed graph. For example,
with the Boolean path algebra E, we could define B = {0} if
we want no route to have value 0 (false). However, we could

chose B = {} if we want routes of value 0 only when there
are no routes of value 1.

A solution to a B-instance I is a function δ mapping
vertices of V to elements of X such that δ(v0, v0) = 1̄ and
for all v 6= v0,

δ(v, v0) =
⊕

P∈P(v, v0), LB(P )∈B

LB(P ).

Note that in the case of minimum-weight path algebras, (where
⊕ = min, 1̄ = 0, and ⊗ = +) this corresponds to the familiar
equations δ(v0, v0) = 0 and

δ(v, v0) = min
P=ekek−1···e1∈P(v, v0)

(
∑

i

LB(ei)

)

.

A B-instance I is said to be absorptive if for every simple
directed cycle v1v2 · · · vnv1 in G, we have

1̄ 4B LB(v1v2v3 · · · vnv1).

Absorptive graph is a generalisation of the absence of a
negative cycle. Proofs of the following fundamental theorems
can be found in [8]–[10]. We also prove these theorems within
our unified framework, as indicated here. As explained in
Section V, the proofs require that we restrict path algebras
to ones that correspond to distributive lattices.

Theorem 1: If path algebra B is super-unitary, then every
B-instance I has a solution.

Proof: See Theorem 15.
Theorem 2: If a B-instance I is absorptive, then I has a

solution.
Proof: See Theorem 16.

Note that a B-instance I may be absorptive even though the
path algebra B is not super-unitary. For example, M is not
super-unitary, but all graphs labelled with only non-negative
integers are absorptive.

C. Sobrinho’s Routing Algebra
Sobrinho’s routing algebra is given in [3]–[5] as

A = 〈Σ, L, ., ⊗〉

comprised of
• a set Σ of signatures,
• a set L of labels,
• a preference order . over Σ,
• an extension operator ⊗, mapping L× Σ to Σ.



(v, ()) ⊗ p = ∞
(v, l) ⊗∞ = ∞

(v, (r1, r2, . . . , rk)) ⊗ (x, s) =







∞ if v ∈ s,
(n, append(s, v)) if r1 = s→ n,
(r2, . . . , rk) ⊗ (x, s) otherwise

Fig. 1. The ⊕u operator for the universal routing algebra Au.

In this paper we will restrict our attention to routing
algebras in which the preference order is a total order.

The algebra is motivated by the common practice of im-
plementing policy-based routing by attaching signatures to
each connection for neighbouring routers. Routers broadcast
messages via a specified connection, carrying the signatures.
Receiving routers, then, process and transform incoming sig-
natures to out-going signatures, prescripted by certain policy.
This process is captured by the extension operator as

l
︸︷︷︸

transforming label

⊗ σ1
︸︷︷︸

incoming signature

→ σ2
︸︷︷︸

outgoing signature

In this manner, the interactions of routers can manifest a vari-
ety of policy-driven behaviours. Such policy-based interaction
can be well-captured by the above algebra. Since operator ⊗
has the same function as the ⊗ in path algebra, we use the
same symbol and its meaning can be interpreted in the context.

We employ the preference order . to specify the selection
priority of signatures. For a pair of signatures σ1, σ2 we write
σ1 < σ2 as a strict preference, and σ1 ≈ σ2 as an indifferent
preference. With multiple alternative routes available, routers
will select the route (or a set of routes) with a minimum
preference order (that is, preference corresponds to cost).

The set Σ may contain a special element ∞ ∈ Σ such that:
σ <∞, for all σ ∈ Σ\{∞} and l ⊗∞ = ∞, for all l ∈ L.

Each of the path algebras in Table II can be easily translated
to a routing algebra by letting L = Σ = X , ⊗ be as in the
table, and taking . to be the natural partial order, which in
each case is actually a total order. Section III-D below gives
an example of a path algebra that cannot be encoded as a
routing algebra. Here we present a routing algebra that cannot
be represented as a path algebra.

We define the universal routing algebra Au to be

A = 〈Σu, Lu, .u, ⊗u〉.

We let Σu = (ZZ+ × ZZ
∗) ∪ {∞}. If (x, s) ∈ Σu, then x is

a non-negative integer and s is a finite sequence of integers.
We define (x1, s1) .u (x2, s2) to mean that x1 ≤ x2, and
p .u ∞ for all p ∈ Σu. Labels Lu are pairs (v, l), where
v is an integer and l is an ordered sequences of rules, l =
(r1, r2, . . . , rk), where 0 ≤ k and each rule is of the form s→
n. Informally, this rules state that if the sequence component
of a route is equal to s, then set the weight component to n.
Rules are evaluated from first to last, and the ⊕u operator is
defined in Figure 1. The idea is that in any network graph, all
arcs into a node v have labels of the form (v, l), so that the
sequences s record the path traversed by a route. The rules

simply provide a way for the policies to explicitly rank every
path. With this universal routing algebra it is easy to encode
an arbitrary Stable Paths Problem.

A routing algebra A is said to be monotone if

σ . l ⊗ σ for each l ∈ L and for each σ ∈ Σ.

Given a G, an initial signature σ0, and LA is a labelling
function mapping the edges of E into L. The triple I =
〈G, LA, σ0〉 is called a A-instance.

For each path P = ekek−1 · · · e1 ∈ P(v0) of G, we define
the weight of the P as

LA(P ) , (LA(ek), ...,LA(e1)) ⊗ σ0.

A solution to an A-instance I is a function δ such that
δ(v0, v0) = {σ0} and for all v 6= v0,

δ(v, v0) = min.{LA(e) ⊗ σ | e ∈ (v, w), σ ∈ δ(w, v0)}.

