
Seure Composition of Untrusted Code:

Wrappers and Causality Types

Peter Sewell

Computer Laboratory

University of Cambridge

Peter.Sewell�l.am.a.uk

Jan Vitek

Department of Computer Sienes

Purdue University

jv�s.purdue.edu

Abstrat

We onsider the problem of assembling onurrent soft-

ware systems from untrusted or partially trusted off-the-

shelf omponents, using wrapper programs to enapsulate

omponents and enfore seurity poliies. In previous work

we introdued the box-� proess alulus with onstrained

interation to express wrappers and disussed the rigorous

formulation of their seurity properties. This paper ad-

dresses the veri�ation of wrapper information �ow prop-

erties. We present a novel ausal type system that stati-

ally aptures the allowed �ows between wrapped possibly-

badly-typed omponents; we use it to prove that an example

unidiretional-�ow wrapper enfores a ausal �ow prop-

erty.

1 Introdution

A typial desktop software environment nowadays on-

tains omponents � whole programs, plug-ins, or smaller

ode fragments � obtained from different untrusted or

partially-trusted soures; they interat in intriate ways.

Components may be faulty or maliious, or designed with a

weaker seurity poliy that the user requires � what is legit-

imate marketing data to a vendor may be onsidered sensi-

tive by a user. It is dif�ult for a user to gain assurane that

the omposed system is seure, partiularly beause many

off-the-shelf omponents are only available as objet ode.

Furthermore urrent operating systems fail to provide sup-

port for the kind of �ne-grained poliies that ould ontrol

the exeution of suh omponents [GWTB96, FBF99℄.

Reent pratial work advoates interposing seurity

ode at the operating system boundary to observe and mod-

ify the data passing through [WBDF97, Jon99, GRPA97,

GWTB96, FBF99℄. Interposition tehniques effetively en-

apsulate untrusted omponents in wrapper programs that

have full ontrol over the interations between enapsulated

omponents and the OS and over the interations among

omponents. The ode of a wrapper an, for instane, per-

form aess ontrol heks, audit, attempt to detet intrud-

ers, and even monitor overt hannels. In [FBF99℄ Fraser,

Badger and Feldman presented a system that splits the task

of writing a wrapper into two parts. The wrapper's body

is written in a variant of C alled the Wrapper De�nition

Language. The dynami aspets of reating wrappers and

instantiating onurrently exeuting omponents are spe-

i�ed in the Wrapper Life Cyle framework. While quite

expressive, their approah does not provide guarantees that

the wrappers atually enfore the desired seurity poliies.

The powerful wrapper language, the fat that all wrappers

exeute in kernel mode, and the fat that omponents are

onurrent ombine to make it dif�ult to understand pre-

isely what properties a wrapper enfores.

Our work is exploring seure omposition using wrap-

pers, foussing on the rigorous statement and proof of their

seurity properties. To this end, we have abstrated the es-

sential harateristis of the problem in a proess alulus �

powerful enough to express the ode of non-trivial wrappers

and to express the onurrent omposition of omponents,

but small enough to be amenable to formal proof. In this

paper we study information �ow properties of wrappers. To

express lear statements of suh properties we equip our

alulus with an annotated operational semantis, regarding

a wrapper and eah wrapped omponent as a different prin-

ipal and olouring proesses with the sets of prinipals that

have ausally affeted them. This allows a diret statement

of the property that one omponent annot ausally affet

another. Verifying suh a ausal �ow property diretly an

be laborious, requiring a haraterisation of the state spae

of a wrapper ontaining arbitrary omponents. We therefore

introdue a type system that statially aptures ausal �ows.

Sine omponents are often provided as objet ode, whih

is impratial for the user to typehek, our type system

must admit programs with badly-typed subomponents.

Expressing wrappers requires a language for ompos-

ing onurrently-exeuting omponents, inluding primi-

tives for enapsulating omponents and ontrolling their in-

terations. We use the box-� alulus of [SV99a℄, reapit-

ulated in Setions 2 and 3. Box-� is a minimal extension

of the �-alulus with enapsulation; it is suf�iently ex-

pressive for omponents and wrappers while retaining the

simpliity and tratable semantis needed for proving prop-

erties. Moreover Pit [PT99℄ demonstrates how to build a

real programming language above a �-alulus ore, a sim-

ilar approah ould be used for box-�.

Our main example, in Setion 4, is a unidiretional-�ow

wrapper that enapsulates two omponents, allowing mes-

sages to be sent only in one diretion between them and both

omponents to interat with the environment. The follow-

ing box-� program is a simpli�ed version of this example.

(� a; b)

�

a[P ℄ j !

a

x:

b

x j b[Q ℄

�

Proesses P and Q are arbitrary, possibly maliious, om-

ponents. They are enapsulated in named boxes, with pri-

vate names a and b, and plaed in parallel with a forwarder

proess on hannel from box a to box b. The term

b

x

is an output to hannel in box b of value x. The term

a

x:

b

x pre�xes this with an input on hannel from box

a; here the �rst x is a formal parameter that binds the se-

ond. The ! operator indiates a repliated input, so the for-

warder persists after use. The boxes restrit ommuniation

of the enapsulated proesses and ensure that P andQ an-

not interat with eah other diretly; the private names en-

sure that they annot interat with their environment in any

other way. This simpli�ed forwarder sends only unordered

asynhronous messages; our main example provides FIFO

ommuniation (this is related to the NRL pump [KML96℄,

as disussed in Setion 4).

Intuitively the system enfores an information �ow pol-

iy that prevents Q from leaking serets to P . When one

attempts to make suh properties preise, however, there

are many hoies. A body of model-theoreti work on

non-interferene uses deliate extensional properties of the

trae sets of systems. In our programming language set-

ting a more intensional approah allows what we believe

to be learer statements. We start with a labelled transi-

tion semantis that spei�es the input/output behaviour of

programs and extend it to represent and propagate ausal

dependenies expliitly. In terms of this, one an state the

desired property as `no visible ation of P is ausally de-

pendent on any ation of Q'. The ausal semantis and

property are de�ned in Setion 5.

The ausal type system, given in Setion 6, allows us to

prove information �ow properties of box-� programs. For

the example above, to statially allow the �ow from a to

b but disallow the onverse we an assoiate the ompo-

nents with prinipals p and q, then take a to be a box name

whose ontents may be affeted by p, written a :box

fpg

, b

to be a box name whose ontents may be affeted by p or

q, written b :box

fp;qg

, and to be a hannel, arrying val-

ues of a top type >, whih an be affeted only by p, so

 : han

fpg

>. The fragment is then typable, whereas the

onverse forwarder

b

x:

a

x is not. The type system also

deals with traking auses through omputation within a

wrapper, inluding ommuniation of hannel names, and

with interation between a wrapper and badly-typed ompo-

nents. All boxes are assumed to ontain untyped proesses;

wrapper ode is statially typed; run-time type heking is

required only when reeiving from a omponent.

Further disussion of related work is given in Setion 7;

Setion 8 onludes with future work. Proofs an be found

in the tehnial report [SV99℄.

2 A Boxed � Calulus

The language � known as the box-� alulus � that we

use for studying enapsulation properties must allow inter-

ating omponents to be omposed. The omponents will

typially be exeuting onurrently, introduing nondeter-

minism. It is therefore natural to base the language on a

proess alulus. The box-� alulus lies in a large de-

sign spae of distributed aluli that build on the �-alulus

of Milner, Parrow and Walker [MPW92℄, inluding among

others the related aluli [AFG98, CG98, FGL

+

96, RH98,

Sew98, SWP99, VC98℄. A brief overview of the design

spae an be found in [Sew99℄; here we highlight the main

design hoies for box-�.

The alulus is based on asynhronous message pass-

ing, with omponents interating only by the exhange of

unordered asynhronous messages. Box-� has an asyn-

hronous �-alulus as a subalulus � we build on a

large body of work studying suh aluli, notably [HT91,

Bou92℄. They are known to be very expressive, support-

ing many programming idioms inluding funtions and ob-

jets, and are Turing-omplete; a box-� proess may there-

fore perform arbitrary internal omputation. The hoie of

asynhronous ommuniation is important as it allows two

omponents to interat without reating ausal onnetions

in both diretions between them.

