Nitpicking C++ Concurrency

Jasmin Christian Blanchette

T. U. Miinchen, Germany
blanchette@in.tum.de

Scott Owens

University of Cambridge, U.K.
scott.owens@cl.cam.ac.uk

Abstract

Previous work formalized the C++ memory model in Isabelle/HOL
in an effort to clarify the proposed standard’s semantics. Here we
employ the model finder Nitpick to check litmus test programs that
exercise the memory model, including a simple locking algorithm.
Nitpick is built on Kodkod (Alloy’s backend) but understands Isa-
belle’s richer logic; hence it can be applied directly to the C++
memory model. We only need to give it a few hints, and thanks to
the underlying SAT solver it scales much better than the CPPMEM
explicit-state model checker. This case study inspired optimizations
in Nitpick from which other formalizations can now benefit.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; D.2.4
[Software Engineering]: Software/Program Verification—Model
checking; D.3.3 [Programming Languages]: Language Constructs
and Features—Concurrent programming structures; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs—Mechanical verification; F.4.1 [Mathemat-
ical Logic and Formal Languages]: Mathematical Logic—Logic
and constraint programming

General Terms Languages, Performance, Standardization

Keywords C++ memory model, concurrency, model finding,
SAT solving, higher-order logic, Isabelle/HOL, Nitpick, Kodkod

1. Introduction

Most programming languages are defined by informal prose docu-
ments that contain ambiguities, omissions, and contradictions. But
for many of these, researchers have constructed rigorous, mathe-
matical semantics after the fact and formalized them in theorem
provers. The benefits of formalized semantics are well known:

e They give a rigorous (and ideally readable) description of the
language that can serve as a contract between designers, imple-
menters, and users.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PDPP’11, July 20-22, 2011, Odense, Denmark.

Copyright © 2011 ACM 978-1-4503-0776-5/11/07. .. $10.00

Tjark Weber

University of Cambridge, U.K.
tjark.weber@cl.cam.ac.uk

Mark Batty

University of Cambridge, U.K.
mark.batty@cl.cam.ac.uk

Susmit Sarkar

University of Cambridge, U.K.
susmit.sarkar@cl.cam.ac.uk

¢ They enable machine-checked proofs of theoretical results; in
particular, they are an integral part of any verified compiler.

e They can be used in conjunction with lightweight formal meth-
ods, such as model checkers and model finders, to explore the
consequences of the specification.

Formal methods can be quite useful for reasoning about sequen-
tial programs, but with concurrent programming they are a vital aid
because of the inherent nondeterminism. Ten-line programs can
have millions of possible executions. Subtle race condition bugs
can remain hidden for years despite extensive testing and code re-
views before they start causing failures. Even tiny concurrent pro-
grams expressed in idealized languages with clean mathematical
semantics can be amazingly subtle [9, §1.4].

In the real world, performance considerations prompt hardware
designers and compiler writers to further complicate the semantics
of concurrent programs. For example, at the hardware level, a write
operation taking place at instant ¢ might not yet be reflected in
a read at instant + 1 from a different thread because of cache
effects. The final authority in this matter is the processor’s memory
consistency model.

The Java language abstracts away the various processor memory
models, and compiler reordering, behind a software memory model
designed to be efficiently implementable on actual hardware. How-
ever, the original Java model was found to be flawed [25], and even
the revised version had some unpleasant surprises [7, 27, 29].

The next C++ standard, tentatively called C++0x, attempts to
provide a clear semantics for concurrent programs, including a
memory model and library functions. In previous work [3, 4], the
last four authors, together with Sewell, formalized a large fragment
of the prose specification in Isabelle/HOL [23] (Sects. 2 and 3).
From the Isabelle formalization, they extracted the core of a
tool, CPPMEM, that can check litmus test programs—small multi-
threaded programs that exercise various aspects of the memory
model. Using this simulator, they found flaws in the original prose
specification and clarified several issues, which are now addressed
by the draft standard [1]. To validate the semantics, they proved the
correctness of a proposed Intel x86 implementation of the concur-
rency primitives.

In this paper, we are interested in tool support for verifying lit-
mus test programs. CPPMEM exhaustively enumerates the possible
program executions, checking each against the (executable) formal
semantics. An attractive alternative is to apply a SAT solver to the
memory model constraints and litmus tests. The MemSAT tool’s
success on the Java memory model [29] and our early experiments
[4, §6.1] suggest that SAT solvers scale better than explicit-state
model checkers, allowing us to verify more complex litmus tests.



Newer Isabelle versions include an efficient SAT-based model
finder, Nitpick (Sect. 4). The reduction to SAT is delegated to
Kodkod [28], which also serves as a backend to MemSAT and
the Alloy Analyzer [13]. Nitpick and its predecessor Refute [32]
featured in several case studies [5, 6, 14, 21, 31] but were, to
our knowledge, never successfully applied to a specification as
complex as the C++ memory model.

Although the memory model specification was not designed
with SAT solving in mind, we expected that with some adjustments
it should be within Nitpick’s reach. The specification is written
in a fairly abstract and axiomatic style, which should favor SAT
solvers. Various Kodkod optimizations help cope with large prob-
lems. Moreover, although the memory model is subtle and compli-
cated, the specification is mostly restricted to first-order logic with
sets, transitive closure, and inductive datatypes, all of which are
handled efficiently in Nitpick or Kodkod.

Initially, though, we had to make drastic semantics-preserving
changes to the Isabelle specification so that Nitpick would scale
to handle the simplest litmus tests in reasonable time (Sect. 5).
These early results had been obtained at the cost of several days
of work by people who understood Nitpick’s internals. Based on
our experience adapting the specification by hand, we proceeded to
address scalability issues directly in Nitpick (Sect. 6).

