
By permission of Cambridge University Press this paper is reproduced from the book
From semantics to Computer Science; Essays in Memory of Gilles Kahn, to be
published early in 2009.

The tower of informatic models

Robin Milner

University of Cambridge

Abstract: Software science has always dealt with models of computation
that associate meaning with syntactical construction. Thelink between
software science and software engineering has for many years been ten-
uous. A recent initiative,model-driven engineering(MDE), has begun
to emphasize the role of models in software construction. Hitherto, the
notions of ’model’ entertained by software scientists and engineers have
differed, the former emphasizing meaning and the latter emphasizing tool-
based engineering practice. This essay finds the two approaches consis-
tent, and proposes to integrate them in a framework that allows one model
to explainanother, in a sense that includes both implementation and vali-
dation.

This essay is dedicated in admiration to the memory of GillesKahn, a friend and guide
for thirty-five years. I have been struck by the confidence andwarmth expressed to-
wards him by the many French colleagues whom he guided. As a non-Frenchman I
can also testify that colleagues in other countries have felt the same.

I begin by recalling two events separated by thirty years; one private to him and me,
one public in the UK. I met Gilles in Stanford University in 1972, when he was studying
for the PhD degree—which, I came to believe, he found unnecessary to acquire. His
study was, I think, thwarted by the misunderstanding of others. I was working on two
different things: on computer-assisted reasoning in a logic of Dana Scott based upon
domain theory, which inspired me, and on models of interaction—which I believed
would grow steadily in importance (as indeed they have). There was hope to unite
the two. Yet it was hard to relate domain theory to the non-determinism inherent in
interactive processes. I remember, but not in detail, a discussion of this connection
with Gilles. The main thing I remember is that he ignited. He had got the idea of
the domain of streams which, developed jointly with David MacQueen, became one of
the most famous papers in informatics; a model of deterministic processes linked by
streams of data.

The public event, in 2002, was the launching workshop of the UK Exercise in
Grand Challenges for Computing Research. It identified eight or so Grand Challenge
topics that now act as a focus for collaborative research; part of their effect is to unite
researchers who would otherwise never have communicated. Before the workshop we

1

had no doubt that Gilles Kahn was the one to invite as keynote speaker. We knew his
unique combination of encouragement and probing criticism; just what we needed for
the event. And so it turned out. His view of the future of computing, and his cautionary
remarks about artificially created goals, are well-remembered. Equally important were
his enthusiasm, and his encouragement to aim high.

Purpose

The purpose of this essay is to suggest, in simple terms, how to harmonise the scientific
content of informatics with its engineering practice. Suchan exposition should help
informaticians1 both to coordinate their work and to present it to other scientists and
to the wider public. It should also clarify the nature of informatics alongside, but in
contrast with, the natural sciences.

In attempting this general exposition, let us avoid terminology that is either new
or technical. Of course, each instance of modelling—such as engineering a distributed
system, or modelling by intelligent agents, or optimizing target code, or verifying a
program—has its own technical terms; but the terms used for each are unlikely to
cover all instances. And we should minimise the extra term-baggage used to fit these
instances together into a whole, even if we use terms that areimprecise.

Models

All scientists and engineers will agree that they work with models and modelling. The
word ‘model’ is both verb and noun. Used as a verb, ‘M models R’usually means
that M that represents (some aspects of) R, a reality. Used asa noun, ‘M is a model’
means that M may represent one or more unspecified realities;for example, differential
equations model many realities. R and M may be singular: R a specific ship, e.g. the
Queen Mary, and M a specific plastic replica of R. Or they may beplural; R a family
of realities, such as national economies, and M a pack of concepts and equations that
represent these economies. We shall avoid the singular kindof model, and say that a
model comprises

A family of entities; and
What these entitiesmean.

This is not a formal definition; it is rather a challenge to seek a notion of model that
unites the engineering and scientific aspects of informatics. The purpose of the ‘defini-
tion’ is to insist that a model should not merely enumerate its entities, as in a syntactic
definition, but should describe how they work, i.e. their meaning. On this basis we
shall propose how models should relate to each other.

