

Information Retrieval

Lecture 3: Evaluation methodology

Computer Science Tripos Part II
Lent Term 2004

Simone Teufel
Natural Language and Information Processing (NLIP) Group
sht25@cl.cam.ac.uk

Today

2

1. General concepts in IR evaluation
2. The TREC competitions
3. IR evaluation metrics

- IR system
 - in: a query
 - out: relevant documents
- Evaluation of IR systems
- Goal: predict future from past experience
- Reasons why IR evaluation is hard:
 - Large variation in human information needs and queries
 - The precise contributions of each component are hard to entangle:
 - * Collection coverage
 - * Document indexing
 - * Query formulation
 - * Matching algorithm

Evaluation: “the laboratory model”

4

- Test only “system parameters”
 - Index language devices for description and search
 - Methods of term choice for documents
 - Matching algorithm
 - Type of user interface
- Ignore environment variables
 - Properties of documents → use many documents
 - Properties of users → use many queries

- In 60s and 70s, very small test collections, arbitrarily different, one per project
 - in 60s: 35 queries on 82 documents
 - in 1990: still only 35 queries on 2000 documents
- not always kept test and training apart as so many environment factors were tested
- TREC-3: 742,000 documents
- Large test collections are needed
 - to capture user variation
 - to support claims of statistical significance in results
 - to demonstrate that performance levels and differences hold as document file sizes grow → commercial credibility
- Practical difficulties in obtaining data; non-balanced nature of the collection

Today's test collections

6

A test collection consists of:

- Document set:
 - Large, in order to reflect diversity of subject matter, literary style, noise such as spelling errors
- Queries/Topics
 - short description of information need
 - TREC “topics”: longer description detailing relevance criteria
 - “frozen” → reusable
- Relevance judgements
 - binary
 - done by same person who created the query

- Relevance is inherently subjective, so we need humans to do them
- Problem: relevance is situational
 - Information needs are unique to a particular person at a particular time
 - Judgements will differ across judges and for the same judge at different times
 - need extensive sampling to counteract natural variation: large populations of users and information needs
- Guidelines given to assessors, in order to define relevance as a reasonably objective property of the document–query pair
 - not fulfillment of information need, not novel information
 - Relevance is defined to be irrespective of information contained in other documents (redundancy)
- These guidelines ensure that each relevance decision can be taken independently

TREC

8

- Text REtrieval Conference
- Run by NIST (US National Institute of Standards and Technology)
- Marks a new phase in retrieval evaluation
 - common task and data set
 - many participants
 - continuity
- Large test collection: text, queries, relevance judgements
- 2003 was 12th year
- 87 commercial and research groups participated in 2002

<num> Number: 508

<title> hair loss is a symptom of what diseases

<desc> Description:

Find diseases for which hair loss is a symptom.

<narr> Narrative:

A document is relevant if it positively connects the loss of head hair in humans with a specific disease. In this context, "thinning hair" and "hair loss" are synonymous. Loss of body and/or facial hair is irrelevant, as is hair loss caused by drug therapy.

TREC: relevance agreement

10

- Queries devised and judged by information specialist (same person)
- Relevance judgements done only for up to 1000 documents/query
- Annotators don't agree on relevance judgements
- Nevertheless the relative ordering of systems is stable:

"The comparative effectiveness of different retrieval methods is stable in the face of changes to the relevance judgements"
(Vorhees, 2000)

	Relevant	Non-relevant	Total
Retrieved	A	B	A+B
Not retrieved	C	D	C+D
Total	A+C	B+D	A+B+C+D

Recall: proportion of retrieved items amongst the relevant items ($\frac{A}{A+C}$)

Precision: proportion of relevant items amongst retrieved items ($\frac{A}{A+B}$)

Accuracy: proportion of correctly classified items as relevant/irrelevant ($\frac{A+D}{A+B+C+D}$)

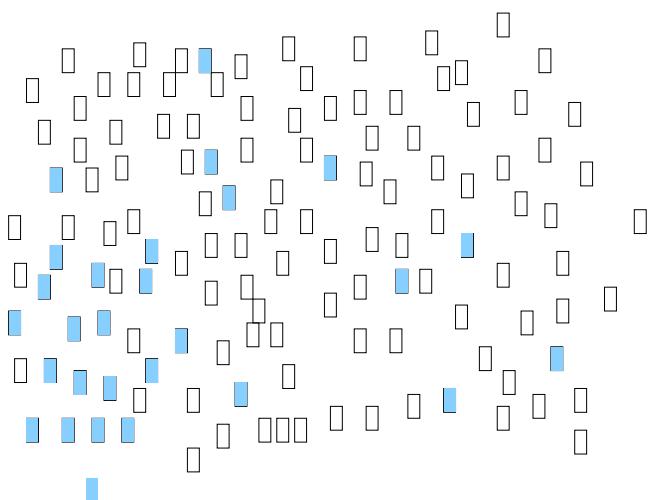
Recall: [0..1]; Precision: [0..1]; Accuracy: [0..1]

