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Abstract—Fair exchange protocols let two mutually distrust-
ful parties exchange digital data in a way that neither
party can cheat. They have various applications such as the
exchange of digital items, or the exchange of digital coins
and digital services between a buyer/client and seller/server.

In this work, we formally define and propose a generic
blockchain-based construction called “Recurring Contingent
Service Payment” (RC-S-P). It (i) lets a fair exchange of
digital coins and verifiable service reoccur securely between
clients and a server while ensuring that the server is paid
if and only if it delivers a valid service, and (ii) ensures
the parties’ privacy is preserved. RC-S-P supports arbitrary
verifiable services, such as “Proofs of Retrievability” (PoR)
or verifiable computation and imposes low on-chain over-
heads. Our formal treatment and construction, for the first
time, consider the setting where either client or server is
malicious.

We also present a concrete efficient instantiation of RC-
S-P when the verifiable service is PoR. We implemented the
concrete instantiation and analysed its cost. When it deals
with a 4-GB outsourced file, a verifier can check a proof in
only 90 milliseconds, and a dispute between a prover and
verifier is resolved in 0.1 milliseconds.

At CCS 2017, two blockchain-based protocols were pro-
posed to support the fair exchange of digital coins and a
certain verifiable service; namely, PoR. In this work, we
show that these protocols (i) are susceptible to a free-riding
attack which enables a client to receive the service without
paying the server, and (ii) are not suitable for cases where
parties’ privacy matters, e.g., when the server’s proof status
or buyer’s file size must remain private from the public. RC-
S-P simultaneously mitigates the above attack and preserves
the parties’ privacy.

1. Introduction
Fair exchange is an interesting problem in which two

mutually distrustful parties want to swap digital items
such that neither party can cheat the other, in the sense
that either each party gets the other’s item, or neither
party does. It captures various real-world scenarios; for
instance, when two parties want to exchange digital items
or when a seller wants to sell a digital verifiable service
in exchange for digital coins. Solutions to the problem
are usually certain cryptographic schemes, called fair ex-
change protocols, and have been studied for decades. It
has been shown that fairness is unachievable without the
aid of a trusted third party [14].

With the advent of decentralised cryptocurrencies and
blockchain, it seemed fair exchange protocols can be

designed without having to rely on a single trusted third
party, in the sense that the third party’s role can be turned
into a computer program, i.e., smart contract, which is
maintained and executed by the decentralised blockchain.
This ultimately results in a stronger security guarantee, as
there would be no need to trust a single entity, anymore.
Ever since various fair exchange protocols that rely on
blockchain have been proposed. They mainly support the
fair exchange of two digital items (e.g., documents, films)
or a digital item and coins (except for the ones in [12]
that will be discussed shortly).

Our Contributions. In this work, we:

1) define and propose the first generic construction, called
“recurring contingent service payment” (RC-S-P), that
(i) supports the fair exchange of digital verifiable ser-
vices and coins and (ii) preserves the parties’ privacy.
RC-S-P makes black-box use of any scheme that offers
a verifiable service and remains secure in the recurring
setting where the construction is executed many times.

2) propose the first recurring contingent PoR payment
(RC-PoR-P). It is a concrete efficient instantiation
of the RC-S-P scheme. To achieve efficiency, it
avoids generic cryptographic tools and utilises mainly
symmetric-key primitives and smart contracts.

3) implement RC-PoR-P and analyse its cost. Our cost
analysis illustrates RC-PoR-P is highly efficient. When
it deals with a 4-GB outsourced file, in each verifica-
tion, a verifier can check a proof in only 90 millisec-
onds, and a dispute between a prover and a verifier can
be resolved in 0.1 milliseconds. Also, the contracts’
computation is constant in file size. We have made the
implementation source code publicly available.

4) identify a free-riding attack in the state-of-the-art fair
exchange protocols that were designed to support the
fair exchange of a verifiable service and coins, i.e.,
the two (publicly and privately verifiable) protocols of
Campanelli et al. [12]. We show that the attack lets an
adversary use a service without paying the fee.

5) show that the protocols of [12] are not suitable for
cases where parties’ privacy matters. We argue that the
schemes leak in real-time non-trivial fresh information
about the seller and buyer to the public, e.g., deposits’
actual amount and proof status.

The identified issues in the protocols of [12] indicate
a need for a secure mechanism like RC-S-P. Our RC-S-P
can be used to prevent a variant of Authorised Push Pay-
ment (APP) fraud, called purchase fraud, where a service
provider may wish to receive a certain amount of coin



without delivering the service1. Defining and designing
generic RC-S-P is challenging, for three reasons: (i) there
exists no generic definition for verifiable service (VS)
schemes in the literature, (ii) most of the application-
specific VS schemes (e.g., proofs of retrievability [48],
or verifiable computation [25], verifiable searchable en-
cryption [42]) assume the client is trusted, while in a fair
exchange setting either party can be an active adversary,
and (iii) the majority of VS schemes do not (need to)
consider the privacy of exchanged messages, as they are in
the traditional setting where the client and server directly
interact with each other; hence, their messages’ privacy
can be protected from the public by using secure channels.

The primary novelties of this work include: (a) RC-S-
P, a fair exchange protocol which remains provably secure
in the case where either server or client acts malicious
while preserving the parties’ privacy, (b) RC-PoR-P, which
inherits all appealing features of RC-S-P for the special
case of PoR without using zero-knowledge proofs, and
(c) identifying and addressing the free-riding attack in the
state-of-the-art fair exchange protocols, proposed in [12].

2. Related Work
In this section, we summarise related work. In the

paper’s full version [4], we present a detailed survey.
Maxwell [39] proposes a fair exchange scheme, called
“zero-knowledge contingent payment” that supports the
fair exchange of digital goods and coins. It is based
on Bitcoin’s smart contracts, a hash function, and zero-
knowledge (zk) proofs. After the advancement of the
“succinct non-interactive argument of knowledge” (zk-
SNARK) [26] that yields more efficient zk proofs, the
scheme was modified to use zk-SNARKs. Later, Cam-
panelli et al. [12] identified an issue in the above
scheme. The issue lets a malicious buyer receive the item
without paying. To address it, the authors propose the
“zero-knowledge Contingent Service Payments” (zkCSP)
scheme that also supports contingent payment for digital
services. It is based on Bitcoin smart contracts, hash func-
tions, and witness indistinguishable proof of knowledge.
To improve efficiency, they use zk-SNARKs where the
buyer generates a public parameter, i.e., CRS, and the
seller performs minimal checks on the CRS. The authors,
as the zkCSP’s concrete instantiations, propose public and
private verifiable schemes where the service is “proofs
of retrievability” (PoR) [48]. To date, they are the only
ones designed for the fair exchange of digital coins and a
digital service. Shortly, we will explain their shortcomings
undetected in the literature.

Fuchsbauer [24] identifies a flaw in the zkCSP and
shows that the seller’s minimal check in the zkCSP does
not prevent the buyer from cheating. Later, Nguyen et
al. [45] show that by relying on a stronger assumption, the
zkCSP remains secure. Tramer et al. [50] propose a fair
exchange scheme that uses trusted hardware and Ethereum
smart contracts. Dziembowski et al. [22] propose Fair-
Swap, a fair exchange scheme using the Ethereum smart
contracts and the notion of proof of misbehaviour [13].
Later, Eckey et al. [23] propose OPTISWAP that im-
proves FairSwap’s performance. Similar to FairSwap, OP-
TISWAP uses a smart contract and proof of misbehaviour,

1. We refer readers to [51] for further discussion about APP fraud.

but it relies on an interactive dispute resolution protocol.
Recently, outsourced fair PoRs letting a client delegate
the verifications to a smart contract were proposed in
[3], [21]. The scheme in [3] uses message authentication
codes (MACs) and time-lock puzzles. The one in [21]
uses polynomial commitment and involves a high number
of exponentiations. As a result, it imposes higher costs,
of proving and verifying, than the former scheme. The
schemes in [3], [21] assume the client is honest.

To date, the zkCSP (in [12]) remains the only protocol
designed to support the fair exchange of digital coins and
a verifiable service; accordingly, it is the closest work to
ours. The rest of the above schemes are out of the scope
of our work because they only support the exchange of
two items or the exchange of an item and digital coins.

3. Preliminaries

We use λ as the security parameter. We write x $← X
to denote that x is chosen uniformly at random from set
X . We write negl(λ) to denote that a function is negligible
in λ, i.e., asymptotically smaller than the inverse of any
polynomial. In the formal definitions in this paper, we use

the notation Pr

[
Exp
Cond

]
, where Exp is an experiment

that involves an adversary A, and Cond is the set of the
corresponding winning conditions for A. We use C, S, and
R to denote the client, server, and arbiter, respectively. We
let pl be S’s public price list, o be the amount paid to S for
each valid proof, and l be the amount (misbehaving) C or
S pays to R for resolving a dispute for each verification,
omax be the maximum amount paid to S for a valid
proof, lmax be the maximum amount to resolve a potential
dispute, and z be the total number of verifications and
(o, l, omax, lmax) ∈ pl.

We provide a notation table in Appendix A. Similar
to the optimistic fair cryptographic protocols that aim
efficiency, e.g., in [7], [8], [18], we assume the existence
of a trusted third party arbiter which remains offline most
of the time and is only invoked to resolve disputes.

3.1. Smart Contract (SC)

Cryptocurrencies, such as Bitcoin [44] and Ethereum
[53], beyond offering a decentralised currency, support
computations on transactions. In this setting, often a cer-
tain computation logic is encoded in a computer program,
called a “smart contract”. To date, Ethereum is the most
predominant cryptocurrency framework that enables users
to define arbitrary smart contracts. In this framework,
contract code is stored on the blockchain and executed
by all parties maintaining the cryptocurrency. To pre-
vent a denial of service attack, the framework requires
a transaction creator to pay a fee, called “gas”. In this
work, we require minimal capabilities of Ethereum smart
contracts, i.e., given a set of addresses, a certain amount
of deposit that the contracts hold, certain integer variables,
and simple equations registered to the contracts (i.e., linear
combinations of the variables), it distributes among the
account holders, a portion of the deposit specified by
the equations’ output. We assume the smart contract and
underlying blockchain are secure, i.e., the used signature
scheme is unforgeable and the blockchain is immutable.



3.2. Building Blocks
We outline the main cryptographic primitives that we

utilize in our protocols. We provide a detailed description
of the said primitives in Appendix B.1.
• Pseudorandom Fuction (PRF): we apply a pseudoran-

dom function PRF : {0, 1}ψ×{0, 1}η → {0, 1}ι that on
input a random ψ-bit key and η-bit message, it outputs
a ι-bit pseudorandom value (cf. Appendix B.1.1).

• Commitment Scheme: we deploy a binding and hiding
commitment scheme. In the commit phase, the sender
commits to a message x as Com(x, r) = Comx, that
involves a secret value, r. In the open phase, the sender
sends the opening ẍ := (x, r) to the receiver which
verifies its correctness: Ver(Comx, ẍ)

?
= 1 and accepts

if the output is 1 (cf. Appendix B.1.2).
• Publicly Verifiable Non-interactive Zero-knowledge

Proof (NIZK): is a non-interactive proof where a prover
P , given a witness w for some statement x in an NP
language L, wants to convince in zero-knowledge a
verifier V of the validity of x ∈ L. A NIZK is publicly
verifiable when any party can verify the validity of
x ∈ L by obtaining the proof (cf. Appendix B.1.3).

• Symmetric-key Encryption Scheme: it consists of a
key generation algorithm SKE.keyGen, an encryption
algorithm Enc, and a decryption algorithm Dec. We
require that the scheme satisfies IND-CPA security (cf.
Appendix B.1.4).

• Digital Signature Scheme: it consists of a key gen-
eration algorithm Sig.keyGen, a signing algorithm
Sig.sign, and a verification algorithm Sig.ver. We
require that the digital signature scheme satisfies EUF-
CMA security (cf. Appendix B.1.5).

• Merkle Tree: A Merkle tree scheme [40], [41] is
a data structure often used for efficiently check-
ing the integrity of an outsourced file. The Merkle
tree scheme includes three algorithms; namely,
MT.genTree, MT.prove, and MT.verify. Briefly, the
first algorithm constructs a Merkle tree on file blocks,
the second generates a proof of a block’s (or set of
blocks’) membership, and the third one verifies the
proof (cf. Appendix B.1.6).

3.3. Proofs of Retrievability (PoR)
A PoR scheme considers the case where an honest

client wants to outsource the storage of its file to a
potentially malicious server, i.e., an active adversary. It is
a challenge-response interactive protocol, where the server
proves to the client that its file is intact and retrievable.
Informally, a PoR’s soundness requires that if a prover
convinces the verifier, then the file is stored by the prover.
This is formalized via the notion of an extractor algorithm
that can extract the file in interaction with the adversary.
Appendix B.2 presents the PoR’s formal definition.

We briefly describe the privately verifiable PoR in [48]
because it was used as a subroutine in zkCSP’s concrete
instantiation in [12] which we are going to expose its
vulnerabilities. In the setup phase, the client splits its file
u into fixed size blocks u = m1, ...,mn. It generates a
tag, i.e., Message Authentication Code (MAC), for each
block mi as σi = ri+α ·mi, where ri = PRF(k, i), α is a
random value and k is the client’s secret key. It outsources
the storage of all blocks and tags to the server. Later, to

check whether the file is still retrievable, it sends c pair
of the form (j, vj) to the server, where j is a block index
and vj is a random value. Let set J contain all indices
that the client sends to the server. The server generates
and then sends to the client a proof pair (σ, β), where
σ =

∑
∀j∈J

vj ·σj and β =
∑
∀j∈J

vj ·mj . The client can verify

the proof, by checking if σ = α · β +
∑
∀j∈J

vj · rj .

Shacham and Waters [48] also propose a publicly
verifiable PoR, which requires the client to generate a
signature, as a tag, for each block.

4. Putting Forth the RC-S-P Concept
In this section, we briefly describe the Recurring Con-

tingent Service Payment (RC-S-P) concept and explain
why it is needed. RC-S-P concerns fair exchange of a
digital verifiable service (offered by a server) and digital
coins (offered by a client), and supports any verifiable
digital service. Broadly speaking, it ensures that a client
pays a predefined amount of digital coins to the server
if and only if the server (proves that it) provided the
promised service. It considers the case where either client
or server is potentially an active/malicious adversary. RC-
S-P ensures the above security guarantees hold even if
the payments reoccur, e.g., the server deals with multiple
clients. RC-S-P also preserves the two parties’ privacy.

4.1. Overview of RC-S-P

RC-S-P involves a client C, a server S, an arbiter
R, and a smart contract SC. It comprises eight phases:
(1) key generation, in which C generates the system
parameters, (2) client-side initiation, where C encodes
the service input, generates metadata, computes a proof
asserting that the input and metadata are well-formed,
and masks the actual amount of coin it wants to pay for
the service, (3) server-side initiation, where S checks C’s
proof, ensures the input and metadata are well-formed, and
masks the actual deposits it puts on SC, (4) client-side
query generation, where C generates an encoded query,
(5) server-side proof generation, where S generates an
encoded proof asserting that the service was delivered
correctly, (6) client-side proof verification, where C checks
S’s proof, (7) dispute resolution, where R compiles the
validity of a complaint made by S/C, and (8) coin transfer,
where SC distributes parties’ deposits depending on their
(mis)behaviour.

Intuitively, RC-S-P is said to be secure if it satisfies
three main security properties: (i) security against a mali-
cious server: an adversary corrupting S wins only with a
negligible probability if it does not provide the promised
service but persuades C to accept it, or makes C or R
withdraw an incorrect amount of coins they deposited in
SC; (ii) security against a malicious client: an adversary
corrupting C wins only with a negligible probability if it
provides an invalid metadata/query but convinces the S
or R to accept it, or make S or R withdraw an incorrect
amount of coins from SC; (iii) privacy: the privacy of (a)
the service input (e.g., outsourced file), and (b) the service
proof’s status is preserved (for a predefined time period).

RC-S-P offers stronger security guarantees compared
to the existing solutions in the real world and literature;
below, we explain why that is the case.



4.2. Service Payment in the Real World
To date, in the real world, each client must pay in

advance to a server for a digital service that it wishes to
use in future, e.g., Dropbox. If a malicious server does
not provide the promised service, then the client has to
either (i) spend time and effort to follow up the matter
(i.e., by arguing the matter with the server or taking legal
actions) or (ii) ignore the problem resulting in the loss of
the money it paid for the service. Thus, it is important
to ensure that an honest client pays only if the server
provides the promised service.

4.3. Service Payment in the Literature
The state-of-the-art protocol in [12] that has been

designed to support a fair exchange of digital services
and coins has an important oversight; namely, it does not
protect an honest server from a malicious client. This
oversight allows a malicious client to mount an attack
which enables it to use the service without paying the
server, i.e., a free-riding attack (see Section 5.2 for further
details). So, it is important to ensure that an honest server
provides the service only if the client pays for it.

4.4. Privacy
The existing fair exchange protocol designed for ser-

vice payment in [12] uses a public blockchain to hold
clients’ deposits and to transfer the deposit to the server
if the service is delivered. Nevertheless, the use of
blockchain in the fair exchange protocol reveals in real-
time non-trivial information about the parties involved,
e.g., the deposits’ actual amount or service type (see Sec-
tion 5.1 for further discussion). Therefore, it is important
to have a fair exchange protocol that could also preserve
the parties’ privacy.

5. The Privacy Issue and Attack
In this section, we elaborate on the lack of privacy of

zkCSP and the attack. We first explain why the zkCSP
schemes do not preserve privacy. Later, in the attack
description, we show how the lack of privacy can benefit
an attacker. We focus only on the zkCSP protocols in [12],
as they have been specifically designed for a fair exchange
of verifiable services and digital coins, whereas the other
protocols studied in Section 2 were designed for a fair
exchange of digital items, e.g., a file and coins.

5.1. Lack of Privacy in zkCSP
The zkCSP protocols reveal in real-time non-trivial

fresh information about the server and clients to the
public. The revealed information includes (i) proof status
and (ii) deposit amount. We explain them below.

5.1.1. Proof status. In the traditional setting, the client
and server directly interact with each other to verify and
prove the integrity of agreed-upon services. In this case,
the verification’s result is only apparent to them. Neverthe-
less, in the blockchain era, where a blockchain plays a role
in the verification and payment phases (e.g., in the zkCSP
schemes) it becomes visible in real-time to everyone
whether the verification (proof) has been accepted, which
reflects whether the server has successfully delivered the
service. This issue remains even if the service proofs are

not stored (in plaintext) in the blockchain, as the coins
transfer itself reveals the status of proofs.

In certain settings, this leakage might be undesirable
and could have immediate consequences for both the
server and (business) clients, e.g., stock value drop [10],
[31], or can benefit attackers (as we will explain in Section
5). For further discussion on proofs status leakage, we
refer readers to the paper’s full version [4].
5.1.2. Deposit amount. The amount of deposit placed in
the smart contract, swiftly reveals non-trivial information
about the client to the public. In the case of PoR, an
observer learns the approximate size of outsourced data,
service type, or in certain cases even the region of clients’
outsourced data, by comparing the amount of deposit with
the service provider’s price list which is often publicly
available, e.g., in [5], [20], [29].

5.2. Free-Riding Attack
In this section, we describe an attack scenario in which

a malicious client (the attacker) is served by an honest
server but it would not pay the service fee, i.e., the free-
riding attack. We explain the attack for a concrete instan-
tiation of the zkCSP, when it uses the privately verifiable
PoR of Shacham and Waters [48] as a subroutine. This
instantiation was presented in [12, Section 5.2].

Briefly, to mount the attack, the client exploits (1) the
lack of privacy in zkCSP and (2) the lack of server-side
verification mechanism in the PoR that zkCSP uses.

First, we explain how the lack of privacy in zkCSP
benefits the attacker. As we discussed in Section 5.1.1,
proof status is revealed in real time to everyone including
the attacker. Observing proofs’ status (when a server deals
with multiple clients) over a sufficiently long time (e.g.,
a few months) allows the attacker to construct compre-
hensive background knowledge of the server’s behaviour,
e.g., the server has been acting honestly or not suffering
from hardware failures that affect its clients’ data.

Next, we explain how the lack of server-side verifica-
tion mechanism in the PoR that zkCSP uses can benefit
the attacker, who acts as follows. At the setup phase in
PoR, it generates ill-formed tags. Specifically, instead of
honestly generating a tag (MAC) σi on a file block mi as
σi = ri + α ·mi (cf. Subsection 3.3), it generates a tag
for some arbitrary block m′i; i.e., σ′i = ri +α ·m′i, where
mi 6= m′i. It follows the rest of PoR protocol honestly,
with one exception; namely, during the verification, when
it sends a query containing some pairs (j, vj), it also
includes pair (i, vi) in the query, where i is the index
of a block whose tag is ill-formed.

In this case, the server cannot pass the verification; we
show why it is the case. For simplicity, we let the attacker
send to the server only two pairs (j, vj) and (i, vi). Given
the pairs, the honest server computes proof pair (σ, β) as
follows σ = vj ·σj+vi·σ′i = vj ·(rj+α·mj)+vi·(ri+α·m′i)
and β = vj ·mj + vi ·mi. However, this proof is invalid,
as if a verifier follows the PoR verification (described in
Section 3.3), it will get the inequality:

σ = vj · (rj + α ·mj) + vi · (ri + α ·m′i) 6=
6= α · (vj ·mj + vi ·mi) + vj · rj + vi · ri =

= α · β + vj · rj + vi · ri.
This means that, in zkCSP, an honest server cannot

generate valid proof when i-th block is challenged. In



zkCSP, the server cannot detect whether the attacker gen-
erated ill-structured tags, as the used PoR does not require
a client to prove the tags’ correctness. Even after the server
fails to generate a valid proof, it cannot tell (or prove to
anyone) whether itself (e.g., due to hardware failures) or
the malicious client was the source of the problem.

Hence, the malicious client can mount the free-riding
attack to avoid paying the server who delivered the ser-
vices honestly, i.e., kept the file intact during the period
between the setup and verification phases. To do that, it
(i) ensures the server is honest (by exploiting the lack
of privacy in zkCSP), (ii) generates ill-formed tags (by
exploiting the lack of server-side verification mechanism
in the PoR that zkCSP uses), and then (iii) asks the server
to generate proof for the blocks related to ill-formed tags.

In another concrete instantiation of the zkCSK, Cam-
panelli et al. used a publicly verifiable PoR as a subrou-
tine. The idea behind the above free-riding attack can be
easily applied to that instantiation too.
Main source of the attack. The reason that the attacker
can construct ill-structure tags, without being detected, is
that the zkCSP scheme uses a subprotocol that offers a
weaker security guarantee than required. Specifically, it
assumes either party can be potentially corrupted by an
active adversary, yet it uses a certain verifiable service
protocol (i.e., PoR) that is secure against only a mali-
cious server and assumes the client is fully honest. This
mismatch of security assumption/requirement lets a
malicious client misbehave without any consequences.

6. Overview of our Solution
Ensuring Security Holds When Either Party is Malicious.
We design the RC-S-P in a modular fashion. First, we
formally define the notion of Verifiable Service (VS)
and then upgrade VS to a “Verifiable Service with
IDentifiable abort” (VSID) inspired by the notion of
“secure multi-party computation with identifiable abort”
[33]. The latter guarantees that not only the service takes
into consideration that the client can be malicious too,
but also a third-party arbiter can identify the misbehaving
party and resolve any potential disputes between the
two. Second, we require a client to deposit its coins
to the contract right before it starts using the service
(similar to the protocol in [3]) and it is forced to provide
correct inputs, via NIZK (similar to the scheme in [6]);
otherwise, its deposit is sent to the server. Third, we
require parties to post their messages to the contract, to
avoid any potential repudiation issue, which is a standard
technique. Forth, we let the party which resolves disputes
get paid by a corrupt party (similar to the protocol in
[19]). The combination of the above techniques allows
RC-S-P to deal with the free-riding attack as well.