An A-instance I is said to be free if every set of n signatures
{σ1, σ2, · · · , σn} where no σi is ∞, and every directed cycle
W1W2 · · ·Wn, in G, where the W1 are paths such that the last
node in Wi is the first node in Wi+1, for 1 ≤ i ≤ n− 1, and
the last node in Wn is the first node in W1, we have that there
exists i ∈ {1, ..., n} such that σj < LA(vi, vj) ⊗ σi, where
j = i+1 if 1 ≤ i < n, otherwise 1. Such a cycle v1v2 · · · vnv1
is called a free cycle. A labelled graph is free if all such cycles
are free. Note that this definition is slightly more general that
that found in [4] in that we define the cycle in terms of paths
Wi rather than edges.

Section VI applies our general framework to prove the
following theorems.

Theorem 3: If routing algebra A is monotone, then every
A-instance I is free.

Proof: See Theorem 21.
Theorem 4: If an A-instance I is free, then it has a solution.

Proof: See Theorem 22.

D. Path Algebras vs. Routing Algebras
The two policy-based systems give rise to very different

ways of thinking about routes — Sobrinho’s routing algebras
seem closely tied to destination based forwarding, while path
algebras are more general. We illustrate this with an example.

Let path descriptors (and labels) be of the form 〈d, b〉,
where d is some measure of delay and b is some measure of
bandwidth. We use these path descriptors as both labels and
signatures in a routing algebra, and as the carrier set in the
path algebra.



In both algebras we define

〈d1, b1〉 ⊗ 〈d2, b2〉 = 〈d1 + d2, min(b1, b2)〉.

We can think of 〈d1, b1〉 as associated with an incoming link,
while 〈d2, b2〉 is associated with a neighbor’s route.

In the routing algebra, we define a total order on signatures
using a lexicographic order:

〈d1, b1〉 ≤ 〈d2, b2〉 ⇔ d1 < d2 or (d1 = d2 and b2 ≤ b1),

where shorter distances are preferred, with higher bandwidths
breaking ties. For the path algebra we define

〈d1, b1〉 ⊕ 〈d2, b2〉 = 〈min(d1, d2), max(b1, b2)〉.

Note that this operator gives us the natural partial order

〈d1, b1〉 � 〈d2, b2〉 ⇔ d1 ≤ d2 and b2 ≤ b1.

That is, we obtain a “parallel” product.

Moscow

Paris Rome

<200, 30><10, 80>

<250, 90>

<311, 70> <100, 30>
London Prague

Fig. 2. A labelled graph.

Figure 2 illustrates a simple labelled graph for these alge-
bras. Moscow is taken as the origin node, with σ0 = 〈0, ∞〉
for the routing algebra, and 1̄ = 〈0, ∞〉 for the path algebra.
Let us look for the best path from Rome to Moscow. Note that
path (Moscow, Prague, Rome) has value 〈300, 30〉, while
path (Moscow, London, Paris, Rome) has value 〈571, 70〉.

In the routing algebra we find the solution to be

min
≤

{〈300, 30〉, 〈571, 70〉} = 〈300, 30〉,

which is associated with the path (Moscow, Prague, Rome).
However, in the path algebra, the solution is

〈300, 30〉 ⊕ 〈571, 70〉 = 〈300, 70〉,

which is not associated with any single path — In this case
we have two paths associated with the best value. Various for-
warding paradigms may be able to take advantage of this type
of routing. For example, we could imagine a QoS forwarding
paradigm that uses the path (Moscow, London, Paris, Rome)
for delay-insensitive but bandwidth intensive flows, while
using the (Moscow, Prague, Rome) path for delay-sensitive
flows of small bandwidth.

In Section IV we define another notion of solution for the
path algebra called the multi-value solution. In the example
this will give the set of values

min
�

{〈300, 30〉, 〈571, 70〉} = {〈300, 30〉, 〈571, 70〉}.

We then need a result (Theorem 14) which relates multi-
valued solutions to the standard notion of a solution for a path

algebra instance. In terms of this example, that relationship is
expressed as

〈300, 70〉 =
⊕

{〈300, 30〉, 〈571, 70〉}.

That is, a standard path algebra solution can be obtained from
a multi-value solution by application of the ⊕ operator.

IV. POLICY STRUCTURE AND ROUTING STRUCTURE

A policy structure S is defined as:

S = 〈X, 4, v〉,

where 4 is a partial order over X and v is a preorder over X.
We write ≺ and @ as the respective strict relations.

Informally, the interpretation of a policy structure is that the
elements of X represent values that will be associated with
routes. The relation x 4 y will tell us that value x is at least
as well-preferred as value y, while the relation x v y tells us
that value y can be constructed from value x.

A. Generalised Routing Problem
Given a graph G, an S-instance is a triple, I = 〈G, ψ, B〉,

where ψ maps paths P ∈ P(v0) to elements of X such that
for all P ∈ P(v, v0) and all Q ∈ P(w, v) we have ψ(P ) v
ψ(QP ). The set B ⊆ X represent banned values that should
not be used by any routing solution.

We can think of each S-instance I = 〈G, ψ, B〉 as a
generalised routing problem that we wish to solve. We assume
that ψ(v0)} 6∈ B. A multi-value solution to an S-instance I is
a function δ such that δ(v0, v0) = {ψ(v0)} and for all v 6= v0,

δ(v, v0) = min4{ψ(eP )|ψ(eP ) 6∈ B,
e ∈ (v, w),
P ∈ P(w, v0),
ψ(P ) ∈ δ(w, v0)}.