With the optimizations in place, a few minor adjustments to the
original memory model specification sufficed to support efficient
model finding (Sect. 7). We applied the optimized version of Nit-
pick to several litmus tests (Sect. 8), including a simple sequential
locking algorithm, thereby increasing our confidence in the speci-
fication’s adequacy. Litmus tests that were previously too large for
CPPMEM can now be checked within minutes.

2. Isabelle/HOL

Isabelle [23] is a generic interactive theorem prover whose built-
in metalogic is a fragment of higher-order logic [2, 8, 11]. Its
HOL object logic provides a more elaborate version of higher-order
logic, complete with the familiar connectives and quantifiers.

The term language consists of simply-typed A-terms augmented
with constants (of scalar or function types) and ML-style polymor-
phism. Function application expects no parentheses around the ar-
gument list and no commas in between, as in f x y. Syntactic sugar
provides an infix syntax for common operators, such as x =y and
x+y. Variables may range over functions and predicates. Types are
usually implicit but can be specified using a constraint :: 7.

HOL’s standard semantics interprets the Boolean type bool and
the function space o — 7. The function arrow associates to the
right, reflecting the left-associativity of application. Predicates are
functions of type oy — --- — 0, — bool. HOL identifies sets with
monadic predicates and provides syntactic sugar for set notations.

Inductive datatypes can be defined by specifying the construc-
tors and the types of their arguments. The type nat of natural num-
bers is defined by the command

datatype nat = 0 | Suc nat

The type is generated freely from the constructors O :: nat and Suc ::
nat — nat. The polymorphic type « list of lists over « is defined as

datatype « list = Nil | Cons a (« list)

Since lists are so common, Isabelle also supports the more conve-
nient notation [x1,...,x,] for Cons x; (...(Cons x,, Nil)...).
Constants can be introduced by free-form axioms or, more
safely, by a simple definition in terms of existing constants. In
addition, Isabelle provides high-level definitional principles for in-
ductive and coinductive predicates as well as recursive functions.

3. C++ Memory Model

The C++ Final Draft International Standard [1] defines the concur-
rency memory model axiomatically, by imposing constraints on the
order of memory accesses in program executions. The semantics of
a C++ program is then a set of allowed executions.

Here we briefly present the memory model and its Isabelle/HOL
formalization [3, 4], focusing on the aspects that are necessary to
understand the rest of this paper.

3.1 Introductory Example

To facilitate efficient implementations on modern parallel architec-
tures, the C++ memory model (like other relaxed memory models)
has no global linear notion of time. Program executions are not
guaranteed to be sequentially consistent (SC)—that is, equivalent
to a simple interleaving of threads [18].

The following program fragment is a simple example that can
exhibit non-SC behavior:

atomic_int x = 0;
atomic_int y = 0;

L

x.store(1l, ord_relaxed);

printf("y: %d\n", y.load(ord_relaxed));
[11]

y.store(1l, ord_relaxed);

printf ("x: %d\n", x.load(ord_relaxed));
i3

(To keep examples simple, we use the notation {{{ ... ||| ... }}}
for parallel composition and ord_xxx for memory_order_xxx.)

Two threads write to separate memory locations x and y; then
each thread reads from the other location. Can both threads read
the original value of the location they read from? According to the
draft standard, they can. The program has eight outputs that are
permitted by the memory model:

x:0 x:0 x:1
y: 0 y: 1 y:1

Among these, the first two outputs exhibit the counterintuitive non-
SC behavior.

x:1
y: 0

y: 0
x:0

y: 0
x:1

y:1

y: 1
x:0 x:1

3.2 Memory Actions and Orderings

From the memory model’s point of view, C++ program executions
consist of memory actions. The main actions are

Lx locking of x
Ux unlocking of x
Rord x=V atomic read of value v from x

Weorg x=v atomic write of value v to x
RMW,,qy x =v| /v, atomic read—modify—write at x

Rhax=v nonatomic read of value v from x
Whax=v nonatomic write of value v to x
Ford fence

where ord, an action’s memory order, can be any of the following:

sc ord_seq_cst sequentially consistent
rel ord_release release

acq ord_acquire acquire

a/r ord_acqg_rel acquire and release
con ord_consume consume

rlx ord_relaxed relaxed

Memory orders control synchronization and ordering of atomic
actions. The ord_seq_cst ordering provides the strongest guaran-
tees (SC), while ord_relaxed provides the weakest guarantees.
The release/acquire discipline, where writes use ord_release



and reads use ord_acquire, occupies an intermediate position on
the continuum. The slightly weaker variant release/consume, with
ord_consume for the reads, can be implemented more efficiently
on hardware with weak memory ordering.

If we wanted to prohibit the non-SC executions in the program
above, we could simply pass ord_seq_cst as argument to the
load and store functions instead of ord_relaxed.

3.3 Isabelle/HOL Formalization

In place of a global timeline, the standard postulates several rela-
tions over different subsets of a program’s memory actions. These
relations establish some weak notion of time. They are not neces-
sarily total or transitive (and can therefore be hard to understand
intuitively) but must satisfy various constraints.

In the Isabelle/HOL formalization of the memory model [3, 4], a
candidate execution X is a pair (Xopsem, Xwitness)- The component
Xopsem specifies the program’s memory actions (acts), its threads
(thrs), a simple typing of memory locations (/k), and four relations
over actions (sb, asw, dd, and cd) that constrain their evaluation
order. The other component, X itness, consists of three relations:
Read actions read from some write action (rf), sequentially consis-
tent actions are totally ordered (sc), and a modification order (mo)
gives a per-location linear-coherence order for atomic writes.