Box-� requires failities for onstraining ommunia-

tion � in standard �-aluli, if one proess an send a mes-

sage to another then the only way to prevent information

�owing in the reverse diretion is to impose a type system

on omponents, whih (as observed above) is not appropri-

ate here. We therefore add a boxing primitive � boxes may

be nested, giving hierarhial protetion domains; ommu-

niation aross box boundaries is stritly limited. Underly-

ing the alulus design is the priniple that eah box should

be able to ontrol all interations of its hildren, both with

the outside world and with eah other. Boxes an be viewed

as protetion domains, akin to operating system-enfored

address spaes. Diret ommuniation is therefore allowed

only between a box and its parent, or within the proess

running in a partiular box. All other ommuniation, in

partiular that between two sibling boxes, must be medi-

ated by ode running in the parent. This ode an enfore

an arbitrary seurity poliy, even supporting dynamially-

hanging poliies and interfaes (in ontrast to stati restri-

tion or bloking operators [BHR84, VD98℄).

Turning to the values that may be ommuniated, it is

onvenient to allow arbitrary tuples of names (or other tu-

ples). Note that we do not allow ommuniation of proess

terms. Moreover, no primitives for movement of boxes are

provided, in ontrast to most work ited above. The alu-

lus is therefore entirely �rst order, whih is important for

the tratable theory of behaviour (the labelled transition se-

mantis) that we require to state and prove seurity prop-

erties. The alulus is also untyped � we wish to onsider

the wrapping of ill-understood, probably buggy and possi-

bly maliious programs.

2.1 Syntax

The syntax of the alulus is as follows:

NamesWe take an in�nite set N of names, ranged over by

a; b; et. (exept i; j; k; o; p; u; v). Both boxes and om-

muniation hannels are named; names also play the role of

variables, as in the �-alulus.

Values and Patterns Proesses will interat by ommuni-

ating values whih are deonstruted by pattern-mathing

by the reeiver. Values u; v an be names or tuples, with

patterns p orrespondingly tuple-strutured.

u; v ::= x name

h

v

1

:: v

k

i

tuple (k � 0)

p ::= wildard

x name pattern

(

p

1

:: p

k

)

tuple pattern

(k � 0, no repeated names)

Proesses The main syntati ategory is that of proesses,

ranged over by P;Q. We introdue the primitives in three

groups.

Boxes A box n[P ℄ has a name n, it an ontain an arbitrary

proess P . Box names are not neessarily unique � the pro-

ess n[0℄ j n[0℄ onsists of two distint boxes named n, both

ontaining an empty proess, in parallel.

P ::= n[P ℄ box named n ontaining P

P j P

0

P and P

0

in parallel

0 the nil proess

Communiation The standard asynhronous �-alulus

ommuniation primitives are xv, indiating an output of

value v on the hannel named x, and xp:P , a proess that

will reeive a value output on hannel x, binding it to p in

P . Here we re�ne these with a tag indiating the diretion

of the ommuniation in the box hierarhy. An input tag �

an be either ?, for input within a box, ", for input from the

parent box, or a name n, for input from a sub-box named n.

An output tag o an be any of these, similarly. For tehnial

reasons we must also allow an output tag to be ", indiating

an output reeived from the parent that has not yet interated

with an input, or n, indiating an output reeived from hild

n that has not yet interated. The ommuniation primitives

are then

P ::= : : :

x

o

v output v on hannel x to o

x

�

p:P input on hannel x from �

!x

�

p:P repliated input

The repliated input !x

�

p:P behaves essentially as in-

�nitely many opies of x

�

p:P in parallel. This gives ompu-

tational power, allowing e.g. reursion to be enoded sim-

ply, while keeping the theory simple. In x

�

p:P and !x

�

p:P

the names ourring in the pattern p bind in P . Empty pat-

terns and tuples will often be elided.

New name reation Both box and hannel names an be

reated fresh, with the standard �-alulus (� x)P opera-

tor. This delares any free instanes of x within P to be

instanes of a globally fresh name.

P ::= : : :

(� x)P new name reation

In (� x)P the x binds in P . We work up to alpha onversion

of bound names throughout, writing the free name funtion,

de�ned in the obvious way for values, tags and proesses,

as fn().

2.2 Semantis

This subsetion de�nes the operational semantis of

Box-�. The reader unfamiliar with proess aluli may

wish to skim to the start of Setion 3 on a �rst reading.

2.2.1 Redution Semantis

The simplest semanti de�nition of the alulus is a redu-

tion semantis, a one-step redution relation P ! P

0

indi-

ating that P an perform one step of internal omputation

to beome P

0

. We �rst de�ne the omplement � of a tag �

in the obvious way, with ? = ? and � = �. We de�ne a par-

tial funtion f= g, taking a pattern and a value and giving,

where it is de�ned, a partial funtion from names to values.

f

v

= g = fg

f

v

=

x

g = fx 7! vg

f

h

v

1

:: v

k

0

i

=

(

p

1

:: p

k

)

g = f

v

1

=

p

1

g [: : : [f

v

k

=

p

k

g if k = k

0

unde�ned, otherwise

The natural de�nition of the appliation of a substitution �

(from names to values) to a proess term P , written �P , is

also a partial operation, as the syntax does not allow arbi-

trary values in all the plaes where free names an our.

We write f

v

=

p

gP for the result of applying the substitution

f

v

=

p

g to P . This may be unde�ned either beause f

v

=

p

g is

unde�ned, or beause f

v

=

p

g is a substitution but the appli-

ation of that substitution to P is unde�ned. For example,

f

h

z z

i

=

x

gx

?

hi

is not de�ned as

h

z z

i

?

hi

is not in the syntax.

Note that the result f

y

=

x

gP of applying a name-for-name

substitution is always de�ned. This de�nition of substitu-

tion leads to a lightweight notion of runtime error

1

.

The de�nition of redution involves an auxiliary stru-

tural ongruene �, de�ned as the least ongruene rela-

tion suh that the axioms below hold. This allows the parts

of a redex to be brought syntatially adjaent.

P j Q � Q j P

(P j Q) j R � P j (Q j R)

(� x)(� y)P � (� y)(� x)P

(� x)(P j Q) � P j (� x)Q x 62 fn(P)

(� x)n[P ℄ � n[(� x)P ℄ x 6= n

The redution relation is now the least relation over pro-

esses satisfying the axioms and rules below. The (Red

Comm) and (Red Repl) axioms are subjet to the ondition

that f

v

=

p

gP is well-de�ned.

n[x

"

v j Q℄! x

n

v j n[Q℄ (Red Up)

x

n

v j n[Q℄! n[x

"

v j Q℄ (Red Down)

x

�

v j x

�

p:P ! f

v

=

p

gP (Red Comm)

x

�

v j !x

�

p:P ! !x

�

p:P j f

v

=

p

gP (Red Repl)

P ! Q) P j R! Q j R (Red Par)

P ! Q) (� x)P ! (� x)Q (Red Res)

P ! Q) n[P ℄! n[Q℄ (Red Box)

P � P

0

! Q

0

� Q) P ! Q (Red Strut)

The (Red Up) axiom allows an output to the parent of a box

to ross the enlosing box boundary. Similarly, the (Red

Down) axiom allows an output to a hild box n to ross

the boundary of n. The (Red Comm) axiom then allows

synhronisation between a omplementary output and input

1

A more onventional notion of runtime error would give errors only

when a tuple is used as a name, e.g. for output. The substitution-based

notion is fored by our hoie of syntax, whih disallows values in various

plaes where names may appear. In general it will report errors sooner than

the onventional notion.

within the same box. The (Red Repl) axiom is similar, but

preserves the repliated input in the resulting state.

Communiations aross box boundaries take two redu-

tion steps, as in the following upwards and downwards om-

muniations.

n[x

"

v℄ j x

n

p:P ! n[0℄ j x

n

v j x

n

p:P

! n[0℄ j f

v

=

p

gP

x

n

v j n[x

"

p:P ℄ ! n[x

"

v j x

"

p:P ℄

! n[f

v

=

p

gP ℄

This removes the need for 3-way synhronisations between

a box, an output and an input (as in [VC98℄), simplifying

both the semantis and the implementation model.

2.2.2 Labelled Transitions

The redution semantis de�nes only the internal ompu-

tation of proesses. The statements of our seurity prop-

erties must involve the interations of proesses with their

environments, requiring more struture: a labelled transi-

tion relation haraterising the potential inputs and outputs

of a proess. We give a labelled semantis for box-� in an

expliitly-indexed early style, de�ned indutively on pro-

ess struture by a strutured operational semantis. The

labels are

` ::= � internal ation

x

o

v output ation

x

v input ation

where ranges over tags ?, n, " and n. The labelled tran-

sitions an be divided into those involved in moving mes-

sages aross box boundaries and those involved in ommu-

niations between outputs and inputs. The movement labels

are

x

n

v (sending to hild n)

x

n

v (box n reeiving from its parent)

x

"

v (sending to the parent)

Say mv(o) is true if o is of the form n or ". The ommuni-

ation labels are

x

?

v (loal output)

x

?

v (loal input)

x

n

v (output reeived from hild n)

x

n

v (input a message reeived from hild n)

x

"

v (output reeived from parent)

x

"

v (input a message reeived from parent)

Labels synhronise in the pairs x

v and x

v. The labelled

transition relation has the form

A ` P

`

�! Q

where A is a �nite set of names and fn(P) � A; it should

be read as `in a state where the names A may be known to

P and its environment, proess P an do ` to beome Q'.

