
Secure Composition of Insecure Components

Peter Sewell
Computer Laboratory,

University of Cambridge,
England

Peter.Sewell@cl.cam.ac.uk

Jan Vitek
Object Systems Group,
Université de Genève,

Switzerland
Jan.Vitek@cui.unige.ch

Abstract

Software systems are becoming heterogeneous: instead
of a small number of large programs from well-established
sources, a user’s desktop may now consist of many smaller
components that interact in intricate ways. Some compo-
nents will be downloaded from the network from sources
that are only partially trusted. A user would like to know
that a number of security properties hold, e.g. that personal
data is not leaked to the net, but it is typically infeasible to
verify that such components are well-behaved. Instead, they
must be executed in a secure environment, orwrapper, that
provides fine-grain control of the allowable interactions be-
tween them, and between components and other system re-
sources.

In this paper we study such wrappers, focusing on how
they can be expressed in a way that enables their security
properties to be stated and proved rigorously. We introduce
a model programming language, the box-� calculus, that
supports composition of software components and the en-
forcement of security policies. Several example wrappers
are expressed using the calculus; we explore the delicate
security properties they guarantee.

1 Introduction

Software systems are evolving. Increasingly, monolithic
applications are being replaced with assemblages of soft-
ware components coming from different sources. Instead
of a small number of large programs from well-established
suppliers, nowadays a user’s desktop is made up of many
smaller applications and software modules that interact in
intricate ways to carry out a variety of information process-
ing tasks. Moreover, whereas it used to be that a software
base was fairly static and often controlled by a system ad-
ministrator, it is now easy to download code from the net-
work; technologies such as Java even allow an application
program to be extended with new components while the

program is running.
In such fluid operating environments, traditional security

mechanisms and policies appear almost irrelevant. While
passwords and access control mechanisms are adequate to
protect the integrity of the computer system as whole, they
utterly fail to address the issue of protecting the user from
downloaded code being run from her account [19, 13, 27].
Approaches such as the Java sandbox that promise security
by isolation are not satisfactory either: components can in-
teract freely or not at all [35, 14]. What is needed is much
finer-grained protection mechanisms that take into account
the interconnection of software components and the specific
security requirements of individual users.

We give a small motivating example (based on a true
story) involving a fictional character, Karen, performing
some financial computation. To manage her accounts she
downloads a software package calledQuickestfrom a com-
pany Q. Karen does not want any information about her
to be leaked without her consent, so she would like to run
Quickest in an environment that does not allow it access to
the Internet (she has observed that it sometimes uploads in-
formation – presumably for marketing purposes – to Q). On
the other hand she often needs stock quotes, for which she
must allow net access. At present she runs two instances of
Quickest, one on an isolated PC, with her financial records,
and one connected, used to obtain stock quotes. She trans-
fers data from the second to the first only on floppy disc,
thereby manually ensuring that no information flows in the
converse direction.

Karen would like to dispose of the isolated PC, using a
software solution to prevent her personal data being leaked
to the net. Now, Quickest is a large piece of commercial
software that was not programmed by Karen. The source
code is not available to her and its internal behaviour is
complex and inaccessible; ensuring the desired properties
by program analysis will not be feasible. Instead she must
run the two copies of the package in secure software envi-
ronments that allow control of the information flow between
them and between each package and the net.



More generally, she will wish to run many packages,
each trusted in different ways, and will want to be able to
dynamically control the interactions between them and be-
tween these packages and other resources – the net, regions
of the local disc, the terminal, audio and video capture de-
vices etc. In some cases she will wish to log the data sent
from one to another; in others she will wish to limit the
allowed bandwidth (e.g. to disallow audio and video chan-
nels). In general her notion of what data is to be consid-
ered “sensitive” is likely to be context dependent. In a Web
browser, she may choose to consider her e-mail address as a
secret that should be protected from broadcast to junk mail
lists, while the same e-mail will not be treated specially in
her text editor.

While it is not feasible to analyse or modify large third-
party software packages, itis possible to intercept the com-
munications between a package and the other parts of the
system, interposing code at the boundaries of the different
software components [20, 11, 7, 13]. It is thus possible to
monitor or control the operations that these components are
able to invoke, and the data that is exchanged between them.
We call a code fragment that encapsulates untrusted compo-
nents asecurity wrapperor wrapperfor short.

Clearly the task of writing wrappers should not be left
solely to the end-user. Rather we envision wrappers as
reusable software components, users should then only have
to pick the most appropriate wrappers, customize them with
some parameters and install them. All of this process should
be dynamic: wrappers must be no harder to add to a running
system than new applications. A user will require a clear
description of the security properties that a wrapper guar-
antees. Moreover, wrappers should compose with a clear
notion of which properties are preserved.

The goal of this work is to study such secure environ-
ments, focusing on how they can be expressed in a way that
enables their security properties to be stated and proved rig-
orously. It appears that there is a wide range of rather del-
icate properties, making hard for designers to develop suf-
ficiently clear intuitions without such rigour. Moreover the
wrappers, although critical, may be rather small pieces of
software, making it feasible to prove properties about them,
or about mild idealisations.

To express and reason about wrappers we require a small
programming language, with a well-defined semantics, that
allows the composition of software components to be ex-
pressed straightforwardly and also supports the enforce-
ment of security policies. Such a language, the box-� cal-
culus, is introduced inx2. We begin with a simple exam-
ple, a wrapperW

1

written in the calculus. It encapsulates a
single component and controls its interactions with the en-
vironment, limiting them to two channelsin andout . W

1

is written as a unary context:

W

1

[ ℄

def
= (� a)

�

a[ ℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

This creates a box with a new namea, installing in parallel
with it two forwarders – one that receives messages from the
environment on channelin and sends them to the wrapped
program, and one that receives messages from the wrapped
program on channelout and sends them to the environ-
ment. An arbitrary programP (possibly malicious) can be
wrapped to giveW

1

[P ℄; the design of the calculus and of
W

1

ensures that no matter howP behaves the wrapped pro-
gramW

1

[P ℄ can only interact with its environment on the
two channelsin andout . This could be achieved simply by
forbiddingall interaction betweenP and the outside world,
a rather unsatisfactory wrapper —W

1

is alsohonest, in that
it faithfully forwards messages onin andout . These in-
formal properties are made precise in Propositions 2 and 5
below. We also discuss the sense in which wrapping awell-
behavedP has no effect on its behaviour.W

1

is atypical in
that it has no behaviour except the forwarding of legitimate
messages – other reasonable unary wrappers may perform
some kind of logging, or have a control interface for the
wrapper. The honesty property that should hold for any rea-
sonable wrapper is therefore somewhat delicate; to state it
(and our other security properties) we make extensive use
of a labelled transition semantics for the calculus.

The wrapperW
1

controls interaction between a single
component and its environment. Our second main exam-
ple goes further towards solving Karen’s problem, allowing
control of the interaction between components.W

2

(de-
fined inx3) is a binary wrapper that encapsulates two com-
ponentsP andQ asW

2

[P;Q℄, allowing each to interact
with the environment in a limited way but also allowing in-
formation to flow fromP to Q (but not vice versa) along a
directed communication channel. Making this precise is the
subject ofx5.

BothW
1

andW
2

are chosen to be as simple as possible,
in particular with fixed interfaces for components to interact
with each other and with the environment. Generalising this
to arbitrary interfaces and to wrappers taking any number of
components should be straightforward but complicates the
notation; other generalisations are discussed in the conclu-
sion.

Overview We begin in the next section (x2) by intro-
ducing the calculus and giving its operational semantics.
A number of wrappers are defined inx3, including one
which logs traffic. The basic properties of honesty and well-
behaviour are introduced inx4. Information flows between
wrapped components are studied inx5, then we conclude



in x6 with discussion of related and future work. This pa-
per describes work in progress – Sections 4 and 5 contain a
number of conjectures which are yet to be proved, but which
we hope will stimulate discussion.

2 A Boxed� Calculus

The language – known as thebox-� calculus– that we
use for studying encapsulation properties must allow in-
teracting components to be composed. The components
will typically be executing concurrently, introducing non-
determinism. It is therefore natural to base the language
on a process calculus. The box-� calculus lies in a large
design space of distributed calculi that build on the�-
calculus of Milner, Parrow and Walker [24]. Related cal-
culi have been used by a number of authors, e.g. in
[2, 4, 6, 9, 10, 12, 17, 16, 28, 30, 31, 33, 34, 36, 37]. A
brief overview of the design space can be found in [32];
here we highlight the main design choices for box-�, defer-
ring comparison with related work tox6.