The imprecise term ‘meaning’, synonymous with ‘semantics’or ‘interpretation’, is
meant to be inclusive. If the entities are automata or programs or processes, it includes
their activity or behavior; if the entities are the sentences of a logic it includes the
truth-valuation of those sentences via an interpretation of the function and predicate

1Loosely speaking, informatics is a synonym for computer science, and hence informatician (or infor-
maticist) is a synonym for computer scientist. The ‘info’ words have an advantage: they express the insight
that informatic behavior is wider than what computers do, or what computing is.

2

symbols2; if the entities are differential equations, it includes the interdependence of
the variables and their derivatives. But the term ‘meaning’also includes an informal
description of how the entities work.

We avoid a sharp distinction between ‘model’ and ‘reality’.3 We may wish to say
that a reality, say ‘clouds and their movement’, is anextremalmodel: it doesn’t rep-
resent anything else. But some realities—e.g. a plastic replica of a ship—are models
of other realities, so it is a mistake to say thatall realities—considered as models—are
extremal.

Our informal definition admits artificial realities as well as natural ones; thus it
includes all engineered artifacts. In particular, it includes ‘computers and what their
screens display’; a model of it can then be ‘assembly programs and their semantics’.
Part of what contrasts engineering with natural science is that the realities are artificial
in the first case and natural in the second.

Explanation

The phrase ‘modelof . . . ’ needs discussion. The ‘of ’ relationship, between a model
and the reality it explains, is central to the whole of science; the same relationship holds
in any engineering discipline between a model and the reality it explains. Just as we
say that Newton’s lawsexplain the movement of bodies with mass, so we can say in
informatics that a model consisting of programs and their meaningexplainsthe reality
of computers and what their screens display.

The artifacts of informatics are not always (physical) realities; they can also be (and
are more often) syntactic or symbolic. In fact, they are models. What distinguishes the
science of informatics is that its artifacts demand explanation at many levels. Consider
Fortran, one of the most influential models in computing history. The model ‘Fortran
and its behavior’ (even though this behavior was informallydescribed) explains the
model ‘assembly programs and their behavior’; at least, it explains those assembly
programs that are the translations of Fortran programs. By transitivity, Fortran also
explains the real behavior of the computers on which these assembly programs run. As
we shall see later, Fortran—and other symbolic constructions—demand explanation at
still higher levels; we begin to see why the term ‘tower of models’ is appropriate. We
shall also argue that the towers have breadth as well as height.

One may feel uneasy about this use of the term ‘explanation’,because realities
normally precede the models that explain them. But informatics deals with artifacts,
whether real or symbolic, so the explanation often precedeswhat its explains. One
may then be happier to use ‘specify’ rather than ‘explain’. But there are cases where
the artifact precedes the explanation; if a reverse-engineer succeeds in reconstructing
the lost Cobol source-code of a legacy assembly-code program, then she would find it

2Logics are models in the sense of this essay, so we should compare the way we use the term ‘model’
with the logicians’ usage. The striking difference is that alogician speaks of modelsof a logic, and that we
(so far) take a logic to be a modelof something else. The logicians’ usage is close to what we call ‘meaning’.
Thus the two usages differ but can be reconciled.

3In this paper, we use ‘reality’ to mean ‘physical reality’. This is for brevity, rather than from a conviction
that all reality is physical.

3

natural to call the former an explanation of the latter.4

We shall therefore assume thatexplanationis the principal relationship—with many
manifestations—that cements the tower of models that we callinformatics. Using near-
synonyms we can express ‘modelA explains modelB’ in many ways; for example

modelA represents, or specifies, or abstracts from, modelB; or
modelB realises, or implements, or refines, modelA.

As a simple illustration, suppose thatB is a programming language, whose behavior
is defined in one of the usual ways. One way is by structured operational semantics
(SOS), which is formal; another way is informal—a description in natural language of
how the runtime state changes. An example of the latter is theoriginal description of
Algol60, an outstanding example of lucid prose.

Now let A be a specification logic, such asZZ; its entities are sentences, and its
meaning defines the interpretation of each sentence. Then anexplanation of the lan-
guageB by the logicA comprises—for each programP of B—a setS of A-sentences
concerning the operations, types, variables, inputs and outputs ofP . The explanation
provides a way to prove that each sentence ofS is satisfied by the behavior ofP as de-
scribed inB. If S pre-existsP then it may be called a specification ofP . It is unlikely
to determineP uniquely; the larger the setS, the more accurately isP determined.