Note that a multi-value solution can be thought of as a fixed-
point of a certain functional, Fmulti, where Fmulti(δ) = δ
iff δ is a multi-value solution.

B. Routing Structure of an S-Instance
Given an S-instance I = 〈G, ψ, B〉, we define a new

policy structure, called the routing structure for instance I , as
follows.

SI = 〈PBψ , 4I , vI〉,

where
PBψ = {P ∈ P(v0) | ψ(P ) 6∈ B},

P 4I Q ⇔ there is a path W such that Q = WP ,
P ≡I Q ⇔ head(P ) = head(Q) and ψ(P ) = ψ(Q),
P @I Q ⇔ head(P ) = head(Q) and ψ(P ) ≺ ψ(Q),
P vI Q ⇔ P ≡I Q or P @I Q.

It is easy to see that 4I is a partial order and that vI is a
preorder. Note that with respect to the policy structure S there
is a type of reversal here — the relation 4I of SI is related
to relation v of S, while the relation vI of SI is related to
relation 4 of S. In particular, we have



P 4I Q ⇒ ψ(P ) v ψ(Q),
P vI Q ⇒ ψ(P ) 4 ψ(Q),
P @I Q ⇒ ψ(P ) ≺ ψ(Q).

C. Policy Relations and Routing Relations
First we define an instance condition for routing structures.

The definition is motivated by dispute wheels in the Stable
Paths Problem [2].

�v �v

�v

�v

�T

�T�T

�R�R

	R

Fig. 3. A bad triangle.

Figure 3 shows a routing structure where

R1 4I T1R1 @I R3 4I T3R3 @I R2 4I T2R2 @I R1,

and it is easy to check that no solution can simultaneously
satisfy all three vertices. Our instance condition must rule out
such cases. We do this by defining the routing relation of I
to be

RI , (4Ion@I)
tc,

where (·)tc is the transitive closure of a relation. Our desired
instance condition is that RI be anti-reflexive.

For a policy structure S = 〈X, 4, v〉, we define the
policy relation in the “reverse” manner as

RS , (von≺)tc.

We now show that the anti-reflexivity of the policy relation
(our universal condition) implies that all associated routing
relations are also anti-reflexive (the instance condition always
holds).

Theorem 5: Suppose that S = 〈X, 4, v〉 is a policy
structure and that I = 〈G, ψ, B〉 is an S-instance. If RS is
anti-reflexive, then RI is anti-reflexive.

Proof: Assume RS is anti-reflexive. Suppose that RI is
not anti-reflexive. Then there must exist distinct P1, ..., Pm ∈
P(v0) where m is even such that

P1 4I P2 @I P3 · · · 4I Pm @I P1.

Therefore

ψ(P1) v ψ(P2) ≺ ψ(P3) · · · v ψ(Pm) ≺ ψ(P1).

But this is telling us that that RS is not anti-reflexive, which
is a contradiction.

On the other hand, a routing relation may still be anti-
reflexive even though the associated policy relation is not. In
the next section we show that the anti-reflexivity of the routing
relation is enough to imply that there exists a solution for the
associated S-instance.

D. Relationship to the Stable Paths Problem (SPP)
We begin with a brief review the definitions of the Stable

Paths Problem (SPP) taken directly from [2].

E. SPP Definitions
Let G = (V, E, v0) be a graph with origin v0.
For each v ∈ V , Pv ⊆ P(v, v0) denotes the set of permitted

paths from v to the origin (node 0). Let P be the union of all
sets Pv.

For each v ∈ V , there is a non-negative, integer-valued
ranking function λv , defined over Pv, which represents how
node v ranks its permitted paths. If P1, P2 ∈ Pv and λv(P1) <
λv(P2), then P2 is said to be preferred over P1. Let Λ = {λv |
v ∈ V − {v0}}.

An instance of the Stable Paths Problem, Sspp =
(G, P , Λ), is a graph together with the permitted paths at
each node and the ranking functions for each node. In addition,
we assume that P0 = {(v0)}, and for all v ∈ V − {v0}:

• (empty path is permitted) ε ∈ Pv,
• (empty path is lowest ranked) λv(ε) = 0, λv(P ) > 0

for P 6= ε,
• (strictness) If P1, P2 ∈ Pv, P1 6= P2, and λv(P1) =
λv(P2), then there is a u such that P1 = (v u)P ′

1 and
P2 = (v u)P ′

2 (paths P1 and P2 have the same next-hop),
• (simplicity) If path P ∈ Pv, then P is a simple path (no

repeated nodes),
Let Sspp = (G,P ,Λ) be an instance of the Stable Paths

Problem. A path assignment is a function π that maps each
node u ∈ V to a path π(u) ∈ Pu. (Note, this means that
π(v0) = (v0).) We interpret π(u) = ε to mean that u is not
assigned a path to the origin. The set of paths choices(π, u)
is defined to be

choices(π, u) =

(

{(u v)π(v) | {u, v} ∈ E} ∩ Pu (u 6= 0)

{(0)} o.w.

This set represents all possible permitted paths at u that can
be formed by extending the paths assigned to the peers of u.
Given a node u, suppose that W is a subset of the permitted
paths Pu such that each path in W has a distinct next hop.
Then the best path in W is defined to be

best(W, u) =

(

P ∈ W with maximal λu(P ) (W 6= ∅)

ε o.w.

The path assignment π is stable at node u if

π(u) = best(choices(π, u), u).

Note that if π is stable at node u and π(u) = ε, then the set
of choices at u must be empty. The path assignment π is a
solution if it is stable at each node u. We often write a path
assignment as a vector, (P1, P2, · · · , Pn), where π(u) = Pu.
Any stable path assignment implicitly defines a tree rooted at
the origin. Note, however, that this is not always a spanning
tree.