The calculus is based on asynchronous message pass-
ing, with components interacting only by the exchange of
unordered asynchronous messages. Box-� has an asyn-
chronous�-calculus as a subcalculus – we build on a large
body of work studying such calculi, notably [18, 8, 5]. They
are known to be very expressive, supporting many pro-
gramming idioms including functions and objects, and are
Turing-complete; a box-� process may therefore perform
arbitrary internal computation.

To � we must add primitives for constraining commu-
nication – in standard�-calculi, if one process can send a
message to another then the only way to prevent informa-
tion flowing in the reverse direction is to impose a type sys-
tem, which (as observed above) is not appropriate here. We
therefore add a boxing primitive. Boxes may be nested, giv-
ing hierarchical protection domains; communication across
box boundaries is strictly limited. Underlying the calcu-
lus design is the principle thateach box should be able to
control all interactions of its children, both with the outside
world and with each other[36]. Communication is there-
fore allowed only between a box and its parent, or within
the process running in a particular box. In particular, two
sibling boxes cannot interact without the assistance of their
parent. To enable a box to interact with a particular child,
boxes are named, analogously to� channel names. The se-
curity properties of our wrappers depend on the ability to
create fresh box names.

Turning to the values that may be communicated, it is
convenient to allow arbitrary tuples of names (or other tu-
ples). Note that we donot allow communication of pro-
cess terms. Moreover, no primitives for movement of boxes
are provided. The calculus is therefore entirely first order,
which is important for the tractable theory of behaviour (the

labelled transition semantics) that we require to state and
prove security properties. The calculus is also untyped –
we wish to consider the wrapping of ill-understood, proba-
bly buggy and possibly malicious programs.

2.1 Syntax

The syntax of the calculus is as follows:

Names We take an infinite setN of names, ranged
over by lower-case roman lettersn;m; x; y; z etc. (except
i; j; k; o; p; u; v). Both boxes and communication channels
are named; names also play the role of variables, as in the
�-calculus.

Values and Patterns Processes will interact by communi-
cating values which are deconstructed by pattern-matching
upon reception. Valuesu; v can be names or tuples, with
patternsp correspondingly tuple-structured:

u; v ::= x name
h

v

1

:: v

k

i tuple (k � 0)

p ::= wildcard
x name pattern
(

p

1

:: p

k

) tuple pattern
(k � 0, no repeated names)

Processes The main syntactic category is that ofpro-
cesses, ranged over byP;Q. We introduce the primitives
in three groups.

Boxes A box n[P ℄ has a namen, it can contain an arbi-
trary processP . Box names are not necessarily unique –
the processn[0℄ j n[0℄ consists of two distinct boxes named
n, both containing an empty process, in parallel.

P ::= n[P ℄ box namedn containingP
P j P

0

P andP 0 in parallel
0 the nil process
: : :

Communication The standard asynchronous�-calculus
communication primitives arexv, indicating an output of
valuev on the channel namedx, andxp:P , a process that
will receive a value output on channelx, binding it top in
P . Here we refine these with a tag indicating the direction
of the communication in the box hierarchy. Aninput tag�
can be either?, for input within a box,", for input from the
parent box, or a namen, for input from a sub-box namedn.
An output tago can be any of these, similarly. For technical
reasons we must also allow an output tag to be", indicating
an output received from the parent that has not yet interacted
with an input, orn, indicating an output received from child



n that has not yet interacted. The communication primitives
are then

P ::= : : :

x

o

v outputv on channelx to o
x

�

p:P input on channelx from �

!x

�

p:P replicated input
: : :

The replicated input!x�p:P behaves essentially as in-
finitely many copies ofx�p:P in parallel. This gives compu-
tational power, allowing e.g. recursion to be encoded sim-
ply, while keeping the theory simple. Inx�p:P and!x�p:P
the names occurring in the patternp bind inP .

New name creation Both box and channel names can be
created fresh, with the standard�-calculus(� x)P opera-
tor. This declares any free instances ofx within P to be
instances of a globally fresh name.

P ::= : : :

(� x)P new name creation

In (� x)P thex binds inP . We work up to alpha conversion
of bound names throughout, writing the free name function,
defined in the obvious way for values, tags and processes,
asfn( ).

2.2 Reduction

The simplest semantic definition of the calculus is are-
duction semantics, a one-step reduction relationP ! P

0

indicating thatP can perform one step of internal compu-
tation to becomeP 0. We first define the complement� of a
tag � in the obvious way, with? = ? and� = �. We write
f

v

=

p

gP for the result of substituting appropriate parts of the
valuev for the names of the patternp in P . Note that this
may be undefined, either because the value does not match
the pattern or because the syntax does not allow arbitrary
values in all the places where free names can occur. We
define structural congruence� as the least congruence rela-
tion such that the axioms below hold. This allows the parts
of a redex to be brought syntactically adjacent.

P j 0 � P

P j Q � Q j P

(P j Q) j R � P j (Q j R)

(� x)(� y)P � (� y)(� x)P

(� x)(P j Q) � P j (� x)Q x 62 fn(P )

(� x)n[P ℄ � n[(� x)P ℄ x 6= n

The reduction relation is now the least relation over pro-
cesses satisfying the axioms and rules below. The (Red
Comm) and (Red Repl) axioms are subject to the condition

thatfv=
p

gP is well-defined.

n[x

"

v j Q℄ ! x

n

v j n[Q℄ (Red Up)

x

n

v j n[Q℄ ! n[x

"

v j Q℄ (Red Down)
x

�

v j x

�

p:P ! f

v

=

p

gP (Red Comm)
x

�

v j !x

�

p:P ! !x

�

p:P j f

v

=

p

gP (Red Repl)
P ! Q ) P j R! Q j R (Red Par)
P ! Q ) (� x)P ! (� x)Q (Red Res)
P ! Q ) n[P ℄ ! n[Q℄ (Red Box)
P � P

0

! Q

0

� Q ) P ! Q (Red Struct)

The (Red Up) axiom allows an output to the parent of a box
to cross the enclosing box boundary. Similarly, the (Red
Down) axiom allows an output to a child boxn to cross
the boundary ofn. The (Red Comm) axiom then allows
synchronisation between a complementary output and input
within the same box. The (Red Repl) axiom is similar, but
preserves the replicated input in the resulting state.

Communications across box boundaries thus take two
reduction steps, for example in the following upwards and
downwards communications.

n[x

"

v℄ j x

n

p:P ! n[0℄ j x

n

v j x

n

p:P

! n[0℄ j f

v

=

p

gP

x

n

v j n[x

"

p:P ℄ ! n[x

"

v j x

"

p:P ℄

! n[f

v

=

p

gP ℄

This removes the need for 3-way synchronisations between
a box, an output and an input (as in [36]), simplifying both
the semantics and the implementation model.