Accuracy is not a good measure for IR, as it conflates performance on relevant items (A) with performance on irrelevant items (D) (which we are not interested in)

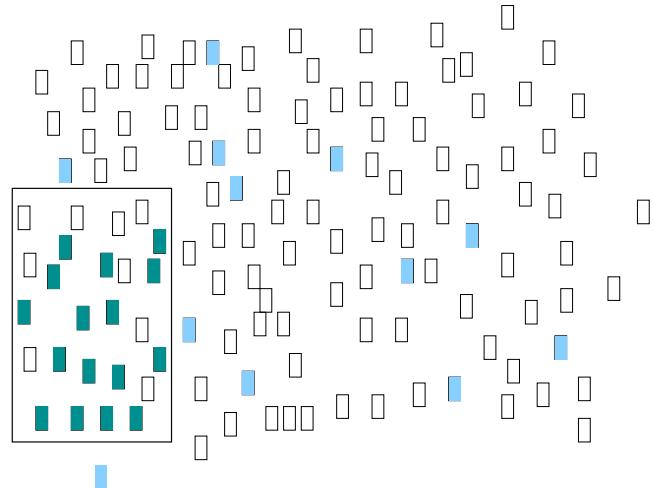
Recall and Precision

12

- All documents: $A+B+C+D = 130$
- Relevant documents for a given query: $A+C = 28$



- System 1 retrieves 25 items: $(A+B)_1 = 25$
- Relevant and retrieved items: $A_1 = 16$



$$R_1 = \frac{A_1}{A+C} = \frac{16}{28} = .57$$

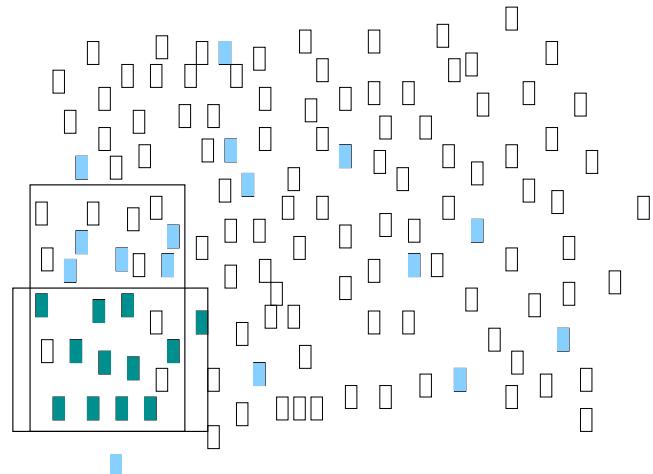
$$P_1 = \frac{A_1}{(A+B)_1} = \frac{16}{25} = .64$$

$$A_1 = \frac{A_1+D_1}{A+B+C+D} = \frac{16+93}{130} = .84$$

Recall and Precision: System 2

14

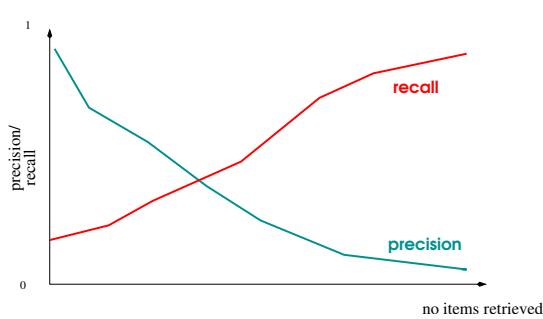
- System B retrieves set $(A+B)_2 = 15$ items
- $A_2 = 12$



