

Information Retrieval

Lecture 6: Information Extraction and Bootstrapping

Computer Science Tripos Part II
Lent Term 2004

Simone Teufel

Natural Language and Information Processing (NLIP) Group

sht25@cl.cam.ac.uk

Last time

2

- Range of problems that make named entity recognition (NE) hard
- Mikheev et al's (1998) cascading NE system
- NE is the simplest kind of IE task: no relations between entities must be determined
- NIST MUC conferences pose three kinds of harder IE tasks
- Today: more of the full task (scenario templates), and on learning

- “Flattened-out” semantic representations with lexemes directly hard-wired into them
- String-based matching with type of semantic category to be found directly expressed in lexical pattern
- Problem with all string-based mechanisms: generalisation to other strings with similar semantics, and to only those
- Do generalisation by hand...
 - <Perpetrator> (APPOSITION) {blows/blew/has blown} {himself/herself} up
 - <Perpetrator> detonates
 - {blown up/detonated} by <Perpetrator>
- Manual production of patterns is time-consuming, brittle, and not portable across domains

Learning of lexico-semantic patterns (Riloff 1993)

4

- UMASS participant system in MUC-4: AutoSlog
- Lexico-semantic patterns for MUC-3 took 1500 person hours to build → knowledge engineering bottleneck
- AutoSlog achieved 98% performance of manual system; AutoSlog dictionary took 5 person hours to build
- “Template mining:”
 - Use MUC training corpus (1500 texts + human answer keys; 50% non-relevant texts) to learn contexts
 - Have human check the resulting templates (30% - 70% retained)

- 389 Patterns (“concept nodes”) with enabling syntactic conditions, e.g. active or passive:
 - kidnap-passive: <VICTIM> expected to be subject
 - kidnap-active: <PERPETRATOR> expected to be subject
- Hard and soft constraints for fillers of slots
 - Hard constraints: selectional restrictions; soft constraints: semantic preferences
- Semantic lexicon with 5436 entries (including semantic features)

Heuristics for supervised template mining (Riloff 1993) 6

- Stylistic conventions: relationship between entity and event made explicit in **first** reference to the entity
- Find key word there which triggers the pattern: *kidnap, shot,*
- Heuristics to find these trigger words
- Given: filled template plus raw text. Algorithm:
 - Find first sentence that contains slot filler
 - Suggest good conceptual anchor point (trigger word)
 - Suggest a set of enabling conditions

“the diplomat was kidnapped” + VICTIM: the diplomat

Suggest: <SUBJECT> passive-verb + trigger=kidnap

System uses 13 heuristics:

<victim> was murdered	(<subject>, passive-verb)
<perpetrator> bombed	(<subject>, active-verb)
<perpetrator> attempted to kill	(<subject> verb infinitive)
<victim> was victim	(subject auxiliary <noun>)
killed <victim>	(passive-verb <dobj>)
bombed <target>	(active-verb <dobj>)
to kill <victim>	(infinitive <dobj>)
threatened to attack <target>	(verb infinitive <dobj>)
killing <victim>	(gerund <dobj>)
fatality was <victim>	(noun auxiliary <dobj>)
bomb against <target>	noun prep <np>
killed with <instrument>	active-verb prep <np>
was aimed at <target>	passive-verb prep <np>

Riloff 1993: a good concept node

8

ID: DEV-MUC4-0657

Slot Filler: "public buildings"

Sentence: IN LA OROYA, JUNIN DEPARTMENT, IN THE CENTRAL PERUVIAN MOUNTAIN RANGE, PUBLIC BUILDINGS WERE BOMBED AND A CAR-BOMB WAS DETONATED.

CONCEPT NODE

Name: target-subject-passive-verb-bombed
Trigger: bombed
Variable slots: (target (*S* 1))
Constraints: (class phys-target *S*)
Constant slots: (type bombing)
Enabling Conditions: ((passive))

ID: DEV-MUC4-0071

Slot Filler: "guerrillas

Sentence: THE SALVADORAN GUERRILLAS ON MAR_12_89, TODAY, THREATENED TO MURDER INDIVIDUALS INVOLVED IN THE MAR_19_88 PRESIDENTIAL ELECTIONS IF THEY DO NOT RESIGN FROM THEIR POSTS.

CONCEPT NODE

Name: perpetrator-subject-verb-infinitive-threatened-to-murder

Trigger: murder

Variable slots: (perpetrator (*S* 1))

Constraints: (class perpetrator *S*)

Constant slots: (type perpetrator)

Enabling Conditions: ((active) (trigger-preceded-by? 'to 'threatened))

Riloff 1993: a bad concept node

10

ID: DEV-MUC4-1192

Slot Filler: "gilberto molasco

Sentence: THEY TOOK 2-YEAR-OLD GILBERTO MOLASCO, SON OF PATRICIO RODRIGUEZ, AND 17-OLD ANDRES ALGUETA, SON OF EMIMESTO ARGUETA.