2.3 Labelled Transitions

The reduction semantics defines only the internal com-
putation of processes. The statements of our security prop-
erties must involve the interactions of processes with their
environments, requiring more structure: alabelled transi-
tion relationcharacterising the potential inputs and outputs
of a process. We give a labelled semantics for box-� in an
explicitly-indexed early style, defined inductively on pro-
cess structure by an SOS. Thelabelsare

` ::= � internal action
x

o

v output action
x



v input action

where ranges over all output tags except". The labelled
transitions can be divided into those involved in moving
messages across box boundaries and those involved in com-
munications between outputs and inputs. The movement
labels are

x

"

v (sending to the parent)
x

n

v (sending to childn)
x

n

v (boxn receiving from its parent)



x

o

v

x

o

v

�! 0

(Out)
x

�

p:P

x

�

v

�! f

v

=

p

gP

(In)
!x

�

p:P

x

�

v

�! !x

�

p:P j f

v

=

p

gP

(Repl)

A ` P

x



v

�! P

0

A ` Q

x



v

�! Q

0

A ` P j Q

�

�! (� fn(x; v)�A)(P

0

j Q

0

)

(Comm)
P

`

�! P

0

P j Q

`

�! P

0

j Q

(Par)

A ` P

x

"

v

�! P

0

A ` n[P ℄

�

�! (� fn(x; v)�A)(x

n

v j n[P

0

℄)

(Box-1)
n[P ℄

x

n

v

�! n[x

"

v j P ℄

(Box-2) P

�

�! P

0

n[P ℄

�

�! n[P

0

℄

(Box-3)

A; x ` P

`

�! P

0

A ` (� x)P

`

�! (� x)P

0

(Res-1)
A; x ` P

y

o

v

�! P

0

A ` (� x)P

y

o

v

�! P

0

(Res-2) P

`

�! P

0

P

0

� P

00

P

`

�! P

00

(Struct Right)

The (Res-1) rule is subject tox 62 fn(`), the (Res-2) rule is subject tox 2 fn(v)� fn(y; o) if :mv(o) and tox 2 fn(y; v) � fn(o)

otherwise. The indexingA ` has beeen elided in rules where it is not involved in any interesting way. In all rules with conclusion

of the formA ` P

`

�! Q there is an implicit side conditionfn(P ) � A. In the (In) and (Repl) axioms there is an implicit side
condition thatfv=

p

gP is well-defined. Symmetric versions of (Par) and (Comm) are elided.

Figure 1. Box- � Labelled Transitions

Saymv(o) is true if o is of the formn or ". The communi-
cation labels are

x

?

v (local output)
x

?

v (local input)
x

n

v (output received from childn)
x

n

v (input a message received from childn)

x

"

v (output received from parent)
x

"

v (input a message received from parent)

Labels will synchronise in the pairs given:

x

?

v x

?

v

x

n

v x

n

v

x

"

v x

"

v

x

n

v x

n

v

The labelled transition relation has the form

A ` P

`

�! Q

whereA is a finite set of names andfn(P ) � A; it should
be read as ‘in a state where the namesA may be known
to P and its environment, processP can do` to become
Q’. The relation is defined as the smallest relation satis-
fying the rules in Figure 1. We writeA; x for A [ fxg

wherex is assumed not to be inA, andA; p for the union of
A and the names occurring in the patternp, where these
are assumed disjoint. For the subcalculus without new-
binding the labelled transition rules are straightforward—
instances of the reduction rule (Red Up) correspond to uses

of (Box-1), (Out), and (Par); instances of (Red Down) cor-
respond to uses of (Comm), (Out), and (Box-2); instances
of (Red Comm) correspond to uses of (Comm), (Out), and
(In). The addition of new-binding introduces several sub-
tleties, some inherited from the�-calculus and some related
to scope extrusion and intrusion across box boundaries. We
discuss the latter briefly.

The (Red Down) rule involves synchronisation on the
box namen but not on the channel namex — there are
reductions such as

((� x)
x

n

z) j n[0℄ ! (� x)n[
x

"

z℄

in which a new-bound name enters a box boundary. To cor-
rectly match this with a� -transition the side-condition for
(Res-2) for labels with output tagn requires the bound name
to occur either in channel or value position, and the (Comm)
rule reintroduces thex binder on the right hand side.

Similarly, the (Red Up) rule allows new-bound names in
channel position to exit a box boundary, for example in

n[(� x)x

"

z℄ ! (� x)(x

n

z j n[0℄)

The (Res-2) condition for output tag" again requires the
bound name to occur either in channel or value position,
here the (Box-1) rule reintroduces thex binder on the right
hand side.

Reductions generated by (Red Comm) involve synchro-
nisation both on the tags and on the channel name. The
(Res-2) condition for output tags?, " andn is analogous



to the standard�-calculus (Open) rule; requiring the bound
name to occur in the value but not in the tag or channel. The
(Comm) rule for these output tags is analogous to the stan-
dard� rule — in particular, here it is guaranteed thatx 2 A

(see Lemma 10).
Some auxiliary notation is useful. For a sequence of la-

bels`
1

: : : `

k

we write

A ` P

1

`

1

�! : : :

`

k

�! P

k+1

to mean9P
2

; : : : ; P

k

: 8i 2 1::k : A

i

` P

i

`

i

�! P

i+1

,
whereA

i

= A [

S

j21::i

fn(`

j

). If ` 6= � we writeA `

P

^

`

=) P

0 for A ` P

�

�!

�

`

�!

�

�!

�

P

0; if ` = � then

A ` P

^

`

=) P

0 is defined asA ` P

�

�!

�

P

0.
The two semantics coincide in the following sense.

Theorem 1 If fn(P ) � A thenA ` P

�

�! Q iff P ! Q.

This give confidence that the labelled semantics carries
enough information. The proof is somewhat delicate — it
is sketched in Appendix A; full details can be found in the
forthcoming technical report.

2.4 Bisimulation

The statements of some relationships between the be-
haviour of a wrapped and an unwrapped program require
an operational equivalence relation. As box-� is asyn-
chronous, an appropriate notion can be based on theweak
asynchronous bisimulationof [5]. Consider a familyS of
relations indexed by finite sets of names such that eachS

A

is a symmetric relation overfP j fn(P ) � A g. SayS is a
weak asynchronous bisimulationif

� P S

A

Q, A ` P

`

�! P

0 and ` is an output or�

transition imply9Q0

: A ` Q

^

`

=) Q

0

^ P

0

S

A[fn(`)

Q

0, and

� P S

A

Q, A ` P

x



v

�! P

0 imply either9Q0

: A `

Q

x



v

=) Q

0

^ P

0

S

A[fn(x



v)

Q

0 or 9Q0

: A ` Q =)

Q

0

^ P

0

S

A[fn(x



v)

(Q

0

j x



v).

We write� for the union of all weak asynchronous bisimu-
lations. (This definition has not been thoroughly tested – in
particular, it has not been proved to be a congruence.)

3 Security Wrappers

This section gives three example wrappers. The first en-
capsulates a single component, restricting its interactions
with the outside world to communications obeying a cer-
tain protocol. The second is similar, but also writes a log of

all such communications. The third wrapper encapsulates
two components, allowing each to interact with the outside
world in a limited way but also allowing information to flow
from the first to the second (but not vice versa).

A wrapper design must be in the context of some fixed
protocol which components should use for communication
with their environment and with each other. For the first two
wrappers we fix two channel names,in andout , for compo-
nents to receive and send messages respectively. Moreover,
we assume that components will always be executed within
some box and should be communicating with the parent
box. A trivial component that receives valuesv and then
copies pairshv vi to the output would be written as

! in

"

y:out

"

h

y y

i

A malicious component might also write data to another il-
licit output channel available in the environment, e.g.

! in

"

y:

�

net

"

y j out

"

h

y y

i

�

or eavesdrop on communications between other parts of the
system, e.g.

! 

?

y:(net

"

 j 

?

y

�

We can express whether a component obeys the protocol in
terms of the labelled transition semantics – sayP is well-

behavedfor a unary wrapper iff wheneverA ` P

l

1

::l

k

�! Q

then thel
j

are of the formin"v, out
"

v, or � .

A Filtering Wrapper A filter is a wrapper that simply
restricts the communication abilities of a process. We con-
sider a static filter that allows interaction on two channels
in andout only.

W

1

[ ℄

def
= (� a)

�

a[ ℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

W

1

executes its component within a freshly-named box, in-
stalling forwarders to move legitimate messages across the
boundary. Note that this and further wrappers are non-
binding contexts – equivalently, we assume wherever we
applyW

1

to a processP that the new-bounda does not oc-
cur free inP (in an implementation this could be ensured
either probabilistically or with a linear-time scan ofP ). Ir-
respective of the behaviour ofP ,W

1

[P ℄ does obey the pro-
tocol – this can be stated clearly using the labelled transition
semantics:

Proposition 2 For any programP with a 62 fn(P ), if A `

W

1

[P ℄

l

1

::l

k

�! Q then thel
j

are of the formin"v, out
"

v, or
� .



The proof is via an explicit characterisation of the states
reachable by labelled transitions ofW

1

[P ℄. A sketch of
this, and of the other properties ofW

1

, can be found in
Appendix B; full details can be found in the forthcoming
technical report. We say a unary wrapper with this property
is pure.