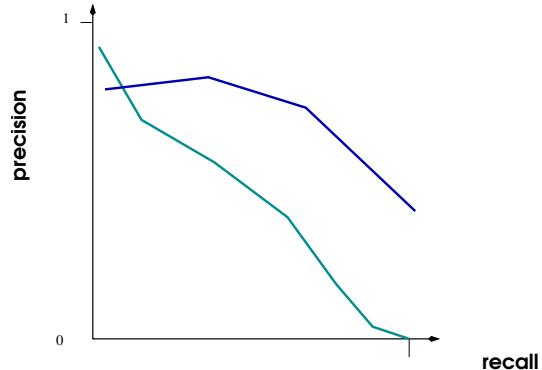
$$R_2 = \frac{12}{28} = .43$$

$$P_2 = \frac{12}{15} = .8$$

$$A_2 = \frac{12+99}{130} = .85$$



- Plotting precision and recall (versus no. of documents retrieved) shows inverse relationship between precision and recall
- Precision/recall cross-over can be used as conflated evaluation measure



- Plotting precision versus recall gives recall-precision curve
- Area under normalised recall-precision curve can be used as evaluation measure

Recall-criticality and precision-criticality

16

- Inverse relationship between precision and recall forces general systems to go for compromise between them
- But some tasks particularly need good precision whereas others need good recall:

Precision-critical task	Recall-critical task
Little time available	Time matters less
A small set of relevant documents answers the information need	One cannot afford to miss a single document
Potentially many documents might fill the information need (redundantly)	Need to see each relevant document
Example: web search for factual information	Example: patent search

- Recall problem: for a collection of non-trivial size, it becomes impossible to inspect each document
- It would take 6500 hours to judge 800,000 documents for **one** query (30 sec/document)
- Pooling addresses this problem

Pooling

18

Pooling (Sparck Jones and van Rijsbergen, 1975)

- Pool is constructed by putting together top N retrieval results from a set of n systems (TREC: $N = 100$)
- Humans judge every document in this pool
- Documents outside the pool are automatically considered to be irrelevant
- There is overlap in returned documents: pool is smaller than theoretical maximum of $N \cdot n$ systems (around $\frac{1}{3}$ the maximum size)
- Pooling works best if the approaches used are very different
- Large increase in pool quality by manual runs which are recall-oriented, in order to supplement pools

- Rijksbergen (1979)

$$F_\alpha = \frac{PR}{(1-\alpha)P + \alpha R}$$

- High α : Recall is more important
- Low α : Precision is more important

- Most commonly used with $\alpha=0.5 \rightarrow$ Weighted harmonic mean of P and R

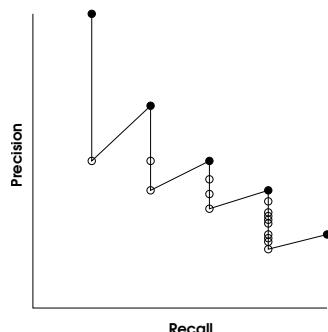
$$F_{0.5} = \frac{2PR}{P + R}$$

- Maximum value of $F_{0.5}$ -measure (or F-measure for short) is a good indication of best P/R compromise
- F-measure is an approximation of cross-over point of precision and recall

Precision and recall in ranked IR engines

20

- With ranked list of return documents there are many P/R data points
- Sensible P/R data points are those after each new relevant document has been seen (black points)



Query 1			
Rank	Relev.	R	P
1	X	0.20	1.00
2		"	0.50
3	X	0.40	0.67
4		"	0.50
5		"	0.40
6	X	0.60	0.50
7		"	0.43
8		"	0.38
9		"	0.33
10	X	0.80	0.40
11		"	0.36
12		"	0.33
13		"	0.31
14		"	0.29
15		"	0.27
16		"	0.25
17		"	0.24
18		"	0.22
19		"	0.21
20	X	1.00	0.25

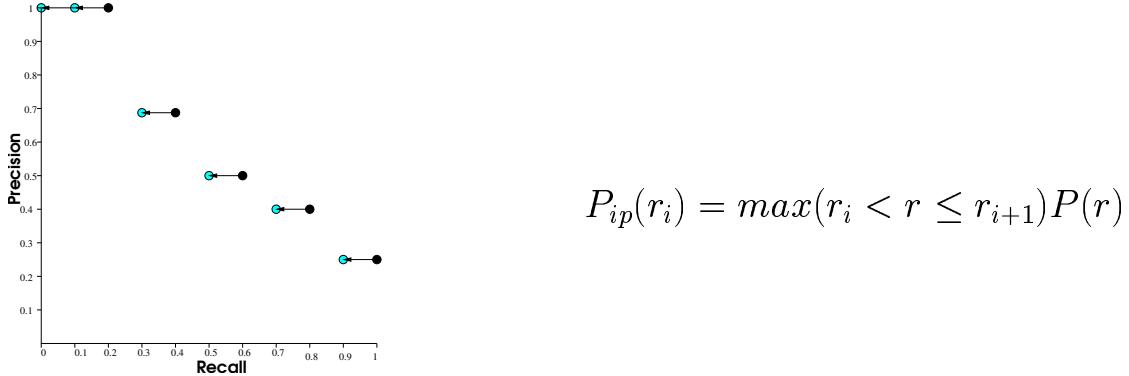
- Precision at a certain rank: $P(100)$
- Precision at a certain recall value: $P(R=.2)$
- Precision at last relevant document: $P(\text{last_relev})$
- Recall at a fixed rank: $R(100)$
- Recall at a certain precision value: $R(P=.1)$