A dispute wheel, Π = (~U, ~Q, ~R), of size k, is a sequence
of nodes ~U = u0, u1, · · ·uk−1, and sequences of non-empty
paths ~Q = Q0, Q1, · · ·Qk−1 and ~R = R0, R1, · · ·Rk−1, such
that for each 0 ≤ i ≤ k − 1 we have (1) Ri is a path



from ui to ui+1, (2) Qi ∈ Pui , (3) RiQi+1 ∈ Pui , and (4)
λui(Qi) ≤ λui(RiQi+1). (All subscripts are to be interpreted
modulo k.) See Figure 4 for an illustration of a dispute wheel.
Since permitted paths are simple, it follows that the size of
any dispute wheel is at least 2.

u0

Q0

R0

u1

Q1

Ri
ui

Qi+1

ui+1

Qi

uk−1

Qk−1

Rk−1

Fig. 4. A dispute wheel of size k.

F. S-instances as Generalized SPPs
Every S-instance I = (G, ψ, Y ), the routing structure

SI = 〈Pψ , 4I , vI〉,

can be viewed as a generalisation of the Stable Paths Problem
(SPP).

In SI , the relation vI , when restricted to the set of paths
P(v, v0), is a preorder. In an SPP, the ranking function for
any node induces a special kind of preorder — one that is
nearly a total order except for equally-ranked paths coming
from the same neighbor (called the strictness condition).

The multi-value solution of an S-instance is defined in terms
of the a mapping δ from nodes in G to values in X, while a
solution for an SPP is a mapping from nodes to sets of paths.
To model this we define a multi-path solution to an S-instance
I is a function ∆ such that ∆(v0, v0) = {ψ(v0)} and for all
v 6= v0,

∆(v, v0) = minvI
{eP |e ∈ (v, w),

P ∈ P(w, v0), P ∈ ∆(w, v0)}.

Note that this solution is defined in terms of min with respect
to vI rather than 4.

As indicated in Section IV-C, the notion that RI is anti-
reflexive is a generalisation of lack of dispute wheels for SPPs,
and so we take this as our instance condition on S-instances.

Theorem 6: If an S[A]-instance is anti-reflexive, then it has
a multi-path solution ∆.

Proof: (Proof Sketch.) Let I be an anti-reflexive S[A]-
instance. When I is viewed as an SPP we know that it can
have no dispute wheel. The proof then proceeds very much
like the proof of [2] showing that if there is no dispute wheel,
there must be a solution.

Lemma 1: If X ⊆ P(v, v0), then

min4ψ(X) = ψ(minvI
X),

where ψ(W ) = {ψ(w) | w ∈W}.
Proof:
ψ(minvI

X)
= ψ({x ∈ A | there exists no y ∈ X such that y @I x})
= ψ({x ∈ A | there exists no y ∈ X such that y ≺ x})
= {ψ(x) ∈ A | there exists no y ∈ X such that y ≺ x}
= min4ψ(X).

Theorem 7: If ∆ is a multi-path solution for S-instance I =
(G, ψ), then δ(v, v0) = ψ(∆(v, v0)) is a multi-value solution
for I .

Proof: Apply Lemma 1.
Theorem 8: If an S[A]-instance is anti-reflexive, then it has

a multi-value solution.
Proof: Let I be an anti-reflexive S[A]-instance. By

Theorem 6, I must have a multi-path solution ∆. But by
Theorem 7, we have a multi-value solution with δ(v, v0) =
ψ(∆(v, v0)).

V. PATH ALGEBRAS, REVISITED

Given a path algebra B = 〈X , ⊕, ⊗, 0̄, 1̄〉 we construct
an associated policy structure

S[B] = 〈X , 4B, vB〉,

where, as in Section III, we define

b 4B a iff b⊕ a = b,

and we define the new relation

b vB a iff there exists c ∈ X such that a = c⊗ b.

That is, b vB a means that a can be generated from b using
operator ⊗, and it is easy to check that is is a preorder.

The ⊗ operator is said to be isotonic with respect to 4B

when for all a, b, c ∈ X ,

a 4B b⇒ c⊗ a 4B c⊗ b.

Lemma 2: For any path algebra B, ⊗ is isotonic with
respect to 4B.

Proof: For all a, b, c ∈ X , one obtains
a 4B b⇔ a⊕ b = a

⇒c⊗ a = c⊗ (a⊕ b) = (c⊗ a) ⊕ (c⊗ b) [by distributivity]
⇔c⊗ a 4B c⊗ b.

Corollary 9: For any path algebra B, if a 4B b vB c, then
there always exists d ∈ X such that a vB d 4B c.

Proof: If b vB c, then there exists f ∈ X such that

c = f ⊗ b.

But a 4B b, by Lemma 2, we have f ⊗ a 4B f ⊗ b = c. Let
d = f ⊗ a, hence a vB d 4B c.



Lemma 3: For any path algebra B, if RS[B] is not anti-
reflexive, then there exist some a, b ∈ X such that b⊗a ≺B a.

Proof: Since RS[B] is not anti-reflexive, then there exist
distinct a1, a2, ..., a2k ∈ X such that

a1 @B a2 ≺B a3 @B · · · ≺B a2k−1 @B a2k ≺B a1. (∗∗)

By Corollary 9, if a2k−1 @B a2k ≺B a1, then there exists
a′ ∈ X such that a2k−1 4B a′ vB a1. Hence, by transitivity

a2k−2 ≺B a2k−1 4B a′ vB a1 @B a2

becomes
a2k−2 ≺B a2k−1 @B a2.