The Logging Wrapper The filter can be extended to
maintain a log of all communications of a process, sending
copies on a channellog to the environment:

L[ ℄

def
= (� a)

�

a[ ℄

j ! in

"

y:(log

"

y j in

a

y)

j ! out

a

y:(log

"

y j out

"

y)

�

A wrapped programL[P ℄ again can interact only in limited
ways.

Proposition 3 For any programP with a 62 fn(P ), if A `

L[P ℄

l

1

::l

n

�! Q then thel
j

are of the formin"v, out
"

v, log
"

v,
or � .

A Pipeline Wrapper A pipeline wrapper allows a con-
trolled flow of information between two components. We
give a binary wrapperW

2

that takes two processes. In an
execution ofW

2

[Q

1

; Q

2

℄ the two wrapped processesQ
i

can
interact with the environment as before, on channelsin

i

and
out

i

. In addition,Q
1

can send messages toQ
2

on a channel
mid . The pipeline implemented here is unordered.

W

2

[

1

;

2

℄

def
= (� a

1

; a

2

)

�

a

1

[

1

℄ j a

2

[

2

℄

j ! in

1

"

y:in

1

a

1

y

j ! in

2

"

y:in

2

a

2

y

j ! out

1

a

1

y:out

1

"

y

j ! out

2

a

2

y:out

2

"

y

j !mid

a

1

y:mid

a

2

y

�

As beforeW
2

is a non-binding context – we assume, wher-
ever we apply it to two processesP

1

; P

2

, that fa
1

; a

2

g \

fn(P

1

; P

2

) = ;. Say a binary wrapperC is pure iff for any
programsP

1

; P

2

, (satisfying the appropriate free name con-
dition – for W

2

that with fa
1

; a

2

g \ fn(P

1

; P

2

) = ;), if

A ` C[P

1

; P

2

℄

l

1

::l

k

�! Q then thel
j

are of the formin
i

"

v,

out

i

"

v, or � .

Proposition 4 W

2

is pure.

For an example of a blocked attempt by the second process

to send a value to the first, supposeP

2

= mid

"

v. We have

W

2

[P

1

;mid

"

v℄ = (� a

1

; a

2

)

�

a

1

[P

1

℄ j a

2

[mid

"

v℄ j R

�

! (� a

1

; a

2

)

�

a

1

[P

1

℄ j a

2

[0℄ j mid

a

2

v j R

�

whereR is the parallel composition of forwarders. The out-

put mid

a

2

v in the final state cannot interact further – not
with the environment, asa

2

is restricted, and not with the
forwarder!mid

a

1

y:mid

a

2

y, asa
1

6= a

2

.
These wrappers all assume a rather simple fixed proto-

col. It would be straightforward to generalise to arbitrary
sets of channels instead ofin, out andmid . It would also
be straightforward to allown-ary wrappers, encapsulating
many components and allowing information to flow only
on a given preorder between them. Other generalisations
are discussed in the conclusion.

4 Honesty and Composition

The properties of wrappers stated in the previous section
are very weak. For example, the unary wrapper

C[ ℄

def
= 0

is also pure, but is useless. In this section we identify the
class ofhonestwrappers that are guaranteed to forward le-
gitimate messages. This gives the authors of components a
clear statement of (some of) the properties of the environ-
ment that can be relied upon.

An initial attempt might be to takeW
1

as a specification,
defining a unary wrapperC to be honest iff for any program
P the processesC[P ℄ andW

1

[P ℄ are operationally equiva-
lent. This is unsatisfactory – it rules out wrappers such asL,
and it does not give a very clear statement of the properties
that may be assumed of an honest wrapper.

A better attempt might be to say that a unary wrapperC

is honest iff for any well-behavedP the processesC[P ℄ and
P are operationally equivalent. This would be unsatisfac-
tory in two ways. Firstly, some intuitively sound wrappers
have additional interactions with the environment – e.g. the
logging outputs ofL – and so would not be considered hon-
est by this definition. Secondly, this definition would not
constrain the behaviour of wrappers for non-well-behaved
P at all – if a componentP attempted, in error, a single
illicit communication thenC[P ℄ might behave arbitrarily.

To address these points we give explicit definitions of
honesty, first for unary wrappers and then for binary, in the
style of weak asynchronous bisimulation. Consider a family
R indexed by finite sets of names such that eachR

A

is a
relation overfP j fn(P ) � A g. SayR is anh-bisimulation
if, wheneverC R

A

Q then:

1. if A ` C

`

�! C

0 for ` = out

"

v; � thenA ` Q

^

`

=)

Q

0

^ C

0

R

A[fn(`)

Q

0

2. if A ` C

in

"

v

�! C

0 then eitherA ` Q

in

"

v

=) Q

0

and C

0

R

A[fn(in;v)

Q

0 or A ` Q =) Q

0 and

C

0

R

A[fn(in;v)

Q

0

j in

"

v



3. if A ` C

`

�! C

0 for any other label thenC 0

R

A[fn(`)

Q

together with symmetric versions of clauses 1 and 2. Say a
unary wrapperC is honestif for any programP (satisfying
the appropriate free name condition) and anyA � fn(C[P ℄)

there is an h-bisimulationR with C[P ℄ R

A

P .
Loosely, clauses 1, 2 and the symmetric versions en-

sure that legitimate communications and internal reductions
must be weakly matched. Clause 3 ensures that if the wrap-
per performs some additional communication then this does
not affect the state as seen by the wrapped process.

Proposition 5 The unary wrappersW
1

andL are honest.

We give some examples of dishonest wrappers. Take

C[ ℄

def
= (� a)a[ ℄

This is not honest – a transitionA ` P

out

"

v

�! P

0 can-
not be matched byC[P ℄, violating the symmetric version
of clause 1. Now consider

C[ ℄

def
=

This wrapper is also dishonest asC[P ℄ can perform actions
not in the protocol that essentially affect the state ofP . For
example, takeP = x

?

y:out

"

hi. SupposeC[P ℄ R

A

P for

an h-bisimulationR. We haveA ` C[P ℄

x

?

hi

�! out

"

hi so by

clause 3out
"

hi

R

A

P , but then clause 1 cannot hold – the
left hand side can perform anout

"

hi transition that cannot
be matched be the right hand side.

Composition of Wrappers The protocol for communica-
tion between a component and a unary wrapper is designed
so that wrappers may be nested. We conjecture that the
composition of any honest unary wrappers is honest.

Conjecture 6 If C
1

andC
2

are honest unary wrappers then
C

1

Æ C

2

is honest.

Analogous results for non-unary wrappers would require
wrappers with more complex interfaces so that the input,
output and mid channels could be connected correctly.

A desirable property of a pure wrapper is that it should
not affect the behaviour of any well-behaved component
— one might expect for any pure and honestC and well-
behavedP thatC[P ℄ �

A

P (whereA � fn(C[P ℄)). Un-
fortunately this does not hold, even forW

1

, as the wrapper
can make input transitions that cannot be matched. One
can checkW

1

[0℄ 6�

A

0, yet 0 is well-behaved. In practice
one would expect the environment of a wrapper to not be
able to detect these inputs, but to make this precise would

require an operational equivalence relativised to such ‘well-
behaved’ environments.

A simpler property would be that multiple wrappings
have no effect. We conjecture thatW

1

is idempotent, i.e.
thatW

1

[W

1

[P ℄℄ andW
1

[P ℄ have the same behaviour (up to
weak asynchronous bisimulation):

Conjecture 7 For any programP witha 62 fn(P ) andA �

fn(W

1

[P ℄) we haveW
1

[P ℄ �

A

W

1

[W

1

[P ℄℄.

Honesty for Binary Wrappers must take into account
themid communication. Consider a familyR indexed by
finite sets of names such that eachR

A

is a relation be-
tween terms and pairs of terms, all with free names con-
tained inA. SayR is abinary h-bisimulationif, whenever
C R

A

(Q

1

; Q

2

) the clauses below hold. The key difference
with the unary definition is clause 7; the other clauses are
routine, albeit notationally complex.

1. if A ` C

out

i

"

v

�! C

0 thenA ` Q

i

out

i

"

v

=) Q

0

i

, A `

Q

3�i

=) Q

0

3�i

andC 0

R

A[fn(v)

(Q

0

1

; Q

0

2

).