Xopsem is given by the program’s operational semantics and can
be determined statically from the program source. X itness 1S €Xis-
tentially quantified. The C++ memory model imposes constraints
on the components of Xopsem and Xyyitness as well as on various
relations derived from them. A candidate execution is consistent if
it satisfies these constraints. The Isabelle/HOL top-level definition
of consistency is given below:

definition consistent_execution acts thrs lk sb asw dd cd
rf mo sc =
well_formed_threads acts thrs lk sb asw dd cd N
well_formed_reads_from_mapping acts lk rf N\
consistent_locks acts thrs Ik sb asw dd cd sc N\

let
rs = release_sequence acts lk mo
hrs = hypothetical_release_sequence acts lk mo
sw = synchronizes_with acts sb asw rf sc rs hrs

cad = carries_a_dependency_to acts sb dd rf
dob = dependency_ordered_before acts rf rs cad

ithb = inter_thread_happens_before acts thrs lk sb asw
dd cd sw dob
hb happens_before acts thrs lk sb asw dd cd ithb
vse = visible_side_effect acts thrs lk sb asw dd cd hb
in
consistent_inter_thread_happens_before acts ithb N\
consistent_sc_order acts thrs lk sb asw dd cd mo sc hb N\
consistent_modification_order acts thrs lk sb asw dd cd
sc mo hb N\

consistent_reads_from_mapping acts thrs lk sb asw dd
cd rf sc mo hb vse

The derived relations (rs, hrs, etc.) and the various consistency
conditions follow the C++ final draft standard; we omit their def-
initions. The complete memory model comprises approximately
1200 lines of Isabelle text.

3.4 CPPMEM

For any given Xopsem, there may be one, several, or perhaps no
choices for Xyitness that give rise to a consistent execution. Since
the memory model is complex, and the various consistency condi-
tions and their interactions can be difficult to understand intuitively,
tool support for exploring the model and computing the possible
behaviors of C++ programs is much needed.

The CPPMEM tool [4] was designed to assist with these tasks. It
consists of the following three parts: (1) a preprocessor that com-
putes the Xopsem component of a candidate execution from a C++
program’s source code; (2) a search procedure that enumerates the
possible values for Xitness; (3) a checking procedure that calcu-
lates the derived relations and evaluates the consistency conditions
for each pair (Xopsem» Xwitness)-

For the second part, we refrained from implementing a sophis-
ticated memory-model-aware search procedure in favor of keeping
the code simple. CPPMEM enumerates all possible combinations
for the rf, mo, and sc relations that respect a few basic constraints:

e sc only contains SC actions and is a total order over them.

e mo only contains pairs (a,b) such that a and b write to the same
memory location; for each location, mo is a total order over the
set of writes at this location.

e ;f only contains pairs (a,b) such that a writes a given value to a
location and b reads the same value from that location; for each
read b, it contains exactly one such pair.

Because the search space grows asymptotically with n! in the worst
case, where n is the number of actions in the program execution,
CPPMEM is mostly limited to small litmus tests, which typically
involve up to eight actions. This does cover many interesting tests,
but not larger parallel algorithms.

Writing a more sophisticated search procedure would require a
detailed understanding of the memory model (which we hope to
gain through proper tool support in the first place) and could intro-
duce errors that are difficult to detect—unless, of course, the pro-
cedure was automatically generated from the formal specification.
This is where Nitpick comes into play.

4. Nitpick

Nitpick [6] is a model finder for Isabelle/HOL based on Kodkod
[28], a constraint solver for first-order relational logic (FORL) that
in turn relies on the SAT solver MiniSat [10]. Given a conjecture,
Nitpick searches for a standard set-theoretic model that satisfies
the given formula as well as any relevant axioms and definitions.
Isabelle users can invoke the tool manually at any point in an
interactive proof to find models or countermodels. Unlike Isabelle
itself, which adheres to the LCF “small kernel” discipline [12],
Nitpick does not certify its results and must be trusted.

Nitpick’s design was inspired by its predecessor Refute [32],
which performs a direct reduction to SAT. The translation from
HOL is parameterized by the cardinalities of the atomic types oc-
curring in it [5]. Nitpick systematically enumerates the cardinali-
ties, so that if the formula has a finite model, the tool eventually
finds it, unless it runs out of resources.

Given finite cardinalities, the translation to FORL is straightfor-
ward, but common HOL idioms require a translation scheme tai-
lored for SAT solving. In particular, infinite datatypes are soundly
approximated by subterm-closed finite substructures [16] axioma-
tized in a three-valued logic.

Example. The Isabelle/HOL formula rev xs = xs A |set xs| = 2
specifies that the list xs is a palindrome involving exactly two
distinct elements. When asked to provide a model, Nitpick almost
instantly finds xs = [a},ap,a;]. The detailed output reveals that it
approximated the type « list with the finite substructure {[], [a;],
(2], [a1, &), [a2, 1], [a1, a2, a1}

5. First Experiments

In early experiments briefly treated elsewhere [4, §6.1], we tried out
Nitpick on a previous version of the Isabelle formalization of the
C++ memory model (the “post-Rapperswil model” [4]) to check



whether given pairs (Xopsem, Xwitness) are consistent executions
of litmus test programs—a task that takes CPPMEM only a few mil-
liseconds. Nitpick printed “Nitpicking. ..” but then became entan-
gled seemingly forever in its problem-generation phase, not ever
reaching Kodkod or MiniSat. What was happening?

5.1 Constant Unfolding

The first issue, a fairly technical one, was that the constant unfold-
ing code was out of control. Nitpick has a simplistic approach to
constants occurring in a satisfaction problem:

e For simple definitions ¢ = ¢, Nitpick unfolds (i.e., inlines) the
constant c’s definition, substituting the right-hand side ¢ for ¢
wherever it appears in the problem.

e Constants introduced using primrec or fun, which define re-
cursive functions in terms of user-supplied equational specifi-
cations in the style of functional programming, are translated
to FORL variables, and their equational specifications are con-
joined with the problem as additional constraints to satisfy.