Summary IR measures over several queries

22

- Want to average over queries
- Problem: queries have differing number of relevant documents
- Cannot use one single cut-off level for all queries
 - This would not allow systems to achieve the theoretically possible maximal values in all conditions
 - Example: if a query has 10 relevant documents
 - * If cutoff > 10 , $P < 1$ for all systems
 - * If cutoff < 10 , $R < 1$ for all systems
- Therefore, more complicated joint measures are required

- $P(R = n)$ is precision at that point where recall has first reached n
- Define 11 standard recall points $P(r_0), P(r_1), \dots, P(r_{10})$
- $P(r_n) = P(R = \frac{n}{10})$
- $P(r_2)$ measures precision at the point where $R=0.2$
- This might not coincide with a data point, in which case interpolation is necessary:



11 standard recall points for our example

24

Query 1			$P_1(r_i)$		$P_2(r_i)$		Query 2		
#		R	$P_{ip,1}(r_0) = 1.00$	$P_{ip,1}(r_1) = 1.00$	$P_{ip,2}(r_0) = 1.00$	$P_{ip,2}(r_1) = 1.00$	R	#	
1	X	0.20	$P_{ip,1}(r_2) = 1.00$	$P_{ip,1}(r_3) = 0.67$	$P_{ip,2}(r_2) = 1.00$	$P_{ip,2}(r_3) = 1.00$	0.33	1	
2							0.67	2	
3	X	0.40	$P_{ip,1}(r_4) = 0.67$	$P_{ip,1}(r_5) = 0.50$	$P_{ip,2}(r_4) = 0.67$	$P_{ip,2}(r_5) = 0.67$		3	
4								4	
5								5	
6	X	0.60	$P_{ip,1}(r_6) = 0.50$	$P_{ip,1}(r_7) = 0.40$	$P_{ip,2}(r_6) = 0.67$	$P_{ip,2}(r_7) = 0.20$		6	
7								7	
8								8	
9								9	
10	X	0.80	$P_{ip,1}(r_8) = 0.40$	$P_{ip,1}(r_9) = 0.25$	$P_{ip,2}(r_8) = 0.20$	$P_{ip,2}(r_9) = 0.20$		10	
11								11	
12								12	
13								13	
14								14	
15									
16									
17									
18									
19									
20	X	1.00	$P_1(r_{10}) = 0.25$		$P_2(r_{10}) = 0.20$		1.00	X	15

$P_{ipol}(r_i)$ values (blue) have been interpolated, $P(r_i)$ values (black) have been exactly measured

$$P_{11-pt} = \frac{1}{11} \sum_{j=0}^{10} \frac{1}{N} \sum_{i=1}^N P_{ip,i}(r_j)$$