Now we explain how the solution works. Before using
the service, the client deposits a fixed amount of coins in
a smart contract, where the deposit amount covers the
service payment: o coins, and dispute resolutions’ cost:
l coins. The server deposits l coins. Then, the client
and server engage in the VSID protocol such that (the
encryption of) messages exchanged between them are put
in the contract. They perform the verifications locally.
When a party detects misbehaviour, it can raise a dispute
that invokes the arbiter which checks the party’s claim,
off-chain. The arbiter sends the output of the verification

to the contract. If the party’s claim is valid, then it can
withdraw its coins and the arbiter is paid by the mis-
behaving party. If the party’s claim is invalid, that party
has to pay the arbiter and the other party can withdraw
its deposit. If both the client and server behave honestly,
then the arbiter is never invoked; in this case, the server
(after a fixed time) gets its deposit back and is paid for
the service, while the client gets l coins back.

We provide a formal definition of VS in Appendix
C. Since VSID as a separate notion which might be
of independent interest too, we provide its definition,
construction, and proof in Appendix D. We note that in
the concrete instantiation of our generic solution in which
the VS is PoR, we will use a Merkle tree and proof of
misbehaviour letting us avoid using NIZK and reduce
arbiter-side computation (cf. Section 9).
Preserving Parties’ Privacy. To preserve the parties’ pri-
vacy and prevent real-time information leakage, we use the
following ideas. First, to hide proof status, we let the client
and server take control of the time of the information
release. This lets them keep the information private from
the public within a certain period, and release it when it
loses its sensitivity.2 Specifically, they agree on the period
in which the information must remain hidden, “private
time bubble”. During this period, all messages sent to the
contract are encrypted and the parties do not raise any
dispute. They raise disputes after the private time bubble
ends (or bubble bursts).

Nevertheless, the client/server can still find out
whether a proof is valid when it is provided by its counter-
party, because it can locally verify the proof. Second, to
hide the amount of deposit, we let each party “mask”
its coins, by increasing the actual coins amount to the
maximum amount of coins in the server’s price list. So,
the masked coins hide the actual coins amount from the
public. But, this raises another challenge: how can the
mutually untrustful parties claim back their masking coins
(i.e., the difference between the maximum and actual coins
amount) after the bubble bursts, while hiding the actual
coins amount from the public in the private time bubble?

Our third idea, which addresses this challenge, is to
let the client and server, at the beginning of the protocol,
agree on a private statement specifying the deposit details
(e.g., parties’ actual coins amount for the service, dispute
resolution, or masking). Later, when they want to claim
their coins, they also provide the statement to the contract
which checks the statement validity and if it is accepted,
it distributes coins according to the statement (and the
contract status). We will show how they can efficiently
agree on such a statement, by using a statement agreement
protocol (SAP). In Appendix E.1.2 we also show how they
can promise their locked share of coins to a third party.

Our generic framework that offers the above features
is called “Recurring Contingent Service Payment” (RC-S-
P). Also, as a concrete instantiation of RC-S-P, we present
the RC-PoR-P protocol, in which the VS is PoR.
Strawman Solutions. To address the issue related to
the leakage of deposit amount, one may use privacy-
preserving cryptocurrency frameworks, e.g., Zerocash [11]

2. The concept of delayed information release has already been used by
researchers, e.g., in smart metering in [32], and in the real world through the
declassification approach taken by most democratic countries which declassify
sensitive information after the information loses its sensitivity.



or Hawk [36]. Although such frameworks solve this prob-
lem, they impose additional high cost to their users, as
each transaction involves a generic proofs system that
are computationally expensive. Also, one might want to
let the server pick a fresh address for each verifier to
preserve its pseudonymity with the hope that an observer
cannot link clients to a server (so proofs status and deposit
amount issues can be addressed). But, for this to work,
we have to assume that multiple service providers use
the same protocol on the blockchain and all of them are
pseudonymous which is a strong assumption.
Design Choices. We make certain design choices that are
not present in the zkCSP of [12], to keep our RC-S-P
efficient. Specifically, since not only the server but also
the clients can be malicious, we (a) involve a third-party
arbiter, and (b) require parties to store more messages
on a blockchain, for dispute resolution to be feasible.
To achieve privacy while avoiding costly cryptographic
computations, we require parties to deposit extra coins
to mask the actual value of their deposit. To allow fair
distribution of the parties’ deposit (without having to use
the arbiter for the distribution) we use smart contracts.

7. RC-S-P Definition
In this section, we introduce a formal definition of RC-

S-P. Before presenting the formal definition of RC-S-P, we
outline what a verifiable service (VS) is. At a high level,
a VS scheme is a two-party protocol in which a client
chooses a function, F , and provides (an encoding of) F ,
its input u, and a query q to a server, which is expected
to evaluate F on u and q (and some public parameters)
and respond with the output. Then, the client verifies that
the output is indeed the output of the function computed
on the provided input. In verifiable services, either the
computation (on the input) or both the computation and
storage of the input are delegated to the server. We present
a full formal definition of a VS scheme in Appendix C.

Definition 1 (RC-S-P Scheme). A recurring contingent
service payment scheme RC-S-P involves four parties;
namely, a client, server, arbiter, and smart contract (which
represents a bulletin board). The scheme is parameterized
by five functions:
• A function F that will be run on the client’s input by

the server as a part of the service it provides.
• A metadata generator function M .
• A pair of encoding/decoding functions (E,D).
• A query generator function Q.

The scheme consists of eight algorithms defined below.
RCSP.keyGen(1λ)→ k: It is run by client C. It takes as input
security parameter 1λ. It outputs k := (k, k′) that contains
a secret and public verification key pair k := (sk, pk) and
a set of secret and public parameters, k′ := (sk′, pk′). It
sends pk and pk′ to the contract.
RCSP.cInit(1λ, u,k, z, pl)→ (u∗, e, T, pS ,y, coin

∗
C): It is

run by C. It takes as input 1λ, the service input u,
k := (k, k′), the total number of verifications z, and
price list pl containing pairs of actual coin amount for
each accepting service proof and the amount for covering
each potential dispute resolution’s cost. It represents u as
an input of M , let u∗ be this representation. It sets pp
as (possibly) input dependent parameters, e.g., file size.

It computes metadata σ = M(u∗, k, pp) and a proof wσ
asserting the metadata is well-structured. It sets the value
of pS to the total coins the server should deposit. It picks a
private price pair (o, l) ∈ pl. It sets coin secret parameters
cp that include (o, l) and parameters of pl. It constructs
coin encoding token Tcp containing cp and cp’s witness,
gcp. It constructs encoding token Tqp that contains secret
parameters qp including pp, (a representation of σ) and
parameters (in sk′) that will be used to encode the service
queries/proofs. Tqp contains qp’s witness, gqp. Given a
valid value and its witness, anyone can check if they
match. It sets a vector of parameters y that includes binary
vectors [yC,yS ,y

′
C,y
′
S ] each of which is set to 0 and its

length is z. Note y may contain other public parameters,
e.g., the contract’s address. It outputs u∗, e := (σ,wσ),
T := (Tcp, Tqp), pS , y, and the encoded coins amount
coin∗C (that contains o and l coins in an encoded form). C
sends u∗, z, e, Tcp \{gcp}, and Tqp \{gqp} to the server S
and sends gcp, gqp, pS , y, and coin∗C coins to the contract.
RCSP.sInit(u∗, e, pk, z, T, pS ,y)→ (coin∗S , a): It is run
by server S. It takes as input u∗, metadata-proof pair
e := (σ,wσ), pk (read from the contract), z, and T :=
(Tcp, Tqp), where {gcp, gqp} are read from the smart con-
tract. It reads pS , and y from the smart contract. It checks
the validity of e and T elements. It checks elements of y
and ensures each element of yC,yS ,y

′
C,y
′
S ∈ y has been

set to 0. If all checks pass, then it encodes the amount of
its coins that yields coin∗S , and sets a = 1. Otherwise, it
sets coin∗S = ⊥ and a = 0. It outputs coin∗S and a. The
smart contract is given coin∗S coins and a.
RCSP.genQuery(1λ, aux, k, Tqp)→ c∗j : It is run by C. It
takes as input 1λ, auxiliary information aux, the key
pair k, and encoding token Tqp. It computes a pair cj
containing a query vector qj = Q(aux, k, pp), and proof
wq

j
proving the query is well-structured, where pp ∈ Tqp.

It outputs the encoding of the pair, c∗j = E(cj, Tqp), and
sends the output to the contract.
RCSP.prove(u∗, σ, c∗j , pk, Tqp)→ (bj,mS,j,π

∗
j ): It is run

by S. It takes as input u∗, metadata σ, c∗j , pk, and Tqp. It
checks the validity of decoded query pair cj = D(c∗j , Tqp).
If it is rejected, then it sets bj = 0 and constructs a
complaint mS,j . Otherwise, it sets bj = 1 and mS,j = ⊥.
It outputs bj,mS,j , and encoded proof π∗j = E(πj, Tqp),
where πj contains hj = F (u∗, qj, pp) and a proof δj
asserting the evaluation is performed correctly (πj may
contain dummy values if bj = 0). The smart contract is
given π∗j .
RCSP.verify(π∗j , c

∗
j , k, Tqp)→ (dj,mC,j):A deterministic

algorithm run by C. It takes as input π∗j , query vec-
tor qj ∈ c∗j , k, and Tqp. It checks the decoded proof
πj = D(π∗j , Tqp), if it is rejected, it outputs dj = 0 and a
complaint mC,j . Else, it outputs dj = 1 and mC,j = ⊥.
RCSP.resolve(mC,mS , z,π

∗, c∗, pk, Tqp)→ y: It is run
by the arbiter R. It takes as input C’s complaints mC, S’s
complaints mS , z, all encoded proofs π∗, all encoded
query pairs c∗, pk, and encoding token Tqp. It verifies the
token, decoded queries, and proofs. It reads the binary
vectors [yC,yS ,y

′
C,y
′
S ] from the smart contract. It updates

yP by setting an element of it to one, i.e., yP,j = 1, if party
P ∈ {C,S} has misbehaved in the j-th verification (i.e.,
provided invalid query or service proof). It also updates



y′P (by setting an element of it to one) if party P has
provided a complain that does not allow it to identify a
misbehaved party, in the j-th verification, i.e., when the
arbiter is unnecessarily invoked.
RCSP.pay(y, Tcp, a, pS , coin

∗
C, coin

∗
S)→ (coinC, coinS ,

coinR): It is run by the smart contract. It takes as input
the binary vectors [yC,yS ,y

′
C, y

′
S ] ∈ y that indicate

which party misbehaved, or sent invalid complaint in
each verification, Tcp := {cp, gcp}, a, the total coins the
server should deposit pS , coin∗C, and coin∗S . If a = 1
and coin∗S = pS , then it verifies the validity of Tcp.
If Tcp is rejected, then it aborts. If it is accepted, then
it constructs vector coinP , where P ∈ {C,S,R}; It
sends coinP,j ∈ coinP coins to party P for each j-th
verification. Otherwise (i.e., a = 0 or coin∗S 6= pS) it
sends coin∗C and coin∗S coins to C and S respectively.

The above algorithms RCSP.genQuery, RCSP.prove,
RCSP.verify, and RCSP.resolve implicitly take
(a, coin∗S , pS) as other inputs and execute only if a = 1
and coin∗S = pS ; but, for simplicity we avoided explicitly
stating it in the definition. An RC-S-P scheme must meet
correctness and security. Correctness requires that by
the end of the protocol’s execution (that involves honest
client and server), the server accepts an honest client’s
encoded data and query while the honest client accepts
the server’s valid service proof (and no one is identified
as a misbehaving party). Moreover, the honest client gets
back all its deposited coins minus the service payment,
the honest server gets back all its deposited coins plus
the service payment and the arbiter (that is not involved)
receives nothing. Correctness is formally stated below.

Definition 2 (Correctness). An RC-S-P scheme with func-
tions F,M,E,D,Q is correct for auxiliary information
aux if for any z polynomial in λ, any price list pl, and
any service input u, it holds that the following probability
is equal to 1:

Pr



RCSP.keyGen(1λ)→ k
RCSP.cInit(1λ, u,k, z, pl)→ (u∗, e, T, pS ,y, coin

∗
C)

RCSP.sInit(u∗, e, pk, z, T, pS ,y)→ (coin∗S , a)
For j = 1, . . . , z do :
RCSP.genQuery(1λ, aux, k, Tqp)→ c∗j
RCSP.prove(u∗, σ, c∗j , pk, Tqp)→ (bj ,mS,j ,π

∗
j )

RCSP.verify(π∗j , c
∗
j , k, Tqp)→ (dj ,mC,j)

RCSP.resolve(mC,mS , z,π
∗, c∗, pk, Tqp)→ y

RCSP.pay(y, Tcp, a, pS , coin
∗
C, coin

∗
S)→ (coinC,

coinS , coinR)

(a = 1) ∧ (
z∧
j=1

bj =
z∧
j=1

dj = 1) ∧

(yC = yS = y′
C = y

′
S = 0) ∧

(
z∑
j=1

coinC,j = coin∗C − o · z) ∧

(
z∑
j=1

coinS,j = coin∗S + o · z) ∧ (
z∑
j=1

coinR,j = 0)


where yC,yS ,y

′
C,y
′
S ∈ y.

An RC-S-P scheme is said to be secure if it satisfies
three main properties: (i) security against a malicious
server, (ii) security against a malicious client, and (cii
privacy. In the following, we formally define each of them.

Intuitively, security against a malicious server states
that, for each j-th verification, the adversary wins only
with a negligible probability, if it provides either (a)
correct evaluation of the function on the service input but
it either makes the client withdraw an incorrect amount of

coins (i.e., something other than its deposit minus service
payment) or makes the arbiter withdraw an incorrect
amount of coins if it unnecessarily invokes the arbiter,
or (b) incorrect evaluation of the function on the service
input, but either persuades the client or the arbiter to
accept it or makes them withdraw an incorrect amount of
coins (i.e., coinC,j 6= coin∗C

z or coinR,j 6= l coins). Below,
we formalize this intuition.

Definition 3 (Security Against Malicious Server). An
RC-S-P scheme with functions F,M,E,D,Q is secure
against a malicious server for auxiliary information aux,
if for any z polynomial in λ, any price list pl, every j
(where 1 ≤ j ≤ z), and any PPT adversary A, it holds
that the following probability is negl(λ):

Pr



RCSP.keyGen(1λ)→ k
A(1λ, pk, F,M,E,D,Q, z, pl)→ u
RCSP.cInit(1λ, u,k, z, pl)→ (u∗, e, T, pS ,y, coin

∗
C)

A(u∗, e, pk, z, T, pS ,y)→ (coin∗S , a)
RCSP.genQuery(1λ, aux, k, Tqp)→ c∗j
A(c∗j , σ, u∗, a)→ (bj ,mS,j , h

∗
j , δ
∗
j )

RCSP.verify(π∗j , c
∗
j , k, Tqp)→ (dj ,mC,j)

RCSP.resolve(mC,mS , z,π
∗, c∗, pk, Tqp)→ y

RCSP.pay(y, Tcp, a, pS , coin
∗
C, coin

∗
S)→ (coinC,

coinS , coinR)(
F (u∗, qj , pp) = hj ∧ (coinC,j 6= coin∗C

z
− o∨

(coinR,j 6= l ∧ y′S,j = 1))
)
∨(

F (u∗, qj , pp) 6= hj ∧ (dj = 1 ∨ yS,j = 0∨

coinC,j 6= coin∗C
z
∨ coinR,j 6= l)

)



where qj ∈ D(c∗j , Tqp), π∗j = [h∗j , δ
∗
j ], hj = D(h∗j , Tqp),

σ ∈ e, mC,j ∈ mC,mS,j ∈ mS , y′S,j ∈ y′S ∈ y, yS,j ∈
yS ∈ y, and pp ∈ Tqp.

Informally, security against a malicious client requires
that, for each j-th verification, a malicious client with a
negligible probability wins if it provides either (a) valid
metadata and query but either makes the server receive an
incorrect amount of coins (something other than its deposit
plus the service payment), or makes the arbiter withdraw
incorrect amounts of coin if it unnecessarily invokes the
arbiter or (b) invalid metadata or query but convinces the
server to accept either of them (i.e., the invalid metadata
or query), or (c) invalid query but persuades the arbiter to
accept it, or makes them withdraw an incorrect amount
of coins (i.e., coinS,j 6= coin∗S

z + o or coinR,j 6= l
coins). Below, we formally state the property. Note that in
the following definition, an honest server either does not
deposit (e.g., when a = 0) or if it deposits (i.e., agrees
to serve) ultimately receives its deposit plus the service
payment (with high probability).

Definition 4 (Security Against Malicious Client). An
RC-S-P scheme with functions F,M,E,D,Q is secure
against a malicious client for auxiliary information aux,
if for any z polynomial in λ, any price list pl, every j
(where 1 ≤ j ≤ z), and any PPT adversary A, it holds



that the following probability is negl(λ):

Pr



A(1λ, F,M,E,D,Q, z, pl)→ (u∗,k, e, T, pS , coin
∗
C,

y, pk)
RCSP.sInit(u∗, e, pk, z, T, pS ,y)→ (coin∗S , a)
A(coin∗S , a, 1λ, aux, k, Tqp)→ c∗j
RCSP.prove(u∗, σ, c∗j , pk, Tqp)→ (bj ,mS,j ,π

∗
j )

A(π∗j , c∗j , k, Tqp)→ (dj ,mC,j)
RCSP.resolve(mC,mS , z,π

∗, c∗, pk, Tqp)→ y
RCSP.pay(y, Tcp, a, pS , coin

∗
C, coin

∗
S)→ (coinC,

coinS , coinR)(
(M(u∗, k, pp) = σ ∧Q(aux, k, pp) = qj) ∧

(coinS,j 6= coin∗S
z

+ o ∨ coinR,j 6= l ∧ y′C,j = 1)
)
∨(

M(u∗, k, pp) 6= σ ∧ a = 1
)
∨(

Q(aux, k, pp) 6= qj ∧ (bj = 1 ∨

yC,j = 0 ∨ coinS,j 6= coin∗S
z

+ o ∨ coinR,j 6= l)
)


where qj ∈ D(c∗j , tqp), σ ∈ e, y′C,j ∈ y′C ∈ y, yC,j ∈ yC ∈
y, and pp ∈ Tqp.

Informally, RC-S-P is privacy-preserving if it guaran-
tees the privacy of (1) the service input (e.g., outsourced
file) and (2) the service proof’s status during the private
time bubble. In the following, we formally define privacy.

Definition 5 (Privacy). An RC-S-P scheme with functions
F,M,E, D,Q preserves privacy for auxiliary information
aux if for any z polynomial in λ and any price list pl, the
following hold:

1) For any PPT adversary A1, it holds that the following
probability is no more than 1

2 + negl(λ).

Pr



RCSP.keyGen(1λ)→ k
A1(1

λ, pk, F,M,E,D,Q, z, pl)→ (u0, u1)

β
$← {0, 1}

RCSP.cInit(1λ, uβ ,k, z, pl)→ (u∗
β
, e, T, pS ,y,

coin∗C)
RCSP.sInit(u∗

β
, e, pk, z, T, pS ,y)→ (coin∗S , a)

For j = 1, . . . , z do :
RCSP.genQuery(1λ, aux, k, Tqp)→ c∗j
RCSP.prove(u∗β, σ, c

∗
j , pk, Tqp)→ (bj ,mS,j ,π

∗
j )

RCSP.verify(π∗j , c
∗
j , k, Tqp)→ (dj ,mC,j)

A1(c
∗, coin∗S , coin

∗
C, gcp, gqp,π

∗, pl, a)→ β


where c∗ = [c∗1, ..., c

∗
z] and π∗ = [π∗1, ...,π

∗
z].

2) For any PPT adversaries A2, A3, and A4 the follow-
ing probability is no more than Prmax + negl(λ):

Pr



RCSP.keyGen(1λ)→ k
A2(1

λ, pk, F,M,E,D,Q, z, pl)→ u
RCSP.cInit(1λ, u,k,M, z, pl, enc)→ (u∗, e, T,
pS ,y, coin

∗
C)

RCSP.sInit(u∗, e, pk, z, T, pS ,y)→ (coin∗S , a)
For j = 1, . . . , z do :
A2(1

λ, aux, k, Tqp)→ c∗j
A3(u

∗, σ, c∗j , pk, Tqp)→ (bj ,mS,j ,π
∗
j )

RCSP.verify(π∗j , c
∗
j , k, Tqp)→ (dj ,mC,j)

A4(F,M,E,D,Q, c∗, coin∗S , coin
∗
C, gcp, gqp,π

∗,
pl, a)→ (dj , j)


where π∗j has been encoded correctly, π∗j =
[h∗j , δ

∗
j ], hj = D(h∗j , Tqp), and Prmax is defined as

follows. Let ExpA2,A3
priv (1λ) be the above experiment.

Let qj ∈ D(c∗j , Tqp), pp ∈ Tqp. We define the
events Con(1)

0,j : Q(aux, k, pp) 6= qj , Con
(2)
0,j : bj =

0, Con(1)
1,j : Q(aux, k, pp) = qj , Con

(2)
1,j : bj = 1,

Con
(1)

0,j : F (u∗, qj, pp) 6= hj , Con
(2)

0,j : dj = 0,
Con

(1)

1,j : F (u∗, qj, pp) = hj , and Con
(2)

1,j : dj = 1.
For i ∈ {0, 1} and j ∈ [z], let

Pri,j := Pr

 Exp
A2,A3
priv (1λ)(

Con(1)
i,j ∧ Con(2)

i,j

)
∨(

Con
(1)

i,j ∧ Con
(2)

i,j

)
 . Then,

Prmax := max{Pr0,1, P r1,1, ..., P r0,z, P r1,z}.

In the above definition, for each j-th verification,
the adversary A2 or A3 produces an invalid query or
invalid proof, respectively, with probability Pr0,j and a
valid query or valid proof, respectively, with probability
Pr1,j . It is required that privacy is preserved regardless
of the queries and proofs status, i.e., whether they are
valid/invalid, as long as they are correctly encoded and
provided. In the above definitions, the private time bubble
is a time period from the point when RCSP.keyGen(·) is
executed up to the time when RCSP.resolve(·) is run.
In other words, the privacy holds up to the point where
RCSP.resolve(.) is run. This is why the latter algorithm
is excluded from the experiments in Definition 5.

Definition 6 (RC-S-P Security). An RC-S-P with func-
tions F,M, E,D,Q is secure for auxiliary information
aux, if it satisfies security against malicious server, se-
curity against malicious client, and preserves privacy for
aux, w.r.t. Definitions 3, 4, and 5, respectively.

8. Generic RC-S-P Protocol
In this section, we outline the designs of the RC-S-P

protocol that realises Definition 6. As we stated in Section
6, this protocol relies on the idea that the server and
client can efficiently agree on private statements at the
beginning of the protocol. We first present a primitive,
called statement agreement protocol (SAP), that satisfies
the above requirement, and then present the RC-S-P.