This approach works reasonably well for specifications featur-
ing a healthy mixture of simple definitions and recursive functions,
but it falls apart when there are too many nested simple definitions,
as is the case in the C++ memory model. Simple definitions are
generally of the form ¢ = (Ax; ... x,. u), and when c is applied to
arguments, these are substituted for xy,..., x,. The formula quickly
explodes if the x;’s occur many times in the body u.

Since simple definitions are a degenerate form of recursion, we
added hints to the specification telling Nitpick to treat some of the
simply defined constants as if they had been recursive functions.
In addition, we used the ‘let’ construct to store the value of an
argument that is needed several times. HOL ‘let’ bindings are
translated to an analogous FORL construct, enabling subexpression
sharing all the way down to the SAT problem [28, §4.3].

5.2 Higher-Order Arguments

When we invoked Nitpick again, it produced worrisome warning
messages such as the following one:

Arity 23 too large for universe of cardinality 4.

This specific message indicates that one of the free variables in the
generated Kodkod problem is a 23-ary relation, whose cardinality
might exceed 23! — 1 and cause arithmetic overflow in Kodkod.
Nitpick detects this and warns the user.

Alloy users are taught to avoid relations of arities higher than 3
because they are very expensive in SAT: A relation over A” requires
|A|" propositional variables. HOL n-ary functions are normally
translated to (n+ 1)-ary relations. Absurdly high arities arise when
higher-order arguments are translated. A function from o to 7
cannot be directly passed as an argument in FORL; the workaround
is to pass |o7| arguments of type 7 that encode a function table.

The memory model specification defines many constants with
higher-order signatures, mainly because HOL identifies sets with
their characteristic predicates. Here is one example among many:

synchronizes_with
(act — bool) — (act x act — bool) —
(act x act — bool) — (act x act — bool) —
(act x act — bool) — (act X act — bool) —
(act x act — bool) — act — act — bool

An important optimization in Nitpick, function specialization,
eliminates the most superficial higher-order arguments [6, §5.1]. A
typical example is f in the definition of map:

primrec map where
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

Nitpick will specialize the map function for each admissible call
site, thereby avoiding passing the argument for f altogether. At the
call site, any argument whose free variables are all globally free
(or are bound but less expensive to pass than the argument itself) is
eligible for this optimization.

Most of the higher-order arguments in the memory model spec-
ification were eliminated this way. The remaining higher-order ar-
guments resulted from a bad interaction between specialization and
‘let’. Specifically, each ‘let’ introduces a higher-order bound vari-
able, which prevents the argument from being specialized. For ex-
ample, the crucial consistent_execution predicate’s definition com-
prises the following ‘let’ bindings:

rs = release_sequence acts lk mo
hrs = hypothetical_release_sequence acts lk mo
sw = synchronizes_with acts sb asw rf sc rs hrs

The first two variables bound are of type act — act — bool. When
these variables are passed to synchronizes_with, each of them is
encoded as |act|2 arguments of type bool. The easiest solution is
to unfold higher-order ‘let’ bindings. This enables specialization to
perform the essential work of keeping relation arities low, at the
cost of some duplication in the generated FORL formula.

There remained one troublesome higher-order function in con-
nection with so-called visible sequences of side-effects:

visible_sequences_of _side_effects_set :
(act — bool) — (thr_id — bool) —
(loc — loc_kind) — (act x act — bool
(loc — loc_kind) — (act x act — bool
(loc — loc_kind) — (act x act — bool
(loc — loc_kind) — (act x act — bool
act X (act — bool) — bool

) —
) —
) —
) —

The issue here is the return type act x (act — bool) — bool: a set of
pairs whose second components are sets of actions—effectively, a
set of sets. We eventually found a way to completely eliminate vis-
ible sequences of side-effects without affecting the specification’s
semantics, as explained in Sect. 7.

5.3 Datatype Spinning

Having resolved the other problems, there remained one issue
with Nitpick’s handling of inductive datatypes. The memory model
specification defines a few datatypes, notably a type act of actions:

datatype act =
Lock act_id thr_id loc
| Unlock act_id thr_id loc
\ Atomic_load act_id thr_id ord_order loc val
| Atomic_store act_id thr_id ord_order loc val
\ Atomic_rmw act_id thr_id ord_order loc val val

| Load act_id thr_id loc val
| Store act_id thr_id loc val
| Fence act_id thr_id ord_order

The specification manipulates it through discriminators and selec-
tors. An example of each follows:

definition is_store a =

case a of Store _ _ _ _ = True | _=> False

fun thread_id_of where
thread_id_of (Lock _ tid _) = tid
thread_id_of (Unlock _ tid _) = tid

tbreaa_id_of (Fence _tid ) =tid

Because of the type’s high (in fact, infinite) cardinality, Nitpick can-
not assign a distinct FORL atom to each possible act value. Instead,



it considers only a subset of the possible values and uses a special
undefined value, denoted by *, to stand for the other values. Con-
structors and other functions sometimes return . Undefined values
trickle down from terms all the way to the logical connectives and
quantifiers. This leads to a Kleene three-valued logic [5, §4.2].

Which subset of act values should Nitpick choose? Perhaps
surprisingly, it makes no specific commitment beyond fixing a
cardinality for the set that approximates act (by default, 1, 2, and
so on up to 10). It is the SAT solver’s task to exhaust the possible
subsets. The SAT solver finds out automatically which subset is
needed. For example, if we state the conjecture

length xs = length ys — xs =ys

on lists, Nitpick finds the counterexample xs = [a;] and ys = [a;]
with values taken from the subset {[], [a;], [a2]}. (The empty list is
needed to build the other two lists.) Contrast this with

length xs <2

where Nitpick instead relies on the subset {[], [a; ], [a1, 1]}

This SAT-based approach to datatypes follows an established
Alloy idiom [16] that typically scales up to cardinality 8 or so.
However, in larger specifications such as the C++ memory model,
the combinatorial explosion goes off much earlier.