The relation is de�ned as the smallest relation satisfying the

rules in Figure 3 omitting all transition subsripts, our-

renes of C : and ourrenes of C �. We write A; x for

A[fxg where x is assumed not to be in A, andA; p for the

union of A and the names ourring in the pattern p, where

these are assumed disjoint.

The labelled semantis is explained further in [SV99a℄.

It is similar to a standard � semantis but must also deal

with boxes and with redutions suh as

((� x)
x

n

z) j n[0℄ ! (� x)n[
x

"

z℄

in whih a new-bound name enters a box boundary.

The two semantis oinide in the following sense.

Theorem 1 If fn(P) � A then A ` P

�

�! Q iff P ! Q.

This give on�dene that the labelled semantis arries

enough information. The proof is somewhat deliate; it is

skethed in [SV99b℄ and given in detail in [SV99a℄.

3 A Filtering Example

To demonstrate the use of box-� we give the de�nition

of a wrapper that restrits the interfae for user programs.

In most operating systems, programs installed and run by a

user enjoy the same aess rights as the user, so if the user

is allowed to open a soket and send data out on the net-

work then so an any omponent. We idealize this senario

with the on�guration below � an idealized single-user OS

in whih user Alie is exeuting a program P . Here the

box around P stands for the operating system enfored user

protetion domain.

alie[P ℄ j

!

!

!:::in

alie

x::: j OS write on Alie's in port

! out

alie

x::: j OS read from Alie's out port

!net

alie

x::: OS read from Alie's net port

The OS provides three hannels in; out and net, to respe-

tively allow the user's program to read from and write to the

terminal and to send data out on a network onnetion. The

program P is exeuting within a box and so interats with

the OS using the " tag � for example P = in

"

x:out

"

h

xx

i

reeives a value from the terminal and then sends a pair of

opies of the value bak to the terminal.

To exeute some untrusted ode fragment Q, Alie may

run the ode in parallel with her other appliations, perhaps

as alie[P j Q℄. But, this grants too muh privilege to Q.

In partiular, if Q = ! in

"

x:net

"

x then any terminal input

may be redireted to the net. A wrapper is a box-� ontext

whih an provide �ne-grain ontrol of the behaviour ofQ.

For example, the �ltering wrapperW

1

of [SV99a℄ prevents

Q from aessing the network:

W

1

()

def

= (� a)

�

a[℄ j ! in

"

x:in

a

x j ! out

a

x:out

"

x

�

The system beomes alie[P j W

1

(Q)℄. The untrusted

ode is plaed in a box with a fresh name a, so a 62 fn(Q).

In parallel with the box are two forwarders for in and out

messages. The �rst, ! in

"

x:in

a

x, is a repliated input re-

eiving values from the OS and sending them to a; the se-

ond is dual. Only these two proesses an interat with a

due to the sope of the restrition, so even when put in par-

allel with other ode the wrapper guarantees thatQ will not

be able to send on net.

We show a small redution sequene where P = 0 and

Q = in

"

x:net

"

x. Here B is the forwarders ! in

"

x:in

a

x j

! out

a

x:out

"

x.

in

alie

y j alie[P j W

1

(Q)℄

� in

alie

y j alie[(� a)(a[Q℄ j B)℄

! alie[in

"

y j (� a)(a[Q℄ j B)℄

� alie[(� a)(in

"

y j a[Q℄ j B)℄

! alie[(� a)(in

a

y j a[Q℄ j B)℄

! alie[(� a)(a[in

"

y j Q℄ j B)℄

! alie[(� a)(a[net

"

y℄ j B)℄

! alie[(� a)(net

a

y j a[0℄ j B)℄

At the �nal step the output fromQ is prevented from leaving

the alie box diretly as B does not ontain a forwarder for

net. It is prevented from interation with any P (although

here P was empty) by the restrition on a.

4 The Unidiretional-�ow Wrapper

There is a tension between the strength of ommunia-

tion primitive supported by a wrapper and the strength of

the seurity property it an guarantee. The examples of the

introdution and [SV99a℄ provide only asynhronous un-

ordered ommuniation between omponents, whih would

be awkward to use in most real systems. At the other ex-

treme, synhronous ommuniation introdues ausal �ows

in both diretions (the ausal �ow property we state in Se-

tion 5 would not hold in a synhronous alulus, so a more

deliate property would be required � perhaps stating that

there are only data-less aks from one omponent to an-

other). There are two intermediate points � one an provide

asynhronous ordered ommuniation, as we do below, or

use some form of weak aknowledgments, as in the NRL

pump [KML96℄. The former still guarantees an absene of

information �ow (albeit at the ost of maintaining an un-

bounded buffer) while the latter limits bandwidth of overt

F(

1

;

2

) = (� a; b)

�

a[

1

℄ j b[

2

℄ j

(� bu� ; full)

�

(� front ; bak)

�

(reate FIFO buffer) bu�

?

h

front bak

i

j

(onnet from

a

to buffer) ! from

a

(

v r

)

:(� r

0

)(front

?

h

v r

0

i

j r

0

?

:r

a

) j

(onnet buffer to to

b

) ! bak

?

(

v r

)

:(� r

0

)(to

b

h

v r

0

i

j r

0

b

:r

?

)

�

j

(buffer ode) ! bu�

?

(

front bak

)

:front

?

(

v r

)

:(r

?

j (� bak

0

)(bu�

?

h

front bak

0

i

j full

?

h

bak

0

bak v

i

)) j

! full

?

(

bak

0

bak v

)

:(� r)(bak

?

h

v r

i

j r

?

:bak

0

?

(

v

0

r

0

)

:(r

0

?

j full

?

h

bak

0

; bak v

0

i

))

�

j

(I/O forwarders) ! in

1

"

x:in

1

a

x j ! out

1

a

x:out

1

"

x j

! in

2

"

x:in

2

b

x j ! out

2

b

x:out

2

b

x

�

Figure 1. FIFO Pipeline Wrapper F .

hannels. In both ases, it is essential to be able to guar-

antee that the implementation of the ommuniation prim-

itives does atually have the desired �ow property, this is

what we set to do here.

In Figure 1 we give a wrapper F that takes two ompo-

nents and allows the �rst to ommuniate with the seond

by a �rst-in, �rst-out buffer. The wrapper has been writ-

ten with are to avoid any information leak from the seond

omponent to the �rst. For simpliity both omponents have

simple unordered input and output ports in

i

and out

i

to the

environment; it would be routine to make these FIFO also.

The wrapper is illustrated in Figure 2.

The interfae to the wrapper is as follows. To write to the

buffer a produer sends a value together with an aknowl-

edgment hannel to the wrapper (using a standard asyn-

hronous �-alulus idiom). The wrapper inserts the value

in a queue and aknowledges reeption. For value v the

produer may ontain

(� ak)(from

"

h

v ak

i

j ak

"

:::);

sending the value and a new aknowledgement hannel ak

to the wrapper and, in parallel, waiting for a reply before

proeeding with its omputation. On the reeiver side, we

may have a proess that waits for a pair of a value and an

ak hannel:

to

"

(

z r

)

:(r

"

j :::)

The name of the reeiving hannel is to; hannel r is used

to send the aknowledgement bak to the wrapper. Thus a

on�guration where B stands for the body of the wrapper

ould be:

(� a; b)

�

a[(� ak)(from

"

h

v ak

i

j ak

"

:0) ℄ j

b[to

"

(

z r

)

:r

"

℄ j B

�

The implementation of the wrapper is somewhat triky, as

we have to be areful not to introdue overt hannels be-

tween the omponents. Within the wrapper there is a repli-

ated input on bu� that reates a new empty FIFO buffer

and a repliated input on full that reates a new buffer ell

ontaining a value. The key is to ensure that the aknowl-

edgment to the �rst omponent not be dependent on any

ation performed by the seond omponent. The glue pro-

ess that onnets the from

a

hannel to the buffer has a

subproess, r

0

?

:r

a

, to send the ak to a. This small pro-

ess itself expets an ak from the head of the buffer saying

that the message was inserted in the queue. The buffer ode

front

?