Combination

The entities in a model need not be all of the same kind. Consider a model of the
flight of informatically controlled aircraft. This heterogeneus model combines at least
three parts: a model of the real world (locality, temperature, wind speed, . . .) in which
the planes fly; an electro-mechanical model of the systems tobe controlled; and a
specification (or explanation) of the controlling software. Consider also a model of
humans interacting with a computer; the model of the human components may involve
human attributes such as belief or sensation, as distinct from the way the computer is
described. These two examples show the need not only to combine informatic models,
but to combine them with others that are not informatic.

Suchcombinationis best seen as a construction, not a relationship; it combines
the entities of different models, with extra behavioral description of how they interact.
Combinations abound in informatics. Further examples: hybrid systems mix differ-
ential equations with automata; coordination systems combine different programming
languages via shared data structures; and a distributed programming language may be
combined with a networking model to create a model of a pervasive system.

Towers

Let us declare atower of modelsto be a collection of models built by combination
and related by explanation. A tower may be tall and thin, or short and broad. Breadth

4We tend to use ‘A explainsB’ as an abbreviation for ‘A-entities explainB-entities’. This allows us to
dodge the question of how manyA-entities are involved in explaining eachB-entity. This surely varies from
case to case, but for this essay we shall use the abbreviated form ‘A explainsB’ for all cases.

4

B
explains

C

D

combine

explains
E A

explains

Figure 1: A possible tower of models

can arise partly via combination, and partly because explanation is a many-many rela-
tion: different aspects of a modelB may be explained by different modelsA1, A2,. . . ;
equally, a modelA may explain different modelsB1, B2,. . . . However, a tower with no
explanations —one that is very short— is of little use.

What role does such a tower play in informatics? Natural sciences pertain to re-
alities that are given. These sciences are anchored in the real world; much of what a
natural scientist does is to validate or refute models of this reality by experiment. In
contrast, except at the lowest level of silicon or optical fibres, informatics builds its own
realities; also, crucially, it builds symbolic models to explain these realities at many lev-
els, shading from reality to abstraction with no sharp distinction between the two. Such
levels are—roughly in order from less to more abstract—computers themselves, memo-
ries, networks, low-level programming, high-level programming, algorithms, program-
ming frameworks (object-oriented, neural, intelligent agents), program transformation,
specification languages, graphical representations, logics, mathematical theories,
There are many models at each of these levels.

Correspondingly, every model addresses a certain class ofclients: those for whom
its explanations are intended.5 In the natural sciences many models are designed for
the scientist, but models designed for the general public are also essential for pub-
lic understanding. Clients for informatic models span a huge range of concerns and
ability, ranging from the many millions of private end-users, through executives in
client companies, through the technical staff in such companies, through suppliers of
custom-assembled products, through programmers of support software, through soft-
ware architects, down to academic engineers and theorists.

No-one could attempt to describe thewholetower of informatic models. Although
the science of informatics has advanced enormously in its sixty years, new technologies
continually increase the possible realities, and therefore increase the challenge to build
models that explain them. But the notion of a tower, ever incomplete and ever growing,
provides a path that the growth of our science can follow; we may buildpartial model-
towers, each representing a particular field, with models designed for different clients
and cohered by explanation.

Figure 1 shows a possible structure for a small model-tower.A is a combination of
B with C; A explainsD; B explainsE; C explains itself. To see that self-explanation

5More generally, every model has a distinct purpose. For example, a single client may use different
models of flight-control software for different forms of analysis.

5

makes sense, recall that ‘M explainsN’ is a short way of saying that the entities of
modelN—say programs—may be explained (e.g. specified) by entities ofmodelM—
say a logic. A good example of ‘C explains itself’ is provided by the refinement or-
dering invented at Oxford; to refine a specification is to constrain its non-determinism.
Thus a coarser specification explains each of its refinements. Such a notion of refine-
ment is also built into Eiffel, an object-oriented languagefor specification and pro-
gramming.

For M to explainN, there is no need to require thateveryentity of N is explained
by entities ofM. For example flowcharts explain some programs, but not thosewith
recursion. When we want more precision we can talk aboutfull or partial explanations;
and the latter should allow that only some entities ofN are explained, or that only some
aspects of each entity are explained.