8.1. Statement Agreement Protocol (SAP)

An SAP is secure if it meets four security properties:
1) Neither party can persuade a third party verifier that it

agreed with its counter-party on an invalid statement,
i.e., a statement that not both parties have agreed on.

2) After they agree on the statement, an honest party can
always prove to the verifier that it has the agreement.

3) The privacy of the statement should be preserved (from
the public) before either of the two parties attempts to
prove the agreement on the statement.

4) After both parties reach an agreement, neither can later
deny the agreement.

To that end, we use a combination of a smart contract
(including digital signatures involved) and a commitment
scheme. The idea is as follows. Let x be the statement. The
client picks a random value and uses it to commit to x. It
sends the commitment to the contract and the commitment
opening (i.e., statement and the random value) to the
server. The server checks if the opening matches the
commitment and if so, it commits to the statement using
the same random value and sends its commitment to the
contract. Later, for a party to prove to the contract/verifier
that it has agreed on the statement with the other party, it



only sends the opening of the commitment. The contrac-
t/verifier checks if the opening matches both commitments
and accepts if it matches. The SAP protocol is provided
below. It assumes that each party P ∈ {C,S} already has
a blockchain public address adrP .

1) Initiate. SAP.init(1λ, adrC, adrS , x)
The following steps are taken by C.

a) Deploys a smart contract, SAP, that states both
adrC and adrS . Let adrSAP be the SC’s address.

b) Picks a random value r, and commits to the
statement as Com(x, r) = gC. It sends adrSAP and
ẍ := (x, r) to S and sends gC to the contract.

2) Agreement. SAP.agree(x, r, gC, adrC, adrSAP)
The following steps are taken by S.

a) Checks if gC was from adrC and Ver(gC, ẍ) = 1.
b) If the checks pass, it sets b = 1, computes

Com(x, r) = gS , and sends gS to the contract. Else,
it sets b = 0 and gS = ⊥.

3) Prove. For C (resp. S) to prove that it has an agree-
ment on x with S (resp. C), it sends ẍ := (x, r) to
the contract.

4) Verify. SAP.verify(ẍ, gC, gS , adrC, adrS)
The following steps are taken by the contract.

a) Ensures gC and gS were sent from adrC and adrS .
b) Ensures Ver(gC, ẍ) = Ver(gS , ẍ) = 1.
c) Outputs d = 1, if the checks in steps 4a and 4b

pass. Otherwise, it outputs d = 0.
In the paper’s full version, we discuss SAP’s security

and explain why naive solutions are not suitable.

8.2. Overview of RC-S-P Protocol
We have built the RC-S-P protocol using a novel

combination of VSID, SAP, the private time bubble notion,
symmetric-key encryption schemes, the coin masking and
padding techniques. At a high level, it works as follows.

The client and server use SAP to provably agree on
two private statements; the first statement includes pay-
ment details, while another one specifies a secret key, k,
and the pads’ length. They also agree on public parameters
such as (a) the private time bubble’s length, and (b) a smart
contract specifying the parameters and the total amount
of masked coins each party should deposit. The client
deploys the contract. Each party deposits its masked coins
in it. To start using the service, they invoke those VSID
algorithms which let the server check if the client has
generated its metadata correctly (via NIZK) and the server
aborts if it decides not to serve.

At the end of each billing cycle, the client generates
an encrypted query using k. It pads the encrypted query
and sends the result to the contract. In the same cycle,
the server retrieves the query and checks its validity
(via NIZK). If the query is rejected, the server locally
stores the index of the billing cycle and then generates
a dummy proof. Otherwise, if the server accepts the
query, it generates a proof of service. In either case, the
server encrypts the proof, pads it, and sends the result to
the contract. After the server sends the messages to the
contract, the client extracts and locally verifies the proof.
If the verification passes, the client knows the server has
delivered the service honestly. If the proof is rejected,
it waits until the private time bubble passes and dispute
resolution time arrives.

During the dispute resolution period, if the client or
server rejects a proof, it invokes the arbiter, refers it to the
invalid encrypted proofs in the contract, and sends to it the
decryption key and the pads’ detail. The arbiter checks the
key and pads validity. If they are accepted, then the arbiter
extracts the related proofs and checks the validity of the
party’s claim. The arbiter sends to the contract a report
of its findings that includes the total number of times the
server and client provided invalid proofs. To distribute the
coins, the client or server sends: (a) “pay” message, (b) the
agreed statement that specifies the payment details, and
(c) the statement’s proof to the contract which verifies the
statement and if approved it distributes the coins according
to the statement’s detail, and the arbiter’s report. Appendix
E presents the RC-S-P protocol in detail.

9. Recurring Contingent PoR Payment
In this section, we present recurring contingent PoR

payment (RC-PoR-P) that is a concrete instantiation of the
RC-S-P, when the verifiable service is PoR. We use PoR
in the concrete instantiation of RC-S-P because PoR it is
an active area of research and it will let us compare our
solution to the-state-of-the-art, i.e., concrete instantiation
of zkCSP of Campanelli et al. [12].

In RC-PoR-P, instead of the function F , we have FPoR

which is an algorithm that takes as input C’s encoded file
u∗ and C’s query q and outputs a proof asserting the out-
sourced data u is retrievable. For instance, if a PoR utilises
a Merkle tree, then FPoR is the algorithm that generates the
Merkle tree’s proofs. As a concrete instantiation, RC-PoR-
P offers two primary added features. Specifically, unlike
the generic RC-S-P construction (cf. Appendix E), it (a)
does not use any zk proofs (even though either C or S
can be malicious) which significantly improves costs, and
(b) has a much lower arbiter-side computation cost; as we
will show later, this also allows for a smart contract to
efficiently play the arbiter’s role. Below, we first explain
how the features are satisfied.
Avoiding the use of zk proofs. The majority of PoRs as-
sume that only S is potentially malicious while C is hon-
est. To ensure a file’s availability, they rely on metadata
that is either a set of tags (e.g., MACs or signatures)
or a root of a Merkle tree, built on the file blocks.
In the case where C can also be malicious, if tags are
used then using zk proofs seem an obvious choice, as
it allows C to guarantee to S that the tags have been
constructed correctly (similar to the PoR in [6]). But,
this imposes significant computation and communication
costs. We observed that using a Merkle tree would benefit
our protocol from a couple of perspectives; in short, it
removes the need for zk proofs and it supports proof of
misbehaviour. Our first observation is that if a Merkle
tree is used, then S can efficiently check the metadata’s
correctness by reconstructing this tree on the file blocks,
without involving zk proofs.
Low arbiter-side cost. In a Merkle tree-based PoR, in each
verification, the number of proofs (or paths) are linear
with the number of blocks that are probed, say φ. In this
scheme, the verifier checks all given proofs and rejects
them if only one of them is invalid. We observed that if
this scheme is used in the RC-PoR-P, then once C finds an
invalid proof, it can send only that single invalid proof as



a proof of misbehaviour to the arbiter R3. This technique
significantly reduces R’s computation cost from φ log2(n)
to log2(n), where n is the number of file blocks.

The RC-PoR-P scheme (cf. Subsection 9.2) deploys
the following two building blocks:
1) A PoR scheme, presented in Subsection 9.1, that can

be seen as a variant of the standard Merkle tree-based
PoR [30], [34], [43]. The security of the construction
relies on the security of the underlying Merkle tree
and pseudorandom function (cf. Subsection 3.2).

2) A statement agreement protocol (SAP), introduced in
Subsection 8.1, that lets S and C efficiently agree on
private statements at the beginning of the RC-PoR-P
scheme. The SAP is built upon a binding and hiding
commitment scheme, a smart contract, and a secure
digital signature scheme used to sign transactions on
the blockchain (cf. Subsections 3.2 and 3.1).

9.1. Modified Merkle tree-based PoR
In this section, we first present a modified version of

the standard Merkle tree-based PoR and then explain the
applied modifications. At a high level, C encodes its input
file using an error-correcting code, splits the result into
blocks, and builds a Merkle tree on the blocks. Then, it
locally stores the tree’s root and sends the blocks to S
which rebuilds the tree. At the verification time, C sends a
PRF’s key to S which derives a number of blocks’ indices
showing which blocks are probed. For each probed block,
S generates a proof. It sends all proofs to C which checks
them. If C accepts all proofs, then it concludes that its file
is retrievable. Otherwise, if it rejects some proofs, it stores
only one index of the blocks whose proofs were rejected.
Below, we present the PoR protocol.

1) Client-side Setup. PoR.setup(1λ, u)

a) C uses an error-correcting code, to encode the input
file, u. Let u′ be the encoded file. Then, it splits u′
into m blocks as follows, u∗ = u

′
1||1, ..., u

′
m||m.

b) C constructs a Merkle tree on u∗’s blocks, i.e.,
MT.genTree(u∗). Let σ be the root of the tree, and φ
be the number of blocks that will be probed. It sets
public parameters as pp := (σ, φ,m, ζ), where ζ is
a PRF’s description, as defined in Subsection 3.2. It
sends pp and u∗ to S.

2) Client-side Query Generation. PoR.genQuery(1λ, pp)

a) C picks a key k̂ for PRF and sends k̂ to S.
3) Server-side Proof Generation. PoR.prove(u∗, k̂, pp)

a) S derives φ pseudorandom indices as follows.
∀i, 1 ≤ i ≤ φ : qi =

(
PRF(k̂, i) mod m

)
+ 1. Note

that 1 ≤ qi ≤ m. Let q = [q1, ..., qφ].
b) S generates a proof πq

i
= MT.prove(u∗, qi), for

each random index qi. Let the final result be π =
[(u∗q

i
, πq

i
)]qi∈q, where i-th element in π corresponds

to qi, and the probed block is u∗q
i
. It sends π to C.

4) Client-side Proof Verification. PoR.verify(π, q, pp)

a) If |π| = |q| = 1, then C sets φ = 1. This step is
only for the case where a single proof and query is
provided (e.g., in the proof of misbehaviour).

b) C checks if S sent all proofs, by parsing each ele-
ment of π as: parse(u∗q

i
) = u

′
q
i
||q

i
, and checking

3. This idea is akin to the proof of misbehaviour proposed in [13].

if its index q
i

equals to q’s i-th element (note, C
recomputes q given k̂). If all checks pass, it takes
the next step. Else, it outputs d = [0, i], where i is
the index of π’s element that did not pass the check.

c) C checks if every path in π is valid, by calling
MT.verify(u∗q

i
, πq

i
, σ). If all checks pass, it outputs

d = [1,⊥]; otherwise, it outputs d = [0, i], where
i refers to the index of the first element in π that
does not pass the check.

The above protocol differs from the standard Merkle
tree-based PoR from two perspectives; First, in step 4, C
also outputs one of the rejected proofs’ indices. Given
that index (and vectors of proofs and challenges), this
will let a third party efficiently verify that S did not pass
the verification. Second, in step 2, instead of sending φ
challenges, we let C send only a key/seed of the PRF to
S which can derive a set of challenges from it, such a
technique has been used before, e.g., in [15], [17], [27].
This will lead to a decrease in the C’s communication and
smart contract’s storage costs.

9.2. RC-PoR-P Protocol
In this section, we present our RC-PoR-P construction.

The RC-PoR-P and the generic RC-S-P design share some
ideas, yet as already mentioned, the two constructions
have several differences. We provide the overview of the
RC-PoR-P scheme and its detailed description below.

In the beginning, C generates a symmetric encryp-
tion key k̄ and sets the number of dummy values to
pad encrypted proofs, padπ. In its setup step, C runs
PoR.setup(1λ, u) to obtain the encoding u∗ and the
parameters pp := (σ, φ,m, ζ). The query/proof secret
parameters qp include (k̄, padπ, pp). C sets the coin secret
parameters cp := (o, omax, l, lmax, z) (cf. Section 3) that
determine coin∗C and pS , i.e. the total number of masked
coins C and S must deposit. It initiates two SAP sessions
for agreements on qp and cp with S and deploys a smart
contract, SC. It completes setup by providing S with u∗,
the SAP parameters (including qp and cp), and the number
of verifications, z, and depositing coin∗C coins in SC. In
server setup, S checks whether a sufficient amount of
coins has been deposited by C and runs the agreement
step of the two SAP sessions initiated by C. If agreement
is successful and the public parameters (σ, φ,m) verify,
it sends coin∗S = pS coins to SC.

After their setup is complete, C and S engage in the
billing cycles phase for a number of z verifications as fol-
lows. During the j-th verification, C runs PoR.genQuery
and sends the output query, k̂j , encrypted to SC. In turn, S
reads SC and decrypts the encrypted query. If k̂j is invalid,
it creates a complaint mS,j . Else, it runs PoR.prove to
generate a proof πj for k̂j . Next, it sends πj encrypted
and padded to SC. In order to verify, C removes the pads
and decrypts as πj and runs PoR.verify for πj and k̂j . If
πj does not pass verification, it creates a complaint mC,j .

Dispute resolution takes place when C rejects service
proofs or S rejects the queries. The arbiter R receives the
complaint vectors mC and mS from C and S along with
each party’s “views” of the two SAP sessions. Given mS
and the view of S, if S’s view is valid, then R decides for
every complaint in mS by decrypting the corresponding
query and executing S’s steps for that query in the billing



cycles phase described above. Given mC and the view
of C, if C’s view is valid, then R decides for every
complaint in mC by retrieving the rejected proof’s details
(included in the complaint), decrypting the related query
and (i) executing S’s steps for that query, (ii) executing C’s
verification for the rejected proof and the related query.
The arbiter updates SC’s state based upon its decisions.
Finally, coin transfer is carried out according to the state
of SC, as updated by R.

Before we present the protocol, we discuss how meta-
data generator function MPoR, the pair of encoding/de-
coding functions (EPoR, DPoR) and the query generator
function QPoR (involved in the RC-S-P Definition 1) are
defined in the PoR context, as they are often implicit in
the original definition of PoR. Briefly, MPoR is a func-
tion that processes a file and generates metadata. For
instance, when PoR uses a Merkle tree, then MPoR refers
to MT.genTree(w) → (tr, σ), where tr is the tree con-
structed on in file w and σ is the root of the tree. Encoding
by EPoR refers to encrypting with a symmetric key and then
adding an appropriate number of pads, while decoding by
DPoR refers to removing the pads and then decrypting with
the symmetric key. Furthermore, QPoR can be a PRF that
generates a set of pseudorandom strings in a certain range,
e.g., file block’s indices.
1) Key Generation. RCPoRP.keyGen(1λ)

a) C picks a fresh symmetric encryption key k̄ ←
SKE.keyGen(1λ).

b) C sets parameter padπ: the number of dummy values
to pad encrypted proofs. Let sk′ := (padπ, k̄). The
key’s size is part of the security parameter. Let k′ :=
(sk′, pk′), where pk′ := (adrC, adrS). The values of
padπ is determined as padπ = πmax − πact, where
πmax and πact refer to the maximum and actual PoR’s
proof size.

2) Client-side Initiation. RCPoRP.cInit(1λ, u, k′, z, pl)

a) Calls PoR.setup(1λ, u) → (u∗, pp) to encode u.
It appends pp := (σ, φ,m, ζ) and sk′ to secret
parameters qp.

b) Sets coin secret parameters cp :=
(o, omax, l, lmax, z), then coin∗C = z · (omax + lmax)
and pS = z · lmax, given the price list pl, where
coin∗C and pS are the total number of masked
coins C and S should deposit. The parameters
pl, o, omax, l, lmax, z are explained in Section 3.

c) Calls SAP.init(1λ, adrC, adrS , qp) →
(rqp, gqp, adrSAP1) and SAP.init(1λ,
adrC, adrS , cp) → (rcp, gcp, adrSAP2) to initiate
agreements on qp and cp with S. Let
Tqp := (ẍqp, gqp) and Tcp := (ẍcp, gcp), s.t.
ẍqp := (qp, rqp) and ẍcp := (cp, rcp) are the
openings of gqp and gcp. Let T := {Tqp, Tcp}.

d) Sets a smart contract, SC, that explicitly specifies
parameters z, coin∗C, pS , adrSAP1 , adrSAP2 , pk′, includ-
ing time values Time := {T0, ...,T2,G1,1, ...,Gz,2,J,
K1, ...,K6,L} and a vector [yC, y

′
C, yS , y

′
S ] initialized

as [0, 0, 0, 0]. It deploys SC. Let adrSC be the address
of the deployed SC and y := [yC, y

′
C, yS , y

′
S ].

e) Deposits coin∗C coins in the contract. It sends
u∗, z, ẍqp, and ẍcp (along with adrSC) to S. Let T0

be the time that the above process finishes.
3) Server-side Initiation. RCPoRP.sInit(u∗, z, T, pS ,y)

a) Checks the parameters in T (e.g., qp and cp) and
in SC (e.g., pS ,y) and ensures sufficient amount of
coins has been deposited by C.

b) Calls SAP.agree(qp, rqp, gqp, adrC, adrSAP1)→ (g′qp,
b1) and SAP.agree(cp, rcp, gcp, adrC, adrSAP2) →
(g′cp, b2), to check and agree on qp and cp.

c) If b1 = 0 or b2 = 0, it sets a = 0. Otherwise, it
verifies the public parameters correctness as follows
(i) rebuilds the Merkle tree on u∗ and checks the
resulting root equals σ, and (ii) checks |u∗| = m
and φ ≤ m, where (m,φ) ∈ T , and σ ∈ pp ∈ T . If
the checks pass, it sets a = 1; else, it sets a = 0.
It sends a and coin∗S = pS coins to SC at time T1,
where coin∗S = ⊥ if a = 0.

S and C can withdraw their coins at time T2, if S
sends a = 0, fewer coins than pS , or nothing to the
SC. To withdraw, S or C sends a “pay” message to
RCPoRP.pay(.) at time T2.
Billing-cycles Onset. C and S engage in phases 4-6, at
the end of every j-th billing cycle, where 1 ≤ j ≤ z.
Each j-th cycle includes two time points, Gj,1 and Gj,2,
where Gj,2 > Gj,1, and G1,1 > T2.

4) Client-side Query Generation.
RCPoRP.genQuery(1λ, Tqp)

a) Calls PoR.genQuery(1λ, pp)→ k̂j , where pp ∈ Tqp.
b) Sends encryption c∗j = Enc(k̄, k̂j) to SC at time Gj,1.

5) Server-side Proof Generation.
RCPoRP.prove(u∗, c∗j , Tqp)

a) Decrypts the query, k̂j = Dec(k̄, c∗j ), where k̄ ∈ Tqp.
b) Checks the query’s correctness by ensuring k̂j is not

empty, and is in the key’s universe, i.e., k̂j ∈ {0, 1}ψ.
If the checks pass, it sets bj = 1; else, it sets bj = 0.
• if bj = 1, it sets mS,j = ⊥. It generates proofs

vector by calling PoR.prove(u∗, k̂j, pp) → πj .
Then, it encrypts the proofs, i.e., for 1 ≤ g ≤
|πj| : Enc(k̄,πj[g]) = π′j[g]. Let π′j contain the
encrypted proofs. It pads every encrypted proof in
π′j with padπ ∈ Tqp random values picked from
the encryption’s output range, U . Let π∗j be the
result. It sends π∗j to SC at time Gj,2.

• if bj = 0, it sets the complaint mS,j = j. It con-
structs a dummy proof π′j with elements randomly
picked from U , pads the result as above, and sends
the result, π∗j , to SC at time Gj,2.

It outputs bj and mS,j .
6) Client-side Proof Verification.

RCPoRP.verify(π∗j , c
∗
j , Tqp)

a) Removes the pads from π∗j , yielding π′j . It decrypts
the service proofs Dec(k̄,π′j) = πj and then verifies
the proof by calling PoR.verify(πj, k̂j, pp) → dj ,
where k̂j = Dec(k̄, c∗j ).
• if πj passes the verification, i.e., dj[0] = 1, it

sets mC,j = ⊥ and concludes that the service
for this verification was delivered.

• otherwise (i.e., dj[0] = 0), it sets g = dj[1] and
the complaint mC,j = [j, g]. Recall, dj[1] refers
to a rejected proof’s index in proof vector πj .

b) It outputs dj and mC,j .
7) Dispute Resolution.

RCPoRP.resolve(mC,mS , z,π
∗, c∗, Tqp)



This phase takes place only in case of dispute, i.e.,
when C rejects service proofs or S rejects the queries.

a) The arbiter R ensures counters: yC, y′C, yS and y′S are
set to 0, before time K1, where K1 > Gz,2 + J.

b) S sends complaints mS and ẍqp to R at time K1.
c) Upon receiving mS and ẍqp , R takes the following

steps at time K2.
i) checks ẍqp’s validity, by calling the SAP’s veri-

fication which returns d. If the output is d = 0,
it discards mS and does not take steps 7(c)ii and
7(c)iii. Otherwise, it proceeds to the next step.

ii) removes from mS any element duplicated or not
in range [1, z]. It constructs an empty vector v.

iii) for any element i ∈ mS : fetches the related
encrypted query c∗i ∈ c∗ from SC and decrypts
it as k̂i = Dec(k̄, c∗i ); it checks the query by
doing the same checks performed in step 5b.
If the query is rejected, it increments yC by 1
and appends i to v. If the query is accepted, it
increments y′S by 1. Let K3 be the time the above
checks are complete.

d) C sends complaints mC and ẍqp to R at time K4.
e) Upon receivingmC and ẍqp,R takes the below steps

at time K5.
i) checks ẍqp’s validity, by calling the SAP’s verifi-

cation which returns d′. If d′ = 0, it discardsmC,
and does not take steps 7(e)ii-7(e)iii. Otherwise,
it proceeds to the next step.

ii) ensures each vector m ∈ mC is valid. Specif-
ically, it checks there exist no two vectors:
m,m′ ∈ mC such that m[0] = m′[0]. If such
vectors exist, it deletes the redundant ones from
mC. This ensures no two claims refer to the same
verification. It removes any vector m from mC
if m[0] is not in the range [1, z] or if m[0] ∈ v.
This check ensures C cannot hold S accountable
if C generated an invalid query for the same
verification.

iii) for every vector m ∈mC:
A) retrieves a rejected proof’s details by setting

j = m[0] and g = m[1]. Recall that g refers
to the index of a rejected proof in the proof
vector generated for j-th verification, i.e., πj .

B) fetches the related encrypted query c∗j ∈ c∗

from SC and decrypts it: k̂j = Dec(k̄, c∗j ). It
removes the pads from g-th padded encrypted
proof. Let π′j[g] be the result. It decrypts the
encrypted proof, Dec(k̄,π′j[g])) = πj[g].

C) identifies the misbehaving party as follows.
• verifies k̂j by doing the same checks done in

step 5b. If the checks do not pass, it sets Ij =
C and skips the next two steps; otherwise, it
proceeds to the next step.

• derives the related challenged block index
from k̂j: qg =

(
PRF(k̂j, g) mod m

)
+ 1.

• verifies only g-th proof, by calling
PoR.verify(πj[g], qg, pp) → d′. If
d′[0] = 0, it sets Ij = S. Else, it sets Ij = ⊥.

• if Ij = C and yC or y′C was not incremented
for j-th verification, it increments yC by 1.
If Ij = S and y′S was not incremented for

j-th verification, it increments yS by 1. If
Ij = ⊥ and yC was not incremented for j-
th verification, it increments y′C by 1.

f) The arbiter at time K6 sends [yC, yS , y
′
C, y
′
S ] to SC

which accordingly adds them to y.
8) Coin Transfer. RCPoRP.pay(y, Tcp, a, pS , coin

∗
C, coin

∗
S)

a) If SC receives “pay” message at time T2, where a =
0 or coins∗S < pS , then it sends coin∗C coins to C
and coin∗S coins to S. Otherwise (i.e., they reach an
agreement), the following step is executed.

b) If SC receives “pay” message and ẍcp ∈ Tcp at time
L > K6, it checks ẍcp’s validity by calling the SAP’s
verification which returns d′′.

c) If d′′ = 1, SC distributes the coins to the parties as
follows:
i) coinC = coin∗C− o · (z− yS)− l · (yC+ y′C) coins

to C.
ii) coinS = coin∗S+o · (z−yS)− l · (yS+y′S) coins

to S.
iii) coinR = l · (yS + yC + y′S + y′C) coins to R.