And yet, for our specification, this combinatorial spinning is
unnecessary: The needed actions all appear as ground terms in the
litmus tests. The memory model specification inspects the actions,
extracting subterms and recombining them in sets, but it never
constructs new actions. Unfortunately, neither Nitpick nor Kodkod
notices this, and MiniSat appears to be stumped.

Once again, we found ourselves modifying the specification to
enforce the desired behavior. We first replaced the act datatype with
an enumeration type that lists all the actions needed by a given
litmus test and only those. For example:

datatype act = a|b|c|d|e|f

Then we defined the discriminators and selectors appropriately for
the litmus test of interest. For example:

fun is_store where
is_store a = True
is_store _ = False

fun thread_id_of where
thread_id_of f =1
thread_id_of _ =0

Using this idiom, we could reuse the bulk of the memory model
specification text unchanged across litmus tests. The main draw-
back of this approach is that each litmus test requires its own defi-
nitions for the act datatype and the discriminator and selector func-
tions, on which the memory model specification rests.

The Nitpick-based empirical results presented in our previous
paper [4, §6.1] employed this approach. The largest litmus test
we considered (IRIW-SC) required 5 minutes using CPPMEM, but
only 130 seconds using Nitpick. Other examples took Nitpick about
5 seconds. These were one-off experiments, since further changes
to the original memory model were not mirrored in the Nitpick-
enabled specification. The experiments were nonetheless interest-
ing in their own right and persuaded us to optimize Nitpick further.

6. New Nitpick Optimizations

The experiments described in the previous section shed some light
on areas in Nitpick that could benefit from more optimizations.
Although we had come up with acceptable workarounds, we de-
cided to improve the tool in the hope that future similar applications
would require less manual work.

6.1 Heuristic Constant Unfolding

Nitpick’s constant unfolding behavior, described in Sect. 5.1, left
much to be desired. The notion that by default every simple def-
inition should be unfolded was clearly misguided. If a constant is
used many times and its definition is large, it should most likely
be kept in the translation to facilitate reuse. Kodkod often detects
shared subterms and factors them out [28, §4.3], but it does not help
if Nitpick’s translation phase is overwhelmed by the large terms.
We introduced a simple heuristic based on the size of the right-
hand side of a definition: Small definitions are unfolded, whereas
larger ones are kept as equations. It is difficult to design a bet-
ter heuristic because of hard-to-predict interactions with function
specialization and other optimizations occurring at later stages. We
also made the unfolding more compact by heuristically introducing
‘let’s to bind the arguments of a constant when it is unfolded.
Nitpick provides a nitpick_simp hint that can be attached to a
simple definition or a theorem of the right form to prevent unfold-
ing. We now added a nitpick_unfold hint that can be used to force-
fully unfold a larger definition, to give the user complete control.

6.2 Necessary Datatype Values

In Sect. 5.3 we explained how Nitpick’s subterm-closed subset ap-
proach to inductive datatypes leads to a combinational explosion in
the SAT solver. We also introduced an Isabelle idiom to prevent this
“datatype spinning” when we know which values are necessary.
However, the idiom requires fundamental changes to the specifi-
cation, which is highly undesirable if proving and code generation
(for CPPMEM) must also be catered for.

We came up with a better plan: Add an option to let users
specify necessary datatype values and encode that information in
the Kodkod problem. Users provide a set of datatype values as
ground constructor terms, and Nitpick assigns one FORL atom to
each term and subterm from that set. The atom assignment is coded
as an additional constraint in the FORL problem and passed to the
SAT solver, which exploits it to prune the search space.

For checking litmus tests, a convenient idiom is to first declare
all the actions required as Isabelle abbreviations. For example:

abbreviation a = Atomic_store 0 0 Ord_relaxed 0 0
abbreviation b = Atomic_rmw 10 Ord_relaxed 00 1

abbreviation f = Atomic_rmw 5 1 Ord_release 02 3

If we pass the option “need = abcdet”, Nitpick then generates
additional constraints for these six terms and also their subterms:

a; = Atomic_store 00a7 00
ar, = Atomic_rmw 10a700 1

ag = Atomic_rmw 51ag 023
a7 = Ord_relaxed
ag = Ord_release

Natural numbers are left alone. The optimization makes no sense
for them, since the desired cardinality k fully determines the
subterm-closed subset to use, namely {0, Suc 0, ..., Suc¥~! 0}.

The resulting performance behavior is essentially the same as
with the idiom presented in Sect. 5.3, but without having to re-
structure the specification.

We expect this optimization to be generally useful for specifica-
tions of programming language semantics. We had previously un-
dertaken unpublished experiments with a Java compiler verified in
Isabelle [19] and found that Nitpick suffered heavily from datatype
spinning: Even when the program was hard-coded in the problem,
the SAT solver would needlessly spin through the subterm-closed
substructures of all possible Java programs.



6.3 Two-Valued Translation

There is a second efficiency issue related to Nitpick’s handling
of inductive datatypes. As mentioned in Sect. 5.3, attempting to
construct a value that Nitpick cannot represent yields the unknown
value *. The ensuing partiality is handled by a Kleene three-valued
logic, which is expressed in terms of Kodkod’s two-valued logic as
follows: At the outermost level, the FORL truth value true encodes
True (genuine model), whereas false stands for both False (no
model) and * (potentially spurious model). The same convention is
obeyed in other positive contexts within the formula (i.e., under an
even number of negations). Dually, false encodes False in negative
contexts and true encodes True or *.