CONCEPT NODE

Name: victim-active-verb-dobj-took

Trigger: took

Variable slots: (victim (*DOBJ* 1))

Constraints: (class victim *DOBJ*)

Constant slots: (type kidnapping)

Enabling Conditions: ((active))

System/Test Set	Recall	Prec	F-measure
MUC-4/TST3	46	56	50.5
AutoSlog/TST3	43	56	48.7
MUC-4/TST4	44	40	41.9
AutoSlog/TST4	39	45	41.8

- 5 hours of sifting through AutoSlog's patterns
- Porting to new domain in less than 10 hours of human interaction
- But: creation of training corpus ignored in this calculation

Agichtein, Gravano (2000): Snowball

12

- Find locations of headquarters of a company and the corresponding company name (< o, l > tuples)

Organisation	Location of Headquarters
Microsoft	Redmond
Exxon	Irving
IBM	Armonk
Boeing	Seattle
Intel	Santa Clara

“Computer servers at Microsoft's headquarters in Redmond”

- Use minimal human interaction (handful of positive examples)
 - no manually crafted patterns
 - no large annotated corpus (IMass system at MUC-6)
- Automatically learn extraction patterns
- Less important to find every occurrence of patterns; only need to fill table with confidence



Agichtein, Gravano (2000): Overall process

14

- Start from table containing some $< o, l >$ tuples (which must exist in document collection)
- Perform NE (advantage over prior system DIPRE (Brin 98))
- System searches for occurrences of the example $< o, l >$ tuples in documents
- System learns extraction patterns from these example contexts, e.g.:

$<\text{ORGANIZATION}>$'s headquarters in $<\text{LOCATION}>$
 $<\text{LOCATION}>$ -based $<\text{ORGANIZATION}>$

- Evaluate patterns; use best ones to find new $< o, l >$ tuples
- Evaluate new tuples, choose most reliable ones as new seed tuples
- Iteratively repeat the process

A SNOWBALL pattern is a 5-tuple $\langle \text{left}, \text{tag1}, \text{middle}, \text{tag2}, \text{right} \rangle$

left	Tag1	middle	Tag2	right
The $\langle \{ \langle \text{the}, 0.2 \rangle \},$	Irving LOCATION	-based $\{ \langle \text{-, 0.5} \rangle \langle \text{based, 0.5} \rangle \},$	Exxon Corporation ORGANIZATION	$\{ \} >$

- Associate term weights as a function of frequency of term in context
- Normalize each vector so that norm is 1; then multiply with weights $W_{left}, W_{right}, W_{mid}$.
- Degree of match between two patterns $t_p = \langle l_p, t_1, m_p, t_2, r_p \rangle$ and $t_s = \langle l_s, t'_1, m_s, t'_2, r_s \rangle$:

$$\text{match}(t_p, t_s) = l_p l_s + m_p m_s + r_p r_s \text{ (if tags match, 0 otherwise)}$$

Agichtein, Gravano (2000): Pattern generation

16

- Similar contexts form a pattern
 - Cluster vectors using a clustering algorithm (minimum similarity threshold τ_{sim})
 - Vectors represented as cluster centroids $\bar{l}_s, \bar{m}_s, \bar{r}_s$
- Generalised Snowball pattern defined via centroids:

$$\langle \bar{l}_s, \text{tag}_1, \bar{m}_s, \text{tag}_2, \bar{r}_s \rangle$$

- Remember for each Generalised Snowball pattern
 - All contexts it came from
 - The distances of contexts from centroid

- We want **productive** and **reliable** patterns (and tuples produced by these)
 - productive but not reliable:

$$\langle \{ \}, \text{ORGANIZATION}, \{ \langle \text{"",} , 1 \rangle \}, \text{LOCATION}, \{ \} \rangle$$

“Intel, Santa Clara, announced that...”