2. if A ` C

in

i

"

v

�! C

0 thenA ` Q

3�i

=) Q

0

3�i

and

eitherA ` Q

i

in

i

"

v

=) Q

0

i

^ C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

) or
A ` Q

i

=) Q

00

i

^ C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

), where

Q

0

i

= Q

00

i

j in

"

v.

3. if A ` C

�

�! C

0 thenA ` Q

1

=) Q

0

1

, A ` Q

2

=)

Q

0

2

andC 0

R

A

(Q

0

1

; Q

0

2

).

4. if A ` C

`

�! C

0 for any other label thenC 0

R

A[fn(`)

(Q

1

; Q

2

)

5. if A ` Q

i

`

�! Q

0

i

for ` = out

i

"

v; � thenA ` C

^

`

=)

C

0, andC 0

R

A[fn(`)

(Q

0

1

; Q

0

2

), whereQ0

3�i

= Q

3�i

.

6. if A ` Q

i

in

i

"

v

�! Q

0

i

then eitherA ` C

in

i

"

v

=) C

0

^

C

0

R

A[fn(v)

(Q

0

1

; Q

0

2

) or A ` C =) C

0

^ C

0

j

in

"

v R

A[fn(v)

(Q

0

1

; Q

0

2

), whereQ0

3�i

= Q

3�i

.

7. if A ` Q

1

mid

"

v

�! Q

0

1

then A ` C =) C

0

^

C

0

R

A[fn(v)

(Q

0

1

; Q

2

j mid

"

v).

A binary wrapperC is honest if for allP
1

; P

2

(satisfy-
ing the appropriate free name condition) and anyA �

fn(C[P

1

; P

2

℄) there exists a binary h-bisimulationR with
C[P

1

; P

2

℄ R

A

(P

1

; P

2

).

Conjecture 8 W

2

is honest.



5 Constrained Interaction Between Compo-
nents

In our motivating example Karen required fine-grain
control over the information flows between components –
in the binary case, allowing unidirectional flow. By exam-
ining the code forW

2

it is intuitively clear that it achieves
this, preventing information flowing fromQ to P within
W

2

[P;Q℄. When one comes to make this intuition precise,
however, it becomes far from clear exactly what behavioural
propertiesW

2

guarantees that make it a satisfactory wrap-
per from the user’s point of view (who should not have to
examine the wrapper code). Honesty is one, but it does not
prohibit bad flows. In this section we give a number of can-
didate properties, stating four precisely and the others in-
formally. We conjecture that all are satisfied byW

2

but that
none are equivalent. None are entirely satisfactory; we hope
to provoke discussion of exactly what guarantees should be
desired by users and by component designers. For simplic-
ity, only pure binary wrappersC are considered – recall that
for a pure binaryC the labelled transitions ofC[P

1

; P

2

℄ will

only be of the formsin
i

"

v, out
i

"

v and� .

New-name directionality As we are using a calculus
with creation of new names, we can test a wrapper by sup-
plying a new name to the second component, onin

2

, and
observing whether it can ever be output by the first compo-
nent onout

1

. SayC is directional for new namesif when-
ever

A ` C[P

1

; P

2

℄

`

1

�! : : :

`

j

�!

in

2

"

u

�!

`

0

1

�! : : :

`

0

k

�!

out

1

"

u

0

�! P

with x 2 fn(u), butx is new, i.e.x 62 A[ fn(`

1

: : : `

j

), and
x is not subsequently input to the first component, i.e.

x 62

[

i21::k^`

0

i

=in

1

"

v

fn(v)

thenx is not output by the first component, i.e.x 62 fn(u

0

).
This property does not prevent all information flow, how-
ever – a variant ofW

2

containing a reverse-forwarder that
only forwards particular values, such as

!mid

a

2

y:if y 2 f0; 1g thenmid

a

1

y

could still satisfy it. (Here0 and1 are free names, which
must therefore be inA.)

Note that a binary wrapperC is intended only to limit
information flowwithin C[P

1

; P

2

℄. We do not wish to place
any constraint on the environment of the wrapper, for ex-
ample forbidding the environment to copy values received
from out

2

to in

1

. Such a restriction could only be imposed
by draconian measures, e.g. by waiting forP

1

to terminate

before startingP
2

, that would not be acceptable to the desk-
top user. Many programs are essentially non-terminating; if
they are executing concurrently then the user cannot be pre-
vented from reading the output of one and copying it to the
other. In many circumstances this should be explicitly sup-
ported by the desktop cut-and-paste, perhaps with a warning
signal.

Permutation Our second property formalises the intu-
ition that if no observable behaviour due toP

1

depends on
the behaviour ofP

2

then in any trace it should be possible
to move the actions associated withP

1

before all actions
associated withP

2

. SayC has thepermutation propertyif
whenever

A ` C[P

1

; P

2

℄

`

1

=) : : :

`

k

=) P

with `

i

6= � there exists a permutation� of f1; : : : ; kg such
that

A ` C[P

1

; P

2

℄

`

�(1)

=) : : :

`

�(k)

=) P

and noin
1

or out
1

transition occurs after anyin
2

or out
2

transition in`
�(1)

: : : `

�(k)

. For an example wrapper with-
out this property, consider

C[

1

;

2

℄

def
= (� a

1

; a

2

)

�

a

1

[

1

℄ j a

2

[

2

℄

j ! in

2

"

y:

�

in

2

a

2

y j ! in

1

"

y:in

1

a

1

y

�

j ! out

1

a

1

y:out

1

"

y

j ! out

2

a

2

y:out

2

"

y

j !mid

a

1

y:mid

a

2

y

�

Here thein
1

messages are not forwarded until at least one
in

2

input is received from the environment. Nonetheless,
in some sense there is still no information flow from the
second component to the first.

The new-name directionality and permutation properties
are expressed purely in terms of the externally observable
behaviour ofC[P;Q℄ (in fact, they are properties of its trace
set, a very extensional semantics). Note, however, that the
intuitive statement that information does not flow fromQ to
P depends on an understanding of the internal computation
of P andQ that is not present in the reduction or labelled
transition relations (given only thatC[P;Q℄ !

�

R there is
no way to associate subterms ofR with an ‘origin’ in C, P
or Q). Our next two properties involve a more intensional
semantics in which output and input processes are tagged
with sets of colours. The semantics propagates colours in
interaction steps, thereby tracking the dependencies of re-
ductions.

Coloured Reductions Take a setol of colours (disjoint
from N ), and let andd range over subsets ofol. We



define a coloured box-� calculus by annotating all outputs
and inputs with sets of colours:

P ::=  :x

o

v

�

�

 :x

�

p:P

�

�

 : !x

�

p:P

�

�

n[P ℄

�

�

0

�

�

P j P

0

�

�

(� x)P

If P is a coloured term we writejP j for the term of the orig-
inal syntax obtained by erasing all annotations. Conversely,
for a termP of the original syntax ÆP denotes the term
with every particle coloured by. For a colouredP we
write  �P for the coloured term which is asP but with 

unioned to every set of colours occurring in it. We write
d for the union[ d. The reduction relation now takes the
formP !



Q, whereP andQ are coloured terms and is a
set of colours indicating what this reduction depends upon.
It is defined as follows, in which structural congruence is
defined by the same axioms as before.

n[ :x

"

v j Q℄ !



 :x

n

v j n[Q℄ (C Red Up)

 :x

n

v j n[Q℄ !



n[ :x

"

v j Q℄ (C Red Down)
 :x

�

v j d :x

�

p:P !

d

d �(f

v

=

p

gP ) (C Red Comm)
 :x

�

v j d : !x

�

p:P !

d

d : !x

�

p:P j d �(f

v

=

p

gP ) (C Red Repl)
P !



Q ) P j R!



Q j R (C Red Par)
P !



Q ) (� x)P !



(� x)Q (C Red Res)
P !



Q ) n[P ℄ !



n[Q℄ (C Red Box)
P � P

0

!



Q

0

� Q ) P !



Q (C Red Struct)

The coloured calculus has the same essential behaviour as
the original calculus:

Proposition 9 For any colouredP we havejP j ! Q iff
9; P

0

: P !



P

0

^ jP

0

j = Q.