This approach is incomplete but sound: When Kodkod finds a
(finite) FORL model, it always corresponds to a (possibly infinite)
HOL model. Unfortunately, the three-valued logic puts a heavy
burden on the translation, which must handle * gracefully and keep
track of polarities (positive and negative contexts). An operation
as innocuous as equality in HOL, which we could otherwise map
to FORL equality, must be translated so that it returns * if either
operand is *.

Formulas occurring in unpolarized, higher-order contexts (e.g.,
in a conditional expression or as argument to a function) are less
common but all the more problematic. The conditional

if ¢ then #; else 1,
is translated to
if % then7, else if = ¢~ then7, else x

where @7 is the translation of ¢ in a positive context and @~ is its
negative counterpart. The translation can quickly explode in size if
¢ itself contains formulas in higher-order places.

Simply stated, the root of the problem is overflow: When a
constructor returns *, it overflows in much the same way that IEEE
n-bit floating-point arithmetic operations can yield NaN (“not a
number”) for large operands. Nitpick’s translation to FORL detects
overflows and handles them soundly. If the tool only knew that
overflows are impossible, it could disable this expensive machinery
and use a more direct two-valued translation [5, §4.1].

With the subterm-closed substructure approximation of induc-
tive datatypes, overflows are a fact of life. For example, the append
operator @ on lists, which is specified by the equations

Nil @ ys =ys
(Cons x xs) @ ys = Cons x (xs @ ys)

will overflow if the longest representable nonempty list is appended
to itself. In contrast, selectors such as hd (head) and ¢/ (tail), which
return the first and second argument of a Cons, cannot overflow.

The C++ memory model is a lengthy specification consisting of
about 1200 lines of Isabelle/HOL definitions. On the face of it, it
would be most surprising that no overflows are possible anywhere
in it. But this is essentially the case. Apart from the test program
and the set of possible executions, which appear in the conjecture
and which we treated specially in Sect. 6.2, no overflows can occur.
The whole specification is a predicate that merely inspects Xopsem
and X itness Without constructing new values. Coincidentally, this
design ensures the fast execution of CPPMEM, which must check
thousands of potential witnesses.

To exploit this precious property of the specification, we added
an option, total_consts, to control whether the two-valued transla-
tion without x should be used. The two-valued translation must be
used with care: A single overflow in a definition can prevent the
discovery of models.

Naturally, it would be desirable to implement an analysis in
Nitpick to determine precisely which constants can overflow and
use this information in a hybrid translation. This is future work.

7. Fine-Tuned C++ Memory Model

In parallel with our work on Nitpick, we refined the specification
of the memory model in three notable ways:

e We ported the model to the custom specification language LEM;
we now generate Isabelle text from that [24]. Ideally, we want
to apply Nitpick directly on the generated specification.

Reflecting recent discussions in the C++ concurrency subcom-
mittee, in the new model SC reads cannot read from non-SC
writes that happened before SC writes. This minor technical
change rules out certain counterintuitive executions.

The new model is formulated in terms of visible side-effects (a
relation over actions) but does without the more complicated
notion of visible sequences of side-effects (a relation between
actions and sets of actions) found in the draft standard. This al-
lows all consistency conditions to be predicates over sets and
binary relations, which reduces Nitpick’s search space consid-
erably. We recently completed a formal equivalence proof for
the two formulations.

With the optimizations described in Sect. 6 in place, Nitpick
handles the new specification reasonably efficiently without any
modifications. It nonetheless pays off to fine-tune the specification
in three respects.

First, the types act_id, thr_id, loc, and val—corresponding to
action IDs, thread IDs, memory locations, and values—are defined
as aliases for nat, the type of natural numbers. This is unfortunate
because it prevents us from specifying different cardinalities for the
different notions. A litmus test involving eight actions, five threads,
two memory locations, and two values gives rise to a much smaller
SAT problem if we tell Nitpick to use the cardinalities |act_id| = 8,
|thr_id| = 5, and |loc| = |val| = 2 than if all four types are set to
have cardinality 8. To solve this, we replace the aliases

type__synonym act_id = nat
type _synonym thr_id = nat
type _synonym loc nat

in the LEM specification with copies of the natural numbers:

datatype act_id = A0 | ASuc act_id
datatype thr_id = TO | TSuc thr_id
datatype loc = LO | LSuc loc

For notational convenience, we define the following abbreviations:
a; = ASuck A0, t; = TSuck T0, x = L0, and y = LSuc LO.

Second, while the unfolding heuristic presented in Sect. 6.1 al-
lowed us to remove many nitpick_simp hints, we found that the
heuristic was too aggressive with respect to two constants, which
are better unfolded (using nitpick_unfold). We noticed them be-
cause they were the only relations of arity greater than 3 in the
generated Kodkod problem.! Both were called with a higher-order
argument that was not eligible for specialization. We specified the
nitpick_unfold hints in a separate theory file that imports the LEM-
generated Isabelle specification and customizes it.