Briefly, the RC-PoR-P protocol’s correctness holds
dues to the correctness of PoR, symmetric key encryption,
SAP, and smart contract. Below, we state our main theo-
rem on the security of the RC-PoR-P scheme. Appendix
F presents the theorem’s proof.

Theorem 1. The RC-PoR-P scheme with functions
FPoR,MPoR, EPoR, DPoR, QPoR described in Subsections 9.1
and 9.2 is secure (cf. Definition 6), if the underly-
ing Merkle tree, pseudorandom function, commitment
scheme, and digital signature scheme are secure, and the
symmetric-key encryption scheme is IND-CPA secure.

9.3. RC-PoR-P Without Arbiter’s Involvement
Due to the efficiency of the arbiter-side algorithm, i.e.,

RCSPoR.resolve(·), we can delegate the arbiter’s role
to the smart contract, SC. In this case, the third-party
arbiter’s involvement is no longer needed. But, to have the
new variant of RC-PoR-P, we need to adjust the original
RC-PoR-P’s protocol and definition, primarily from two
perspectives. First, how a party pays to resolve a dispute
would change, which ultimately affects the amount of
coins each party receives in the coin transfer phase (see
below for more details). Second, there would be no need to
keep track of the number of times a party unnecessarily
raises a dispute, as it pays the contract when it sends
a query, before the contract processes its claim. In the
paper’s full version, we provide a generic definition for
RC-S-P for the case where the arbiter’s role can be played
by a smart contract. The generic definition also captures
the new variant of RC-PoR-P.

Next, we elaborate on how the original RC-PoR-P
protocol can be adjusted such that the third-party arbiter’s
role is totally delegated to the smart contract, SC. Briefly,
Phases 1–6 remain unchanged, with an exception. Namely,
in step 2d, only two counters yC and yS are created, instead
of four counters; accordingly, in the same step, vector y is
now y : [yC, yS ], so counters y′C and y′S are excluded from
the vector. At a high level, the changes applied to phase
7 are as follows: the parties send their complaints to SC
now, SC does not maintain y′C and y′S anymore, SC takes
the related steps (on the arbiter’s behalf), and it reads its



internal state any time it needs to read data already stored
on the contract. Moreover, the main adjustment to phase 8
is that the amount of coins each party receives changes. In
the RC-PoR-P and RC-S-P (presented in sections 9.2 and
E.1, respectively), the party which raises a dispute does
not pay the arbiter when it sends to it the dispute query.
Instead, loosely speaking, the arbiter in the coin transfer
phase is paid by a misbehaving party. In contrast, when the
arbiter’s role is played by a smart contract, the party which
raises a dispute and sends the dispute query to the contract
(due to the nature of Ethereum smart contracts) has to pay
the contract before the contract processes its query. This
means that an honest party which sends a complaint to the
contract needs to be compensated (by the corrupt party)
for the amount of coins it sent to the contract to resolve
the dispute. In the paper’s full version, we present the
modified RC-PoR-P protocol in more detail.

10. Performance Evaluation of RC-PoR-P
In this section, we provide an analysis of the RC-PoR-

P protocol. Table 1 summarises the protocol’s concrete
cost (we also provide a table for its asymptotic cost
in Appendix G). Also, we compare RC-PoR-P with (a)
the zero-knowledge contingent (publicly verifiable) PoR
payment in [12] and the fair PoR payment scheme in
[3] that are more efficient than the state-of-the-art and
closest to our work. Table 2 summarises the comparison.
The analysis of RC-PoR-P covers both asymptotic and
concrete overheads. To conduct the concrete cost study,
we have implemented RC-PoR-P. The protocol’s off-chain
and on-chain parts have been implemented in C++ and
Solidity programming languages respectively. To conduct
the off-chain experiment, we used a server with dual
Intel Xeon Gold 5118, 2.30 GHz CPU and 256 GB
RAM. To carry out the on-chain experiment, we used a
MacBook Pro laptop with quad-core Intel Core i5, 2 GHz
CPU and 16 GB RAM that interacts with the Ethereum
private blockchain. We ran the experiment 10 times. In the
experiment, we used the SHA-2 hash function and set its
output length and the security parameter to 128 bits. We
set the size of every block to 128 bits, as in [48]. We used a
random file whose size is in the range [64 MB, 4 GB]. This
results in the number of file blocks in the range [222, 228].
Since in the experiment we used relatively large file sizes,
to lower on-chain transaction costs, we allow the parties
to use the technique explained in Section E.1, which lets
the server and client exchange the (PoR) proofs off-chain
in an irrefutable fashion4. The prototype implementation
utilises the Cryptopp [16] and GMP [47] libraries. The
protocol’s off-chain and on-chain source code are publicly
available in [1] and [2] respectively.

10.1. Computation Cost
In our analysis, the cost of erasure-coding a file is

not taken into consideration, as it is identical in all PoR
schemes. We first analyse the computation cost of RC-
PoR-P. C’s cost is as follows. In phase 2, its cost in step

4. For each j-th verification, S sends each related path to C, via an authenticated
channel. If C rejects a path, then it inserts into its complaint S’s message that
includes one of the invalid paths for j-th verification. Our analysis excludes sig-
nature generation and verification processes as they can be efficiently incorporated
by using standard authenticated channels (e.g., PKI-based XML signatures).

2a involves m·
log2(m)∑
i=1

1
2i invocations of a hash function. So

its complexity in this step is O(m). Its total cost in steps
2b and 2c involves two invocations of the hash function.
Therefore, the client-side total complexity in this phase
is O(m). In this phase, its off-chain run-time increases
about 2× (i.e., from 23.1 to 45.5, ..., from 732.1 to 1596.6
seconds) when m increases (i.e., from 222 to 223, ..., from
227 to 228 blocks). This phase also costs it 123 ·10−5 ether.
In phase 4, C invokes PRF and symmetric-key encryption
φ times and once respectively. So, for z verifications its
total computation cost is O(z · φ). Its off-chain run-time
in this phase is negligibly small. This phase also costs
it 6 · 10−5 · z ether. In phase 6, C for each verification
decrypts and verifies proofs which mainly involves φ ·
(log2(m)+1) invocations of the symmetric key encryption
and φ · log2(m) invocations of the hash function. So, its
total complexity in this phase is O(z · φ · log2(m)). Its
off-chain run-time in this phase is very low and grows
almost 1.1× (i.e., from 0.09 ·z to 0.11 ·z, ..., from 0.21 ·z
to 0.24 · z seconds) when m increases.

Now, we analyse S’s computation cost. In phase 3, S’s
complexity is O(m). Its off-chain run-time in this phase
grows 2× (i.e., from 8.9 to 16.5, ..., from 248.8 to 548.8
seconds) when m increases. This phase costs it 9 · 10−5

ether. In phase 5, S decrypts a value for each verification,
generates and encrypts proofs that require φ · log2(m)
invocations of the hash function and φ·(log2(m)+1) invo-
cations of symmetric key encryption, for each verification.
So, its total complexity in phase 5 is O(z ·φ · log2(m)). In
this phase, its off-chain run-time grows about 2.1× (i.e.,
from 22.4 · z to 30.4 · z, ..., from 793.1 · z to 1820.7 · z
seconds) when m increases.5

Next, we analyse R’s cost in phase 7. First, we eval-
uate R’s cost when it is invoked by an honest S. In this
case, it invokes the hash function twice and decrypts |vS |
queries, where |vS | is the total number of verifications
that S complained about and |vS | ≤ z. Now, we evaluate
its cost when it is invoked by an honest C. It invokes
the hash function twice to check the correctness of the
statement, ẍqp, sent by the client. It invokes the hash
function |vC| · (log2(m) + 2) times and the symmetric
key encryption |vC| · (log2(m) + 2) times, where |vC| is
the total number of verifications that C complained about.
Thus, its cost, in phase 7 is at most O(z′ ·log2(m)), where
z′ = Max(|vC|, |vS |) and z′ ≤ z. Note that due to the
use of the proof of misbehaviour in the protocol, R’s cost
is about 1

φ = 1
460 of its computation cost in the absence

of such technique where it has to check all φ proofs for
each verification.6 Its off-chain run-time is very low and
increases about 1.3× (i.e., from 2·10−5·z′ to 4·10−5·z′, ...,
from 9 · 10−5 · z′ to 10−4 · z′ seconds) when m increases.
Phase 7 also imposes 10−4 ether to R. In phase 8, SC
invokes the hash function only twice, so its computation
complexity is constant. This phase imposes 6 · 10−5 ether
to the party that calls RCPoRP.pay.

5. To determine S’s cost for generating a proof, we considered the case where
S does not store the Merkle tree nodes (to save storage space), instead it generates
the tree’s paths every time a challenge is given to it. If we let S store the tree,
then it would have a lower computation overhead.

6. As shown in [9], to ensure 99% of file blocks is retrievable, it would be
sufficient to set the number of challenged blocks to 460.



TABLE 1: RC-PoR-P off-chain run-time (in seconds) and on-chain cost, of z verifications; breakdown by phases. In the table, z′

is the maximum number of complaints the client and server send to the arbiter, and m is the number of blocks in a file.

Off-chain cost On-chain cost
Phase

m : 222 m : 223 m : 224 m : 225 m : 226 m : 227 m : 228 Ether US Dollar

Client-side Init. 23.1 45.5 89.7 185.8 413 732.1 1596.6 123 · 10−5 3.42

Server-side Init. 8.9 16.5 33.2 134.6 149.4 248.8 548.8 9 · 10−5 0.22

Client-side Query Gen. - - - - - - - 6 · 10−5 · z 0.17 · z
Server-side Proof Gen. 22.4 · z 30.4 · z 57.4 · z 166.8 · z 376.1 · z 793.1 · z 1820.7 · z - -
Client-side Proof Ver. 0.09 · z 0.11 · z 0.12 · z 0.16 · z 0.18 · z 0.21 · z 0.24 · z - -

Arbiter-side Dispute Res. 2 · 10−5 · z′ 4 · 10−5 · z′ 8 · 10−5 · z′ 8 · 10−5 · z′ 9 · 10−5 · z′ 9 · 10−5 · z′ 10−4 · z′ 10−4 0.27

Coin Transfer - - - - - - - 6 · 10−5 0.17

TABLE 2: Contingent PoRs comparison. In the table, T is a time parameter, and φ is the number of challenged blocks.

Computation Complexity Proof Secure Against Malicious Offers
Protocols Operation

Initiate Solve Puzzle Prove Verify Size Client Server Privacy

Exp. O(z) O(Tz) − −
[3]

Add. or Mul. O(m+ zφ) O(z) O(zφ) O(zφ)
O(1) × X ×

Exp. O(m) − O(zφ) O(zφ)

Add. or Mul. − − O(zφ) O(zφ)

Hash O(m) − O(1) O(1)
[12]

ZK proof − − O(zφ) O(zφ)

O(1) × X ×

Hash O(m) − O(zφ log2(m)) O(zφ log2(m))
RC-PoR-P

Sym. key enc. − − O(zφ log2(m)) O(zφ log2(m))
O(φ log2(m)) X X X

10.2. Communication Cost
We first analyse C’s communication cost. In phase 2,

C sends ||u∗||+ 384 bits. So, in this phase, its complexity
is O(||u∗||). In phase 7, it sends (ẍqp,mC), where ẍqp
contains (a) padding information whose size is a few bits
and (b) the symmetric-key encryption’s key whose size
is 128 bits. Also, mC contains at most z invalid paths of
the Merkle tree. Thus, in this phase, its communication
cost is z · log2(||u∗||) + 128 bits or O(z · log2(||u∗||)). S’s
complexity for z verifications is O(z · ||π∗j ||), as in phase
5, for each verification, it sends out a proof vector π∗j .
R’s communication cost is constant, as it only sends a
transaction containing four values in phase 7.

10.3. Comparison

The fair PoR scheme in [3] assumes that C is trusted.
The initiation phase involves O(z) modular exponentia-
tions and O(m+ zφ) modular multiplications to generate
puzzles and MACs respectively. Given the puzzles, S
has to continuously solve them sequentially until all z
verifications end, which requires S to perform the ex-
ponentiations even between two consecutive verifications.
This requires S to perform O(Tz) exponentiations and
z modular multiplications, where T is a time parameter.
For z verifications, S performs O(zφ) multiplications to
generate z proofs. A verifier performs O(zφ) multiplica-
tions to verify all proofs. Now we focus on the scheme
in [12]. As we showed in Section 5, this scheme is not
secure against a malicious C. In the initiation phase, C
generates a signature for each file block which involves
O(m) exponentiations and O(m) hash function invoca-
tions. For S to generate z proofs, it (i) performs O(zφ)
exponentiations to combine the signatures, (ii) invokes the
hash function at least O(1) times, and (iii) invokes zk

proof system O(zφ) times. The scheme imposes the same
computation complexity on the verifier as it does on the
prover. Campanelli et al. [12] provide an implementation
of zkCSP for publicly and privately verifiable PoRs. We
were informed by Campanelli that the total size of the
outsourced file used in their experiment is at most 256
bits, which is very small. In contrast, in our experiment,
we used a much large file size, i.e., 4-GB.

Since both schemes in [3] and [12] use homomorphic
tags, proofs for each verification can be combined result-
ing in constant proof size, i.e., O(1). These schemes do
not address the privacy issue we highlighted in Section
5.1. However, RC-PoR-P is secure against a malicious C
and rectifies the privacy issue. Similar to the other two
schemes, its initiation complexity is O(m); but, unlike
them, it does not require any modular exponentiations.
Instead, it involves only invocations of the hash function
which imposes a much lower overhead. Moreover, unlike
the other two schemes that have O(zφ) complexity in the
prove and verify phases, RC-PoR-P’s complexity, in the-
ory, is slightly higher, i.e., it is O(zφ log2(m)). However,
the extra factor: log2(m) is not very high in practice. For
instance, for a 4-GB file (or 228 blocks), it is only 28. RC-
PoR-P’s prove and verify algorithms, similar to the ones
[3], involve only symmetric key operations; whereas, the
ones in [12] need asymmetric key operations. Also, RC-
PoR-P’s the proof size complexity is larger than the other
two schemes; but, each message length in RC-PoR-P is
much shorter than the one in [12], i.e., 128-bit vs 2048-bit.

Thus, RC-PoR-P is computationally more efficient
than [12] and [3] while offering stronger security guaran-
tees (i.e., security against a malicious client and privacy).
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A. Notations

We summarise our notation in Table 3.

TABLE 3: Notation Table.

Setting Symbol Description

G
en

er
ic

z Number of verifications
λ Security parameter
PRF Pseudorandom function
ζ PRF’s description
Pr Probability
Com Commit algorithm in commitment
Ver Verify algorithm in commitment
µ Negligible function
H Hash function
MT Merkle tree

sk, pk Secret and public keys
PoR Proof of retrievability
u Service input, e.g., file
u∗ Encoded input
σ Metadata
ωσ Proof for metadata’s correctness
e e := (σ, ωσ)

pp Public parameter
q, q Query and query vector
ωq Proof for q’s correctness
c c := (q,ωq)

π,π Service proof and proof vector
VS Verifiable service

VSID Verifiable service with identifiable abort
RCSP Recurring contingent service payment
SAP Statement agreement protocol
C Client
S Server
R Arbiter
SC Smart contract

G
en

er
ic

F Function run on u∗ by S
M Metadata generator function
Q Query generator function

aux Auxiliary information
m Number of a file blocks, m = |u∗|
||u∗|| Bit size of u∗

δ Proof of F ’s evaluation correctness
j Verification index, 1 ≤ j ≤ z
adr Address
φ Number of challenged blocks

R
C

-S
-P

or
R

C
-P

oR
-P

rqp, rcp Random values
ẍqp, ẍcp ẍqp := (qp, rqp), ẍcp := (cp, rcp)

coin∗C, coin
∗
S Encoded coins deposited by C and S

enc Encoding/decoding functions enc := (E,D)

mC,mS Complaints of C and S
padπ, padq Number of elements used to pad π and q
yC, yS Number of times C and S misbehave towards each other
y′C, y

′
S Number of times C and S unnecessarily invoke Ar

cp Coin secret parameters
Tcp Coin encoding token
qp Query/proof secret parameters
Tqp Query/proof encoding token
T T := (Tcp, Tqp)

gC, gS Commitments computed by C and S
pl Price list: {(o, l), ..., (o′′, l′′)}
o Coins S must get for a valid proof, where o ∈ pl
l Coins Ar must get for resolving a dispute, where l ∈ pl

lmax Max(l, ..., l′′)

omax Max(o, ..., o′′)

pS Total coins S should deposit

B. Preliminaries

B.1. Details on Building Blocks

B.1.1. Pseudorandom Function. Informally, a pseudo-
random function (PRF) is a deterministic function that
takes as input a key and some argument and outputs
a value indistinguishable from that of a truly random
function with the same domain and range. Pseudorandom
functions have many applications in cryptography as they
provide an efficient and deterministic way to turn input
into a value that looks random. Below, we restate the
formal definition of PRF, taken from [35].

Definition 7. Let W : {0, 1}ψ × {0, 1}η → {0, 1}ι be an
efficient keyed function. It is said W is a pseudorandom
function if for all probabilistic polynomial-time distin-
guishers B, there is a negligible function, µ(.), such that:∣∣∣∣Pr[BW

k̂
(.)(1ψ) = 1]−Pr[Bω(.)(1ψ) = 1]

∣∣∣∣ ≤ µ(ψ), where

the key, k̂ $← {0, 1}ψ, is chosen uniformly at random and
ω is chosen uniformly at random from the set of functions
mapping η-bit strings to ι-bit strings.

B.1.2. Commitment Scheme. A commitment scheme
involves two parties, sender and receiver, and includes
two phases: commit and open. In the commit phase, the
sender commits to a message: x as Com(x, r) = Comx,
that involves a secret value: r $← {0, 1}λ. In the end of
the commit phase, the commitment Comx is sent to the
receiver. In the open phase, the sender sends the opening
ẍ := (x, r) to the receiver who verifies its correctness:
Ver(Comx, ẍ)

?
= 1 and accepts if the output is 1. A com-

mitment scheme must satisfy two properties: (a) hiding:
it is infeasible for an adversary (i.e., the receiver) to learn
any information about the committed message x, until
the commitment Comx is opened, and (b) binding: it is
infeasible for an adversary (i.e., the sender) to open a
commitment Comx to different values ẍ′ := (x′, r′) than
that was used in the commit phase, i.e., infeasible to
find ẍ′, s.t. Ver(Comx, ẍ) = Ver(Comx, ẍ

′) = 1, where
ẍ 6= ẍ′. There exist efficient non-interactive commitment
schemes both in (a) the standard model, e.g., Pedersen
scheme [46], and (b) the random oracle model using the
well-known hash-based scheme such that committing is
: H(x||r) = Comx and Ver(Comx, ẍ) requires checking:
H(x||r) ?

= Comx, where H : {0, 1}∗ → {0, 1}λ is a collision
resistant hash function; i.e., the probability to find x and
x′ such that H(x) = H(x′) is negligible in the security
parameter λ.

B.1.3. Publicly Verifiable Non-interactive Zero-
knowledge Proof. In a non-interactive zero-knowledge
proof (NIZK), a prover P , given a witness w for some
statement x in an NP language L, wants to convince a
verifier V of the validity of x ∈ L. The main security
property of the scheme is Zero-knowledge; meaning,
a potentially malicious verifier cannot learn anything
beyond the validity of the statement. The procedure is
non-interactive, i.e., P generates a proof π and provides
V with π, who accepts (or rejects) verification. A NIZK
is publicly verifiable when any party by obtaining π can
verify the validity of x ∈ L. Publicly verifiable NIZKs
have been constructed under trust assumptions such as

https://www.ukfinance.org.uk/system/files/Half-year-fraud-update-2021-FINAL.pdf
https://www.ukfinance.org.uk/system/files/Half-year-fraud-update-2021-FINAL.pdf


the presence of a common reference string, or setup
assumptions such as the existence of a random oracle
which is used in this work. For a formal definition of
NIZKs we refer the reader to [28].

B.1.4. Symmetric-key Encryption Scheme. A
symmetric-key encryption scheme consists of three
algorithms (SKE.keyGen, Enc, Dec), defined as follows.
(1) SKE.keyGen(1λ)→ k is a probabilistic algorithm that
outputs a symmetric key k. (2) Enc(k,m) → c takes as
input k and a message m in some message space and
outputs a ciphertext c. (3) Enc(k, c) → m takes as input
k and a ciphertext c and outputs a message m.

The correctness requirement is that for all messages
m in the message space, it holds that

Pr
[
Dec(k, Enc(k,m)) = m : SKE.keyGen(1λ)→ k

]
= 1 .

The symmetric-key encryption scheme satisfies indistin-
guishability against chosen-plaintext attacks (IND-CPA),
if any probabilistic polynomial time (PPT) adversary A
has no more than 1

2 + negl(λ) probability in winning the
following game: the challenger generates a symmetric key
SKE.keyGen(1λ)→ k . The adversary A is given access to
an encryption oracle Enc(k, ·) and eventually sends to the
challenger a pair of messages m0,m1 of equal length. In
turn, the challenger chooses a random bit b and provides
A with a ciphertext Enc(k,mb)→ cb. Upon receiving cb,
A continues to have access to Enc(k, ·) and wins if its
guess b′ is equal to b.

B.1.5. Digital Signature Scheme. A digital signature is a
scheme for verifying the authenticity of digital messages.
It involves three algorithms, (Sig.keyGen, Sig.sign,
Sig.ver), defined as follows. (1) Sig.keyGen(1λ) →
(sk, pk) is probabilistic algorithm run by a signer that
outputs a key pair (sk, pk), consisting of secret key sk,
and public key pk. (2) Sig.sign(sk, pk, u) → sig is an
algorithm run by the signer. It takes as input key pair
(sk, pk) and a message u. It outputs a signature sig. (3)
Sig.ver(pk, u, sig)→ h ∈ {0, 1} is an algorithm run by
a verifier. It takes as input pk, message u, and signature
sig. It checks the signature’s validity. If the verification
passes, then it outputs 1; otherwise, it outputs 0.

A digital signature scheme should meet two properties.
(1) Correctness: for every input u it holds that:

Pr
[
Sig.ver(pk, u, Sig.sign(sk, pk, u)) = 1 :

Sig.keyGen(1λ)→ (sk, pk)
]

= 1

(2) Existential unforgeability under chosen message at-
tacks (EUF-CMA): a probabilistic polynomial time PPT
adversary that obtains pk and has access to a signing
oracle for messages of its choice, cannot create a valid pair
(u∗, sig∗) for a new message u∗, except with a negligible
probability, σ. For a formal definition of digital signatures,
we refer readers to [35].