Mediation We can now capture the intuition that all in-
teraction between wrapped components should be mediated
by the wrapper. We consider coloured reduction sequences
of a wrapperC and two componentsP

1

; P

2

from an initial
state in which each is coloured differently. Letgr, bl andrd
be distinct singleton subsetsfgreeng, fblueg, fredg of ol.
Suppose

(gr Æ C)

�

bl ÆP

1

; rd ÆP

2

�

j bl Æ I

1

j rd Æ I

2

!



1

: : :!



k

Q

where eachI
i

is a parallel composition of messages onin

i

,

i.e. of terms of the formin
i

"

v. SayC is mediatingiff when-
everred 2 

j

andblue 2 

j

thengreen 2 

j

.

Colour flow The coloured semantics can also be used
to express the property that no output onout

1

should de-
pend on the second wrapped component. SayC has the
colour directionalityproperty if whenever there is a reduc-
tion sequence as above andQ � (� A)( :out

1

"

v j Q

0

) then
red 62 .

For an example wrapper that we conjecture has the per-
mutation property but not the colour directionality property,
consider a version ofW

2

that has an extra parallel compo-
nentout

2

a

2

y:(out

2

"

y j out

1

a

1

y:out

1

"

y). This establishes
an additional one-shot forwarder forout

1

after forwarding
a message onout

2

.
These statements of mediation and coloured directional-

ity share a defect: the use of a reduction semantics makes it
awkward to consider inputs of values containing new names
that have previously been output by the wrapped compo-
nents. To address this one would need a coloured labelled
transition semantics, allowing e.g. a refined colour direc-
tionality property to be stated as follows. Whenever

A ` (gr Æ C)

�

bl ÆP

1

; rd ÆP

2

�

`

1

�!



1

: : :

`

k

�!



k

;

if the inputs are properly coloured (i.e. for eachi 2 1::k

we havè
i

= in

"

1

v =) 

i

= blue and`
i

= in

"

2

v =)



i

= red), then for eachi 2 1::k theout
1

outputs should be
properly coloured, i.e.

`

i

= out

1

"

v =) red 62 

i

Causality A very strong directionality property that one
might ask for – perhaps the strongest – would be that in an
execution ofC[P

1

; P

2

℄ no output onout
1

can becausally
dependenton any action ofP

2

. Casual semantics for pro-
cess calculi have been much studied, often under the name
‘true concurrency semantics’ – see [40] for an overview. It
would be interesting to give a causal semantics to the box
� calculus. There is a trade-off here, however – such a se-
mantics would be rather complex; it would have to be un-
derstood in order to understand any property stated using it.
The coloured reduction semantics can be considered as an
more tractable approximation to real causality.

Another point is that a causal property is sometimes too
strong – a usable wrapper may have to allow low-bandwidth
communication in the reverse direction, perhaps not carry-
ing any data values, to permit acknowledgement messages.
A causal property would then not hold, while a modified
colour flow property would.

6 Conclusion

The code base of modern systems is becoming increas-
ingly diverse. Whereas previously a typical system would
involve a small number of monolithic applications, obtained
from trusted organisations, now users routinely download
components from partially trusted or untrusted sources.
Downloaded or mobile code fragments are commonly run
under the user’s authority to grant access to system re-
sources and permit interaction with other software compo-
nents. This presents obvious security risks for the secrecy
and integrity of the user’s data.



In this paper we have developed a theory of security
wrappers. These are small programs that can regulate the
interactions between untrusted software components, en-
forcing dynamic and flexible security policies. We have
presented a minimal concurrent programming language for
studying the problem, the box-� calculus, and proved a ba-
sic metatheoretic result: that a reduction and labelled tran-
sition semantics coincide. We have expressed a number of
security wrappers in the calculus and begun an investigation
of the security properties that wrappers should provide.

6.1 Related Work

There is an extensive literature on information flow prop-
erties of various kinds. Much of it is in the context of multi-
level security, in which one has a fixed lattice of security
levels and is concerned with properties which state that a
component (expressed purely semantically, e.g. as a set of
traces) respects the levels. The theory could be applied dur-
ing the design of the components of a large multi-user sys-
tem (with a relatively static security policy) by proving that
the components obey particular properties. A concise intro-
duction can be found in the survey of McLean [23]. The
problem of designing and understanding wrappers appears
to be rather different – we have focussed on the protection
required by a single user executing a variety of partially-
trusted components obtained from third parties. This re-
quires flexible protection mechanisms – a static assignment
of security levels would be inadequate – and cannot de-
pend on static analysis of the components. Related work
on dynamic enforcement of policies has been presented by
Schneider [29].

Other recent work has studied type systems that en-
sure security properties, e.g. the type systems of Volpano,
Irvine and Smith [38, 39], the SLam calculus of Heintze
and Riecke [15], the systems allowing declassification of
Myers and Liskov [26, 25], the type systems of Riely and
Hennessy [17, 16, 28], and work on proof-carrying code
[27]. If the producers of components that one uses all adopt
such systems then they may become very effective. Until
then, however, and until type systems can provide the flex-
ible policies required, partially trusted code will in practice
either be run dangerously or be wrapped.

In this paper we have made extensive use of techniques
from process calculi and operational semantics. These are
beginning to provide fruitful ways of studying problems in
security and distributed systems, including the analysis of
security protocols, for example in [3, 1, 22], and more gen-
eral secure language design, including work on the Ambi-
ent calculus [9, 10], the Secure Join calculus [2], the mo-
bile agent calculi in [17, 16, 28, 30, 31, 33, 34], and the
Seal calculus of [36, 37]. These works have studied sev-
eral different problems, using a variety of calculi designed

for the purpose. Common to all is the use of a reduction
or labelled-transition operational semantics, providingclear
rigorous semantics to the rather high-level constructs in-
volved. One distinguishing feature of the present work is
that we do not consider any mobility primitives, allowing
us to use a tractable early labelled transition system. This
appears to be important for the statement of the delicate se-
curity properties of wrappers.

6.2 Future Directions

This paper opens up a number of directions that we
would like to pursue. Most immediately, it gives several
conjectures that should be proved or refuted, and we would
like a better understanding of the properties of binary wrap-
pers. There are then extensions for typing, to richer inter-
faces, and with mobility primitives.

Typing We are primarily interested in components for
which it is infeasible to statically determine whether they
are well-behaved. Nonetheless, for simple components one
could conservatively ensure well-behaviour with a standard
type system, most simply taking types

T ::= box

�

�

h

T

1

::T

k

i

�

�

lT

wherelT is the type of channel names that can be used to
communicate values of typeT , together with the obvious
inference rules. IfP is well-typed with respect to a typing
contextin : lS; out : lT for typesS andT containing no
instances ofl then one would expectP to be well-behaved
for unary wrappers.

Richer interfaces The wrappers ofx3 allowed the encap-
sulated components to interact only on very simple inter-
faces. Ultimately, we would like to understand wrappers
with more realistic interfaces. For example, in a mild ex-
tension of box-� one can express a wrapper that encapsu-
latesk components, allows internal flow along an arbitrary
preorder, and permits each component to open and close
windows for character IO. Supposep

1

; : : : ; p

k

is a list of
distinct names, and� is a preorder over them giving the
allowable information flow. Define ak-ary wrapper as fol-
lows.

C[

1

; : : : ;

k

℄

def
=

(� p

1

; : : : ; p

k

)

�

p

1

[

1

℄ j : : : j p

k

[

k

℄

j ! fwd

(m)

(

n z y

)

:if m � n then z

n

y else 0

j BWINDOW
�



where

BWINDOW
def
= ! openwindow

(m)

(

s x

)

:

openwindow

"

h

s x

i

j x

"

(

get put lose

)

:

x

m

h

get put lose

i

j ! get

m

y:(get

"

y j y

"

:y

m

)

j ! put

m

(

 y

)

:(put

"

h

 y

i

j y

"

:y

m

)

j ! lose

m

y:(lose

"

y j y

"

:y

m

)

This uses an additional input tag – a processx

(n)

p:P will
input from any child box, binding the name of the box ton
in P . The BWINDOW part ofC receives requests for a new
window from the encapsulated components and forwards
them to the OS. It then receives the interface for the new
window from the OS, forwarding it down to the component
and also setting up forwarders for the interface channels.
Making the security properties ofC precise is at present a
challenging problem. One would like to extendC further
by adding an interface allowing the user to dynamically add
and remove pairs from�.