Inductively by Corollary 9 and transitivity, (∗∗) reduces to

a2 ≺B a3 @B a2.

Hence, for some b ∈ X , we have a2 = b⊗ a3 ≺B a3.

Theorem 10: For any path algebra B, if B is super-unitary,
then RS[B] is anti-reflexive.

Proof: Assume that B is super-unitary but that RS[B]

is not anti-reflexive. By Lemma 3, there exist some a, b ∈ X
such that b⊗ a ≺B a. It contradicts to B being super-unitary
which implies

b <B 1̄ ⇒ b⊗ a <B a.

Hence, B is not super-unitary, which is a contradiction.

Note that the implication does not go in the other direction.
That is, RS[B] is may be anti-reflexive while B is not
super-unitary. This can happen when there exists a ∈ X such
that 1̄ �B a and 1̄ ⊀B a.

Theorem 11: For any path algebra B, if B is nilpotent, then
RS[B] is anti-reflexive.

Proof: Assume that B is nilpotent but that RS[B] is not
anti-reflexive. By Lemma 3, there exist some a, b ∈ X such
that b ⊗ a ≺B a. By Lemma 2 and nilpotency (bq = 0̄ for
some fixed q),

a �B b⊗ a <B b2 ⊗ a <B · · · <B bq ⊗ a = 0̄.

It is a contradiction, since c 4B 0̄, for all c ∈ X . Hence, B

is not nilpotent.

A. Instances of Path Algebra
Recall that given B, a B-instance is a tuple

I = 〈G, LB, B〉, where LB is a labelling function,
mapping every e ∈ E to an element in X . We define
an induced B-instance in generalised routing problem as
follows. For each P ∈ P(v0), let ψ(P ) = LB(P ). By
abuse of notation, let the induced B-instance I = 〈G, ψ, B〉
and let RI be the routing relation over the routing structure SI .

Theorem 12: Given a path algebra B, if B-instance I is
absorptive, then RI is anti-reflexive.

Proof: Suppose that RI as not anti-reflexive. Then, there
exist distinct R1, ..., Rk, P1, ..., Pk ∈ P(v0) such that

R1 4I Pk @I Rk−1 4I Pk−1 @I · · · 4I P1 @I R1.

Note that Pi @I Ri implies that LB(Pi) ≺B LB(Ri), and by
that the definition of 4I , implies that there exist T1, ..., Tk such
that for each i ∈ {1, ..., k}, Pi = TiRj and Ti ∈ P(vi, vj),
where j = i + 1 if 1 ≤ i < k, otherwise 1. Hence,
T1T2T3 · · ·Tk is a directed cycle in G.

Using isotonicity (Lemma 2) we have

LB(R1) �B LB(P1) = LB(T2) ⊗LB(R2)

<B LB(T2) ⊗LB(P2) = LB(T2) ⊗LB(T3R3)

= LB(T2T3) ⊗ LB(R3)

...
<B LB(T2T3 · · ·Tk) ⊗LB(Pk)

= LB(T2T3 · · ·Tk) ⊗LB(T1R1)

= LB(T2T3 · · ·TkT1) ⊗LB(R1).

But isotonicity and the fact that I is absortive imply that

1̄ 4B LB(T2T3 · · ·TkT1)

⇒ LB(R1) 4B LB(T2T3 · · ·TkT1) ⊗LB(R1).

So we arrive at a contradiction.

Note that G being not absorptive does not mean RI being
not anti-reflexive, because G may have a cycle such that
LB(v1v2 · · · vkv1) ⊀B 1̄ and LB(v1v2 · · · vkv1) �B 1̄.

B. Solutions of Path Algebra
Recall that a solution to a B-instance I is a function δ

mapping vertices of V to elements of X such that δ(v0, v0) =
1̄ and for all v 6= v0,

δ(v, v0) =
⊕

P∈P(v, v0)

LB(P ).

By distributivity between ⊕ and ⊗, it corresponds to

δ(v, v0) =
⊕

e∈(v, w)

LB(e) ⊗ δ(w, v0). (1)

Path algebra is an abstraction of many problems [15], and
solving routing problems is one of its many applications. In
this paper we focus on a suitable class of path algebra whose
solutions can be reduced to solutions in our generalised routing
problem. We argue that this particular class of path algebra
(DL-path algebra) suffices to capture all practically useful
routing problems, to our best knowledge, such as minimum-
weight routing, most-reliable routing, and greatest-capacity
routing.

The ⊕ operation yields a partial order 4B on X , as defined
earlier in section III. Given a partial order on X , we say that X
is a lattice with respect to 4B if both x ∨ y = sup{x, y}
and x∧ y = inf{x, y} are well-defined. Further, we say that a



lattice is a distributive lattice if ∨ and ∧ obey the distributive
law such that for x, y, z ∈ X ,

(x∨y)∧z = (x∧z)∨(y∧z) and (x∧y)∨z = (x∨z)∧(y∨z)

A collection X ⊆ P (K) is a lattice of sets if it is closed
under finite unions and intersections. If X is a lattice of sets
then 〈X, ⊆〉 forms a lattice where A ∨ B = A ∪ B and
A ∧ B = A ∩ B, for A,B ∈ X . A well-known result from
lattice theory is that a distributive lattice is isomorphic to a
lattice of sets ( [16] Chap. 4).

Let DL-path algebra be the subclass of path algebras that
form distrbutive lattices. This class includes each of the ex-
amples in Table II, and appears to enable practical techniques
of distributed policy-based routing.

1) Lattices of Sets: Suppose L = 〈X ⊆ P(K), ∪, ∩〉 is a
lattice of sets for some set K. We call U ∈ X an unsplittable
set w.r.t. L, if

there exists no A,B ∈ X such that A 6= B 6= U,A∪B = U.