B.1.6. Merkle Tree. In the setting where a Merkle tree is
used to remotely check a file, the file is split into blocks
and the tree is built on top of the file blocks. Usually, for
the sake of simplicity, it is assumed the number of blocks,
m, is a power of 2. The height of the tree, constructed on

m blocks, is log2(m). The Merkle tree scheme includes
three algorithms (MT.genTree, MT.prove, MT.verify) as
follows:

• The algorithm that constructs a Merkle tree,
MT.genTree, is run by V . It takes file blocks, u :=
u1, ..., um, as input. Then, it groups the blocks in
pairs. Next, a collision-resistant hash function, H(.),
is used to hash each pair. After that, the hash values
are grouped in pairs and each pair is further hashed,
and this process is repeated until only a single hash
value, called “root”, remains. This yields a tree with
the leaves corresponding to the blocks of the input
file and the root corresponding to the last remaining
hash value. V locally stores the root, and sends the
file and tree to P .

• The proving algorithm, MT.prove, is run by P . It
takes a block index, i, and a tree as inputs. It outputs a
vector proof, of log2(m) elements. The proof asserts
the membership of i-th block in the tree, and consists
of all the sibling nodes on a path from the i-th block
to the root of the Merkle tree (including i-th block).
The proof is given to V .

• The verification algorithm, MT.verify, is run by V .
It takes as input i-th block, a proof and tree’s root.
It checks if the i-th block corresponds to the root.
If the verification passes, it outputs 1; otherwise, it
outputs 0.

The Merkle tree-based scheme has two properties: cor-
rectness and security. Informally, the correctness requires
that if both parties run the algorithms correctly, then a
proof is always accepted by V . The security requires that
a computationally bounded malicious P cannot convince
V into accepting an incorrect proof, e.g., proof for non-
member block. The security relies on the assumption that
it is infeasible to find the hash function’s collision.

B.2. Definition of PoR

A PoR scheme considers the case where an honest
client wants to outsource the storage of its file to a
potentially malicious server, i.e., an active adversary. It is
a challenge-response interactive protocol, where the server
proves to the client that its file is intact and retrievable. Be-
low, we restate PoR’s formal definition initially proposed
in [34], [48]. A PoR scheme comprises of five algorithms:

• PoR.keyGen(1λ) → k := (sk, pk). A probabilistic al-
gorithm, run by a client, C. It takes as input the security
parameter 1λ. It outputs private-public verification key,
k := (sk, pk).

• PoR.setup(1λ, u, k) → (u∗, σ, pp). A probabilistic
algorithm, run by C. It takes as input 1λ, a file u, and
key k. It encodes u yielding u∗ and generates metadata,
σ. It outputs u∗, σ, and public parameters pp.

• PoR.genQuery(1λ, k, pp) → q. A probabilistic algo-
rithm, run by C. It takes as input 1λ, key k, and public
parameters pp. It outputs a query vector q, possibly
picked uniformly at random.

• PoR.prove(u∗, σ, q, pk, pp) → π. It is run by the
server, S. It takes as input the encoded file u∗, meta-
data σ, query q, public key pk, and public parameters
pp. It outputs a proof, π.



• PoR.verify(π, q, k, pp) → d ∈ {0, 1}. It is run by
C. It takes as input π, q, k, and pp. It outputs 0 if it
rejects the proof, or 1 if it accepts the proof.

A PoR scheme has two properties: correctness and
soundness. Correctness requires that the verification al-
gorithm accepts proofs generated by an honest veri-
fier; formally, PoR requires that for any key k, any
file u ∈ {0, 1}∗, and any pair (u∗, σ) output by
PoR.setup(1λ, u, k), and any query q, the verifier accepts
when it interacts with an honest prover. Soundness re-
quires that if a prover convinces the verifier (with high
probability) then the file is stored by the prover. This is
formalized via the notion of an extractor algorithm, that
is able to extract the file in interaction with the adversary
using a polynomial number of rounds. Before we define
soundness, we restate the experiment, defined in [48], that
takes place between an environment E and adversary A.
In this experiment, A plays the role of a corrupt party and
E simulates an honest party’s role.

1) E executes PoR.keyGen(1λ) algorithm and provides
public key, pk, to A.

2) A can pick arbitrary file u, and uses it to make
queries to E who runs PoR.setup(1λ, u, k) →
(u∗, σ, pp) and returns the output to A. Also, upon re-
ceiving the output of PoR.setup(1λ, u, k), A can ask
E to run PoR.genQuery(1λ , k, pp)→ q and give the
output to it. A can locally run PoR.prove(u∗, σ, q,
pk, pp)→ π to get its outputs as well.

3) A can request from E the execution of
PoR.verify(π, q, k, pp) for any u used to query
PoR.setup(·). Accordingly, E informs A about the
verification output. The adversary can send to E a
polynomial number of queries. Finally, A outputs
metadata σ returned from a setup query and the
description of a prover, Â, for any file it has already
chosen above.

It is said that a cheating prover, Âε, is ε-admissible if
it convincingly answers ε fraction of verification chal-
lenges (for a certain file). Informally, a PoR scheme
supports extractability, if there is an extractor algorithm
Ext(k, σ, Âε), that takes as input the key k, metadata
σ, and the description of the machine implementing the
prover’s role Âε and outputs the file, u. The extractor has
the ability to reset the adversary to the beginning of the
challenge phase and repeat this step polynomially many
times for the purpose of extraction, i.e., the extractor can
rewind Âε.

Definition 8 (ε-soundness). A PoR scheme is ε-sound
if there exists an extraction algorithm Ext(·) such that,
for every adversary A who plays experiment ExpAPoR and
outputs an ε-admissible cheating prover Âε for a file
u, the extraction algorithm recovers u from Âε, given
honest party’s private key, public parameters, metadata
and the description of Âε, except with negl(λ) probability.
Formally:

Pr



PoR.keyGen(1λ)→ k := (sk, pk)
A(1λ, pk)→ u
PoR.setup(1λ, u, k)→ (u∗, σ, pp)
A(u∗, σ, pp)→ state
PoR.genQuery(1λ, k, pp)→ q((
A(q, state)→ π) 
 (PoR.verify(π,

q, k, pp)
))
→ Âε

Ext(k, pp, σ, Âε) 6= u


= negl(λ)

In contrast to the PoR definition in [34], [48] where
PoR.genQuery(·) is implicit, in the above definition we
have explicitly defined
PoR.genQuery(·), as it plays an important role in this
paper. Also, there are PoR protocols, e.g., in [43], that
do not involve PoR.keyGen(·). Instead, a set of public
parameters/keys (e.g., file size or a root of Merkle tree)
are output by PoR.setup(·). To make the PoR definition
generic to capture both cases, we have explicitly included
the public parameters pp in the algorithms’ definitions too.

C. Verifiable Service (VS) Definition

At a high level, a verifiable service scheme is a two-
party protocol in which a client chooses a function, F ,
and provides (an encoding of) F , its input u, and a query
q to a server. The server is expected to evaluate F on u
and q (and some public parameters) and respond with the
output. Then, the client verifies that the output is indeed
the output of the function computed on the provided input.
In verifiable services, either the computation (on the input)
or both the computation and storage of the input are
delegated to the server. A verifiable service is defined as
follows.

Definition 9 (VS Scheme). A verifiable service scheme
VS := (VS.keyGen, VS.setup, VS.genQuery, VS.prove,
VS.verify) with function F , metadata generator function
M , and query generator function Q consists of five algo-
rithms defined as follows.
• VS.keyGen(1λ) → k := (sk, pk). A probabilistic

algorithm run by the client. It takes as input the
security parameter 1λ and outputs a secret/public
verification key pair k. The server is given pk.

• VS.setup(1λ, u, k) → (u∗, σ, pp). It is run by the
client. It takes as input the security parameter 1λ,
the service input u, and key pair k. If an encoding is
needed, then it encodes u, that results in u∗; other-
wise, u∗ = u. It outputs encoded input u∗, metadata
σ = M(u∗, k, pp), and (possibly input dependent)
public parameters pp. Right after that, the server is
given u∗, σ, and pp.

• VS.genQuery(1λ, aux, k, pp) → q. A probabilistic
algorithm run by the client. It takes as input the
security parameter 1λ, auxiliary information aux, the
key pair k, and public parameters pp. It outputs a
query vector q = Q(aux, k, pp). Depending on ser-
vice types, q may be empty or contain only random
strings. The output is given to the server.

• VS.prove(u∗, σ, q, pk, pp) → π. It is run by the
server. It takes as input the service encoded input u∗,
metadata σ, queries q, public key pk, and public pa-
rameters pp. It outputs a proof, π = [F (u∗, q, pp), δ],



containing the function evaluation for service input
u, public parameters pp, and query q, i.e., h =
F (u∗, q, pp), and a proof δ asserting the evaluation is
performed correctly, where generating δ may involve
σ. The output is given to the client.

• VS.verify(π, q, k, pp) → d ∈ {0, 1}. It is run
by the client. It takes as input the proof π, query
vector q, key k, and public parameters pp. In the
case where VS.verify(·) is publicly verifiable then
k := (⊥, pk), and when it is privately verifiable
k := (sk, pk). The algorithm outputs d = 1, if the
proof is accepted; otherwise, it outputs d = 0.

A verifiable service scheme has two main properties,
correctness and soundness. Correctness requires that the
verification algorithm always accepts a proof generated by
an honest prover. It is formally stated below.

Definition 10 (VS Correctness). A verifiable service
scheme VS with functions F,M,Q is correct for an
auxiliary information aux, if for any service input u it
holds that:

Pr


VS.keyGen(1λ)→ k := (sk, pk)
VS.setup(1λ, u, k)→ (u∗, σ, pp)
VS.genQuery(1λ, aux, k, pp)→ q
VS.prove(u∗, σ, q, pk, pp)→ π
VS.verify(π, q, k, pp)→ 1.

 = 1

Intuitively, a verifiable service is sound if a malicious
server cannot convince the verification algorithm to accept
an incorrect output of F except with negligible probability.
Soundness is formally stated as follows.

Definition 11 (VS Soundness). A verifiable service VS
with functions F,M,Q is sound for an auxiliary in-
formation aux, if for any probabilistic polynomial time
adversary A, it holds that:

Pr



VS.keyGen(1λ)→ k := (sk, pk)
A(1λ, pk, F,M,Q)→ u
VS.setup(1λ, u, k)→ (u∗, σ, pp)
VS.genQuery(1λ, aux, k, pp)→ q
A(q, u∗, σ, pp)→ π = [h, δ]
VS.verify(π, q, k, pp)→ d
F (u∗, q, pp) 6= h ∧ d = 1

 = negl(λ)

The above generic definition captures the core re-
quirements of a wide range of verifiable services such
as verifiable outsourced storage, i.e., Proofs of Retriev-
ability [34], [48] or Provable Data Possession [9], [49],
verifiable computation [25], [37], verifiable searchable
encryption [38], [42], and verifiable information retrieval
[52], [54], to name a few. Other additional security prop-
erties (e.g., privacy) mandated by certain services can be
added to the above definition. Alternatively, the definition
can be upgraded to capture the additional requirements.
The verifiable service with identifiable abort (VSID) and
recurring contingent service payment (RC-S-P) definitions
presented in this paper are two examples.
Remark 1. It is not hard to see that the original PoR
definition (presented in Section 3.3) is a VS’s special case.
In particular, PoR’s ε-soundness captures VS’s soundness;
in ε-soundness, the extractor algorithm interacts (many
times) with the cheating prover which must not be able

to persuade the extractor to accept an invalid proof with a
high probability and should provide accepting proofs for
non-negligible ε fraction of verification challenges. The
former property is exactly what VS soundness states.

D. Verifiable Service with Identifiable Abort
(VSID)

A protocol that realises only VS’s definition (cf. Ap-
pendix C) would be merely secure against a malicious
server and assumes the client is honest. Although this
assumption would suffice in certain settings and has been
used before (e.g., in [42], [49]), it is rather strong and
not suitable in the real world, especially when there are
monetary incentives (e.g., service payment) that encourage
a client to misbehave. Therefore, in the following we
enhance the VS notion to allow (a) either party to be
malicious and (b) a trusted third party, arbiter, to identify
a corrupt party. We call an upgraded verifiable service
scheme with these features verifiable service with iden-
tifiable abort (VSID), inspired by the notion of secure
multi-party computation with identifiable abort [33].

D.1. VSID Definition

The definition of a VSID scheme is provided below.

Definition 12 (VSID Scheme). A verifiable service with
identifiable abort
VSID := (VSID.keyGen, VSID.setup, VSID.serve,
VSID.genQuery,
VSID.checkQuery, VSID.prove,
VSID.verify, VSID.identify)
with function F , metadata generator function M , and
query generator function Q involves four entities; namely,
client, server, arbiter, and bulletin board. It consists of
eight algorithms defined below.
• VSID.keyGen(1λ) → k := (sk, pk). A probabilistic

algorithm run by the client C. It takes as input the
security parameter 1λ and outputs a secret/public
verification key pair k. It sends pk to the bulletin
board.

• VSID.setup(1λ, u, k) → (u∗, pp, e). It is run by
the client. It takes as input the security parameter
1λ, the service input u, and the key pair k. If an
encoding is needed, then it encodes u, that results
u∗; otherwise, u∗ = u. It outputs u∗, (possibly file
dependent) public parameters pp and e := (σ,wσ),
where σ = M(u∗, k, pp) is metadata and wσ is a
proof asserting the metadata is well-structured. It
sends the output (i.e., u∗, pp, e) to the bulletin board.

• VSID.serve(u∗, e, pk, pp)→ a ∈ {0, 1}. It is run by
the server S. It takes as input the encoded service
input u∗, the pair e := (σ,wσ), public key pk, and
public parameters pp. It outputs a = 1, if the proof
wσ is accepted, i.e., if the metadata is well-formed.
Otherwise, it outputs a = 0. The output is sent to the
bulletin board.

• VSID.genQuery(1λ, aux, k, pp) → c := (q,wq). A
probabilistic algorithm run by the client. It takes
as input the security parameter 1λ, auxiliary infor-
mation aux, the key pair k, and public parameters
pp. It outputs a pair c containing a query vector,



q = Q(aux, k, pp), and proofs, wq, proving the
queries are well-structured. Depending on service
types, c might be empty or contain only random
strings. It sends c to the bulletin board.

• VSID.checkQuery(c, pk, pp) → b ∈ {0, 1}. It is run
by the server. It takes as input a pair c := (q,wq)
including queries and their proofs, as well as public
key pk, and public parameters pp. It outputs b = 1
if the proofs wσ are accepted, i.e., the queries are
well-structured. Otherwise, it outputs b = 0.

• VSID.prove(u∗, σ, c, pk, pp) → π. It is run by the
server. It takes as input the encoded service input
u∗, metadata σ, a pair c := (q,wq), public key pk,
and public parameters pp. It outputs a proof, π =
[F (u∗, q, pp), δ)] containing the function evaluation,
i.e., h = F (u∗, q, pp), and a proof δ asserting the
evaluation is performed correctly, where computing
h may involve pk and computing δ may involve σ.
It sends π to the board.

• VSID.verify(π, q, k, pp)→ d ∈ {0, 1}. It is run by
the client. It takes as input the proof π, queries q,
key pair k, and public parameters pp. If the proof
is accepted, it outputs d = 1; otherwise, it outputs
d = 0.

• VSID.identify(π, c, k, e, u∗, pp) → I ∈ {C,S,⊥}.
It is run by a third party arbiter. It takes as input the
proof π, query pair c := (q,wq), key pair k, meta-
data pair e := (σ,wσ), u∗, and public parameters pp.
If proof wσ or wq is rejected, then it outputs I = C;
otherwise, if proof π is rejected it outputs I = S.
Otherwise, if wσ,wq, and π are accepted, it outputs
I = ⊥.

A VSID scheme has four main properties; namely, it is
(a) correct, (b) sound, (c) inputs of clients are well-formed,
and (d) a corrupt party can be identified by an arbiter,
i.e., detectable abort. In the following, we formally define
each of them. Correctness requires that the verification
algorithm always accepts a proof generated by an honest
prover and both parties are identified as honest. It is
formally stated as follows.

Definition 13 (VSID Correctness). A verifiable service
with identifiable abort scheme with functions F,M,Q is
correct for an auxiliary information aux, if for any service
input u it holds that:

Pr



VSID.keyGen(1λ)→ k := (sk, pk)
VSID.setup(1λ, u, k)→ (u∗, pp, e)
VSID.serve(u∗, e, pk, pp)→ a
VSID.genQuery(1λ, aux, k, pp)→ c
VSID.checkQuery(c, pk, pp)→ b
VSID.prove(u∗, σ, c, pk, pp)→ π
VSID.verify(π, q, k, pp)→ d
VSID.identify(π, c, k, e, u∗, pp)→ I = ⊥ ∧
a = 1 ∧ b = 1 ∧ d = 1


= 1

Intuitively, a VSID is sound if a malicious server
cannot convince the client to accept an incorrect output of
F except with negligible probability. It is formally stated
as follows.

Definition 14 (VSID Soundness). A VSID with functions
F,M,Q is sound for an auxiliary information aux, if for

any probabilistic polynomial time adversary A, it holds
that the following probability is negl(λ):

Pr



VSID.keyGen(1λ)→ k := (sk, pk)
A(1λ, pk, F,M,Q)→ u
VSID.setup(1λ, u, k)→ (u∗, pp, e)
VSID.genQuery(1λ, aux, k, pp)→ c := (q,wq)
A(c, e, u∗, pp)→ π = [h, δ]
VSID.verify(π, q, k, pp)→ d
F (u∗, q, pp) 6= h ∧ d = 1


A VSID has well-formed inputs, if a malicious client

cannot persuade a server to serve it on ill-structured inputs
(i.e., to accept incorrect outputs of M or Q). Below, we
state the property formally.

Definition 15 (VSID Inputs Well-formedness). A VSID
with functions F,M,Q has well-formed inputs for an aux-
iliary information aux, if for any probabilistic polynomial
time adversary A, it holds that the following probability
is negl(λ):

Pr



A(1λ, F,M,Q)→
(
u∗, k := (sk, pk),

e := (σ,wσ), pp
)

VSID.serve(u∗, e, pk, pp)→ a
A(1λ, aux, k, pp)→ c := (q,wq)
VSID.checkQuery(c, pk, pp)→ b
(M(u∗, k, pp) 6= σ ∧ a = 1)∨
(Q(aux, k, pp) 6= q ∧ b = 1)


The above property ensures an honest server can de-

tect a malicious client if the client provides ill-structured
inputs. It is further required that a malicious party be
identified by an honest third party, arbiter. This ensures
that in the case of dispute (or false accusation) a malicious
party can be pinpointed. A VSID supports detectable abort
if a corrupt party can escape from being identified, by the
arbiter, with only negligible probability. Formally:

Definition 16 (VSID Detectable Abort). A VSID with
functions F,M,Q supports detectable abort for an auxil-
iary information aux, if the following hold:

1) For any PPT adversary A1, the following probability
is negl(λ):

Pr



VSID.keyGen(1λ)→ k := (sk, pk)
A1(1

λ, pk, F,M,Q)→ u
VSID.setup(1λ, u, k)→ (u∗, pp, e)
VSID.genQuery(1λ, aux, k, pp)→ c := (q,wq)
A1(c, e, u

∗, pp)→ π = [h, δ]
VSID.verify(π, q, k, pp)→ d
VSID.identify(π, c, k, e, u∗, pp)→ I
d = 0 ∧ I 6= S


2) For any PPT adversary A2, the following probability

is negl(λ):

Pr



A2(1
λ, F,M,Q)→

(
u∗, k := (sk, pk),

e := (σ,wσ), pp
)

VSID.serve(u∗, e, pk, pp)→ a
A2(aux, k)→ c := (q,wq)
VSID.checkQuery(c, pk, pp)→ b
VSID.prove(u∗, σ, c, pk, pp)→ π
VSID.identify(π, c, k, e, u∗, pp)→ I
(a = 0 ∨ b = 0) ∧ I 6= C





D.1.1. Lighter VSID Scheme (VSIDlight). In the VSID
definition, algorithm VSID.identify(·) allows an arbiter
to identify a misbehaving client even in the setup phase.
Nevertheless, it is often sufficient to let the arbiter pinpoint
a corrupt party after the client and server agree to deal
with each other, i.e., after the setup when the server runs
VSID.serve(·) and outputs 1. A VSID protocol that meets
the latter (lighter) requirements, denoted by VSIDlight,
would impose lower costs especially when u and elements
of e are of large size. Because the arbiter is not required
to identify a misbehaving client in setup; therefore, it does
not need to have access to the entire file u∗ and metadata
e. This means (a) the server or client does not need to
send u∗ and e to the arbiter that leads to lower communi-
cation cost, and (b) the arbiter skips checking the correct-
ness of metadata in VSID.identify(·), which ultimately
saves it computation cost too. In VSIDlight, algorithm
VSID.identify(·) needs to take only (π, c, k, e′, pp) as
input, where e′ ⊂ e. So, this requires two changes to
the VSID definition, (a) the arbiter algorithm would be
VSID.identify(π, c, k, e′, pp)→ I , and (b) in case 2, in
Definition 16 we would have b = 0∧I 6= C, so event a = 0
is excluded. In this paper, any time we refer to VSIDlight,
we assume the above minor adjustments are applied to the
VSID definition.

D.2. VSID Protocol

In this section, we present the VSID protocol. We
show how it can be built upon a protocol that satisfies
the VS definition. As stated previously, a VS scheme
inherently protects an honest client from a malicious
server. Therefore, at a high-level, VSID needs to have
two added features; namely, it protects an honest server
from a malicious client and allows an arbiter to detect
a corrupt party. VSID can be built upon VS using the
following standard techniques; Briefly, (a) all parties sign
their outgoing messages, (b) they post the signed messages
on a bulletin board, and (c) the client, using a publicly
verifiable NIZK scheme, proves to the server that its inputs
have been correctly constructed. In particular, like VS,
the client first generates its secret and public parameters.
Then, in the setup, it processes its input, u, to generate
encoded input and metadata using the metadata generation
function, M . Also, the client utilizes a publicly verifiable
NIZK scheme to prove to the server that the metadata
has been constructed correctly. The client posts the en-
coded input, metadata and the proofs along with their
signatures to a bulletin board. Next, the server verifies
the signatures and proofs. It agrees to serve the client,
if they are accepted. Like VS, when the client wants the
server to run function F on its input, it uses function Q
to generate a query. However, it uses the zero-knowledge
scheme to prove to the server that the query has been
constructed correctly. The client posts the query, proofs,
and their signatures to the board. After that, the server
verifies the signatures and proofs. The server-side proves
and client-side verifies algorithms remain unchanged with
a difference that the server posts its proofs (i.e., the output
of the prove algorithm) and their signatures to the board
and the client first verifies the signatures before checking
the proofs. In the case of any dispute/abort, either party
invokes the arbiter which, given the signed posted mes-

sages, checks the signatures and proofs in turn to identify
a corrupt party. Below, we present the VSID protocol in
which we assume all parties sign their outgoing messages
and their counter-party first verifies the signature on the
messages, before they feed them to their local algorithms.

1) Key Generation. VSID.keyGen(1λ)

a) Calls VS.keyGen(1λ) to generate a pair of secret and
public keys, k : (sk, pk).

b) Commits to the secret key and appends the commit-
ment: Comsk to pk.

c) Posts pk to a bulletin board.
2) Client-side Setup. VSID.setup(1λ, u, k)

a) Calls VS.setup(1λ, u, k) → (σ, u∗), to generate a
metadata: σ = M(u∗, k, pp), encoded file service
input and (input dependent) parameters pp.

b) Generates non-interactive publicly verifiable zero-
knowledge proofs asserting σ has been generated
correctly, i.e., σ is the output of M that is evaluated
on u∗, pk, sk, and pp without revealing sk. Let wσ
contain the proofs.

c) Posts e := (σ,wσ), pp, and u∗ to the bulletin board.
3) Server-side Setup. VSID.serve(u∗, e, pk, pp)

Ensures the metadata σ has been constructed correctly,
by verifying the proofs in wσ (where σ,wσ ∈ e). If the
proofs are accepted, then it outputs a = 1 and proceeds
to the next step; otherwise, it outputs a = 0 and halts.