(

v r

)

:(r

?

: : : aks on r immediately, in parallel with

plaing the new message in a full buffer ell at the head of

the queue. The asynhrony here is essential.

So far we have been vague about the statement of the

properties that we expet wrappers to enfore. For W

1

it

may be lear from examination of the ode and the seman-

tis that the wrapper is satisfatory, but it is unlear exatly

what properties are guaranteed. ForF the situation is worse

� even this simple wrapper is omplex enough that a rigor-

ous statement and proof of its seurity properties is essen-

tial; the user should not be required to examine the ode of a

wrapper in order to understand the seurity that it provides.

We now turn to the task of formalizing these properties and

developing the tools needed to prove them.

5 Colouring and Causal Flow

The intuitive property ofF that we wish to express is that

the seond wrapped omponent should not be able to affet

the �rst. In [SV99a℄ we expressed the intuitive property

that one wrapped omponent does not ausally affet an-

other using a simple oloured redution semantis for box-

�. Output proesses were annotatedwith sets of olours that

reord their ausal histories � essentially the sets of prini-

pals that have affeted them in the past � and the redution

semantis propagated this ausal history data. In this paper

in

1

out

1

in

2

out

2

(r

0

)

(r) to

a

from

FIFO buffer

b

Figure 2. The FIFO Pipeline Wrapper Illustrated

we introdue also a oloured labelled transition semantis,

allowing more diret statements of seurity properties of

wrappers that interat with their environment. The oloured

alulus is a trade-off � it aptures less detailed ausality in-

formation than the non-interleaving models studied in on-

urreny theory [WN95, BS95, DP95℄ but is muh simpler;

it aptures enough information to express interesting seu-

rity properties.

In [SV99a℄ we also expressed a number of other desir-

able properties of wrappers � that they honestly forward

messages between omponent and environment, and that

they mediate all ommuniation between omponents. The

latter, related to intransitive noninterferene [RG99℄, was

expressed using the oloured semantis. Two further infor-

mation �ow properties were expressed using the unoloured

LTS: new name diretionality and permutation. They illus-

trate the wide range of preise properties whih the intuitive

statement might be thought to mean.

5.1 Colouring the Box� Calulus

We take a set ol of olours or prinipals (we use the

terms interhangeably) disjoint from N . Let k; p; q range

over elements of ol and C;D;K range over subsets of ol.

We de�ne a oloured box-� alulus by annotating all out-

puts with sets of olours:

P ::= C :x

o

v

�

�

x

�

p:P

�

�

!x

�

p:P

�

�

n[P ℄

�

�

0

�

�

P j P

0

�

�

(� x)P

If P is a oloured term we write jP j for the term of the orig-

inal syntax obtained by erasing all annotations. Conversely,

for a term P of the original syntax C ÆP denotes the term

with every partile oloured by C. For a oloured P we

write C �P for the oloured term whih is as P but with C

unioned to every set of olours ourring in it. We some-

times onfuse p and the set fpg. Let pn(P) be the set of

olours that our in P . We write CD for the union C [D.

In the oloured output C :x

o

v think of C as reording the

ausal history of the output partile � C is the set (possibly

empty) of prinipals p 2 C that have affeted the partile

in the past. In an initial state all outputs might typially be

oloured by singleton sets giving their atual prinipals, for

example olouring the ode of wrapperF and two wrapped

omponents with different olours w; p; q:

(w ÆF) (p ÆP j q ÆQ)

The oloured redution semantis is obtained by repla-

ing the �rst four axioms of the unoloured semantis by the

rules

n[C :x

"

v j Q℄ �! C :x

n

v j n[Q℄ (C Red Up)

C :x

n

v j n[Q℄ �! n[C :x

"

v j Q℄ (C Red Down)

C :x

�

v j x

�

p:P �! C �(f

v

=

p

gP) (C Red Comm)

C :x

�

v j !x

�

p:P �! !x

�

p:P j C �(f

v

=

p

gP) (C Red Repl)

that propagate olour sets. The oloured alulus has es-

sentially the same redution behaviour as the original al-

ulus:

Proposition 2 For any oloured P we have jP j ! Q iff

9P

0

: P �! P

0

^ jP

0

j = Q.

The oloured labelled transitions have labels ` exatly as

before. The oloured labelled transition relation has the

form

A ` P

`

�!

C

Q

where A is a �nite set of names and fn(P) � A; it should

be read as `in a state where the names A may be known to

A ` C :x

o

v

x

o

v

�!

C

0

(Out)

A ` x

�

p:P

x

�

v

�!

C

C �f

v

=

p

gP

() (In)

A ` P

`

�!

C

P

0

A ` P j Q

`

�!

C

P

0

j Q

(Par)

A ` !x

�

p:P

x

�

v

�!

C

!x

�

p:P j C �f

v

=

p

gP

() (Repl)

A ` P

x

v

�!

C

P

0

A ` Q

x

v

�!

C

Q

0

A ` P j Q

�

�!

;

(� fn(x; v)�A)(P

0

j Q

0

)

(Comm)

A ` P

x

"

v

�!

C

P

0

A ` n[P ℄

�

�!

;

(� fn(x; v) �A)(C :x

n

v j n[P

0

℄)

(Box-1)

A ` n[P ℄

x

n

v

�!

C

n[C :x

"

v j P ℄

(Box-2)

A ` P

�

�!

C

P

0

A ` n[P ℄

�

�!

C

n[P

0

℄

(Box-3)

A; x ` P

`

�!

C

P

0

A ` (� x)P

`

�!

C

(� x)P

0

(a) (Res-1)

A; x ` P

y

o

v

�!

C

P

0

A ` (� x)P

y

o

v

�!

C

P

0

(b) (Res-2)

A ` P

`

�!

C

P

0

P

0

� P

00

A ` P

`

�!

C

P

00

(Strut)

(a) The (Res-1) rule is subjet to x 62 fn(`). (b) The (Res-2) rule is subjet to x 2 fn(v) � fn(y; o), if o is ?, " or n, and to

x 2 fn(y; v) � fn(o) otherwise. () In the (In) and (Repl) axioms there is a side ondition that f

v

=

p

gP is well-de�ned. In all rules

with onlusion of the formA ` P

`

�!

C

Q there is an impliit side ondition fn(P) � A. Symmetri versions of (Par) and (Comm)

are elided.

Figure 3. Coloured Box� Labelled Transition Semantis

P and its environment, proess P an do `, oloured C, to

beome Q'. Again C reords ausal history, giving all the

prinipals whih have diretly or indiretly ontributed to

this ation. The relation is de�ned as the smallest relation

satisfying the rules in Figure 3. It oinides with the pre-

vious LTS and with the oloured redution semantis in the

following senses.

Proposition 3 For any olouredP we haveA ` jP j

`

�! Q

iff 9C; P

0

: A ` P

`

�!

C

P

0

^ jP

0

j = Q.

Proposition 4 For oloured P and Q, if fn(P) � A then

A ` P

�

�!

;

Q iff P ! Q.

5.2 The Causal Flow Property

The property an now be stated. Say an instantiation of

some binary wrapperW is an unoloured proessW(P;Q)

where P andQ are unoloured proesses not ontaining the

new-bound names soping the holes ofW . SayW is a pure

binary wrapper if for any instantiation and any transition

sequene

A ` W(P;Q)

`

1

�! : : :

`

k

�! R

the labels `

j

have the form � , in

i

"

v, or out

i

"

v, for i 2

f1; 2g. It is easy to see that F is pure. Purity simply means

that the wrapper has a �xed interfae and thus simpli�es the

statement of the ausal �ow property.

De�nition 1 (Causal �ow property) A pure binary wrap-

perW has the ausal �ow property if for any instantiation

W(P;Q) and any oloured trae

A ` ; ÆW(P;Q)

`

1

�!

C

1

: : :

`

k

�!

C

k

;

suh that all input transitions in

1

"

v and in

2

"

v in `

1

::`

k

are

oloured with prinipal sets fpg and fqg respetively, we

have `

j

= out

1

"

v implies that q 62 C

j

.

This property forbids any ausal �ow from an input on in

2

to an output on out

1

.

Different variants of the �ow property, with different

harateristis, an be stated � for example, to also pre-

vent information in the initial state of Q affeting outputs

on out

1

we ould onsider oloured traes

A `

�

; ÆW)(p ÆP; q ÆQ)

`

1

�!

C

1

: : :

`

k

�!

C

k

This seond de�nition still allows the Q to ommuniate

with P but only on the ondition that P does not perform

any further output dependent on the ommuniated values.