Covert channels It should be noted that none of the se-
mantic models that we use for the box-� calculus make any
commitment to the precise details of scheduling processes.
The properties expressed using these semantics therefore
cannot address timing-based covert channels such as those
mentioned by Lampson [21]. Certain other covert chan-
nels, in particular those involving system IO and disc ac-
cess, could be addressed by expressing models of the IO and
disc systems in the calculus, further enriching the wrapper
interfaces.

Mobility The original motivation for this work involved
downloadable or mobile code and mobile agents. To ex-
plicitly model the dynamic configuration of wrappers and
applications the calculus must be extended with mobility
primitives, while keeping both a tractable semantics and the
principle that each box controls the interactions and move-
ments of its contents [36].

Acknowledgements Sewell was supported by EPSRC
grant GR/L 62290Calculi for Interactive Systems: Theory
and Experiment. The authors would like to thank Ciarán
Bryce for his comments.

Appendix

A Coincidence of the Two Semantics

This appendix sketches the proof of equivalence of the
labelled transition semantics and the reduction semantics.
It is divided into three parts, the first giving basic properties
of the labelled transition system, the second showing that
any reduction can be matched by a� -transition and the third
showing the converse.

Basic Properties of the LTS The first lemmas are all
proved by induction on derivations of transitions.

Lemma 10 If A ` P

`

�! Q then

1. fn(P ) � A andfn(Q) � fn(P; `).

2. if ` = x

o

v then fn(`) \ A � fn(P ), fn(o) � fn(P ),
and moreover if:mv(o) thenx 2 fn(P ).

3. if ` = x



v thenfn() � fn(P ). Moreover, if 6= n

thenx 2 fn(P ).

Lemma 11 (Strengthening) If A;B ` P

`

�! P

0 andB \

fn(P; `) = ; thenA ` P

`

�! P

0.

Lemma 12 (Injective Substitution) If A ` P

`

�! P

0,
andf :A!B andg :(fn(`)�A)!(N �B) are injective,

thenB ` fP

(f+g)`

�! (f + g)P

0.

Lemma 13 (Shifting)

1. (A ` P

z

�

v

�! P

0

^ x 2 fn(v) � A) iff (A; x ` P

z

�

v

�!

P

0

^ x 2 fn(v) � fn(P )) .

2. (A ` P

z

n

v

�! P

0

^ x 2 fn(z; v) � A) iff

(A; x ` P

z

n

v

�! P

0

^ x 2 fn(z; v)� fn(P ))

As we are working up to alpha conversion some care is
required when analysing transitions. We need the follow-
ing lemma for transitions of an input or restricted process,
together with analogous but less interesting results for the
other process constructors.

Lemma 14

1. A ` x

�

p:P

`

�! Q iff there existsv such that
fn(x

�

p:P ) � A, ` = x

�

v, fv=
p

gP is defined and
Q � f

v

=

p

gP .

2. A ` (� x)P

`

�! Q iff either



(a) there existŝx 62 A [ fn(`) [ (fn(P ) � x) and
^

Q such thatA; x̂ ` f

x̂

=

x

gP

`

�!

^

Q andQ �

(� x̂)

^

Q.

(b) there existsy, o, v, ^

Q and x̂ 62 A [ fn(y; o) [

(fn(P ) � x) such that ` = y

o

v, A; x̂ `

f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(v), :mv(o) andQ �

^

Q.

(c) there existsy, o, v, ^

Q and x̂ 62 A [ fn(o) [

(fn(P ) � x) such that ` = y

o

v, A; x̂ `

f

x̂

=

x

gP

y

o

v

�!

^

Q, x̂ 2 fn(y; v), mv(o) andQ �

^

Q.

Reductions Imply Transitions This direction of the
equivalence has two main parts: we must show that tran-
sitions are invariant under structural congruence and con-
struct� -transitions for each reduction axiom.

Proposition 15 If P 0

� P thenA ` P

0

`

�! Q iff A `

P

`

�! Q.

Proof A lengthy induction on the size of derivation of
P

0

� P . 2

Lemma 16 If fn(P ) � A andP ! Q thenA ` P

�

�! Q.

Proof Induction on derivations ofP ! Q, constructing
derivations of� -transitions for the reduction axioms (Red
Up), (Red Down), (Red Comm) and (Red Repl), and using
Proposition 15 for the (Red Struct) case.2

Transitions Imply Reductions For the converse direc-
tion we first show that if a process has an output or input
transition then it contains a corresponding output, input or
box subterm.

Lemma 17 If A ` P

z

o

v

�! P

0 thenP � (� fn(z; v) �

A)(z

o

v j P

0

)

Lemma 18 If A ` Q

x

�

v

�! Q

0 then there existB; p;Q
1

and
Q

2

such thatB \ (A [ fn(x

�

v)) = fg and eitherQ �

(� B)(x

�

p:Q

1

j Q

2

) andQ0

� (� B)(f

v

=

p

gQ

1

j Q

2

) or
Q � (� B)(! x

�

p:Q

1

j Q

2

) andQ0

� (� B)(f

v

=

p

gQ

1

j

!x

�

p:Q

1

j Q

2

).

Lemma 19 If A ` Q

x

n

v

�! Q

0 then there existB,Q
1

andQ
2

such thatB\(A[ fn(x

n

v)) = fg,Q � (� B)(n[Q

1

℄ j Q

2

)

andQ0

� (� B)(n[(x

"

v j Q

1

)℄ j Q

2

).

Lemma 20 If A ` P

�

�! Q thenP ! Q.

Proof Induction on derivations ofA ` P

�

�! Q, using
the preceding three lemmas for the (Trans Box-1) and
(Trans Comm) rules.2

The proof of Theorem 1, i.e. that iffn(P ) � A then
A ` P

�

�! Q iff P ! Q, is now immediate from Lemmas
16 and 20.

B Properties ofW
1

Explicit Characterisation The simple security proper-
ties ofW

1

are proved using an explicit characterisation of
the states and labelled transitions ofW

1

[P ℄. If N is a finite
set of names,a is a name andA andQ are processes define

[[a;N ;A;Q℄℄

def
= (�N [ fag)

�

A

j a[Q℄

j ! in

"

y:in

a

y

j ! out

a

y:out

"

y

�

Say the 4-tuplea,N ,A,Q is goodif N , fag, andfin; outg
are pairwise disjoint,A is a parallel composition of outputs
of the forms

out

a

v; out

"

v; in

a

v; x

a

v wherex 62 fout; ag

with a 62 fn(v) in each case, andQ is a process witha 62
fn(Q). Say a processP is good ifP � [[a;N ;A;Q℄℄ for
some gooda, N ,A, Q.

Lemma 21 If a 62 fn(P ) thenW
1

[P ℄ � [[a; ;; 0;P ℄℄, hence
W

1

[P ℄ is good.

We define a transition relationA ` P

`

* Q as the least
satisfying the rules in Figure 2.

Lemma 22 For all good P we haveA ` P

`

�! P

0 iff

A ` P

`

* P

0. Moreover, ifA ` P

`

* P

0 thenP 0 is good.

Purity Proposition 2 can now be proved by induction on
k using Lemma 22.

Honesty Proposition 5, that the unary wrapperW
1

is hon-
est, can be proved by giving an explicit h-bisimulation. De-
fine

hha;N ;A;Qii

def
= (�N)

�

Q

j fj out

"

v j out

a

v 2 A jg

j fj out

"

v j out

"

v 2 A jg

j fj x

"

v j x

a

v 2 A ^ x 6= out jg

j fj in

"

v j in

a

v 2 A jg

�



A ` [[a;N ;A;Q℄℄

in

"

v

* [[a;N ;A j in

a

v;Q℄℄ fn(v) \ (N [ fag) = ;

A ` [[a;N ;A j in

a

v;Q℄℄

�

* [[a;N ;A;Q j in

"

v℄℄

A;N; a ` Q

out

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(v) � (A;N; a);A j out

a

v;Q

0

℄℄

A;N; a ` Q

x

"

v

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N; fn(x; v) � (A;N; a);A j x

a

v;Q

0

℄℄

A ` [[a;N ;A j out

a

v;Q℄℄

�

* [[a;N ;A j out

"

v;Q℄℄

A ` [[a;N ;A j out

"

v;Q℄℄

out

"

v

* [[a;N � fn(v);A;Q℄℄

A;N; a ` Q

�

�! Q

0

A ` [[a;N ;A;Q℄℄

�

* [[a;N ;A;Q

0

℄℄

A ` P

`

* P

0

� P

00

A ` P

`

* P

00

For all rules we have a sidecondition that the 4-tuple in the left hand side of the conclusion is good and that the free namesof the
process on the left hand side of the conclusion are containedin A. For the fourth rule we have a side condition thatx 6= out.