Let the family of non-empty unsplittable sets be UL:

UL , {U ∈ X | U is unsplittable w.r.t. L and U 6= ∅}.

Since an unsplittable set cannot be represented as a union of
other unsplittable sets, they are atomic elements in X (see
Fig.5). From the definition of unsplittable sets, every A ∈
X can be represented as A = U1 ∪ · · · ∪ Uk for some set
{U1, ..., Uk} ∈ P(UL). Note that set inclusion of UL gives
a natural partial order, 〈UL, ⊆〉.

∅

{ }d

{ , }c d

{ , , }a c d

{ , , , }a b c d

{ , , }a b d

{ , }a d

{ }a

{ , }z c d={ , , }w a b d=

{ }x a= { }y d=

∅

{ }y

{ }z

{ , }x z

{ , }w z

{ }w

{ , }x y

{ }x

Fig. 5. The left figure is a lattice of sets 〈X, ∪, ∩〉, with dotted circles
denote the unsplittable sets. The unsplittable sets gives a natural partial order
in the middle figure. The right figure shows the isomorphic 〈XL, ∨〉.

Lemma 4: Suppose A = U1 ∪ · · · ∪Uk, where U1, ..., Uk ∈
UL such that U1 * Ui for 1 < i ≤ k. Then there exist no
U ′

1, ..., U
′
n ∈ UL\{U1} such that A = U ′

1 ∪ · · · ∪ U ′
n.

Proof: Suppose U1 ∪ · · · ∪ Uk = U ′
1 ∪ · · · ∪ U ′

n. U1 can
be split as (U ′

1 ∩ U1) ∪ · · · ∪ (U ′
n ∩ U1), unless there exists

U ′
j ∩ U1 = U1. That is, U ′

j ) U1. Then U ′
j can be split as

(U ′
j ∩U1)∪ (U ′

j ∩ (U2 ∪ · · · ∪Uk)). Since U2 ∪ · · · ∪Uk 6= A
as U1 * Ui for 1 < i ≤ k, so (U ′

j ∩ (U2 ∪ · · · ∪ Uk)) 6= U ′
j

and (U ′
j ∩U1) = U1 6= U ′

j . Hence, this is a contradiction that
U1, ..., Uk and U ′

1, ..., U
′
n are unsplittable.

For V = {U1, ..., Uk}, we can write max⊆V for the
maximum set in V under partial order ⊆. Define 〈XL, ∨〉
where

XL , {V ∈ P(UL) | V = max⊆V },

V ∨ W , max⊆(V ∪ W ).

Lemma 5: 〈X, ∪〉 is isomorphic to 〈XL, ∨〉.
Proof: Define f : X → XL such that

f(A) = ∩{U ∈ P(UL) | ∪U = A}.

f(A) ∈ XL, since for every ∪U = A, if U1, U2 ∈ U and
U1 ( U2, then ∪(U \{U1}) = A. Hence, there is no U1, U2 ∈
f(A) such that U1 ( U2 and therefore, f(A) = max⊆f(A).

Now we prove f is bijective. Note that ∪f(A) = A, because
if x ∈ A, then x ∈ U for some U ∈ U whenever ∪U = A.
Hence, f(A) = f(B) ⇒ A = ∪f(A) = ∪f(B) = B. Thus,
f is injective.

For any V ∈ XL, let ∪V = A. Since V = max⊆V (no
U1, U2 ∈ V such that U1 ( U2) and Lemma 4, f(A) = V .
Thus, f is surjective. Hence, f is bijective.

To prove f is an isomorphism, it suffices to show f(U1) ∨
f(U2) = f(U1 ∪ U2) only for unsplittable sets U1, U2 ∈ UL.
Since U1, U2 are unsplittable sets, f(U1) = {U1}, f(U2) =
{U2}. If U1 ⊆ U2 or U2 ⊆ U1, then
f(U1 ∪ U2) = ∩{U ∈ P(UL) | ∪U = U1 ∪ U2}

= ∩{U ∈ P(UL) | ∪U = max⊆{U1, U2}}
= max⊆{U1, U2} = f(U1) ∨ f(U2),

where max⊆{U1, U2} ∈ {U1, U2}.
If U1 * U2 and U2 * U1, by Lemma 4, there exist no

U3, U4 ∈ UL\{U1, U2} such that U1 ∪U2 = U3 ∪U4. Hence,
f(U1 ∪ U2) = {U1, U2} = max⊆{U1, U2} = f(U1) ∨ f(U2).
f is an isomorphism; 〈X, ∪〉 is isomorphic to 〈XL, ∨〉.

2) Mapping of DL-Path Algebra:
Corollary 13: Given a DL-path algebra B, 〈X , ⊕〉 is

isomorphic to 〈XB, ∨〉, defined as:

XB , {A ∈ P(K) | A = min
4B

A}, A ∨ B , min
4B

(A ∪ B),

for some set K.
Proof: Since B is a DL-path algebra, 〈X , ⊕〉 is

isomorphic to a lattice of sets 〈X ⊆ P(K), ∪, ∩〉. Note
that it is always possible that ⊕ is isomorphic to ∩ or to ∪ by
inverting the isomorphic lattice. Choose ⊕ be isomorphic to
∪. For a, b ∈ X , and their isomorphic counterparts A,B ∈ X :

b 4B a⇔ b = b⊕ a⇔ B = B ∪ A⇔ B ⊇ A.

Hence, min4B
is isomorphic to max⊆. By Lemma 5, it

follows that 〈X , ⊕〉 is isomorphic to 〈XB, ∨〉.