Now recall that different models are designed for differentclients. For example,
if M is designed for senior executives then we may expand ‘M explainsN’ into the
statement ‘M explainsN for senior executives’. In the example pictured above, sup-
poseB consists of certain differential equations, andC is a process calculus; then the
combinationA explains hybrid systems. However,B is designed to explain onlyE, the
electronic component ofA, to control engineers who need not be familiar with process
calculus. An important function for a model tower is to cohere the models designed for
different clients.

Examples

The variety of explanations may create unease; can we not formally define what ‘ex-
planation’ means? Not yet: this paper aims to arouse discussion of that very question.
To feed the discussion, here are some examples that illustrate the variety of explana-
tions. In each case we outline the structure of a small model-tower. To establish firm
ground our first example, though elementary. will be defined precisely; it indicates
that model-towers can be rigorous. The other examples are treated more informally;
indeed, a main purpose of models and their relationship is toallow informal insight
into how software science may be integrated with software engineering.

Programs We consider both specification and implementation for a fragmentary pro-
gramming language; this yields the small tower shown in Figure 2. Research over the
past four decades ensures that the same can be done for realistic languages; but as
far as I know these two activities—specification and implementation—have not pre-
viously been presented as instances of the same general notion, which we are calling
‘explanation’.

Let X = {x1, . . . , xn} be a fixed set, the program variables. LetV be a set of
values, say the real numbers. A mapm : X → V is called a memory; letM denote
the set of memories. Consider three models:

Programming languageP. An entityp is a sequence of assignment statements
like x1 := 3x1 + 2x2 − 4. Themeaningof p is a functionP[[p]] : M → M , and
is defined in the standard way.

6

ASSEMBLY CODE

implemented by

specifies

PREDICATE LOGIC

PROGRAMMING LANGUAGE

Figure 2: a small tower of models for programming

Assembly codeC. An entity c is a sequence of instructions of the formadd,
mult,. . . , loadv, fetchx, storex wherev ∈ V andx ∈ X. These instructions
manipulate a memorym ∈ M and a stacks ∈ V ∗ in the familiar way, defining
themeaningof a codec as a functionC[[c]] : M × V ∗ → M × V ∗.

Predicate logicL. An entity φ is a logical formula with free variables inX
and bound variables distinct fromX. Themeaningof φ is a mapL[[φ]] : M →
{true, false}; this is a standard notion, called by logicians avaluationof φ in M .

To implementP we define a compilerComp that translates each assignmentx := e into
a sequence of stack operations, in the standard way. The implementation is validated
by a theorem stating that ifP[[p]]m = m′ thenC[[Comp(p)]](m, s) = (m′, s) for any
stacks. Thus the implementation has a formal part—the compiler—relating entities,
and a semantic part relating their meanings.

To explainP by L also involves a formal part and a semantic part. The formal part
is a relation which may be called ‘satisfaction’, denoted by|=, between programsp and
pairsφ, φ′ of logical formulae. If we writep |= φ, φ′ as|= {φ}p{φ′}, we recognise it a
‘Hoare triple’; a sentence of Hoare’s well-known logic. In that logic such a triple may
be proved as a theorem, written⊢ {φ}p{φ′}. The explanation is validated by relating
these formal triples to their meaning; it asserts that

Whenever⊢ {φ}p{φ′} andP[[p]]m = m′, thenL[[φ]]m ⇒ L[[φ′]]m′ .

Thus we have seen how explanation may consist of a formal part, in this case a com-
piler or a logical proof, that may be executed by a tool, and a semantic part that gives
meaning to the work done by the formal part. Both parts are essential to modelling.

Electrical installations The left-hand diagram of Figure 3 shows a small tower that
coheres two models of an electrical installation; one for the architect and home-owner,
the other for the scientist. Architects understand a model of requirements for an elec-
trical installation in a house in terms of performance—heating, lighting, refrigeration
etc—also taking account of locality, maintenance, cost and other factors. In these terms
they specify the appliances, and home-owners also understand this specification. On
the other hand the appliance designs are explained by electrical science, which more

7

CHARTS

NETWORK PROGRAMS

SEQUENCE
MESSAGE

CDL

PROCESS

CALCULUS

explains

specifies
explains

INSTALLATION ELECTRICAL
SCIENCE

APPLIANCES

PHENOMENA
ELECTRICAL

DESIGNS

realised by

REQUIREMENTS

specifies
explains

implemented by explains

Figure 3: Model towers for electrical installations and fornetwork programs

generally explains the full range of electrical phenomena.The left-hand diagram shows
these model relationships. An important aspect of the example is that a single model—
the appliance designs—is explained differently for two different kinds of client: in one
case the architect or home-owner, in the other case the electrical engineer or scientist.