ForbiddingQ affeting P at all (even if there are no inputs

or outputs of either omponent) an be done with a slightly

more intriate oloured semantis. There is no lear ut

`best' solution, yet the use of ausal semantis allows su-

int statement of the alternatives and eases the omparison

of these different properties.

6 Causality Types

Verifying a ausal �ow property diretly an be labo-

rious, requiring a haraterisation of the state spae of a

wrapper ontaining arbitrary omponents. We therefore in-

trodue a type system that statially aptures ausal �ows;

a wrapper an be shown to satisfy the ausal �ow property

simply by heking that it is well-typed. This setion in-

trodues the type system, gives its soundness theorems, and

applies it to F .

A simple type system for Box-� would have types

T ::= han T

�

�

box

�

�

hT :: T i

for the types of hannel names arrying T , box names, and

tuples. We annotate the �rst two by sets K of prinipals and

add a type name, of arbitrary names, and >, of arbitrary

values, giving the value types

T ::= han

K

T

�

�

box

K

�

�

hT :: T i

�

�

name

�

�

>

If x : han

K

T then x is the name of a hannel arrying T ;

moreover, in an output proess C :x

?

v on x the typing rules

will require C � K � intuitively, suh an output may have

been ausally affeted only by the prinipals k 2 K. In

an input x

�

p:P on x the ontinuation P must therefore be

allowed to be affeted by any k 2 K, so any output within

P must be on a hannel of type han

K

0

T with K � K

0

.

We are onerned with the enapsulation of possibly

badly-typed omponents, so must allow a box a[P ℄ in a

well-typed term to ontain an untyped proess P . The type

system annot be sensitive to the ausal �ows within suh a

box; it an only enfore an upper bound on the set of prin-

ipals that an affet any part of the ontents. If a :box

K

then a is a box name; the ontents may have been ausally

affeted only by k 2 K.

We take type environments � to be �nite partial funtions

from names to value types. The type system has two main

judgments, � ` v :T for values and � ` P :pro

K

for pro-

esses. The typing for proesses reords just enough infor-

mation to determine when pre�xing a proess with an input

is legitimate � if P :pro

K

then P an be pre�xed by an

input on a hannel x : han

K

0

hi, to give x

?

:P , iff K

0

� K.

Note, however, that a P :pro

K

may have been affeted by

(and so syntatially ontain) k 62 K.

To type interations between well-typed wrapper ode

and a badly-typed boxed omponent some simple subtyping

is useful. We take the subtype order T � T

0

as below, and

write

V

fT

i

j i 2 1::k g for the greatest lower bound of

T

1

; ::; T

k

, where this exists.

>

name

hT

1

:: T

k

i

box

K

han

K

T

The omplete type system is given in Figure 4; we now

explain the key aspets by giving some admissible typing

rules.

Basi Flow Typing Consider the type environment

x : han

K

hi; y : han

L

hi and the redution

C :x

?

j x

?

:D :y

?

! (C [D) :y

?

During the redution the output y

?

on y is ausally affeted

by the output on x � the right-handproess term (C [D) :y

?

reords that the output on y has been (indiretly) affeted

by all the prinipals that had affeted the output on x. For

the left proess to be well-typed we must learly require

C � K and D � L; for the right proess to be well-typed we

need also C � K, to guarantee this the typing rules require

K � L. The relevant admissible rules are below.

� ` x : han

K

T

� ` v :T

C � K

� ` C :x

?

v : pro

K

� ` x : han

K

T

�; y :T ` P :pro

K

00

K � K

00

� ` x

?

y:P :pro

K

Now onsider also y : han

L

0

hi and the proess

C :x

?

j x

?

:

�

D :y

?

j D

0

:y

0

?

�

Here both the output on y and that on y

0

must be affetable

by C, so the typing rule for parallel must take the interse-

tion of allowed-ause sets:

� ` P :pro

K

� ` Q :pro

K

0

� ` P j Q :pro

K\K

0

The examples above involve only ommuniation within a

wrapper, with tag ?. Communiation between a wrapper

and its parent, with tag ", has the same typing rules, as the

parent is presumed well-typed.

Channel Passing Channel passing involves no additional

ompliation. Consider the type environment � =

z : han

K

00

hi, x : han

K

han

K

00

hi, and the redution

C :x

?

z j x

?

y:D :y

?

! (C [D) :z

?

The left-hand proess is typable using the rules above

if C � K for the x output, D � K

00

for the y output,

and K � K

00

for the input, using �; y : han

K

00

hi ` D :

y

?

:pro

K

00

. Together these imply (C [D) � K

00

, so the

right-hand proess is well-typed.

Interating with a box (at >) As disussed above, the

ontents of a box may be badly-typed, yet a wrapper must

still be able to interat with them. The simplest ase is that

in whih a wrapper sends and reeives values that it on-

siders to be of type >; we onsider more general ommu-

niation in the next paragraph. The typing rule for boxes

requires only that the prinipals pn(P) syntatially our-

ring within the ontents P of a box are ontained in the

permitted set and that P 's free names are all delared in the

type environment.

� ` a :box

K

pn(P) � K

fn(P) � dom(�)

� ` a[P ℄ :pro

K

Consider sending to and reeiving from a box a :box

K

.

C :x

a

v j a[P ℄ j z

a

y:Q

For the output to be well-typed we must insist only that

C � K; for the input to be well-typed Q must be allowed

to be affeted by any prinipal that might have affeted the

ontents P .

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

a

v : pro

K

� ` a :box

K

� ` x : han

K

0

>

�; y :> ` P :pro

K

00

K � K

0

� K

00

� ` x

a

p:P :pro

K

0

Interating with a box (at any transmissible S) More

generally, a wrapper may reeive from a box tuples on-

taining names whih are to be used for ommuniating with

the box as hannel names, for example

x

a

(

v r

)

:

�

C :r

a

j : : :

�

reeives a value v and name r from box a and uses r to send

an ak bak into a. This neessarily involves some run-time

typeheking, as the boxmay send a tuple instead of a name

for r. There is a design hoie here: how strong should this

typeheking be? Requiring an implementation to main-

tain a run-time reord of the types of all names would be

ostly, so we hek only the struture of values reeived

from boxes. We suppose the run-time representations of

values allow names (bit-patterns of some �xed length) and

tuples to be distinguished, and the number of items in a tu-

ple to be determined, but no more (so e.g. x : han

K

T and

y :box

L

will both be represented as bit patterns of the same

Patterns:

` :T B ; ` x :T B x : T

` p

1

:T

1

B �

1

:: ` p

k

:T

k

B �

k

`

(

p

1

:: p

k

)

: hT

1

:: T

k

i B �

1

; ::;�

k

Values:

�; x :T ` x :T

� ` v

1

:T

1

:: � ` v

k

:T

k

� `

h

v

1

:: v

k

i

:hT

1

:: T

k

i

fn(v) � dom(�)

� ` v :>

T atomi

�; x :T ` x :name

Proesses:

o 2 f?; "; "g

� ` x : han

K

T

� ` v :T

C � K

� ` C :x

o

v : pro

K

(Out-?; "; ")

� 2 f?; "g

� ` x : han

K

T

` p :T B �

�;� ` P :pro

K

� ` x

�

p:P :pro

K

(In-?; ")

o 2 fa; ag

� ` a :box

K

� ` x :name

� ` v :>

C � K

� ` C :x

o

v : pro

K

(Out-a; a)

� ` a :box

K

0

� ` x : han

K

S

` p :S B �

�;� ` P :pro

K

K

0

� K

� at

P tests all names of type name in �

p ontains no wildards

� ` x

a

p:P :pro

K

(In-a)

� ` P :pro

K

� ` Q :pro

K

0

� ` P j Q :pro

K\K

0

(Par)

� ` n :box

K

pn(P) � K

fn(P) � dom(�)

� ` n[P ℄ :pro

K

(Box)

� ` 0 :pro

K

(Nil)

�; x :T ` P :pro

K

T atomi

� ` (� x)P :pro

K

(Res)

� ` P :pro

K

0

K � K

0

� ` P :pro

K

(Spe)

The repliated input rules are similar to the input rules. The prediate `P tests all names of type name in�' is de�ned

to be true iff for all y :name in �, y ours free in hannel or box position within P .

Figure 4. Coloured Box� Typing

length). We introdue the supertype name of han

K

T and

box

L

, and allow a wrapper to reeive only values of the

transmissible types

S ::= > j name j hS :: Si

To send a value to a box by C :x

a

v it is neessary only for

x to be of type name.