Lattices of sets have the property that we can represent
〈X , ⊕〉 isomorphically as the structure 〈XB, ∨〉. Thus,
a⊕b = b is isomorphically represented as min4B

{a, b} = {b},
and a ⊕ b = c where c 6= a, b is isomorphically represented
as min4B

{a, b} = {a, b}, such that c in X is uniquely
determined by {a, b} in XB.

C. Theorems for Path Algebras
Theorem 14: If B is a DL-path algebra, then the path

algebra solution, δ(v, v0) = 1̄ for v = v0, and for all v 6= v0,

δ(v, v0) =
⊕

e∈(v, w)

LB(e) ⊗ δ(w, v0).



is isomorphic to the multi-value solution to S-instance I given
by δ(v, v0) = {ψ(v0)} for v = v0, and for all v 6= v0,

δ(v, v0) ∈ min4B
{ψ(eP )|e ∈ (v, w),

P ∈ P(w, v0), ψ(P ) = δ(w, v0)}.
Proof: Note by Corollary 13, given a DL-path algebra

B, 〈X , ⊕〉 is isomorphic to 〈XB, ∨〉, which allows us to
map ⊕ to min4B

and we have that

LB(e) ⊗ δ(w, v0)

is isomorphic to
ψ(eP ),

for e ∈ (v, w), P ∈ P(w, v0) and ψ(P ) ∈ δ(w, v0).

Theorem 15: If B is a super-unitary DL-path algebra, then
every B-instance has a solution.

Proof: If B is a DL-path algebra, by Theorem 14, we
can rewrite the solution of path algebra in terms of the solution
to generalised routing problem.

Theorem 10 state that if B is super-unitary, then RS[B] is
anti-reflexive. Theorem 5 shows that if RS[B] is anti-reflexive,
then every S[B]-instance is anti-reflexive. Theorem 12 states
that if an S[B]-instance is anti-reflexive, then the correspond-
ing S[B]-instance has a solution.

Theorem 16: If a DL-path algebra B-instance I is absorp-
tive, then I has a solution.

Proof: If B is a DL-path algebra, by Theorem 14, we
can rewrite the solution of path algebra in terms of the solution
to generalised routing problem.

Theorem 12 states that if B-instance I is absorptive, then
the corresponding S[B]-instance is anti-reflexive.

Theorem 8 states that if an S[B]-instance is anti-reflexive,
then it has a fixed-point solution. Finally, Theorem 20 shows
that A fixed point solution for an S[B]-instance corresponds
to an S[B]-instance solution.

VI. SOBRINHO’S ROUTING ALGEBRA

Let
A = 〈Σ, L, ., ⊗〉

be a Sobrinho routing algebra. Let L∗ be the set of all
finite sequences of labels in L. We usually write a sequence
(ln, ln−1, ..., l1) as ~l ∈ L∗. Define ~l ⊗ σ , ln ⊗ · · · ⊗ l1 ⊗ σ,
and l ·~l , (l, ln, ln−1, ..., l1).

We assume that . is a total order. We construct an associ-
ated policy structure

S[A] = 〈Σ, 4A, vA〉,

where 4A=. and

σ vA β if there exists ~l ∈ L∗ such that β = ~l ⊗ σ.

Clearly 4A is a partial order and it is easy to check that vA

is a preorder.
Lemma 6: If A is monotone and (σ, β) ∈ RS[A], then

there exists a label sequence ~l such that ~l ⊗ σ ≺A β.

Proof: If (σ, β) ∈ RS[A], then there must exist a k,
1 ≤ k, and σi, 1 ≤ i ≤ 2k + 1 such that

σ1 vA σ2 ≺A σ3 . . . σ2k−1 vA σ2k ≺A σ2k+1

We prove the claim by induction on k. If n = 1 then we have

σ1 vA σ2 ≺A σ3.

Then there exists a label sequence ~l such that σ2 = ~l⊗σ1. So
we have ~l⊗σ1 ≺A σ3. Now we show that if the claim is true
for some 1 ≤ i − 1 < k, then it is true for i. If the claim is
true for i− 1, then there must exist a sequence ~l1 such that

~l1 ⊗ σ1 ≺A σ2i−1 vA σ2i ≺A σ2i+1.

But this means that there is a a sequence ~l2 such that σ2i =
~l2 ⊗σ2i−1. By monotonicity we have σ2i−1 4A

~l2 ⊗σ2i−1 =
σ2i. Therefore

~l1 ⊗ σ1 ≺A σ2i−1 4A σ2i ≺A σ2i+1,

which gives us
~l1 ⊗ σ1 ≺A σ2i+1.

So the claim must be true for k.
Theorem 17: For any Sobrinho’s routing algebra A, RS[A]

is anti-reflexive if and only if A is monotone.
Proof: (If -) Suppose that A is monotone but that

RS[A] as not anti-reflexive. So there must exist a σ such that
(σ, σ) ∈ RS[A]. But by Lemma 6 this means that there exists
a label sequence ~l such that ~l ⊗ σ ≺A σ, which contradicts
monotonicity.

(Only if -) Suppose that RS[A] as anti-reflexive, but that A
is not monotone. There must exist a label l and a signature σ
such that λ⊗ σ ≺ σ. But this means that

σ vA λ⊗ σ ≺A σ,

and so RS[A] is not anti-reflexive. This contradiction tells us
that A must be monotone.

Recall that A is strictly monotone if for all labels l and all
signatures σ 6= ∞ we have σ ≺A l ⊗ σ. The next theorem
shows that strict monotonicity is also a universal condition for
routing algebras.