4) Client-side Query Generation.
VSID.genQuery(1λ, aux, k, pp).

a) Calls VS.genQuery(1λ, aux, k, pp)→ q, to generate
a query vector, q = Q(aux, k, pp). If aux is a private
input, then it also commits to it, that yields Comaux

b) Generates non-interactive publicly verifiable zero-
knowledge proofs proving q has been generated
correctly, i.e., q is the output of Q which is evaluated
on aux, pk, sk, and pp without revealing sk (and aux,
if it is a private input). Let wq contain the proofs and
aux (or Comaux if aux is a private input).

c) Posts c : (q,wq) to the board.
5) Server-side Query Verification.

VSID.checkQuery(c, pk, pp)
Checks if the query: q ∈ c has been constructed
correctly by verifying the proofs wq ∈ c. If the check
passes, then it outputs b = 1; otherwise, it outputs
b = 0.

6) Server-side Service Proof Generation.
VSID.prove(u∗, σ, c, pk, pp) This phase starts only if
the query was accepted, i.e., b = 1 .

a) Calls VS.prove(u∗, σ, q, pk, pp) → π, to generate
π = [F (u∗, q, pp), δ]. Recall that q ∈ c.

b) Posts π to the board.
7) Client-side Proof Verification.

VSID.verify(π, q, k, pp)
Calls VS.verify(π, q, k, pp) → d, to verify proof π.
It accepts the proof if d = 1; otherwise, it rejects it.

8) Arbiter-side Identification.
VSID.identify(π, c, k, e, u∗, pp)

a) Calls VSID.serve(u∗, e, pk, pp)→ a. If a = 1, then
it proceeds to the next step. Otherwise, it outputs
I = C and halts.

b) Calls VSID.checkQuery(c, pk, pp) → b. If b = 1,



then it proceeds to the next step. Otherwise, it out-
puts I = C and halts.

c) If π is privately verifiable, then the arbiter first
checks if sk ∈ k (provided by the client along with
other opening information) matches Comsk ∈ pk. If
they do not match, then the arbiter outputs I = C.
Otherwise, it calls VS.verify(π, q, k, pp) → d. If
d = 1, then it outputs I = ⊥; otherwise, it outputs
I = S.

Theorem 2. The VSID protocol with functions F,M,Q
satisfies the correctness, soundness, inputs well-
formedness, and detectable abort properties for auxiliary
information aux, (cf. Definitions 13-16), if the underlying
VS protocol with functions F,M,Q is correct and
sound for aux and the underlying commitment, publicly
verifiable non-interactive zero-knowledge, and signature
schemes are correct/complete and secure.

Proof (sketch). Correctness is implied by the correctness/-
completeness of the underlying primitives. The sound-
ness of VSID stems from the hiding property of the
commitment, zero-knowledge property of the publicly
verifiable NIZK proofs, and soundness of the verifiable
service (VS) schemes. In particular, in VSID, the veri-
fier (i.e., in this case, the client) makes block-box calls
to the algorithms of VS to ensure soundness. However,
the prover (i.e., the server) is given additional messages,
i.e., Comsk, Comaux, wσ and wq. The hiding property of
the commitment scheme and zero-knowledge property of
the zero-knowledge system ensure, given the messages,
the prover learns nothing about the verification key and
auxiliary information, except with negligible probability.
Moreover, the soundness of VS scheme ensures a corrupt
prover cannot convince an honest verifier, except with
a negligible probability. Inputs well-formedness property
boils down to the security of the commitment and publicly
verifiable NIZK proofs schemes that are used in steps
1, 2 and 4 in VSID protocol. Specifically, the binding
property of the commitment and the soundness of the
publicly verifiable NIZK proofs schemes ensure that a
corrupt prover (i.e., in this case the client) cannot convince
a verifier (i.e., the server) to accept metadata proofs, wσ
and Comsk ∈ pk, while M(u∗, k, pp) 6= σ or to accept
query proofs, wq and Comaux, while Q(aux, k, pp) 6= q,
except with negligible probability.

Moreover, the detectable abort property holds as long
as both previous properties (i.e., soundness and inputs
well-formedness) hold, the commitment is secure, the
zero-knowledge proofs are publicly verifiable and the
signature scheme is secure. The reason is that the algo-
rithm VSID.identify(·), which ensures detectable abort,
is a wrapper function that is invoked by the arbiter,
and sequentially makes subroutine calls to algorithms
VSID.serve(·), VSID.checkQuery(·) and VS.verify(·),
where the first two ensure input well-formedness, and
the last one ensures soundness. Also, due to the security
of the commitment (i.e., binding), the malicious client
cannot provide the arbiter with another secret verification
key than what was initially committed. Moreover, due to
the public verifiability of the zero-knowledge proofs, the
arbiter can verify all proofs input to VSID.serve(·) and
VSID.checkQuery(·). The signature’s security ensures if a
proof is not signed correctly, then it can also be rejected by

the arbiter; on the other hand, if a proof is signed correctly,
then it cannot be repudiated by the signer later on (due to
signature’s unforgeability); this guarantees that the signer
is held accountable for a rejected proof it provides.

Remark 2. As we mentioned before, it is often sufficient
to let the arbiter pinpoint a corrupt party after the client
and server agree to deal with each other. We denoted a
VSID protocol that meets the latter (lighter) requirement,
by VSIDlight. This version would impose lower costs, when
u and elements of e are of large size. In VSIDlight proto-
col, the client and server run phases 1-3 of the VSID
protocol as before, with a difference that the client does
not post e and u∗ to the board; instead, it sends them
directly to the server. In VSIDlight the arbiter algorithm,
i.e., VSID.identify(·), needs to take only (π, c, k, e′, pp)
as input, where e′ contains the opening of Comsk if
VSID.verify(·) is privately verifiable or e′ = ⊥ if it is
publicly verifiable. In this light version, the arbiter skips
step 8a. Thus, VSIDlight saves (a) communication cost, as
u∗ and e are never sent to the board and arbiter, and
(b) computation cost as the arbiter does not need to run
VSID.serve(·) anymore.

E. Recurring Contingent Service Payment
(RC-S-P) Protocol

In this section, we present our RC-S-P protocol.

E.1. Recurring Contingent Service Payment (RC-
S-P) Protocol

In this section, we present the “recurring contingent
service payment” (RC-S-P) protocol for a generic service.
It utilises a novel combination of VSIDlight, SAP, the
private time bubble notion, and symmetric-key encryption
schemes along with the coin masking and padding tech-
niques. At a high level, the protocol works as follows.
The client and server use SAP to provably agree on two
private statements; the first statement includes payment
details, while another one specifies a secret key, k, and the
pads’ length. They also agree on public parameters such
as (a) the private time bubble’s length, that is the total
number of billing cycles, z, plus a waiting period, J, and
(b) a smart contract which specifies z and the total amount
of masked coins each party should deposit. The client
deploys the contract. Each party deposits its masked coins
in the contract. If either party does not deposit enough
coins on time, later each party has a chance to withdraw its
coins and terminate the contract. To start using/providing
the service, they invoke VSIDlight protocol. In particular,
they engage in the VSID.keyGen(·), VSID.setup(·), and
VSID.serve(·) algorithms. If the server decides not to
serve, e.g., it detects the client’s misbehaviour, it sends 0
within a fixed time; in this case, the parties can withdraw
their deposit and terminate the contract. Otherwise, the
server sends 1 to the contract.

At the end of each billing cycle, the client gener-
ates an encrypted query, by calling VSID.genQuery(·)
and encrypting its output using the key, k. It pads the
encrypted query and sends the result to the contract. The
encryption and pads ensure nothing about the client’s input
(e.g., outsourced file) is revealed to the public within



the private time bubble. In the same cycle, the server
retrieves the query, removes the pads and decrypts the
result. Then, it locally checks its validity, by calling
VSID.checkQuery(·). If the query is rejected, the server
locally stores the index of the billing cycle and then
generates a dummy proof. Otherwise, if the server ac-
cepts the query, it generates a proof of service by calling
VSID.prove(·). In either case, the server encrypts the
proof, pads it and sends the result to the contract. Note that
sending (padded encrypted) dummy proofs ensures that
the public, during the private time bubble, does not learn
if the client generates invalid queries. After the server
sends the messages to the contract, the client removes the
pads, decrypts the proof and locally verifies it, by calling
VSID.verify(·). If the verification is passed, then the
client knows the server has delivered the service honestly.
But, if the proof is rejected, it waits until the private time
bubble passes and dispute resolution time arrives. During
the dispute resolution period, in the case the client or
server rejects any proofs, it invokes the arbiter, refers it
to the invalid encrypted proofs in the contract, and sends
to it the decryption key and the pads’ detail. The arbiter
checks the validity of the key and pads, by using SAP. If
they are accepted, then the arbiter locally removes the pads
from the encrypted proofs, decrypts the related proofs,
and runs VSID.identify(·) to check the validity of the
party’s claim. The arbiter sends to the contract a report
of its findings that includes the total number of times
the server and client provided invalid proofs. In the next
phase, to distribute the coins, either client or server sends:
(a) “pay” message, (b) the agreed statement that specifies
the payment details, and (c) the statement’s proof to the
contract which verifies the statement and if approved it
distributes the coins according to the statement’s detail,
and the arbiter’s report.

Now we outline why RC-S-P addresses the issues,
raised in Section 5. In the setup, if the client provides
ill-formed inputs (so later it can accuse the server) then
the server can detect and avoid serving it. After the setup,
if the client avoids sending any input, then the server still
gets paid for the service it provided. Also, in the case of a
dispute between the parties, their claim is checked, and the
corrupt party is identified. The corrupt party has to pay the
arbiter and if that is the client, then it has to pay the server
as well. These features not only do guarantee the server’s
resource is not wasted, but also ensures fairness (i.e., if
a potentially malicious server is paid, then it must have
provided the service and if a potentially malicious client
does not pay, then it will learn nothing). Furthermore, as
during the private time bubble (a) no plaintext proof is
given to the contract, and (b) no dispute resolution and
coin transfer take place on contract, the public cannot
figure out the outcome of each verification. This preserves
the server’s privacy. Also, because the deposited coins are
masked and the agreed statement is kept private, nothing
about the detail of the service is leaked to the public before
the bubble bursts. This preserves the client’s privacy. Also,
as either party can prove to the contract the validity of the
agreed statement, and ask the contract to distribute the
coins, the coins will be not be locked forever.

E.1.1. Protocol description. The RC-S-P protocol is pa-
rameterized by the functions F,M,Q of the underlying

VSID and encoding/decoding functions (E,D) that refer
to “encrypt then pad”/“remove pad then decrypt” pro-
cedures, respectively. It is assumed that (a) each party
P ∈ {C,S,R} already has a blockchain public address,
adrP , which is known to all parties, (b) it uses that
(authorised) address to send transactions to the smart
contract, (c) the contract before recording a transaction,
ensures the transaction is originated from an authorised
address, and (d) there is a public price list pl known to
everyone. The protocol is presented below.

1) Key Generation. RCSP.keyGen(1λ)

a) C runs VSID.keyGen(1λ) → k := (sk, pk). It
picks a random secret key k̄ for a symmetric-key
encryption. Also, it sets two parameters: padπ and
padq, where padπ and padq refer to the number of
dummy values that will be used to pad encrypted
proofs and encrypted queries respectively7, deter-
mined by the security parameter and description
of F . Let sk′ := (padπ, padq, k̄). The keys’ size
is part of the security parameter. Let k = [k, k′],
where k′ := (sk′, pk′) and pk′ := (adrC, adrS).

2) Client-side Initiation. RCSP.cInit(1λ, u,k, z, pl)

a) Calls VSID.setup(1λ, u, k) → (u∗, pp, e), to en-
code service input, and generate metadata. It sets
qp = sk′ and appends pp to qp.

b) Calls SAP.init(1λ, adrC, adrS , qp)→ (rqp, gqp,
adrSAP1), to initiate an agreement (with S) on qp.
Let Tqp := (ẍqp, gqp) be proof/query encoding
token, where ẍqp := (qp, rqp) is the opening and
gqp is the commitment stored on the contract as a
result of running SAP.

c) Sets coin parameters as follows, o: the amount of
coins for each accepting proof, and l: the amount
of coins to cover the cost of each potential dispute
resolution, given price list pl.

d) Sets cp := (o, omax, l, lmax, z), where omax is
the maximum amount of coins for an accept-
ing service proof, lmax is the maximum amount
of coins to resolve a potential dispute, and
z is the number of service proofs/verifications.
Then, C calls SAP.init(1λ, adrC, adrS , cp) →
(rcp, gcp, adrSAP2), to initiate an agreement (with
S) on cp. Let Tcp := (ẍcp, gcp) be coin encoding
token, where ẍcp := (cp, rcp) is the opening and
gcp is the commitment stored on the contract as a
result of executing SAP. Let T := {Tqp, Tcp}.

e) Set parameters coin∗C = z · (omax + lmax) and
pS = z · lmax, where coin∗C and pS are the
total number of masked coins C and S should
deposit respectively. It also designs a smart
contract, SC, that explicitly specifies parame-
ters z, coin∗C, pS , adrSAP1 , adrSAP2 , pk, and pk′.
It sets a set of time points/windows, Time :
{T0, ...,T2,G1,1, ...,Gz,2,J, K1, ...,K3,L}, that are
explicitly specified in the contract which will ac-
cept a certain party’s message only in a specified
time point/window. The time allocation will be-
come clear in the next phases.

7. The values of padπ and padq is determined as follows, padπ = πmax−
πact and padq = qmax − qact, where πmax and πact refer to the maximum
and actual the service’s proof size while qmax and qact refer to the maximum
and actual the service’s query size, respectively.



f) Sets also four counters [yC, y
′
C, yS , y

′
S ] in SC, where

their initial value is 0. It signs and deploys SC to
the blockchain. Let adrSC be the address of the
deployed SC, and y : [yC, y

′
C, yS , y

′
S , adrSC].

g) Deposits coin∗C coins in the contract. It sends
u∗, z, e, ẍqp, and ẍcp (along with adrSC) to S. Let
T0 be the time that the above process finishes.

3) Server-side Initiation.
RCSP.sInit(u∗, e, pk, z, T, pS ,y)

a) Checks the parameters in T (e.g., qp and cp) and
in SC (e.g., pS ,y) and ensures a sufficient amount
of coins has been deposited by C.

b) Calls SAP.agree(qp, rqp, gqp, adrC, adrSAP1) →
(g′qp, b1) and SAP.agree(cp, rcp, gcp, adrC, adrSAP2)→
(g′cp, b2), to verify the correctness of tokens in T
and to agree on the tokens’ parameters, where
qp, rqp ∈ ẍqp, and cp, rcp ∈ ẍcp. Recall that if both
C and S are honest, then gqp = g′qp and gcp = g′cp.

c) If any above check is rejected, then it sets a = 0.
Otherwise, it calls VSID.serve(u∗, e, pk, pp)→ a.

d) Sends a and coin∗S = pS coins to SC at time T1,
where coin∗S = ⊥ if a = 0

Note that, S and C can withdraw their coins at time
T2, if S sends a = 0, fewer coins than pS , or nothing
to the SC. To withdraw, S or C simply sends a “pay”
message to RCSP.pay(·) algorithm (only) at time T2.
Billing-cycles Onset. C and S engage in the fol-
lowing three phases, i.e., phases 4-6, at the end of
every j-th billing cycle, where 1 ≤ j ≤ z. Each j-th
cycle includes two time points, Gj,1 and Gj,2, where
Gj,2 > Gj,1, and G1,1 > T2.

4) Client-side Query Generation.
RCSP.genQuery(1λ, aux, k, Tqp)

a) Calls VSID.genQuery(1λ, aux, k, pp) → cj :=
(qj,wq

j
), to generate a query-proof pair.

b) Encodes cj , by first encrypting it, Enc(k̄, cj) = c′j ,
where k̄ ∈ Tqp; and then, padding (each element
of) the result with padq ∈ Tqp random values that
are picked uniformly at random from the encryp-
tion’s output range, U . Let c∗j be the result.

c) Sends the padded encrypted query-proof pair, c∗j ,
to SC at time Gj,1.

5) Server-side Proof Generation.
RCSP.prove(u∗, σ, c∗j , pk, Tqp)

a) Constructs an empty vector, mS = ⊥, if j = 1.
b) Removes the pads from c∗j , using parameters

of Tqp. Let c′j be the result. Next, it decrypts
the result, Dec(k̄, c′j) = cj . Then, it runs
VSID.checkQuery(cj, pk, pp) → bj , to check the
correctness of the queries.
• If S accepts the query, i.e., bj = 1, then calls
VSID.prove(u∗, σ, cj, pk, pp) → πj , to gener-
ate the service proof. In this case, S encrypts it,
Enc(k̄,πj) = π′j . Next, it pads (every element
of) the encrypted proof with padπ ∈ Tqp ran-
dom values picked uniformly at random from
U . Let π∗j be the result. It sends the padded
encrypted proof to SC at time Gj,2.

• Otherwise (if S rejects the query), it appends j
to mS , constructs a dummy proof π′j , picked
uniformly at random from U , pads the result

as above, and sends the padded dummy proof,
π∗j , to SC at time Gj,2.

When j = z and mS 6= ⊥, S sets mS :=
(mS , adrSC).

6) Client-side Proof Verification.
RCSP.verify(π∗j , c

∗
j , k, Tqp)

a) Constructs an empty vector, mC = ⊥, if j = 1.
b) Removes the pads from π∗j , utilising parameters

of Tqp. Let π′j be the result. It decrypts the
service proof: Dec(k̄,π′j) = π′′j and then calls
VSID.verify(π′′j , qj, k, pp) → dj , to verify the
proof, where qj ∈ cj (and cj is the result of remov-
ing pads from c∗j and then decrypting the result).
Note that if π′j = Enc(k̄,πj), then π′′j = πj .
• If π′′j passes the verification (i.e., dj = 1), then
C concludes that the service for this verification
has been delivered successfully.

• Otherwise (when π′′j is rejected), C appends j
to mC.

When j = z and mC 6= ⊥, C sets mC :=
(mC, adrSC, e

′), where e′ contains the opening of
Comsk or ⊥, as stated in Remark 2.

7) Dispute Resolution.
RCSP.resolve(mC,mS , z,π

∗, c∗, pk, Tqp)
The phase takes place only in case of dispute, e.g.,
when C and/or S reject any proofs in the previous
phases.

a) The arbiter sets counters: yC, y′C, yS and y′S , that
are initially set to 0, before time K1, where K1 >
Gz,2 + J.

b) C sends mC and ẍqp to the arbiter at time K1. Or,
S sends mS and ẍqp to the arbiter at time K1.

c) At time K2, the arbiter checks the validity of state-
ment ẍqp sent by each party P ∈ {C,S}. To do so,
it sends each ẍqp to SAP contract which returns
either 1 or 0. The arbiter constructs an empty
vector, v. If party P’s statement is accepted, then
it appends every element of mP to v. It ensures v
contains only distinct elements which are in the
range [1, z]. Otherwise (if the party’s statement
is rejected) it discards the party’s request, mP .
It proceeds to the next step if v is not empty,
otherwise it halts.

d) The arbiter for every element i ∈ v:
i) removes the pads from the related encrypted

query-proof pair and from encrypted service
proof. Let c′i and π′i be the result.

ii) decrypts the encrypted query-proof pair
and encrypted service proof as follows,
Dec(k̄, c′i) = ci and Dec(k̄,π′i) = π′′i .

iii) calls VSID.identify(π′′i , ci, k, e
′, pp)→ Ii

• if Ii = C and y′C was not incremented for
i-th verification, it increments yC by 1.

• if Ii = S and y′S was not incremented for
i-th verification, it increments yS by 1.

• if Ii = ⊥, then it increments y′C or y′S by
1, if i is in the complaint of C or S respec-
tively and yC or yS was not incremented in
i-th verification.

Let K3 be the time that the arbiter finishes the
above checks.



e) The arbiter at time K3 sends [yC, yS , y
′
C, y
′
S ] to SC

that accordingly overwrites the elements it holds
(i.e., elements of y) by the related vectors elements
the arbiter sent.

8) Coin Transfer. RCSP.pay(y, Tcp, a, pS , coin
∗
C, coin

∗
S)

a) If SC receives “pay” message at time T2, where
a = 0 or coins∗S < pS , then it sends coin∗C coins to
C and coin∗S coins to S. In other words, the parties
can withdraw their coins if they do not reach to
an agreement in the end of phase 3, i.e., server-
side initiation. Otherwise (i.e., they reach to an
agreement), they take the following steps.

b) Either C or S sends “pay” message and the state-
ment, ẍcp ∈ Tcp, to SC at time L > K3.

c) SC checks the validity of the statement by sending
ẍcp to the SAP contract which returns either 1 or
0. SC only proceeds to the next step if the output
is 1.

d) SC distributes the coins to the parties as follows:
• coinC = coin∗C − o · (z − yS) − l · (yC + y′C)

coins to C.
• coinS = coin∗S + o · (z − yS) − l · (yS + y′S)

coins to S.
• coinR = l · (yS + yC + y′S + y′C) coins to the

arbiter.

E.1.2. Discussion on the RC-S-P protocol. We conclude
Subsection E.1 with the following remarks:
• The length of a private time bubble can be agreed

between the server and client to be of any size that
suits them and can exceed the point where the z-th
verifications is completed.

• For the sake of simplicity, in the RC-S-P protocol,
we let each y ∈ {yC, y′C, yS , y′S} be a counter; instead
of a binary vector, y ∈ {yC,y′C,yS ,y′S}, defined in
the RC-S-P definition. However, it is not hard to see
that the sum of all elements y of equal y, i.e., y =
z∑
j=1

yj . The same holds for the amounts of coin each

party receives, coin ∈ {coinC, coinS , coinR}, in the
protocol and the coin vector used in the definition,
coin ∈ {coinC, coinS , coinR}.

• In the protocol, the pads are added after the actual
values are encrypted. This is done to save computation
cost. Otherwise (if the pads are added prior to the
encryption), then the pads would have to be encrypted
too, which imposes additional computation cost.

• As stated in Section 7,
RCSP.genQuery(·), RCSP.prove(·),
RCSP.verify(·) and RCSP.resolve(·) implicitly take
a, coin∗S , pS as another inputs and execute only if
a = 1 and coin∗S = pS . For the sake of simplicity,
we avoided explicitly stating it in the protocol.
Also, keeping track of (y′C, y

′
S) enables the arbiter

to make malicious parties, that unnecessarily invoke
it for accepting proofs in step 7(d)iii, pay for the
verifications it performs.