Business protocols An analogous tower is shown in the right-hand diagram of Fig-
ure 3; it concerns a software platform for the computer-assisted enaction of business
processes. Such a platform is being designed by a working group of the Worldwide
Web consortium (W3C). The workhorse of this platform is the Choreography Descrip-
tion Language (CDL), which has been designed and intensively analysed by the work-
ing group. This collaboration allowed a rigorous explanation of CDL in terms of pro-
cess calculus, which also explains network programs; the implementation of CDL in a
low-level language can thus be validated.

The clients of CDL are application programmers, and their concerns are different
from those of the scientists, who are clients of the process calculus. They differ again
from the concerns of executives in the client companies; these executives in turn under-
stand message-sequence charts, a simple graphical model that represents at least some
of the communicational behavior defined in CDL.

Before leaving this example, it is worth mentioning that theright-hand tower ex-
tends naturally both ‘upwards’ (more abstract) and ‘downwards’ (more concrete). Down-
wards, the low-level network programs are realised by a combination of physical com-
puters and physical networks; upwards, a process calculus can be explained by a special
kind of logic.

The airbus Our final example applies rigorous modelling to a safety-critical system.
After the failed launch of the Ariane 5 spacecraft, the Institut National de Recherche en
Informatique et en Automatique (INRIA) in France—of which Gilles Kahn was then
Scientific Director—undertook to analyse the failure. The analysis was informative.
As a consequence, Kahn proposed that INRIA should conduct rigorous analysis for the
informatic aspects of the design of the forthcoming Airbus.

8

combine

AIRCRAFT

realised by

AIRCRAFT DESIGNS

ELECTRO-MECHANICAL
DESIGN

ENVIRONMENT

ABSTRACT INTERPRETATION

explains

EMBEDDED PROGRAMS

Figure 4: A simplified model tower for aircraft construction

Such an analysis can often be based upon a specification in logical model, perhaps
a temporal logic; the logical sentences are chosen to characterise the desired behav-
ior of the embedded software (the program model). This software model has to be
combined—as remarked earlier—with an electro-mechanical model of the plane, as
well as a model of the plane’s environment. Thus we arrive at atower like that shown
in Figure 4; of course this is only a simplification. The method chosen for analysis,
based uponabstract interpretation, can be seen as a refinement of the logic-based ap-
proach. An abstract interpretation of a program is a simplification of the program,
omitting certain details and making certain approximations, with the aim of rendering
detailed analysis feasible. Such abstraction is essentialin situations where the state-
space is very large; but, to be sound, it must not conceal any undesirable behavior.
Thus, instead of choosing a fixed specification, one may choose an abstraction specifi-
cally to match those aspects of behavior that are essential.In the case of the Airbus, by
a careful choice of different abstractions, the analysis required to validate the embed-
ded programs was reduced to the extent that, with the assistance of programmed tools,
it could be completed.

The Airbus example illustrates that explanations and theirvalidation can be cus-
tomised within the framework of a tower of models. It also illustrates the importance
of programmed analytical tools.

This concludes our examples. It is a good moment to answer a possible criticism of our
notions of model and explanation. The criticism is that whenever a model is defined,
the meaning of its entities—which are often symbolic—has to beexpressed in some
formalism; thus a model does no more than translate between formalisms, and our
search for real meaning leads to an infinite regress.

Our answer is in two parts. First, every model-designer clearly hassomemeaning
in mind. A programming language, or a logic, or a process calculus, or a graphical
representation is never just a class of symbolic entities; its intended behavior is always
described, even if informally. Thus it is clearly inadequate to call such a class a model

9

in itself. Second, as we move from entities to meaning withina model, or indeed as we
move from the entities of modelB to those of modelA which explainsB, we typically
move from a specialised entity-class to a class belonging toa more general model.
This can be seen clearly in all our examples; e.g. CDL is more specific than a process
calculus, so in explaining it we move to a model for which there is already a body of
knowledge.