Theorem 18: For any Sobrinho’s routing algebra A, if A is
strictly monotone, then RS[A] is anti-reflexive

Proof: Suppose that A is strictly monotone, then it
is monotone, and the proof proceeds as in the proof of
Theorem 17.

For routing algebras A, all A-instances must have the form
I = (G, ψ, B) where ∞ ∈ B. Normally we will have B =
{∞}. That is, paths associated with ∞ cannot be used in a
solution.

Theorem 19: If an A-instance I is free, then the corre-
sponding S[A]-instance is has an anti-reflexive routing rela-
tion.

Proof: Suppose tht an A-instance I is free, but the
corresponding S[A]-instance 〈Pψ, 4I , vI〉 does not have
an anti-reflexive routing relation. Then there must exist distinct



P1, ..., Pm ∈ P(v0) where m = 2k is even, and ψ(Pi) 6= ∞,
such that

P1 4I P2 @I P3 · · · 4I Pm @I P1.

Since P2i−1 4I P2i, for 1 ≤ i ≤ k, there must exists paths
Wi so that P2i = WiP2i−1. Let σj = ψ(P2i−1, for 1 ≤ j ≤ k.

σ1 vA ψ(W1P1) ≺A σ2 · · · vA ψ(WkP2k−1) ≺A σ1.

Therefore, the directed W1W2 · · ·Wkcycle is not free, and we
have a contradiction.

Theorem 20: Let A be a routing algebra and an A-instance
I = (G, LA, σ0). and let I ′ be the corresponding instance
for the policy structure S[A]. Every multi-value solution I ′

corresponds to an A-instance solution.
Proof: Recall that a multi-value solution for the corre-

sponding I ′ is a function δ such that δ(v0, v0) = {ψ(v0)}
and for all v 6= v0,

δ(v, v0) = min4{ψ(eP )|ψ(eP ) 6∈ B,
e ∈ (v, w),
P ∈ P(w, v0),
ψ(P ) ∈ δ(w, v0)}.

Note that ψ(v0) = σ0, so we have δ(v0, v0) = {σ0}. Since
ψ is derived from LA, we have for all v 6= v0,

δ(v, v0) = min4{LA(e) ⊗ σ | e ∈ (v, w), σ ∈ δ(w, v0)}.

This is exactly the definition of an A-instance solution.
Theorem 21: If routing algebra A is monotone, then every

A-instance I is free.
Proof: Theorem 17 states that if A is monotone, then

RS[A] is anti-reflexive. Theorem 5 shows that every S[A]-
instance is anti-reflexive. Theorem 19 states that if an S[A]-
instance is anti-reflexive, then the corresponding A-instance I
is free.

Theorem 22: If an A-instance I is free, then it has a
solution.

Proof: Theorem 19 states that if an A-instance I is
free, then the corresponding S[A]-instance is anti-reflexive.
Theorem 8 states that if an S[A]-instance is anti-reflexive,
then it has a multi-value solution. Finally, Theorem 20 shows
that A multi-value solution for an S[A]-instance corresponds
to an A-instance solution.

VII. DISCUSSIONS

Our theory helps to clarify some of the rather confusing
issues involved with the distinction between the value associ-
ated with a stable routing, the values associated with the “best
paths,” and the best paths themselves. For example, if B is a
path algebra and I = (G, ψ) is a B-instance, then we can
view the routing structure SI as a generalised SPP, and

δ(v, v0) =
⊕

ψ(∆(v, v0)),

where ∆ is a multi-path solution to the generalised SPP.
Returning to the example presented in Section III-D, we have
∆(Rome, Moscow) = {(Moscow, Prague, Rome),

(Moscow, London, Paris, Rome)}

as the “best paths” from Moscow to Rome, while

ψ(∆(Rome, Moscow) = {〈300, 30〉, 〈571, 70〉}

represents the “best values” associated with those paths. Fi-
nally, we have

〈300, 70〉 =
⊕

{〈300, 30〉, 〈571, 70〉}
=

⊕
ψ(∆(Rome, Moscow).

as the single value associated with the solution at the level
of the path algebra B. In the case of this example, the value
〈300, 70〉 is not associated with any single path. It is hoped
that this clarification will prove useful in future work.

We mention a few questions that may give rise to interesting
research. First, we ask if the framework presented here can be
extended to include routing algebras with preference orders
rather than the more restricted total order. Simply “moding
out” by equivalence classes does not seem to work since labels
in routing algebras can actually take on the form of small
programs that inspect the syntactic details of a signature (see
metarouting work of [5]).

Even though anti-reflexive policy relations are implied by
both super-unitary/nilpotent path algebras, the multi-path so-
lution concept in generalised routing problem is not sufficient
to capture the general solution in path algebra with non-
distributive lattices. The implication of non-distributive lattices
to application in routing problem is unclear so far. Either
such systems are of no interest in routing, or some type of
generalisation to the theory presented here is needed.

Our theory of policy structures and routing structures is
based purely on abstract relations and their relational proper-
ties and not on the syntactic or axiomatic details of the policy-
based theories. This leads us to suspect that there are many
“algebraic” theories that may be of interest in network routing
that might also fall within the scope of our framework. That,
is, perhaps there is a spectrum of algebraic routing theories
that includes path algebras and routing algebras as interesting
instances of something more general. In terms of metarouting,
it would then be interesting to think about meta-languages that
can define a broader spectrum of algebraic structures, not just
routing algebras as is currently the case.

As mentioned in Section III-D, there seems to be an interest-
ing relationship between algebraic paradigms and forwarding
paradigms. Can this connection can be explored formally with
some kind of “algebraic” theory of forwarding? Is network
coding theory [17] a candidate theory?
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