Third, some of the basic definitions in the specification are gra-
tuitously inefficient for SAT solving. The specification had its own
definition of relational composition and transitive closure, but it is
preferable to replace them with equivalent concepts from Isabelle’s
libraries, which are mapped to appropriate FORL constructs. This
is achieved by providing lemmas that redefine the memory model’s
constants in terms of the desired Isabelle concepts:

' One could expect that the act constructors, which take between 3 and 6
arguments each, would be mapped to relations of arities 4 to 7, but Nitpick
encodes constructors in terms of selectors to avoid high-arity relations [5,
§5.2]. A term such as Cons x xs is translated to “the nonempty list ys such
that hd ys = x and tl ys = xs,” where hd and tl are coded as binary relations.



lemma [nitpick_unfold]: compose RS = R0 S
lemma [nitpick_unfold]: tc A R = (restrict_relation R A)*

These lemmas are part of the separate theory file mentioned above.
Similarly, we supply a more compact definition of the predicate
strict_total_order_over A R. The original definition cleanly sepa-
rates the constraints expressing the relation’s domain, irreflexivity,
transitivity, and totality:

V(a,b)ER. acANbEA

VxeA. (x,x)¢R

Vx€A.Vy€A. Vz€A. (x,y) ERA (y,2) ER — (x,2) ER
VxeA. VyeA. (x,y)ERV (y,x) ERVx=Yy

The optimized formulation

(Vx y. if (x,y) €R then
{x Y} CAANX#YA(y,x)¢R
else
{xy} CAAX#y — (.X) ER) A
Rt =R

reduces the number of occurrences of A and R, both of which are
higher-order arguments that are instantiated with arbitrarily large
terms by the specialization optimization.

8. Litmus Tests

We evaluated Nitpick on several litmus tests designed to illustrate
the semantics of the C++ memory model. The experiments were
conducted on a 64-bit Mac Pro system with a Quad-Core Intel Xeon
processor at 2.66 GHz clock speed, exploiting a single core. They
are discussed in more detail below.

Most of these litmus tests had been checked by CPPMEM and
the unoptimized version of Nitpick before [4], so it should not
come as a surprise that our experiments revealed no further flaws
in the C++ final draft standard. We did, however, discover many
mistakes in the latest version of the formalization, such as missing
parentheses and typos (e.g., V instead of dJ). These mistakes had
been accidentally introduced when the model was ported to LEM
and had gone unnoticed even though it is used as a basis for formal
proofs. Our experience illustrates once again the need to validate
complex specifications, to ensure that the formal artifact correctly
captures the intended semantics of the informal one (in our case,
the draft standard).

8.1 Store Buffering

Our first test is simply the introductory example from Sect. 3:

atomic_int x = 0;
atomic_int y = O;

K

x.store(1, ord_relaxed);

printf("y: %d\n", y.load(ord_relaxed));
[11

y.store(1l, ord_relaxed);

printf("x: %d\n", x.load(ord_relaxed));
i3

This program has six actions: two nonatomic initialization writes
(Wha), then one relaxed write (W,,) and one relaxed read (Ryy)
in each thread. The diagram below shows the relations sb and
asw, which are part of Xopsem and hence fixed by the program’s
operational semantics:

Whax=0
Sbl
Whay=0

Wix x =1 Wixy =1
\Lsh l‘vb
erxy:O Rixx=0

Each vertex represents an action, and an r-edge from a to b indi-
cates that (a,b) € r. The actions are arranged in three columns cor-
responding to the threads they belong to. For transitive relations,
we omit transitive edges.

To check a litmus test with Nitpick, we must provide Xopsem-
We can use CPPMEM’s preprocessor to compute Xopsem from
a C++ program’s source code, but for simple programs such as
this one we can also translate the code manually. We first declare
abbreviations for the test’s actions:

abbreviation
abbreviation
abbreviation
abbreviation
abbreviation e
abbreviation f

Store ag tgx 0
Store a; tgy 0
Atomic_store aj t; Ord_relaxed x 1
Atomic_load a3 t| Ord_relaxed y 0
Atomic_store a4 ty Ord_relaxed y 1
Atomic_load as ty Ord_relaxed x 0

QO o R
R 1

Notice that the read actions, d and f, specify the value they expect
to find as last argument to the constructor. That value is 0 for both
threads because we are interested only in non-SC executions, in
which the write actions ¢ and e are ignored by the reads.

Next, we introduce the components of Xopsem as constants:

definition [nifpick_simp]: acts = {a,b,c,d,e,f}
definition [nitpick_simp]: thrs = {tg,t1,t2}
definition [nitpick_simp): Ik (A_. Atomic)

definition [nitpick_simp]: sb {(a,b), (c,d), (e,f)}
definition [nitpick_simp]: asw = {(b,c), (b,e)}
definition [nitpick_simp): dd }

definition [nitpick_simp]: cd = {}

Specialization implicitly propagates these values to where they are

needed in the specification. To avoid clutter and facilitate subex-

pression sharing, we disable unfolding by specitying nitpick_simp.
Finally, we look for a model satisfying the constraint

consistent_execution acts thrs Ik sb asw dd cd rf mo sc

where rf, mo, and sc are free variables corresponding to X itness-
The Nitpick call is shown below:

nitpick [
satisfy, look for a model
need=abcdef, the necessary actions (Sect. 6.2)
card act = 6, six actions (a, b, c,d,e,f)
card act_id = 6, six action IDs (ag,a,as,as,aq,as)
card thr_id =3, three thread IDs (tg, tq,t)
card loc =2, two locations (x,y)
card val = 2, two values (0, 1)
card =10, maximum cardinality for other types

use two-valued translation (Sect. 6.3)
pretend act is finite
disable boxing [6, §5.1]

total_consts,
finitize act,
dont_box



With these options, Nitpick needs 4.7 seconds to find relations that
witness a non-SC execution:

Whax=0
N
N
N
\ mo oof
Whay=0 _ .
[ -
N
" N -
. N e
rfr Wi x=1 ',Wr|XY=1
A VV_J
Rixy=0 Rixx=0

The modification-order relation (mo) reveals that the assignments
x = 1 and y = 1 take place after the initializations to 0, but the read-
from relation (rf) indicates that the two reads get their values from
the initializations and not from the assignments.

If we replace all four relaxed memory accesses with SC atomics,
such non-SC behavior is no longer possible. Nitpick verifies this in
4.0 seconds by reporting the absence of suitable witnesses. These
results are consistent with our understanding of the draft standard.