• The total coin amounts the client receives is as follows;
its initial deposit, i.e., coin∗C, minus the total coin
amounts that the server should be paid for those veri-
fications that it has acted honestly towards the client,
i.e., o·(z−yS), minus the total coin amounts the client

has to pay to the arbiter when it misbehaved towards
the server and the arbiter, i.e., l·(yC+y′C). The total coin
amounts the server receives is as follows. Its initial
deposit, i.e., coin∗S , plus the total coin amounts that
it should get paid for those verifications that it acted
honestly towards the client, i.e., o · (z−yS), minus the
total coin amounts it has to pay to the arbiter when
it misbehaved towards the client and the arbiter, i.e.,
l · (yS + y′S). Moreover the arbiter receives in total
l·(yS+yC+y

′
S+y′C) coins to cover its cost of resolving

disputes, i.e., l · (yS + yC), plus the cost imposed to it
when it is unnecessarily invoked, i.e., l · (y′S + y′C). If
all parties behave honestly, then the server receives all
its deposit back plus the coin amounts they initially
agreed to pay the server if it delivers accepting proofs
for all z cycles, i.e., in total it receives coin∗S + o · z
coins. Also, in this case an honest client receives all
coins minus the coin amounts paid to the server for
delivering accepting proofs for z cycles, i.e., in total
it receives coin∗C − o · z coins. However, the arbiter
receives no coins, as it is never invoked.

• The VSID scheme does not (need to) preserve the
privacy of the proofs. However, in RC-S-P protocol
each proof’s privacy must be preserved, for a certain
time; otherwise, the proof itself can leak its status,
e.g., when it can be publicly verified. This is the reason
why in the RC-S-P protocol, encrypted proofs are sent
to the contract. Moreover, for the sake of simplicity,
in the above protocol, we assumed that each arbiter’s
invocation has a fixed cost regardless of the number of
steps it takes. To define a fine-grained costing, one can
simply allocate to each step the arbiter takes a certain
rate and also separate counter for the client and server.

• In the case where VSID.verify(·) is privately ver-
ifiable and the server invokes the arbiter, the client
needs to provide inputs to the arbiter too. Otherwise
(when it is publicly verifiable and the server invokes
the arbiter), the client’s involvement is not required
in the dispute resolution phase. In contrast, if the
client invokes the arbiter, the server’s involvement
is not required in that phase, regardless of the type
of verifiability VSID.verify(·) supports. Furthermore,
with a minor adjustment to the RC-S-P protocol, we
can let the client and server be compensated (by a
misbehaving party) for the transaction they send to the
contract. To do so, briefly, we can let the parties, in ini-
tiation phases, agree on and include in cp parameters,
l′ and l′′, that cover the client’s and server’s cost of
sending a transaction, respectively. The parameters are
encoded the same way as l is encoded. In this setting,
in the coin transfer phase, the client and server receive
coin∗C− o · (z− yS)− l · (yC+ y′C) + l′ · yS − l′′ · yC and
coin∗S+o ·(z−yS)− l ·(yS+y′S)− l′ ·yS+ l′′ ·yC, coins
respectively. The amount of coins the arbiter receives
remains unchanged.

• The server or client, even during the private time
bubble, can spend (or more accurately promise to a
third party) the amount of coins kept in the contract
and will ultimately be transferred to it. With slight
adjustments to the RC-S-P, they can do so in a privacy-
preserving manner. We briefly explain how it can be
done. For the sake of simplicity, we assume the server
will receive coinS coins after the bubble bursts and



wants to promise ˆcoinS coins (where ˆcoinS ≤ coinS)
to the third party D within the bubble. First, the server
proves to D that it will receive coinS coins after
the bubble bursts. To do that, it sends the RC-S-P
transcripts (that includes all proofs) to D which can
verify the server’s claim, as all proofs are publicly
verifiable. Next, if D is convinced, the server and D
invoke a new instance of the SAP and insert the value

ˆcoinS into the SAP’s private statement. This results in
a smart contract, SCSAP3 . Next, if both parties agree
on the parameters of SCSAP3 , then the server sends
the address of SCSAP3 to the main contract of RC-
S-P, i.e., SC. When the bubble bursts, SC transfers
the client’s share of coins to the client as before. But,
SC distributes the server’s coins if the server or D
sends to it a valid proof for the above private statement
(in addition to the proofs required in the Phase 8 of
the original RC-S-P). Upon receiving that proof, SC
invokes SCSAP3 to check the validity of the proof. If
the proof is accepted, then SC sends ˆcoinS to D and
coinS − ˆcoinS to the server. It is evident that this
approach leaks no information about the coins amount
(including ˆcoinS) during the bubble to the public,
due to the security of the SAP. The above idea can
be further extended to support multiple parties. For
instance, if the server wants to promise coinS− ˆcoinS
coins to D′ (after its promise to D), it needs to send
to D′ all the proofs, including the one related to the
above private statement.

• As stated previously, the proofs are sent to the con-
tract to avoid running into the deniability issue, i.e.,
a malicious client wrongly claims the server never
sent a proof for a certain verification or a malicious
server wrongly claims it sent its proof to the client.
However, in the case where the proof size is large
and posting it to the smart contract would impose a
high cost, the parties can use the following technique
to directly communicate with each other to send and
receive the proof. The server sends a signed proof
directly to the client which needs to send back to the
server a signed acknowledgment stating that it received
the proof, within a fixed time period. If the server does
not receive a valid acknowledgment on time, it sends
the signed proof to the arbiter. Moreover, if the client
does not receive the proof on time, it needs to let
the arbiter know about it. In this case, if the arbiter
has already received the proof, it sends the proof to
the client which allows the client to perform the rest
of the computation. On the other hand, if the arbiter
does not have the proof, it asks the server to send to it
the client’s acknowledgment. If the server provides a
valid acknowledgment, then the arbiter considers the
client as a misbehaving party; otherwise (if the server
could not provide the acknowledgment), it considers
the server as a misbehaving one. However, if both
the server and client behave honestly in sending and
receiving the proof, then they do not need to invoke
the arbiter for this matter and the proof is never stored
on the blockchain.

E.2. Security Analysis of RC-S-P Protocol

In this section, we analyse the security of RC-S-P
protocol, presented in Section E.1. First, we present the
protocol’s primary security theorem.

Theorem 3. The RC-S-P protocol with functions
F,M,E,D,Q presented in Section E.1 is secure for aux-
iliary information aux, (cf. Definition 6), if the underlying
VSID protocol with functions F,M,Q satisfies correct-
ness, soundness, inputs well-formedness, and detectable
abort for auxj , the SAP is secure, the signature scheme is
secure, and the symmetric-key encryption scheme is IND-
CPA secure.

To prove Theorem 3, we show that RC-S-P meets
all security properties defined in Section 7. We start by
proving that RC-S-P satisfies security against a malicious
server.

Lemma 1. If the SAP and signature scheme are secure
and the VSID protocol satisfies correctness, soundness,
and detectable abort for auxiliary information aux, then
the RC-S-P protocol presented in Section E.1 is secure
against malicious server for aux.(cf. Definition 3).

Proof. We first consider event(
F (u∗, qj, pp) = hj

)
∧(

(coinC,j 6=
coin∗C
z
− o) ∨ (coinR,j 6= l ∧ y′S,j = 1)

)
that captures the case where the server provides an accept-
ing service proof but makes an honest client withdraw an
incorrect amount of coins, i.e., coinC,j 6= coin∗C

z − o, or it
makes the arbiter withdraw an incorrect amount of coins,
i.e., coinR,j 6= l, if it unnecessarily invokes the arbiter.
As the service proof is valid, an honest client accepts it
and does not raise any dispute. However, the server would
be able to make the client withdraw incorrect amounts of
coins, if it manages to either

1) convince the arbiter that the client has misbehaved,
by making the arbiter output yC,j = 1 through the
dispute resolution phase, or

2) submit to the contract, in the coin transfer phase, an
accepting statement ẍ′cp other than what was agreed
in the initiation phase, i.e., ẍ′cp 6= ẍcp, so it can
change the payments’ parameters (e.g., l or o) or send
a message on the client’s behalf to invoke the arbiter
unnecessarily.

Nevertheless, the server cannot falsely accuse the client of
misbehaviour. This is because, due to the security of SAP
(i.e., the underlying commitment’s binding property), it
cannot convince the arbiter to accept different decryption
key or pads other than what was agreed with the client
in the initiation phase. Specifically, it cannot persuade the
arbiter to accept ẍ′qp, where ẍ′qp 6= ẍqp, except with a
negligible probability. This ensures that the honest client’s
message is accessed by the arbiter with a high probability,
as the arbiter can extract the client’s message using valid
pad information and decryption key. On the other hand, if
the adversary provides a valid statement, i.e., ẍqp, then due
to the correctness of VSID, algorithm VSID.identify(·)
outputs Ij = ⊥. Therefore, due to the security of SAP



(i.e., the binding property) and correctness of VSID, yC
and yS are not incremented by 1 in the j-th verification,
i.e., yC,j = yS,j = 0. Also, due to the security of SAP
(i.e., the binding property), the server cannot change the
payment parameters by persuading the contract to accept
any statement ẍ′cp other than what was agreed initially
between the client and server, except with a negligible
probability when it finds the hash function’s collision
(in the SAP scheme). Moreover, since the proof is valid
the client never raises a dispute, also due to the digital
signature’s unforgeability, the server cannot send a mes-
sage on behalf of the client (to unnecessarily invoke the
arbiter), and make the arbiter output y′C,j = 1 for the j-th
verification, except with a negligible probability. So with
a high probability y′C,j = 0. Recall, in the protocol, the
total coins the client should receive after z verifications
is coin∗C − o · (z − yS)− l · (yC + y′C). Since we focus on
the j-th verification, the amount of coins that should be
credited to the client for that verification is

coinC,j =
coin∗C
z
− o · (1− yS,j)− l · (yC,j + y′C,j) (1)

As shown above yC,j = y′C,j = yS,j = 0. So, according
to Equation 1, the client is credited coin∗C

z − o coins for j-
th verification, with a high probability. On the other hand,
as stated above, if the adversary invokes the arbiter, the
arbiter with a high probability outputs Ij = ⊥ which
results in y′S,j = 1. Recall, in the RC-S-P protocol, the
total coins the arbiter should receive for z verifications is
l · (yS + yC + y′S + y′C), so for the j-th the credited coins
should be:

coinR,j = l · (yS,j + yC,j + y′S,j + y′C,j) (2)

As already shown, in the case where arbiter is unnec-
essarily invoked by the server, it holds that y′S,j = 1; So,
according to Equation 2, l coins is credited to the arbiter
for the j-th verification. For the server to make the arbiter
withdraw other than that amount (for the j-th verification),
in the coin transfer phase, it has to send to the contract
an accepting statement ẍ′cp other than what was agreed in
the initiation phase, i.e., ẍ′cp 6= ẍcp, so it can change the
payments’ parameters, e.g., l or o. But, as argued above,
it cannot succeed with a probability significantly greater
than negligible, due to the binding property of the SAP’s
commitment. We now move on to the following event(

F (u∗, qj, pp) 6= hj

)
∧(

dj = 1 ∨ yS,j = 0 ∨ coinC,j 6=
coin∗C
z

∨ coinR,j 6= l
)

This event captures the case where the server provides
an invalid service proof but either persuades the client to
accept the proof, or persuades the arbiter to accept the
proof (e.g., when the client raises a dispute) or makes the
client or arbiter withdraw an incorrect amount of coins,
i.e., coinC,j 6= coin∗C

z or coinR,j 6= l respectively. Never-
theless, due to the soundness of VSID, the probability
that a corrupt server can convince an honest client to
accept invalid proof (i.e., outputs dj = 1) is negligible.
So, the client detects it with a high probability and raises a
dispute. On the other hand, the server may try to convince
the arbiter, and make it output yS,j = 0, e.g., by sending a

complaint. For yS,j = 0 to happen, the server has to either
provide a different accepting statement ẍ′qp, than what was
initially agreed with the client (i.e., ẍ′qp 6= ẍqp) and passes
the verification, which requires finding the hash function’s
collision (in the SAP scheme), and its probability of
success is negligible. Or it makes the arbiter accept an
invalid proof, but due to the detectable abort property of
VSID, its probability of success is also negligible. Also,
as we discussed above, the probability that the adversary
makes the arbiter to recognise the client as misbehaving,
and output yC,j = 1 is negligible too. Therefore, the arbiter
outputs yS,j = 1 and yC,j = 0 with a high probability, in
both events when it is invoked by the client or server. Also,
in this case, y′C,j = y′S,j = 0 as the arbiter has already
identified a misbehaving party. So, according to Equation
1, the client is credited coin∗C

z coins for that verification,
with a high probability. Moreover, according to Equation
2, the arbiter is credited l coins for that verification, with
a high probability. The adversary may try to make them
withdraw an incorrect amount of coins, e.g., in the case
where it does not succeed in convincing the client or
arbiter. To this end, in the coin transfer phase, it has
to send a different accepting statement than what was
initially agreed with the client. But, it would succeed only
with a negligible probability, due to the security of SAP,
i.e., its binding property.

Lemma 2. If the SAP and signature scheme are secure
and the VSID scheme satisfies correctness, inputs well-
formedness, and detectable abort for auxiliary information
aux, then the RC-S-P protocol presented in Section E.1 is
secure against malicious client for aux (cf. Definition 4).

Proof. First, we consider event(
M(u∗, k, pp) = σ ∧ Q(aux, k, pp) = qj

)
∧(

(coinS,j 6=
coin∗S
z

+ o) ∨ (coinR,j 6= l ∧ y′C,j = 1)
)

This event captures the case where the client pro-
vides accepting metadata and query but makes the server
withdraw an incorrect amount of coins, i.e., coinS,j 6=
coin∗S
z + o, or makes the arbiter withdraw an incorrect

amount of coins, i.e., coinR,j 6= l, if it unnecessarily
invokes the arbiter. Since the metadata and query’s proofs
are valid, an honest server accepts them and does not
raise any dispute, so we have yC,j = 0. The client could
make the server withdraw incorrect amount of coins, if
it manages to either convince the arbiter, in phase 7, that
the server has misbehaved, i.e., makes the arbiter output
yS,j = 1, or submit to the contract an accepting statement
ẍ′cp other than what was agreed at the initiation phase,
i.e., ẍcp, in phase 8, or send a message on the server’s
behalf to invoke the arbiter unnecessarily. However, it
cannot falsely accuse the server of misbehaviour, as due
to the security of SAP (i.e., the binding property) it cannot
convince the arbiter to accept different decryption key and
pads’ detail, by providing a different accepting statement
ẍ′qp (where ẍ′qp 6= ẍqp), than what was initially agreed with
the server, except with negligible probability. This ensures
the arbiter is given the honest server’s messages, with a
high probability. So, with a high probability yS,j = 0.
On the other hand, if the adversary provides a valid



statement, i.e., ẍqp, then due to the correctness of VSID,
algorithm VSID.identify(·) outputs Ij = ⊥. So, due
to the security of SAP and correctness of VSID, we
would have yC,j = yS,j = 0 with a high probability.
Moreover, due to the security of SAP, the client cannot
convince the contract to accept any statement ẍ′cp other
than what was initially agreed between the client and
server (i.e., ẍ′cp 6= ẍcp), except with negligible probability.
Also, it holds that y′S,j = 0 because an honest server never
invokes the arbiter when the client’s messages are well-
structured and due to the signature’s unforgeability, the
client cannot send a signed message on the server’s behalf
to unnecessarily invoke the arbiter. According to RC-S-P
protocol, the total coins the server should receive after z
verifications is coin∗S + o · (z − yS)− l · (yS + y′S). Since
we focus on the j-th verification, the amount of coins that
should be credited to the server for the j-th verification is

coinS,j =
coin∗S
z

+ o · (1− yS,j)− l · (yS,j + y′S,j) (3)

As shown above, the following holds yS,j = y′S,j = 0,
which means, according to Equation 3, the server is
credited coin∗S

z + o coins for the j-th verification, with a
high probability. Furthermore, if the adversary invokes the
arbiter, the arbiter with a high probability outputs Ij = ⊥
which yields y′C,j = 1. Also, as stated above, y′S,j = 0.
Hence, according to Equation 2, the arbiter for the j-
th verification is credited l coins, if it is unnecessarily
invoked. As previously stated, due to the security of SAP,
the client cannot make the arbiter withdraw incorrect
amounts of coin by changing the payment parameters and
persuading the contract to accept any statement ẍ′cp other
than what was agreed initially between the client and
server, except with negligible probability. We now turn
our attention to(

M(u∗, k, pp) 6= σ ∧ a = 1
)

that captures the case where the server accepts an ill-
formed metadata. However, due to inputs well-formedness
of VSID, the probability that event happens is negligible.
So, with a high probability a = 0. Note, in the case where
a = 0, the server does not raise any dispute, instead it
avoids serving the client. Next, we move on to(

Q(aux, k, pp) 6= qj

)
∧(

bj = 1 ∨ yC,j = 0 ∨ coinS,j 6=
coin∗S
z

+o ∨ coinR,j 6= l
)

This event considers the case where the client provides
an invalid query, but either convinces the server or arbiter
to accept it, or makes the server or arbiter withdraw
an incorrect amount of coins, i.e., coinS,j 6= coin∗S

z + o
or coinR,j 6= l respectively. Nevertheless, due to inputs
well-formedness of VSID, the probability that the server
outputs bj = 1 in this case is negligible. When the server
rejects the query and raises a dispute, the client may try to
convince the arbiter and make it output yC,j = 0, e.g., by
sending a complaint. However, for the adversary to win,
either

1) it has to provide a different accepting statement ẍ′qp,
than what was initially agreed with the server (i.e.,

ẍ′qp 6= ẍqp) and passes the verification. Due to the se-
curity of SAP, its probability of success is negligible.
Or,

2) it has to make the arbiter accept an invalid query,
i.e., makes the arbiter output yC,j = 0. Due to the
detectable abort property of VSID, its probability of
success is negligible too.

Therefore, with a high probability, we have yC,j = 1.
Also, as discussed above (due to the security of SAP), the
client cannot make the arbiter recognise the honest server
as a misbehaving party with a probability significantly
greater than negligible. That means with a high probability
yS,j = 0. Furthermore, as we already discussed, since the
arbiter has identified a misbehaving party, the following
holds y′C,j = y′S,j = 0. Hence, according to Equation 3
the server is credited coin∗S

z + o coins for this verification.
Also, the arbiter is credited l coins, according to Equation
2. Note that the adversary may still try to make them
withdraw an incorrect amount of coins (e.g., if the adver-
sary does not succeed in convincing the server or arbiter).
To this end, at the coin transfer phase, it has to send
a different accepting statement than what was initially
agreed with the server. However, due to the security of
SAP (i.e., binding property), its success probability is
negligible.

Prior to proving RC-S-P’s privacy, we provide a
lemma that will be used in the privacy’s proof. Informally,
the lemma states that encoded coins leaks no information
about the actual amount of coins (o, l), agreed between
the client and server.

Lemma 3. Let β $← {0, 1}, price list be {(o0, l0), (o1, l1)},
and encoded coin amounts be coin∗C = z ·(Max(oβ, o1−β)
+Max(lβ, l1−β)) and coin∗S = z · (Max(lβ, l1−β)). Then,
given the price list, z, coin∗C, and coin∗S , an adversary A
cannot tell the value of β with a probability significantly
greater than 1

2 (where the probability is taken over the
choice of β and the randomness of A).

Proof. As it is evident, the list and z contains no infor-
mation about β. Also, since z is a public value, it holds
that coin′∗C =

coin∗C
z = Max(oβ, o1−β) + Max(lβ, l1−β).

It is not hard to see coin′∗C is a function of maximum
value of (o0, o1), and maximum value of (l0, l1). It is also
independent of β. Therefore (given the list, z and coin′∗C )
the adversary learns nothing about β, unless it guesses the
value, with success probability 1

2 . The same also holds for
coin∗S .

Lemma 4. If SAP is secure and the symmetric-key encryp-
tion scheme is IND-CPA secure, then the RC-S-P protocol
presented in Section E.1 preserves privacy for auxiliary
information aux, (cf. Definition 5).

Proof. We start with case 1, i.e., the privacy of service
input. Due to the privacy property of SAP, that stems
from the hiding property of the commitment scheme,
given the commitments gqp and gcp, (that are stored in
the blockchain as a result of running SAP) the adversary
learns no information about the committed values (e.g.,
o, l, padπ, padq, and k̄), except with a negligible proba-
bility. Also, given price list pl, encoded coins coin∗C =
z · (omax + lmax) and coin∗S = z · lmax, the adversary



learns nothing about the actual price that was agreed
between the server and client, (o, l), for each verification,
due to Lemma 3. Next we analyse the privacy of padded
encrypted query vector c∗. For the sake of simplicity, we
focus on q∗j ∈ c∗j ∈ c∗, that is a padded encrypted query
vector for j-th verification. Let qj,0 and qj,1 be query
vectors, for j-th verification, related to the service inputs
u0 and u1 that are picked by the adversary according to
Definition 5 which lets the environment pick β $← {0, 1}.
Also, let {qj,0, ..., qj,m̄} be a list of all queries of different
sizes. In the experiment, if qj,β is only encrypted (but
not padded), then given the ciphertext, due to semantical
security of the encryption, an adversary cannot tell if the
ciphertext corresponds to qj,0 or qj,1 (accordingly to u0 or
u1) with probability significantly greater than 1

2 +negl(λ),
under the assumption that the size of qj,β is equal to the
size of largest query size 8, i.e., Max(|qj,0|, ..., |qj,m̄|) =
|qj,β|. The above assumption is relaxed with the use of
a pad; as each encrypted query is padded to the queries’
maximum size, i.e., Max(|qj,0|, ..., |qj,m̄|), the adversary
cannot tell with a probability greater than 1

2+negl(λ) if the
padded encrypted proof corresponds to qj,0 or qj,1, as the
padded encrypted query always has the same size and the
pad values are picked from the same range as the encryp-
tion’s ciphertext are defined. The same argument holds for
w∗q

j
∈ c∗j ∈ c∗. Next we analyse the privacy of padded

encrypted proof vector π∗. The argument is similar to the
one presented above, however, we provide it for the sake
of completeness. We focus on an element of the vector,
π∗j ∈ π∗, that is a padded encrypted proof for j-th veri-
fication. Let πj,0 and πj,1 be proofs, for j-th verification,
related to the service inputs u0 and u1, where the inputs
are picked by the adversary, w.r.t. Definition 5 in which
the environment picks β

$← {0, 1}. Let {πj,0, ..., πj,m̄}
be proof list including all proofs of different sizes. If we
assume πj,β is only encrypted, then given the ciphertext,
due to semantical security of the encryption, an adversary
cannot tell if the ciphertext corresponds to πj,0 or πj,1
(accordingly to u0 or u1) with a probability significantly
greater than 1

2+negl(λ), if Max(|πj,0|, ..., |πj,m̄|) = |πj,β|.
However, the assumption is relaxed with the use of a
pad. In particular, since each encrypted proof is padded
to the proofs’ maximum size, the adversary cannot tell
with a probability greater than 1

2 + negl(λ) if the padded
encrypted proof corresponds to πj,0 or πj,1. Also, since
the value of a is independent of u0 or u1, and only
depends on whether the metadata is well-formed, it leaks
nothing about the service input uβ , β, the query-proof pair
and service proof. Thus (given c∗, coin∗S , coin

∗
C, gcp, gqp,

π∗, pl, and a) the probability that the adversary can tell
the value of β is at most 1

2 + negl(λ), due to IND-CPA
security of the symmetric-key encryption scheme.

Now we move on to case 2, i.e., the privacy of
proof’s status. Recall that in the experiment, an invalid
query-proof pair is generated with probability Pr0,j and
a valid query-proof pair is generated with probability
Pr1,j . As stated above, each encoded query-proof pair
c∗j ∈ c∗ has a fixed size and contains random ele-
ments of U , i.e., they are uniformly random elements
in the symmetric-key encryption scheme’s output range.