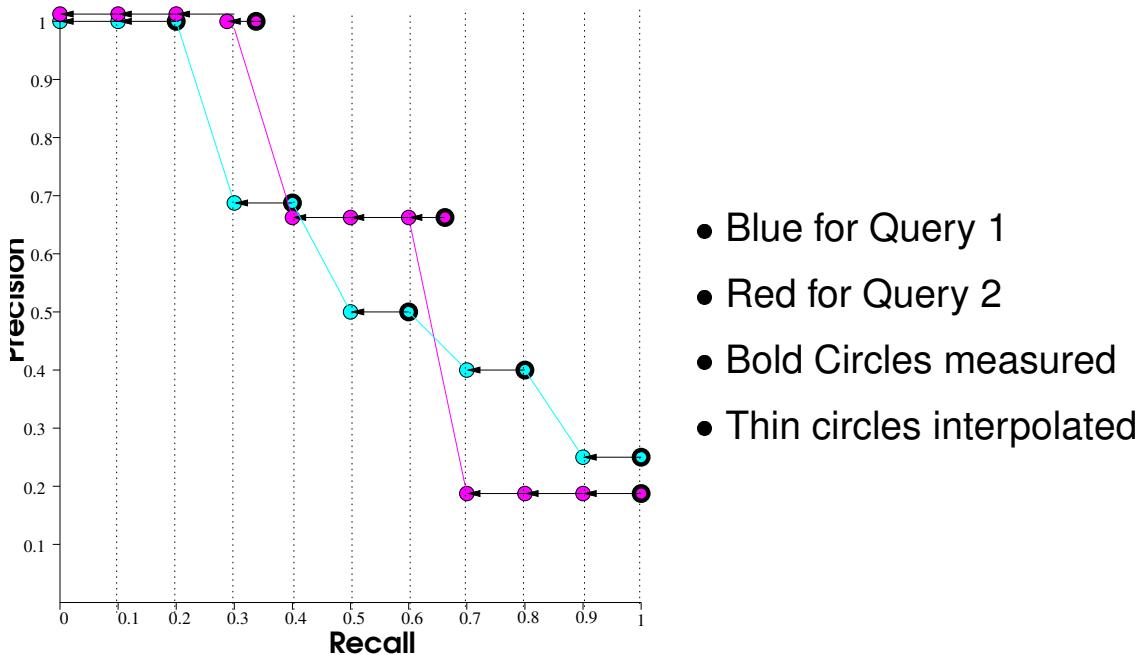
with $P_{ip,i}(r_j)$ the j th interpolated recall point in the i th query (out of N queries)

In our example:

	Query 1	Query 2	Avg. (Queries)
$P_i(r_0)$	1.00	1.00	1.00
$P_i(r_1)$	1.00	1.00	1.00
$P_i(r_2)$	1.00	1.00	1.00
$P_i(r_3)$	0.67	1.00	0.84
$P_i(r_4)$	0.67	0.67	0.67
$P_i(r_5)$	0.50	0.67	0.59
$P_i(r_6)$	0.50	0.67	0.59
$P_i(r_7)$	0.40	0.20	0.30
$P_i(r_8)$	0.40	0.20	0.30
$P_i(r_9)$	0.25	0.20	0.23
$P_i(r_{10})$	0.25	0.20	0.23
			$P_{11-pt}: 0.61$

Graphic representation of example

26



- Also called “mean average precision”
- Determine precision at each point when a new relevant document gets retrieved
- Use $P=0$ for each relevant document that was not retrieved
- Determine average for each query, then average over queries

$$P_{srd} = \frac{1}{N} \sum_{j=1}^N \frac{1}{Q_j} \sum_{i=1}^{Q_j} P(\text{rel} = i)$$

with:

Q_j number of relevant documents for query j

N number of queries

$P(\text{rel} = i)$ precision at i th relevant document

Mean precision at seen relevant documents: example 28

Query 1		
Rank	Relev.	P
1	X	1.00
2		
3	X	0.67
4		
5		
6	X	0.50
7		
8		
9		
10	X	0.40
11		
12		
13		
14		
15		
16		
17		
18		
19		
20	X	0.25
AVG:		0.564

Query 2		
Rank	Relev.	P
1	X	1.00
2		
3	X	0.67
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15	X	0.2
AVG:		0.623

- Mean precision at seen relevant documents favours systems which return relevant documents **fast**
- Precision-biased

$$P_{srd} = \frac{0.564+0.623}{2} = 0.594$$

- Fully automatic searches in TREC-7 and 8: P(30) between .40 and .45, using long queries and narratives (one team even for short queries) → Systems optimised for long queries
- Manual searches: best results between .55 and .60.
- Several systems achieved almost 50% P(10) even with very short queries; several exceed 50% with medium length queries. (Manual searching can lead to 70%)
- TREC-3: best results in .55 to .60 range (but only for long queries)
- TREC-4, 5, and 6: less favourable data conditions (less relevant documents available, less information on topics given) → results declined
- Better performance in TREC-7 and 8 must be due to better systems, as the manual performance remained on a plateau
- The best systems are statistically not significantly different → plateau reached

Summary

30

- IR evaluation as currently performed (TREC) only covers one small part of the spectrum:
 - System performance in batch mode
 - Laboratory conditions; not directly involving real users
 - Precision and recall measured from large, fixed test collections
- However, this methodology is very stable and mature
 - Relevance problem solvable (in principle) by extensive sampling
 - Recall problem solvable (in practice) by pooling methods
 - Provable that these methods produce stable evaluation results
 - Host of elaborate performance metrics available
 - * 11 point average precision
 - * Mean precision at seen relevant documents

- Teufel (2005, To Appear): Chapter *IR and QA evaluation*. In: Evaluation Methods in Speech and NLP. Kluwer.