“Invest in Microsoft, New York-based analyst Jane Smith said...”
 - reliable but not productive:

$$\langle \{ \}, \text{ORGANIZATION}, \{ \langle \text{whose}, 0.1 \rangle, \langle \text{headquarter}, 0.4 \rangle, \langle \text{is}, 0.1 \rangle, \langle \text{located}, 0.3 \rangle, \langle \text{in}, 0.09 \rangle, \langle \text{nearby}, 0.01 \rangle \}, \text{LOCATION}, \{ \} \rangle$$

“Exxon, whose headquarter is located in nearby Irving...”
- Eliminate patterns supported by less than $\tau_{sup} < o, l >$ tuples

Agichtein, Gravano (2000): Pattern reliability

18

$$P = \langle \{ \}, \text{ORGANIZATION}, \{ \langle \text{"",} , 1 \rangle \}, \text{LOCATION}, \{ \} \rangle$$

- Pattern P matches in three contexts (returns three tuples):
 - Exxon, Irving, said
 - Intel, Santa Clara, cut prices
 - invest in Microsoft, New York-based analyst Jane Smith said
- We know that
 - $\langle \text{Exxon, Irving} \rangle$ and $\langle \text{Intel, Santa Clara} \rangle$ are correct
 - $\langle \text{Microsoft, New York} \rangle$ cannot be correct (as $\langle \text{Microsoft, Redmont} \rangle$ is in our table)
- If P predicts tuple $t = \langle o, l \rangle$ and there is already tuple $t' = \langle o, l' \rangle$ with high confidence, then: if $l = l' \rightarrow P.\text{positive}++$, otherwise $P.\text{negative}++$ (uniqueness constraints: organization is key)
- $Conf(P) = \frac{P.\text{positive}}{P.\text{positive} + P.\text{negative}} = \frac{2}{2+1}$ (range [0..1])

- Consider productivity, not just reliability:

$$Conf_{RlogF}(P) = Conf(P) \log_2(P.\text{positive})$$

- Normalized $Conf_{RlogFNorm}(P)$:

$$Conf_{RlogFNorm}(P) = \frac{Conf_{RlogF}(P)}{\max_{i \in \mathcal{P}} Conf(i)}$$

(this brings $Conf_{RlogFNorm}(P)$ into range [0...1])

- $\max_{i \in \mathcal{P}} Conf(i)$ is the largest confidence value seen with any pattern
- $Conf_{RlogFNorm}(P)$ is a rough estimate of the probability of pattern P producing a valid tuple

Agichtein, Gravano (2000): Tuple evaluation

20

- Confidence of a tuple T is probability that at least one valid tuple is produced:

$$Conf(T) = 1 - \prod_{i=0}^{|P|} (1 - Conf(P_i) \text{Match}(C_i, P_i))$$

- Reason: probability of every pattern matched incorrectly:

$$Prob(T \text{ is NOT valid}) = \prod_{i=0}^{|P|} (1 - P(i))$$

$P = \{P_i\}$ is the set of patterns that generated T

C_i is the context associated with an occurrence of T

$\text{Match}(C_i, P_i)$ is goodness of match between P_i and C_i

- Then reset confidence of patterns:

$$Conf(P) = Conf_{new}(P)W_{updt} + Conf_{old}(P)(1 - W_{updt})$$

rences more? Here: $W_{updt} = 0.5$

- Throw away tuples with confidence $< \tau_t$

Agichtein, Gravano (2000): Results

22

Conf	middle	right
1	<based, .53>, <in, .53>	<"", .01>
.69	<"", .42>, <s, .42>, <headquarters, .42>, <in, .42>	
.61	<(.93>	<), .12>

- Use training corpus to set parameters: $\tau_{sim}, \tau_t, \tau_{sup}, I_{max}, W_{left}, W_{right}, W_{middle}$
- Only input: 5 $< o, l >$ tuples
- Punctuation matters: performance decreases when punctuation is removed
- Recall b/w .78 and .87 ($\tau_{sup} > 5$); precision .90 ($\tau_{sup} > > 4$)
- High precision possible (.96 with $\tau_t = .8$); remaining problems come from NE recognition
- Pattern evaluation step responsible for most improvement over DIPRE

- Possible to learn simple relations from positive examples (Snowball)
- Possible to learn more diverse relations from annotated training corpus (Riloff)
- Even modest performance can be useful
 - Later manual verification
 - In circumstances where there would be no time to review source documents, so incomplete extracted information is better than none

Summary: IE Performance

24

Current methods perform well if

- Information to be extracted is expressed directly (no complex inference is required)
- Information is predominantly expressed in a relatively small number of forms
- Information is expressed locally within the text

Difference between IE and QA (next time):

- IE is domain dependent, open-domain QA is not

- Ellen Riloff, Automatically constructing a dictionary for information extraction tasks. In Proc. 11th Ann. Conference of Artificial Intelligence, p 811-816, 1993
- Eugene Agichtein, Luis Gravano: Snowball: Extracting Relations from Large Plain-Text Collections, Proceedings of the Fifth ACM International Conference on Digital Libraries, 2000