8. The assumption that all queries have the same size is subsumed under the
above assumption.

Also, it is assumed that for each j-th verification, an
encoded query-proof is always provided to the contract.
Therefore, each encoded pair leaks nothing, not even
the query’s status to the adversary (due to the use of
padding and IND-CPA security of the encryption). So,
given only a vector of c∗j (i.e., c∗) it can learn a query-
proof’s status with probability at most Pr′+µ(λ), where
Pr′ := Max{Pr0,1, P r1,1, ..., P r0,z, P r1,z}. On the other
hand, for each j-th verification, an encoded service proof
π∗j ∈ π∗ is always provided to the contract, regardless of
the query’s status. As stated above, each π∗j has a fixed
size and contains random element of U too. As we showed
above, gcp, gqp, pl, and a leak no information about the
service input, except with a negligible probability, µ(λ).
They are also independent of the query-proof pair and
service proof, so they leak no information about the pair
and service proof too. So, given c∗, coin∗S , coin

∗
C, gcp, gqp,

π∗, pl, and a, an adversary has to learn a proof’s status
from the aforementioned values or by correctly guessing
a query’s status. In other words, its probability of learning
a proof’ status is at most Pr′ + µ(λ).

F. Proof of Theorem 1

This section contains the security analysis of the RC-
PoR-P consrtuction presented in Section 9. First, we prove
the security of the PoR scheme in Subsection 9.1 in the
following lemma.

Lemma 5. Let ε be non-negligible in the security para-
menter λ. Then, the PoR scheme presented in Subsection
9.1 is ε-sound w.r.t. Definition 8, if the underlying Merkle
tree and pseudorandom function PRF are secure.

Proof (sketch). As stated above, the proposed PoR differs
from the standard Merkle tree-based PoR by a couple
of perspectives. However, the changes do not affect the
security and soundness of the proposed PoR. Its security
proof is similar to the existing Merkle tree-based PoR
schemes, e.g., [30], [34], [43]. Alternatively, our protocol
can be proven based on the security analysis of the PoR
schemes that use MACs or BLS signatures, e.g., [48].
In this case, the extractor design (in the Merkle tree-
based PoR) would be simpler because it does not need
to extract blocks from a linear combination of MACs
or signatures, as the blocks are included in proofs, i.e.,
they are part of the Merkle tree proofs. Intuitively, in
either case, the extractor interacts with any adversarial
prover that passes a non-negligible ε fraction of audits.
It initialises an empty array. Then it challenges a subset
of file blocks and asks the prover (server) to generate a
proof. If the received proof passes the verification, then it
adds the related block (in the proof) to the array. It then
rewinds the prover and challenges a fresh set of blocks,
and repeats the process many times. Since the prover has
a good chance of passing the audit, it is easy to show
that the extractor can eventually extract a large fraction
of the entire file, as it is shown in [48]. In particular, the
following hold:

1) Due to the security of the Merkle tree, which relies on
the collision resistance of the utlized hash function,
whenever the extractor is convinced of a prover’s
proof of membership, it is ascertained that the re-
trieved values are the valid and correct file blocks.



2) Due to the security of the pseudorandom function,
the challenges qi =

(
PRF(k̂, i) mod m

)
+ 1, for i =

1, . . . , φ are not predictable by S before the time that
the server receives the PRF key k̂ by C.

After collecting a sufficient number of blocks, the extrac-
tor can use the error-correcting code to decode and recover
the entire file blocks, given the retrieved ones.

By applying Lemma 5, we prove the main theorem
of Section 9. Note that, given the value of a counter,
e.g., yS , we can easily parse it as a binary vector, e.g.
yS,1, ..., yS,z. This is because each counter is maintained
and incremented by the smart contract, hence the
counter’s history/log can be retrieved from the blockchain.

Theorem 1. The RC-PoR-P scheme with functions
FPoR,MPoR, EPoR, DPoR, QPoR described in Subsections 9.1
and 9.2 is secure (cf. Definition 6), if the underlying
Merkle tree, pseudorandom function, commitment scheme,
digital signature scheme are secure, and the underlying
symmetric-key encryption scheme is IND-CPA secure.

Proof. We show that the RC-PoR-P scheme meets all
security properties defined in Section 7 by proving a series
of claims. First, we recall that coinP,j denotes the coins
that are credited to the party P ∈ {C,S,R} for the j-
th verification and hj is a value included in the decoded
proof πj that should match FPoR(u

∗, k̂j, pp). In addition,
yC,j = 1 (resp. yS,j = 1) if C (resp. S) misbehaved in
the j-th billing cycle, and y′C,j = 1 (resp. y′S,j = 1) if C
(resp. S) has provided a complaint that does not allow R
to identify a misbehaved party in the j-th verification .

Claim 1. The RC-PoR-P scheme with functions
FPoR,MPoR, EPoR, DPoR, QPoR is secure against a malicious
server (cf. Definition 3), if the SAP and signature scheme
are secure, and the PoR scheme satisfies correctness and
soundness.

Proof of Claim 1. First, we consider the event(
FPoR(u

∗, k̂j, pp) = hj ∧
(

(coinC,j 6= coin∗C
z − o) ∨

(coinR,j 6= l ∧ y′S,j = 1)
))

that captures the case where
the server provides an accepting proof, but one of the
following happen:

1) an honest client withdraws an incorrect amount of
coins, i.e., coinC,j 6= coin∗C

z − o, or
2) the arbiter withdraws an incorrect amount of coins,

i.e., coinR,j 6= l, if the server unnecessarily invokes
the arbiter, i.e., y′S,j = 1

Because the proof is valid, an honest client accepts it
and does not raise a dispute. However, the server could
make the client withdraw incorrect amount of coins, if
it manages to (i) convince the arbiter that the client has
misbehaved, by making the arbiter output yC,j = 1 through
the dispute resolution phase, or (ii) submit an accepting
statement ẍ′cp to SC which is other than what was agreed
in the initiation phase, i.e., ẍ′cp 6= ẍcp, so it can change
the payments’ parameters, or (iii) send a message on the
client’s behalf to unnecessarily invoke the arbiter. We
argue that in any of the above three cases, the server
cannot falsely accuse the client of misbehaviour.

First, due to the binding property of the SAP com-
mitment scheme, S cannot convince the arbiter to accept

a different decryption key (that will be used to decrypt
queries) other than what was agreed with the client in
the SAP initiation phase. In particular, it cannot persuade
the arbiter to accept ẍ′qp, where ẍ′qp 6= ẍqp, except with
negl(λ) probability. This ensures that the honest client’s
queries are accessed by the arbiter with a high probability.
Furthermore, if the adversary provides a valid statement,
i.e., ẍqp, then due to the correctness of the PoR and query-
checking process (specified in step 5b), no one is identified
as a misbehaving party in the dispute resolution phase, i.e.,
so we would have Ij = ⊥. Therefore, due to the bind-
ing property of SAP and correctness of PoR and query-
checking process, the following holds yC,j = yS,j = 0.

Moreover, due to the binding property of the SAP
commitment scheme, the server cannot change the pay-
ment parameters by convincing the contract to accept any
statement ẍ′cp other than what was agreed initially between
the client and server, except with negl(λ) probability.
Also, due to the EUF-CMA security of the underlying
digital signature scheme, the adversary cannot send a
message on behalf of the client to unnecessarily invoke
the arbiter and make it output y′C,j = 1, except with
negl(λ) probability; so with high probability, it holds
that y′C,j = 0. Recall that by the description of the
coin transfer phase, in RC-PoR-P or RC-S-P protocol,
according to Equation (1), the amount of coins that
should be credited to the client for the j-th verification
is coinC,j =

coin∗C
z − o · (1 − yS,j) − l · (yC,j + y′C,j).

Since it holds that yC,j = yS,j = y′C,j = 0, the client
is credited coin∗C

z − o coins for the j-th verification, with
high probability.

As stated above, if the adversary invokes the arbiter,
the arbiter with a high probability outputs Ij = ⊥ that
yields y′S,j = 1. In RC-PoR-P or RC-S-P protocol, accord-
ing to Equation 2, the amount of coins the arbiter should
be credited for j-th verification is coinR,j = l · (yS,j +
yC,j +y′S,j +y′C,j). As shown above yC,j = yS,j = y′C,j = 0
and y′S,j = 1, which means l coins is credited to the arbiter
for the j-th verification if it is unnecessarily invoked by
the adversary. In this case, for the server to make the
arbiter withdraw other than this amount, it has to send
to SC (in the coin transfer phase) an accepting statement
ẍ′cp other than what was agreed in the initiation phase,
i.e., ẍ′cp 6= ẍcp, so it can change the payments’ parame-
ters. However, as stated above, it cannot succeed with a
probability significantly greater than negl(λ) due to the
binding property of the underlying commitment scheme.

We now study the event
((
FPoR(u

∗, k̂j, pp) 6= hj

)
∧(

dj = 1 ∨ yS,j = 0 ∨ coinC,j 6= coin∗C
z ∨ coinR,j 6=

l
))

, which captures the case where the server provides
an invalid proof and causes at least one of the following
to happen:

1) convinces the client/arbiter to accept the proof, or
2) persuades the arbiter to consider it as honest, i.e.,

keep yS,j = 0, or
3) makes the client or arbiter withdraw incorrect amount

of coins, i.e., coinC,j 6= coin∗C
z or coinR,j 6= l

respectively.
By the security of the underlying pseudorandom func-

tion and the Merkle tree, Lemma 5 holds, i.e., the tree-
based PoR building block is sound. This implies that (i)



the probability that the adversary can convince an honest
client/arbiter to accept invalid proof is negl(λ) and (ii) the
file is extractable within a polynomial number of interac-
tions with an ε-admissible adversary, where ε is some non-
negligible function. Therefore, the client outputs dj = 0
with a high probability and raises a dispute.

Furthermore, the server may try to convince the arbiter
that the client has misbehaved, and output yC,j = 1; if it
succeeds, then the arbiter would consider the server as
honest. Therefore, it would keep yS,j = 0 (according to
the protocol’s description). In this case, according to RC-
PoR-P protocol, if the honest client sends a complaint,
its complaint (for the j-th verification) would not be
processed by the arbiter, because the arbiter has already
detected a misbehaving party, i.e., the client in this case.
This allows yS,j to remain 0. Nonetheless, as we argued in
the study of the previous event, due to the binding prop-
erty of the SAP commitment scheme and the EUF-CMA
security of the digital signature scheme, the probability
that the adversary makes the arbiter recognise the client
as misbehaving is negl(λ).

By the above two paragraphs, with high probability the
honest client will raise a dispute and the malicious server
cannot convince the arbiter that the client has misbehaved.
This means that, with high probability, yS,j = 1 and yC,j =
0, after the arbiter is invoked by the client or server.

In addition, it holds that y′C,j = 0 with a high probabil-
ity, as the honest client will not unnecessarily invoke the
arbiter and the server cannot send a message to the arbiter
(to unnecessarily invoke it) on behalf of the client (to make
the arbiter set y′C,j = 1), due to the digital signature’s
EUF-CMA security. Also, it holds that y′S,j = 0, because
if the malicious server unnecessarily invokes the arbiter
after it is detected, then the arbiter discards its complaint
without carrying out any investigation/computation as a
malicious party (i.e., the server in this case) has already
been identified. Moreover, due to the binding property
of the SAP commitment scheme, the probability that the
adversary succeeds in changing the payment parameters
to make the client or arbiter withdraw an incorrect amount
of coins is negl(λ) too. So, according to Equations (1) and
(2) the client and arbiter are credited coin∗C

z and l coins for
the j-th verification respectively. Also, due to the liveness
of the blockchain and the security and correctness of the
smart contract, the second security property of SAP holds,
i.e., after the parties agree on the statement, an honest
party can almost always prove to the verifier that it has
the agreement. Thus, the adversary cannot block an honest
client’s messages, “pay” and ẍcp, to the contract in the
coin transfer phase. a

Claim 2. The RC-PoR-P scheme with functions
FPoR,MPoR, EPoR, DPoR, QPoR is secure against a malicious
client (cf. Definition 4), if SAP and signature scheme are
secure and the Merkle tree scheme is secure.

Proof of Claim 2. We first consider the event((
MPoR(u

∗, k, pp) = σ ∧ QPoR(aux, k, pp) = k̂j

)
∧(

(coinS,j 6= coin∗S
z + o) ∨ (coinR,j 6= l ∧ y′C,j = 1)

))
.

It captures the case where the client provides accepting
metadata (i.e., a Merkle tree and its root) and query but
one the following happen:

1) the server withdraws incorrect amount of coins, i.e.,
coinS,j 6= coin∗S

z + o, or
2) the arbiter withdraw incorrect amount of coins, i.e.

coinR,j 6= l, when the client unnecessarily invokes
the arbiter.

Since the metadata and queries are valid and correctly
structured, an honest server accepts them and does not
raise a dispute, so yC,j = 0. However, the client could
make the server withdraw an incorrect amount of coins
if it manages to (i) persuade the arbiter to recognise
the server as misbehaving, i.e., makes the arbiter output
yS,j = 1, or (ii) submit to the contract an accepting
statement ẍ′cp other than what was agreed at the initiation
phase, i.e., ẍcp, or (iii) send a message on the server’s
behalf to unnecessarily invoke the arbiter. Nevertheless,
it cannot falsely accuse the server of misbehaviour, as,
due to the binding property of SAP commitment scheme,
it cannot convince the arbiter to accept different de-
cryption key and pads’ details by providing a different
accepting statement ẍ′qp (where ẍ′qp 6= ẍqp), than what
was initially agreed with the server, except with negl(λ)
probability. This ensures that the arbiter is given the honest
server’s messages, with high probability. Therefore, with
high probability, (i) and (ii) cannot happen, implying that
yS,j = 0. In addition, (iii) may happen only with negl(λ)
probability, as due to the signature scheme’s EUF-CMA
security, the client cannot send a message on the server’s
behalf to unnecessarily invoke the arbiter.

Moreover, it holds that y′S,j = 0 because (a) the
honest server never invokes the arbiter when the client’s
queries are well-structured and (b) due to the signature
scheme’s EUF-CMA security, the client cannot send a
message on the server’s behalf to unnecessarily invoke
the arbiter. Note that, due to the binding property of the
SAP commitment scheme, the client cannot change the
payment parameters by convincing the contract to accept
any statement ẍ′cp other than what was initially agreed
between the client and server (i.e., ẍ′cp 6= ẍcp) except
with a negligible probability, negl(λ). Recall, according
to Equation 3, in RC-PoR-P or RC-S-P protocol, the total
coins the server should be credited for j-th verification is
coinS,j =

coin∗S
z +o ·(1−yS,j)−l ·(yS,j+y′S,j). Therefore,

given yS,j = y′S,j = 0, the server is credited coin∗S
z + o

coins for the j-th verification, with high probability.
Furthermore, as stated above, if the adversary invokes

the arbiter, the arbiter with high probability outputs Ij =
⊥ which yields y′C,j = 1. According to Equation 2, the
amount of coins the arbiter should be credited for j-th
verification is coinR,j = l · (yS,j + yC,j + y′S,j + y′C,j). As
shown above yC,j = yS,j = y′S,j = 0 and y′C,j = 1, which
implies that with high probability, l coins are credited to
the arbiter for the j-th verification if it is unnecessarily
invoked by the adversary.

We now turn our attention to
(
MPoR(u

∗, k, pp) 6=

σ ∧ a = 1
)

which captures the case where the server
accepts ill-formed metadata. However, due to the security
of the Merkle tree scheme that relies on the collision
resistance of the utlized hash function, the probability
this event happens is negl(λ); therefore, with a high
probability a = 0. In this case, the server does not raise
any dispute, instead it avoids serving the client.



Next, we move on to
(

(QPoR(aux, k, pp) 6= k̂j)∧ (bj =

1∨yC,j = 0∨coinS,j 6= coin∗S
z +o∨coinR,j 6= l)

)
, i.e. the

event that considers the case where the client provides an
invalid query, and causes at least one of the following to
happen:

1) convinces the server or arbiter to accept the query,
i.e., bj = 1 or yC,j = 0, or

2) makes the server or arbiter withdraw an incorrect
amount of coins, i.e., coinS,j 6= coin∗S

z + o or
coinR,j 6= l respectively.

Due to the correctness of the query-checking process, the
probability that the server outputs bj = 1 is 0. Note that,
when the honest server rejects the query and raises a
dispute, the arbiter checks the query and sets yC,j = 1.
After that, due to RC-PoR-P design, the client cannot
make the arbiter set yC,j = 0 (unless it manages to modify
the blockchain’s content later on, but its probability of
success is negligible due to the security of blockchain).
As already stated, due to the binding property of the
SAP commitment scheme and the EUF-CMA security
of the digital signature scheme, the client cannot make
the arbiter recognise the honest server as a misbehaving
party with a probability significantly greater than negl(λ).
So, with high probability yS,j = 0. Furthermore, since
the arbiter has identified a misbehaving party, it holds
that y′C,j = y′S,j = 0. The adversary may still try to
make them withdraw incorrect amount of coins. To this
end, in the coin transfer phase, it has to send a different
accepting statement than what was initially agreed with
the server. But, due to the binding property of the SAP
commitment scheme, its success probability is negl(λ).
Hence with high probability, according to Equations 3 and
2, for yS,j = y′C,j = y′S,j = 0 and yC,j = 1, the server
and arbiter are credited coin∗S

z + o and l coins respectively
for the j-th verification. Furthermore, due to the liveness
of the blockchain and the security and correctness of the
smart contract, the second security property of SAP holds,
i.e., after the parties agree on the statement, an honest
party can almost always prove to the verifier that it has
the agreement. Thus, the adversary cannot block an honest
server’s messages, “pay” and ẍcp, to the smart contract in
the coin transfer phase. a

Claim 3. The RC-PoR-P scheme with functions
FPoR,MPoR, EPoR, DPoR, QPoR preserves privacy (cf. Defini-
tion 5), if SAP is secure and the symmetric-key encryption
scheme is IND-CPA secure.

Proof of Claim 3. First, we show that the scheme
guarantees the privacy of the service input. According
to the associated experiment, let A1 be an adversary
that given pk, F,M,E,D,Q, z, pl, outputs its choice of
challenge files, u0 and u1. Then, A1 is provided with
the vector of encrypted queries c∗, the parties encoded
coins coin∗S , coin

∗
C, the SAP commitments gcp, gqp, π∗,

the price list pl, and the sender’s decision bit a on the
verification of the parameters and the metadata validity;
given the aforementioned input, A1 attempts to guess the
challenge bit β.

Due to the hiding property of the commitment scheme,
given commitments gqp and gcp (stored in the blockchain
as a result of running SAP), the adversary learns no

information about the committed values (e.g. o, l, padπ
and k̄), except with negl(λ) probability. Moreover, given
price list pl, coin∗C and coin∗S , the adversary learns nothing
about the actual price agreed between the server and
client, i.e., (o, l), for each verification, due to Lemma 3.
Also, since each proof π∗j is encrypted with the IND-
CPA secure encryption scheme and then padded, given
π∗j the adversary cannot tell whether π∗j is associated
with u0 or with u1 with probability significantly greater
than 1

2 + negl(λ). As each c∗j is an output of IND-CPA
secure symmetric-key encryption and its size is fixed, it
leaks no information to the adversary. The value of a
is also independent of u0 or u1, and only depends on
whether the parameters and metadata are well-formed, so
it leaks nothing about the choice of input file uβ and
β ∈ {0, 1}. Overall, the adversary A1 cannot distinguish
with a probability significantly greater than 1

2 + negl(λ)
which file of its choice has been used as the server input.

Next, we show that the scheme guarantees privacy of
the service proof’s status. For adversaries A2, A3 con-
sider the experiment ExpA2,A3

priv (1λ) defined in Definition
5. Namely, A2 is initially given pk, F,M,E,D,Q, z, pl
and outputs a file u. After client-side and server-
side initiation steps have been honestly completed,
A2 acts as a client that creates potentially invalid
queries that are provided to A3 which, in turn, re-
sponds with potentially invalid proofs. For each j-th
verification, the adversary A2 or A3 produces an in-
valid query or invalid proof, respectively, with proba-
bility Pr0,j and a valid query or valid proof, respec-
tively, with probability Pr1,j . Finally, an adversary A4,
given F,M,E,D,Q, c∗, coin∗S , coin

∗
C, gcp, gqp,π

∗, pl, a is
challenged to output a proof’s verification bit dj
for some j-th verification. Intuitively, the values
Pr0,1, P r1,1, ..., P r0,z, P r1,z express the “background
knowledge” that A4 has on the behavior of A2 and A3.

We know that each encoded query c∗j ∈ c∗ is an
IND-CPA encryption of a fresh PRF key that is always
provided to the contract. So, c∗j leaks no information
(except with negl(λ) probability), not even the query’s
status to the adversary. Furthermore, each padded IND-
CPA encrypted proof π∗j leaks no information (except with
negl(λ) probability) and always contains a fixed number
of elements. Besides, due to the hiding property of the
SAP commitment scheme, the commitments gcp, gqp leak
no information about the committed values (e.g. o, l, padπ
and k̄), except with negl(λ) probability. In addition, the
client-side and server-side initiation steps are carried out
honestly in the experiment ExpA2,A3

priv (1λ), which implies
that a is always 1 and thus, it leaks no information about
the proof and query validity. Finally, pl, coin∗C and coin∗S
are generated independently and contain no information
about the query’s or proof’s status.

By the above, the input
(F,M,E,D,Q, c∗, coin∗S , coin

∗
C, gcp, gqp,π

∗, pl, a)
does not provide A4 with any more than negl(λ)
advantage compared to any background knowledge
A4 may have on the behavior of A2 and A3.
Therefore, for each j-th verification, the probability of
A4(F,M,E,D,Q, c∗, coin∗S , coin

∗
C, gcp, gqp,π

∗, pl, a)
guessing dj is maximized when A4 exploits its
background knowledge, so it is upper bounded by
max{Pr0,j, P r1,j} + negl(λ). Overall, the probability



of A4(F,M,E,D,Q, c∗, coin∗S , coin
∗
C, gcp, gqp,π

∗, pl, a)
guessing (dj, j) for some j ∈ {1, . . . , z} is upper
bounded by

max
{

max{Pr0,1, P r1,1}+ negl(λ), . . . ,

max{Pr0,z, P r1,z}+ negl(λ)
}
≤

≤max
{

max{Pr0,1, P r1,1}, . . . ,max{Pr0,z, P r1,z}
}

+

+ negl(λ) ≤
≤max

{
Pr0,1, P r1,1, . . . , P r0,z, P r1,z

}
+ negl(λ) =

=Prmax + negl(λ) ,

so the privacy of the service proof is guaranteed. a

The security of the construction follows from
Claims 1, 2, and 3.

G. A Table Summarizing RC-PoR-P Assymp-
totic Costs

TABLE 4: RC-PoR-P asymptotic complexity, of z verifications,
breakdown by parties.

Phase Party Computation Cost Communication Cost

Client-side and Server-side Init. Client O(m) O(||u∗||)
(i.e., outsourcing: 2 and 3)

Server O(m) O(1)

Client O(zφ log2(m)) O(z log2(||u
∗||))

Server O(zφ log2(m)) O(z||π∗j ||)

Arbiter O(z′ log2(m)) O(1)
The rest of phases (i.e., 4- 8)

Smart Contract O(1) -

Table 4 summarizes the RC-PoR-P’s asymptotic costs
of z verifications, breakdown by parties. In the table, φ
is the number of challenged blocks, z′ is the maximum
number of complaints the client and server send to the
arbiter, m is the number of blocks in a file, ||u∗|| is the
file bit-size, and ||π∗|| is the number of elements in the
padded encrypted proof vector.
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