The operational semantis expresses this run-time type-

heking by means of the ondition that f

v

=

p

gP is well-

de�ned in the redution ommuniation rule and the

labelled-transition input rules � for example, f

h

z z

i

=

x

gC :x

?

is not well-de�ned, as the syntax does not allow a tuple to

our in hannel-name position of an output. We would like

to ensure that run-time typeheking is only required when

reeiving values from a box, i.e. that for ommuniation

within a wrapper or between a wrapper and its parent suh

a substitution is always well-de�ned. This is guaranteed by

requiring a box input pre�x to immediately test all parts of

a reeived value that are assumed of type name � in typ-

ing an input x

a

p:P the type environment � derived from

the pattern p must ontain no tuples, and all x :name in�

must be used within P as a hannel or box. For example, if

a :box

K

and x : han

K

hnamenamei then

x

a

(

y z

)

:

�

K :y

a

j K :z

a

�

is well-typed as the pattern

(

y z

)

ompletely deomposes

values of type hnamenamei and both y and z are used as

hannels in K :y

a

j K :z

a

. On the other hand

x

a

w:x

?

w

is not, as it may reeive (for example) a triple from the

box, leading to a later run-time error within the wrap-

per. The type system is onservative in also exluding

x

a

(

y z

)

:

�

K : y

a

�

. Say a type is atomi if it is of the form

name, han

K

T or box

K

and �at if it is of the form >,

name, han

K

T , or box

K

. Say � is atomi or �at if all

types in ran(�) are. The atomi types are those whih

an be dynamially extended using restrition. We onsider

dynamis (redutions and labelled transitions) only for pro-

esses with respet to atomi typing ontexts; the de�ni-

tions ensure that an extruded name an always be taken to

be of an atomi type. The alulus has no basi data types,

e.g. a type of integers, that are not dynamially extensible.

This makes the type system a little degenerate.

The rest The typing rules for nil and restrition are straight-

forward; there is also a speialisation rule allowing some

permitted affetees of a proess to be forgotten.

� ` 0 :pro

K

�; x :T ` P :pro

K

T atomi

� ` (� x)P :pro

K

� ` P :pro

K

0

K � K

0

� ` P :pro

K

6.1 Soundness

We wish to infer properties of the oloured input/output

behaviour of wrappers from the soundness of the type sys-

tem, and therefore need a subjet redution result whih

refers not only to redutions (equivalently, � transitions) but

also to input/output transitions. De�ne typed labelled tran-

sitions by

� `

K

P

`

�!

C

Q iff

�

� atomi ^

� ` P :pro

K

^ dom(�) ` P

`

�!

C

Q

�

The subjet redution theorem for ` an output x

o

v should

state that x, o, v and Q have suitable types; the theorem

for ` an input should state that if ` an be typed then Q

an. The result is ompliated by the fat that box-� is a

alulus with new name generation, so new names an be

extruded and intruded. Type environments for these names

are alulated as follows. For a type environment �, with

� atomi, and a value v extruded at type T de�ne the type

environment t(�; v; T) for new names in v as follows.

t(�; x; T) = x : T if x 62 dom(�)

and T atomi

t(�; x;>) = x :name if x 62 dom(�)

t(�; x; T) = ; if � ` x :T

t(�;

h

v

1

:: v

k

i

;>) =

V

1::n

t(�; v

i

;>)

t(�;

h

v

1

:: v

k

i

; hT

1

:: T

k

i) =

V

1::n

t(�; v

i

; T

i

)

t(�; v; T) unde�ned elsewhere

Here

V

i21::k

�

i

is the type environment that maps eah x

in some dom(�

i

) to

V

fT j 9i : x :T 2 �

i

g, where

all of these are de�ned.

V

i21::k

�

i

is unde�ned other-

wise. Note that in the > ase the t(�; v

i

;>) will ne-

essarily all be well-de�ned and will be onsistent. To see

the need for

V

, onsider � = : han

K

hbox

K

namei and

P = (� x)

?

h

xx

i

. P has an extrusion transition with value

h

xx

i

; the type ontext t(�;

h

xx

i

; hbox

K

namei) should

be well-de�ned and equal to x :box

K

.

Further, the type system involves subtyping, so

t(�; v; T) an only be used as a bound on the ex-

truded/intruded type environments. Say � � �

0

iff

dom(�) = dom(�

0

) and 8x 2 dom(�) : �(x) � �

0

(x).

We an now state the subjet redution result. For output

tags f?; "g and " the name x is guaranteed to have a hannel

type and v the type arried; for a and a they are only guar-

anteed to be a name and a value of type >. f?; "g and a

are ommuniation tags, so x annot be extruded, whereas

" and a are movement tags, so x may be extruded. By on-

vention we elide a onjunt that t(:::) is de�ned wherever

it is mentioned.

Theorem 5 (Subjet Redution) If � `

K

P

x

o

v

�!

C

Q then

ase o 2 f?; "g: for some K

0

; T we have C � K

0

, � `

x : han

K

0

T , and there exists � � t(�; v; T) suh

that �;� ` Q :pro

K

.

ase o =": for some K

0

; T we have C � K

0

and there ex-

ists � � t(�;

h

x v

i

; hhan

K

0

T T i) suh that �;� `

Q :pro

K

.

ase o = a: for some K

0

we have C � K

0

, � `

a :box

K

0

, and there exists a type environment � �

t(�;

h

x v

i

; hname; >i) suh that �;� ` Q :pro

K

.

ase o = a: for some K

0

we have C � K

0

, � ` a :box

K

0

,

� ` x :name, and there exists � � t(�; v;>) suh

that �;� ` Q :pro

K

.

If � `

K

P

x

v

�!

C

Q then

ase 2 f?; "g: for some K

0

, T we have � ` x : han

K

0

T .

If moreover C � K

0

and � � t(�; v; T) then �;� `

Q :pro

K

.

ase = a: for some K

0

� K

00

, and S we have � `

a :box

K

0

, � ` x : han

K

00

S, t(�; v; S) well-de�ned,

and ran(t(�; v; S)) � fnameg. If moreover C � K

00

and� � t(�; v; S) then �;� ` Q :pro

K

.

ase = a: for some K

0

we have � ` a :box

K

0

. If more-

over C � K

0

and we have� � t(�;

h

x v

i

; hname>i)

then �;� ` Q :pro

K

.

If � `

K

P

�

�!

C

Q then C = ; and � ` Q :pro

K

.

A run-time error for box-� is a proess in whih a poten-

tial ommuniation fails beause the assoiated substitution

is not de�ned. More preisely, P ontains a run-time error

if it ontains subterms x

v and x

p:P in parallel (and not

under an input pre�x) and f

v

=

p

gP is not de�ned. In a well-

typed proess run-time errors an only our within boxes

(whose ontents are untyped) or at ommuniations from a

box to the wrapper. Internal transitions of the wrapper and

ommuniations between the wrapper and its parent there-

fore do not require dynami typeheking.

Theorem 6 (Limited Runtime Errors)

If � ` P :pro

K

, P � (� x

1

:: x

n

)

�

x

v j x

p:P

0

j Q

�

,

� atomi, P

0

does not ontain a box and 2 f?; "g then

f

v

=

p

gP is well-de�ned. Similarly for repliated input.

6.2 Typing the Unidiretional�ow Wrapper

Finally, we an show that instantiations of F are well-

typed and use the subjet redution theorem to onlude that

F has the ausal �ow property.

Theorem 7 (F typing) If

� = in

1

: han

fpg

>; out

1

: han

fpg

>;

in

2

: han

fqg

>; out

2

: han

fp;qg

>;

from : han

fpg

h>namei;

to : han

fp;qg

h> han

fp;qg

hii;

�

1

and also fn(P;Q) � dom(�)� fa; bg

then � ` ; ÆF(P;Q) :pro

p

.

The proof of this involves type assumptions for the new-

bound names of F as follows.

a:box

fpg

b:box

fp;qg

bu� :han

fpg

h han

fpg

h> han

fpg

hi

i

han

fp;qg

h> han

fp;qg

hi

ii

full :han

fp;qg

hhan

fp;qg

h> han

fp;qg

hi

i

han

fp;qg

h> han

fp;qg

hi

i

>i

A straightforward indution on trae lengths using the Sub-

jet Redution theorem then proves the desired ausal �ow

result:

Theorem 8 Wrapper F has the ausal �ow property.

7 Disussion

Poliy enforement mehanisms: Wrappers impose seu-

rity poliies on omponents for whih it is impratial to

analyze the internal struture, e.g. where only untyped ob-

jet ode is available.