Our examples show that scientific work in informatics consists not only in design-
ing models, but even more in relating them to each other. The former is essential, but
only the latter can provide the coherence that will enable both other scientists and the
general public to grasp the quality of informatics.

Divergent approaches

Increasingly, over sixty years, informatic theory and applications have diverged from
each other. At present, their relationship is almost tangential; few people understand
or practice both. On the one hand an impressive range of theoretical concepts, inspired
by applications, have emerged and been developed. Here is anincomplete list, roughly
in order of discovery:

universal machines, automata theory, formal language theory, automation
of logics, program semantics, specification and verification disciplines, ab-
stract interpretation, object-orientation, type theories, process calculi, neu-
ral nets, temporal and modal logics, calculi for mobile systems, intelligent
agents, semi-structured data, game-theoretic models, quantum computing,
separation logic,

On the other hand the industrial production of software has developed sophisticated
processes for implementation and management, stimulated by a huge and growing mar-
ket demand. These two developments, theoretical and industrial, are largely indepen-
dent of one another. It is hard to see how this could have been avoided. No scientific
and technological discipline in human history has been so rapid or so global. Respond-
ing to hungry demand has preoccupied the industrial wing of informatics; competition
in the market has made it virtually impossible to win contracts while maintaining a rig-
orous standard of validation, or even documentation, of software. On the other hand,
building models for rigorous analysis is a daunting intellectual challenge, especially as
technological advance continually creates startling new realities—such as pervasive or
ubiquitous systems—to be modelled.

Despite the frequent delay and technical failure of software systems, and despite
the fact that future software systems—especially pervasivesystems—will be larger
and more complex than ever, there is a danger that this disconnection between soft-
ware engineering and analysis becomes accepted as a norm. There is evidence for this
acceptance. For example, in a report entitledThe Challenge of Complex IT Systems
produced jointly by the UK’s Royal Academy of Engineering and the British Com-
puter Society, the phenomenon of defective IT systems was examined in detail. Many
cases were studied, and valuable recommendations were madefrom the point of view
of management and the software production process. But virtually no mention was

10

made of the need for, and possibility of, rigorous analysis based upon fully developed
theories.

Rapprochement?

Paradoxically, while the need for scientific system analysis has been neglected by some,
there is currently a strong drive in other quarters to base software development and
production on models. This trend has been called ‘model-driven engineering’ (MDE).
The academic research carried out under this heading is veryvaried, and the author is
not equipped to summarise it. An optimistic view is that, while the MDE approach may
appear superficially incompatible with the framework proposed here, the approaches
differ only in terminology and emphasis. One purpose of the present essay is to induce
a rapprochement between the approaches; such a rapprochement is not only possible,
but absolutely necessary, for informatics to gain its proper position as an integration of
scientific understanding with industrial construction.

An extreme form of MDE has, as its prime concern, that software production be
based upon automatic tools which transform one class of syntactic entities into another.
Sometimes such an entity-class, e.g. the syntax of a programming language, is called a
model. This conflicts with the notion of model proposed here;and while terminology is
conceptually unimportant, such a conflict may inhibit rapprochement. In this particular
case, it may inhibit the union that I am advocating between science and engineering,
since the scientific sense of ‘model’ lays emphasis on the notion of meaning, which is
absent from syntactic entities in themselves.

The MDE research community also—in varying degrees—seeks this union. This
essay has proposed that the union can be found via a notion of model which associates
meaning with every syntactic entity, and via a notion of explanation between models
that includes not only a transformation between syntax-classes, but also a represen-
tation between their corresponding meaning-classes. Boththe transformation and the
representation can be highly engineered as tools; thus the union itself can be engi-
neered! This essay will have achieved its goal if it promotesa constructive debate,
involving both engineers and scientists, upon the notion of‘model’.

Acknowledgements I am grateful to all those, including Gilles Kahn himself, with
whom I have discussed these questions, and to the anonymous referees for their helpful
comments. They have made my suggestions (which are hardly original) seem plausible
to me, even though there are many difficulties to be overcome before convergence be-
tween the engineering and science of informatics becomes real. Next steps on the path
must include reports of detailed case studies, with detailed bibliography, that appear to
contribute to the convergence.

11