Figure 2. Explicit Characterisation of the Transitions of W

1

[P ℄

Now take the family of relations below.

R

A

=� Æf[[a;N ;A;Q℄℄; hha;N ;A;Qii j

a;N ;A;Q good andfn([[a;N ;A;Q℄℄) � AgÆ �

One can check that for anyP with a 62 fn(P ) andA �

fn(W

1

[P ℄) we haveW
1

[P ℄ R

A

P and thatR is an h-
bisimulation.

References

[1] M. Abadi. Secrecy by typing in security protocols. InTACS
’97 (open lecture), LNCS 1281, pages 611–638, Sept. 1997.

[2] M. Abadi, C. Fournet, and G. Gonthier. Secure implemen-
tation of channel abstractions. InLICS 98 (Indiana), pages
105–116. IEEE, Computer Society Press, July 1998.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. InProceedings of the Fourth
ACM Conference on Computer and Communications Secu-
rity, Zürich, pages 36–47. ACM Press, Apr. 1997.

[4] R. M. Amadio. An asynchronous model of locality, failure,
and process mobility. InProc. COORDINATION 97, LNCS
1282, 1997.

[5] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisim-
ulations for the asynchronous�-calculus. In U. Montanari
and V. Sassone, editors,CONCUR ’96, volume 1119 ofLec-
ture Notes in Computer Science, pages 147–162. Springer-
Verlag, 1996.

[6] R. M. Amadio and S. Prasad. Localities and failures. In P.S.
Thiagarajan, editor,Proceedings of14th FST and TCS Con-
ference, FST-TCS’94. LNCS 880, pages 205–216. Springer-
Verlag, 1994.

[7] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lep-
reau. Java operating systems: Design and implementation.
Technical Report UUCS-98-015, University of Utah, De-
partment of Computer Science, Aug. 6, 1998.

[8] G. Boudol. Asynchrony and the�-calculus (note). Rapport
de Recherche 1702, INRIA Sofia-Antipolis, May 1992.

[9] L. Cardelli and A. D. Gordon. Mobile ambients. InProc.
of Foundations of Software Science and Computation Struc-
tures (FoSSaCS), ETAPS’98, LNCS 1378, pages 140–155,
Mar. 1998.

[10] L. Cardelli and A. D. Gordon. Types for mobile ambients.
In Proceedings of the 26th ACM Symposium on Principles
of Programming Languages, 1999.

[11] B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines.
In USENIX, editor,2nd Symposium on Operating Systems
Design and Implementation (OSDI ’96), October 28–31,
1996. Seattle, WA, pages 137–151, Berkeley, CA, USA, Oct.
1996. USENIX.

[12] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and
D. Rémy. A calculus of mobile agents. InProceedings
of CONCUR ’96. LNCS 1119, pages 406–421. Springer-
Verlag, Aug. 1996.

[13] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications. In
Sixth USENIX Security Symposium, San Jose, California,
July 1996.

[14] L. Gong. Java security architecture (JDK 1.2). Technical
report, JavaSoft, July 1997. Revision 0.5.

[15] N. Heintze and J. G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. InProceedings of the 25th
POPL, Jan. 1998.

[16] M. Hennessy and J. Riely. Resource access control in sys-
tems of mobile agents. InWorkshop on High-Level Concur-
rent Languages, 1998. Full version as University of Sussex
technical report CSTR 98/02.

[17] M. Hennessy and J. Riely. Type-safe execution of mobile
agents in anonymous networks. InWorkshop on Mobile Ob-
ject Systems, (satellite of ECOOP ’98), 1998. Full version
as University of Sussex technical report CSTR 98/03.

[18] K. Honda and M. Tokoro. An object calculus for asyn-
chronous communication. In P. America, editor,Proceed-
ings of ECOOP ’91, LNCS 512, pages 133–147, July 1991.



[19] N. Islam, R. Anand, T. Jaeger, and J. R. Rao. A flexible
security system for using Internet content.IEEE Software,
14(5):52–59, Sept./Oct. 1997.

[20] M. B. Jones. Interposition agents: Transparently interposing
user code at the system interface. In J. Vitek and C. Jensen,
editors, Secure Internet Programing: Security Issues for
Mobile and Distributed Objects. Springer Verlag, 1999.

[21] B. W. Lampson. A note on the confinement problem.Com-
munications of the ACM, 16(10):613–615, 1973.

[22] G. Lowe and B. Roscoe. Using CSP to detect Errors in the
TMN Protocol. IEEE Transactions on Software Engineer-
ing, 23(10):659–669, 1997.

[23] J. McLean. Security models. In J. Marciniak, editor,Ency-
clopedia of Software Engineering. Wiley & Sons, 1994.

[24] R. Milner, J. Parrow, and D. Walker. A calculus of mo-
bile processes, Parts I + II.Information and Computation,
100(1):1–77, 1992.

[25] A. C. Myers. Jflow: Practical static information flow control.
In Proceedings of the 26th ACM Symposium on Principles of
Programming Languages (POPL 99), 1999.

[26] A. C. Myers and B. Liskov. Complete, safe information flow
with decentralized labels. InProceedings of the 1998 IEEE
Symposium on Security and Privacy, Oakland, California,
pages 186–197, 1998.

[27] G. C. Necula and P. Lee. Safe, untrusted agents using proof-
carrying code. In G. Vigna, editor,Mobile Agents and Secu-
rity, volume 1419 ofLNCS, pages 61–91. SV, 1998.

[28] J. Riely and M. Hennessy. A typed language for distributed
mobile processes. InProceedings of the 25th POPL, Jan.
1998.

[29] F. B. Schneider. Enforceable security policies. Technical
Report TR 98-1664, Computer Science Department, Cornell
University, Ithaca, New York, Jan. 1998.

[30] P. Sewell. Global/local subtyping for a dis-
tributed �-calculus. Technical Report 435, Uni-
versity of Cambridge, Aug. 1997. Available from
http://www.cl.cam.ac.uk/users/pes20/.

[31] P. Sewell. Global/local subtyping and capability inference
for a distributed�-calculus. InProceedings of ICALP ’98,
LNCS 1443, pages 695–706, 1998.

[32] P. Sewell. A brief introduction to applied�, Jan. 1999.
Lecture notes for the Mathfit Instructional Meeting on
Recent Advances in Semantics and Types for Concur-
rency: Theory and Practice, July 1998. Available from
http://www.cl.cam.ac.uk/users/pes20/.

[33] P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Location
independence for mobile agents. InWorkshop on Internet
Programming Languages, Chicago, May 1998.

[34] P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Location-
independent communication for mobile agents: a two-level
architecture. Submitted for publication. Draft availablefrom
http://www.cl.cam.ac.uk/users/pes20/,
1998.

[35] J. Vitek and C. Bryce. Secure mobile code: the javaseal
experiment. Manuscript, 1999.

[36] J. Vitek and G. Castagna. Towards a calculus of mobile
computations. InWorkshop on Internet Programming Lan-
guages, Chicago, May 1998.

[37] J. Vitek and G. Castagna. Mobile Agents and Hostile
Hosts. InJournées Francophones des Langaages Applicatifs
(JFLA99), Morizine, France, Feb 1999.

[38] D. Volpano, C. Irvine, and G. Smith. A sound type sys-
tem for secure flow analysis.Journal of Computer Security,
4:167–187, May 1996.

[39] D. Volpano and G. Smith. Confinement properties for pro-
gramming languages.SIGACT News, 29(3):33–42, Sept.
1998.

[40] G. Winskel and M. Nielsen. Models for concurrency. In
Abramsky, Gabbay, and Maibaum, editors,Handbook of
Logic in Computer Science, volume IV, pages 1–148. Ox-
ford University Press, 1995.