Several alternative approahes are possible, differing in

the level of trust required, the �exibility of the seurity

poliy enfored, and their osts to omponent produers

and users. Code signing and Java-style sandboxing have

low ost but annot enfore �exible poliies � signed om-

ponents may behave in arbitrary ways whereas sandboxed

omponents should not be able to interat with eah other

at all. Code signing requires the user to have total trust in

the omponent produers � not just in their intent, but also

in their ability to produe bug-free omponents. Sandbox-

ing requires no trust, but the lak of any interation is often

too restritive. More deliate poliies an be enfored by

shipping ode together with data allowing the user to type-

hek it in a seurity-sensitive type system [VSI96, HR98℄,

or to hek a proof of a seurity-relevant behavioural prop-

erty [NL98℄. In the long term these seem likely to be the

best approahes, but they require omponent produers to

invest effort and to onform to a ommon standard for types

or proofs � in the short term this is prohibitive. Shifting the

burden of proof to the user, by performing type inferene or

stati analysis of downloaded ode, seems impratial given

only the objet ode, whih may not have been written with

seurity in mind and so not onform to any reasonable type

system. In ontrast, wrappers have been shown to have low-

ost � none to the produer and only a small run-time ost

to the user [FBF99℄. They allow more �exible interation

than sandboxing, albeit oarser-grain poliies than proof-

arrying omponents or seurity-type-heked omponents.

Information �ow properties: The ausal �ow property is

related to the property, studied in many ontexts, that there

is no information �ow from a high to a low seurity level

(though most work addresses omponents, whih may have

the property, rather than wrappers, whih may enfore it

on subomponents). The literature ontains a range of def-

initions that aim to apture this intuition in some partiu-

lar setting; the formalisations vary widely. A basi hoie

is whether the property is stated purely extensionally, in

terms of a semantis that desribes only the input/output

behaviour of a system, or using a more intensional seman-

tis. A line of work on Non-Interferene, summarised in

[ML94℄, takes an extensional approah, stating properties

in terms of the traes of input and output events of a system.

Related de�nitions, adapted to a programming language set-

ting, are used in [VSI96, HR98℄. In the presene of nonde-

terminism, however, non-interferene beomes problemati

� as disussed in [VS98℄, the property may only be mean-

ingful given probabilisti sheduling, whih has a high run-

time ost.

We believe that the basi dif�ultly is that the intuitive

property is an intensional one � the notion of one om-

ponent affeting another depends on some understanding

of how omponents interat; a preise statement requires

a semantis that aptures some aspets of internal exeu-

tion, not just input/output behaviours. This might be deno-

tational or operational. Intensional denotational semantis

have been used in the proofs (and, in the last, statements)

of non-interferene properties in [HR98, ABHR99, SS99℄,

whih use a logial relations proof and PER-based models.

[VS98℄ and [SS99℄ go on to onsider probabilisti proper-

ties.

For wrappers, it is important that the end-user be able to

understand the seurity that they provide as learly as pos-

sible. We therefore wish to use as lightweight a semantis

as possible, as this must be understood before any seurity

property stated using it, and so adopt an annotated opera-

tional semantis (developing a satisfatory denotational se-

mantis of box-�, dealing with name reation, boxes, and

untyped omponents, would be a hallenging researh prob-

lem in its own right). In a sequential setting annotated op-

erational semantis have been used by [ZGM99℄; see also

[LR98℄. The de�nition of the oloured semantis for box-�

seems unproblemati, but in general one might validate an

annotated semantis by relating it to a lower-level exeution

model (as mentioned below).

Negleting boxing andwrappers for the moment, onsid-

ering simply �-proesses, we believe that intensional prop-

erties stated in terms of ausal �ow will generally imply

properties stated purely in terms of trae-sets. As a start-

ing point, we show that our type system implies a non-

interferene property (similar to the permutation property of

[SV99b℄, but for proesses rather than wrappers) in a par-

tiular ase. We prove that an output on a `low' hannel an

always be permuted before an input on a `higher' hannel

(with respet to the lattie of sets of olours).

Proposition 9 If L (H and fh : han

H

U; l : han

L

V g `

P :pro

;

then

fh; lg ` P

h

?

u

�!

l

?

v

�! Q implies fh; lg ` P

l

?

v

�!

h

?

u

�! Q:

Proof (Sketh) One an �rst show that ; ÆP has oloured

transitions with the input olouredH and the output by some

C. By subjet redution C � L. Analysing the form of P

with Lemmas 21,20 from [SV99a℄, and using L (H, shows

that the output term in P is not pre�xed by the input, so the

transitions an be permuted. 2

Information �ow type systems: The type system differs

from previous work [VSI96, VS98, PØ97℄ primarily in han-

dling badly typed omponents. Neessarily, it does not pro-

vide �ne-grain traking of information �ow through these

omponents. It also handles nondeterminism, new name

reation and hannel passing. Preise omparisons with re-

lated type systems are dif�ult as the languages involved

differ widely. One an, however, embed fragments of these

languages into box-� (noting that this only exploits the

fully-typed part of our alulus). For example, in the work

of Smith and Volpano [SV98℄ an assignment to a low seu-

rity variable an follow an assignment to a high variable �

the program h:=3;l:=1 is well-typed. The natural trans-

lation of this program in box-� would be

h

?

0 j l

?

0 j h

?

y:(h

?

3 j l

?

y:l

?

1)

with an initial store assigning 0 to h and l. This would

not be well-typed in the system of this paper, taking

h : han

fH;Lg

Int, l : han

fLg

Int and a new base type Int.

Here the low assignment is ausally dependent on the high,

even though no high information an leak. On the other

hand a box-� enoding of branhes would not forbid high

variable guards.

Causal �ow is a robust and straightforward property; it

an be enfored by a remarkably simple type system. But,

as the example above shows, it is sometimes overonstrain-

ing. We envisage that in a large system the bulk of the ode

will be typeable in a seure type system, a small portionwill

be in learly-identi�ed unsafe modules that are subjet only

to onventional typeheking, and a small portion (any un-

trusted ode) will be enapsulated in wrappers. Automati

type inferene would be required to relieve the burden of

adding seurity annotations to all delarations.

8 Conlusion

The issue of seurely omposing untrusted or partially

trusted omponents has great pratial relevane. In this

paper we have studied tehniques for formally proving that

software wrappers � the glue between omponents � atu-

ally enfore user-spei�ed information �ow onstraints. We

have de�ned a oloured operational semantis for a onur-

rent wrapper language. By keeping trak of all the prini-

pals that have affeted a proess in the semantis it beomes

easy to formulate lear statements of information �ow prop-

erties. To prove that partiular wrappers are seure, we de-

�ned a ausal type system and so only need show that the

wrappers are well typed.

Throughout the paper we foussed on wrapper properties

� the alulus, statement of seurity properties and type sys-

tem are all designed spei�ally for wrappers � but we be-

lieve similar tehniques are appliable to other situations in

whih interation must be ontrolled but not ompletely ex-

luded, for example in isolating a seurity-ritial kernel of

a single appliation, or in ontrolling interations between

pakets in an ative network. Allowing untyped ode frag-

ments in otherwise typed programs gives a way to loosen

seurity restritions when neessary.

In future work we intend to integrate the ausal type sys-

tem with a lower-level semantis for objet ode, suh as

the typed assembly language of [GM99℄. We also intend

to address the issue of type inferene of seurity levels and

the statements of properties involving dynami hanges in

information �ow poliy.

Aknowledgements We would like to thank J. Leifer and

J. Palsberg for omments. The �rst author was supported

by a Royal Soiety University Researh Fellowship and by

EPSRC grant GR/L 62290 Caluli for Interative Systems:

Theory and Experiment. The seond author did part of

this work in the Objet System Group at the University of

Geneva.

Referenes

[ABHR99℄ Mart�́n Abadi, Anindya Banerjee, Nevin Heintze, and

Jon G. Rieke. A ore alulus of dependeny. In

ACM, editor, POPL '99. Proeedings of the 26th

ACM SIGPLAN-SIGACT on Priniples of program-

ming languages, January 20�22, 1999, San Anto-

nio, TX, pages 147�160, New York, NY, USA, 1999.

ACM Press.

[AFG98℄ Mart�́n Abadi, Cédri Fournet, and Georges Gonthier.

Seure implementation of hannel abstrations. In

LICS 98 (Indiana), pages 105�116. IEEE, Computer

Soiety Press, July 1998.

[BHR84℄ S.D. Brookes, C.A.R. Hoare, and A.W. Rosoe. A

theory of ommuniating sequential proesses. Jour-

nal of the ACM, 31(3):560�599, 1984.

[Bou92℄ Gérard Boudol. Asynhrony and the �-alulus

(note). Rapport de Reherhe 1702, INRIA So�a-

Antipolis, May 1992.

[BS95℄ Mihele Boreale and Davide Sangiorgi. A fully ab-

strat semantis for ausality in the pi-alulus. In

E. W. Mayr and C. Pueh, editors, Proeedings of

STACS'95, volume 900 of Leture Notes in Computer

Siene, pages 243�254. Springer-Verlag, 1995.

[CG98℄ Lua Cardelli and Andrew D. Gordon. Mobile am-

bients. In Pro. of Foundations of Software Siene

and Computation Strutures (FoSSaCS), ETAPS'98,

LNCS 1378, pages 140�155, Marh 1998.

[DP95℄ Pierpaolo Degano and Corrado Priami. Causality

for mobile proesses. In Zoltán Fülöp and Feren

Géseg, editors, Proeedings of ICALP '95, volume

944 of Leture Notes in Computer Siene, pages

660�671. Springer-Verlag, 1995.

[FBF99℄ Timothy Fraser, Lee Badger, and Mark Feldman.

Hardening COTS software with generi software

wrappers. In IEEE Symposium on Seurity and Pri-

vay, Berkeley, California, May 1999.

[FGL

+

96℄ Cédri Fournet, Georges Gonthier, Jean-Jaques

Lévy, Lu Maranget, and Didier Rémy. A alulus

of mobile agents. In Proeedings of CONCUR '96.

LNCS 1119, pages 406�421. Springer-Verlag, August

1996.

[GM99℄ Neal Glew and Greg Morrisett. Type-safe linking

and modular assembly language. In ACM, editor,

POPL '99. Proeedings of the 26th ACM SIGPLAN-

SIGACT on Priniples of programming languages,

January 20�22, 1999, San Antonio, TX, pages 250�

261, New York, NY, USA, 1999. ACM Press.

[GRPA97℄ Douglas P. Ghormley, Steven H. Rodrigues, David

Petrou, and Thomas E. Anderson. Interposition as

an operating system extension mehanism. Tehnial

Report CSD-96-920, University of California, Berke-

ley, April 9, 1997.

[GWTB96℄ Ian Goldberg, David Wagner, Randi Thomas, and

Eri A. Brewer. A seure environment for untrusted

helper appliations. In Sixth USENIX Seurity Sym-

posium, San Jose, California, July 1996.

[HR98℄ Nevin Heintze and Jon G. Rieke. The SLam al-

ulus: Programming with serey and integrity. In

Proeedings of the 25th POPL, January 1998.

[HT91℄ Kohei Honda and Mario Tokoro. An objet alulus

for asynhronous ommuniation. In Pierre Ameria,

editor, Proeedings of ECOOP '91, LNCS 512, pages

133�147, July 1991.

[Jon99℄ Mihael B. Jones. Interposition agents: Transpar-

ently interposing user ode at the system interfae.

In Jan Vitek and Christian Jensen, editors, Seure In-

ternet Programing: Seurity Issues for Mobile and

Distributed Objets. Springer Verlag, 1999.

[KML96℄ Myong H. Kang, Ira S. Moskowitz, and Daniel C.

Lee. A network pump. IEEE Transations on Soft-

ware Engineering, 22(5):329�338, May 1996.

[LR98℄ Xavier Leroy and Fraņois Rouaix. Seurity prop-

erties of typed applets. In Conferene Reord of

POPL '98: The 25th ACM SIGPLAN-SIGACT Sym-

posium on Priniples of Programming Languages,

pages 391�403, San Diego, California, 19�21 Jan-

uary 1998.

[ML94℄ J. MLean. Seurity models. In J. Mariniak, edi-

tor, Enylopedia of Software Engineering. Wiley &

Sons, 1994.

[MPW92℄ R. Milner, J. Parrow, and D. Walker. A alulus of

mobile proesses, Parts I + II. Information and Com-

putation, 100(1):1�77, 1992.

[NL98℄ G. C. Neula and P. Lee. Safe, untrusted agents us-

ing proof-arrying ode. In G. Vigna, editor, Mobile

Agents and Seurity, volume 1419 of LNCS, pages

61�91. SV, 1998.

[PØ97℄ Jens Palsberg and Peter Ørbæk. Trust in the

lambda-alulus. Journal of Funtional Program-

ming, 7(6):557�591, November 1997.

[PT99℄ Benjamin C. Piere and David N. Turner. Pit: A pro-

gramming language based on the pi-alulus. In Gor-

don Plotkin, Colin Stirling, and Mads Tofte, editors,

Proof, Language and Interation: Essays in Honour

of Robin Milner. MIT Press, 1999.

[RG99℄ A.W. Rosoe and M.H. Goldsmith. What is in-

transitive noninterferene? In Proeedings of the

12th IEEE Computer Seurity Foundations Workshop

(CSFW-12), Mordano, Italy, June 1999.

[RH98℄ James Riely and Matthew Hennessy. A typed lan-

guage for distributed mobile proesses. In Proeed-

ings of the 25th POPL, January 1998.

[Sew98℄ Peter Sewell. Global/loal subtyping and apability

inferene for a distributed �-alulus. In Proeedings

of ICALP '98, LNCS 1443, pages 695�706, 1998.

[Sew99℄ Peter Sewell. A brief introdution to applied

�, January 1999. Leture notes for the Math-

�t Instrutional Meeting on Reent Advanes

in Semantis and Types for Conurreny: The-

ory and Pratie, July 1998. Available from

http://www.l.am.a.uk/users/pes20/.

[SS99℄ Andrei Sabelfeld and David Sands. A PER model

of seure information �ow in sequential programs.

In Proeedings of European Symposium on Program-

ming, Amsterdam, Netherlands, Marh 1999.

[SV98℄ Geoffrey Smith and Dennis Volpano. Seure infor-

mation �ow in a multi-threaded imperative language.

In Conferene Reord of POPL '98: The 25th ACM

SIGPLAN-SIGACT Symposium on Priniples of Pro-

gramming Languages, pages 355�364, San Diego,

California, 19�21 January 1998.

[SV99a℄ Peter Sewell and Jan Vitek. Seure omposition of in-

seure omponents. In Proeedings of the 12th IEEE

Computer Seurity Foundations Workshop (CSFW-

12), Mordano, Italy, June 1999.

[SV99b℄ Peter Sewell and Jan Vitek. Seure omposition of

inseure omponents. Trusted objets, Centre Uni-

versitaire d'Informatique, University of Geneva, July

1999. Also available as University of Cambridge TR

463.

[SV99℄ Peter Sewell and Jan Vitek. Seure omposition of

untrusted ode: Wrappers and ausality types. Teh-

nial Report 478, Computer Laboratory, University

of Cambridge, November 1999.

[SWP99℄ Peter Sewell, Pawe� T. Wojiehowski, and Ben-

jamin C. Piere. Loation-independent ommuni-

ation for mobile agents: a two-level arhiteture.

In Internet Programming Languages, LNCS 1686.

Springer-Verlag, Otober 1999.

[VC98℄ Jan Vitek and Guiseppe Castagna. Towards a alu-

lus of mobile omputations. In Workshop on Internet

Programming Languages, Chiago, May 1998.

[VD98℄ Jose-Luis Vivas and Mads Dam. From higher-order

pi-alulus to pi-alulus in the presene of stati op-

erators. In Davide Sangiorgi and Robert de Simone,

editors, CONCUR '98: Conurreny Theory (9th In-

ternational Conferene, Nie, Frane), volume 1466

of lns, pages 115�130. sv, September 1998.

[VS98℄ Dennis Volpano and Geoffrey Smith. Con�nement

properties for programming languages. SIGACT

News, 29(3):33�42, September 1998.

[VSI96℄ D. Volpano, G. Smith, and C. Irvine. A sound type

system for seure �ow analysis. Journal of Computer

Seurity, 4(3):1�21, 1996.

[WBDF97℄ Dan S. Wallah, Dirk Balfanz, Drew Dean, and Ed-

ward W. Felten. Extensible seurity arhitetures for

Java. In Proeedings of the 16th Symposium on Op-

erating System Priniples, 1997.

[WN95℄ G. Winskel and M. Nielsen. Models for onurreny.

In Abramsky, Gabbay, and Maibaum, editors, Hand-

book of Logi in Computer Siene, volume IV, pages

1�148. Oxford University Press, 1995.

[ZGM99℄ Steve Zdanewi, Dan Grossman, and Greg Mor-

risett. Prinipals in programming languages: A syn-

tati proof tehnique. In International Conferene

on Funtional Programming, Paris, Frane, Septem-

ber 1999.