8.2 Message Passing

We consider a variant of message passing where one thread writes
to a data location x and then a flag y, while two reading threads
read both the flag and the data. There are two initialization writes
and two actions in each thread, for a total of eight actions:

atomic_int x = 0;

atomic_int y = O;
{{
x.store(1, ord_relaxed);
y.store(1l, ord_relaxed);
[1]
printf("y1l: %d\n", y.load(ord_relaxed));
printf("x1: %d\n", x.load(ord_relaxed));
[1]
printf ("x2: %d\n", x.load(ord_relaxed));
printf("y2: %d\n", y.load(ord_relaxed));
i3

Because all non-initialization actions are relaxed atomics, it is
possible for the two readers to observe the writes in opposite order.
Nitpick finds the following execution in 5.7 seconds:

Whax=0
\ VV',
sbl N
N mo - 1f
Wnay:()'\'"

Wiix y=1

Rr|XX:0 erxy:O

On the other hand, if the flag is accessed via a release/acquire pair,
or via SC atomics, the first reader is guaranteed to observe the
data written by the writer thread. Nitpick finds such an execution

(without the second reader) in 4.0 seconds, and verifies the absence
of a non-SC execution also in 4.0 seconds.

8.3 Load Buffering

This test is dual to the Store Buffering test. Two threads read from
separate locations; then each thread writes to the other location:
atomic_int x = 0;
atomic_int y = O;

{{{
printf ("x: %d\n", x.load(ord_relaxed));
y.store(1l, ord_relaxed);

[11]
printf("y: %d\n", y.load(ord_relaxed));
x.store(1l, ord_relaxed);

i33s

With relaxed atomics, each thread can observe the other thread’s
later write. Nitpick finds a witness execution in 4.2 seconds:

Whax=0
sbJ/ h N
~
Whay=0
\
\
AN
N Rixy=1
mo v
\ l T AT l
N sb . \ sb
X o LN
Wiy =1 Wi x =1

Nitpick verifies the absence of a non-SC execution with release/
consume, release/acquire, and SC atomics in 4.1 seconds.

8.4 Sequential Lock

This test is more ambitious. The program models a simple sequen-
tial locking algorithm inspired by the Linux kernel’s “seqlock”
mechanism [17]:

atomic_int x = 0;
atomic_int y = 0;
atomic_int z 0;

{{{

for (int i = 0; i < N; i++) {
x.store(2 * i + 1, ord_release);
y.store(i + 1, ord_release);
z.store(i + 1, ord_release);
x.store(2 * i + 2, ord_release);

}

[11]

printf("x: %d\n", x.load(ord_consume));

printf("y: %d\n", y.load(ord_consume));

printf("z: %d\n", z.load(ord_consume)) ;

printf("x: %d\n", x.load(ord_consume));

113

The program spawns a writer and a reader thread. The writer main-
tains a counter x; the writer’s loop increments it before and af-
ter modifying the data locations y and z. Intuitively, the data is
“locked” whenever the counter x is odd. The reader eventually ac-
cesses the data, but not without checking x before and after. A non-
SC behavior occurs if the two reads of x yield the same even value
(i.e., the lock was free during the two data reads) but y # z (i.e., the
data was observed while in an inconsistent state).



Already for N = 1, Nitpick finds the following non-SC execu-
tion, where the reader observes y = 0 and z = 1, in 15.8 seconds:

Whax=0
\
shJ/ \
\
\
Whay=0 Jre

Reon x=2
=
sb
A
Reony =0
E sb
N of <
Wiggz=1 "y Reonz=1
\
’b, sb
<~ if ~
Wiggx=2 iy Reonx=2

With release/acquire instead of release/consume, the algorithm
should be free of non-SC behavior. Nitpick takes 15.8 seconds
to exhaustively check the N = 1 case, 86 seconds for N = 2, and
378 seconds for N = 3. If we add a second reader thread, it takes
86 seconds for N = 1 and 379 seconds for N = 2.

Because of the loop, our analysis is incomplete: We cannot
prove the absence of non-SC behavior for all bounds N (or for
an arbitrary number of readers), only its presence. Nonetheless,
the small-scope hypothesis, which postulates that “most bugs have
small counterexamples” [13, §5.1.3], strongly suggests that the se-
quential locking algorithm implemented in terms of release/acquire
atomics is correct for any number of iterations and reader threads.

8.5 Independent Reads of Independent Writes

Two writer threads independently write to x and y, and two readers
read from both locations:

atomic_int x = 0;
atomic_int y = 0;

L
x.store(1, ord_release);
[11
y.store(1l, ord_release);
[11
printf("x1: %d\n", x.load(ord_acquire));
printf("y1l: %d\n", y.load(ord_acquire));
[11
printf("y2: %d\n", y.load(ord_acquire));
printf("x2: %d\n", x.load(ord_acquire));
3

With release/acquire, release/consume, and relaxed actions, differ-
ent reader threads can observe these writes in opposite order. Nit-
pick finds an execution in 5.8 seconds:

Whax=0
N\ T
\
sbl o of
Whay=0

asw

\casw

Wrel x=1 Wrel y =1 Racq y= 1

R
l‘vb
~

Racq X: 1

if rflsh
o

Racg7 =0 Racqgx=0

With SC actions, this behavior is not allowed, and Nitpick verifies
the absence of a non-SC execution in 5.2 seconds.

8.6 Write-to-Read Causality

This test spawns three auxiliary threads in addition to the implicit
initialization thread:

atomic_int x = 0;
atomic_int y = 0;

L
x.store(1l, ord_relaxed);

[11]
printf("x1: %d\n", x.load(ord_relaxed));
y.store(1l, ord_relaxed);

[11]
printf("y: %d\n", y.load(ord_relaxed));
printf ("x2: %d\n", x.load(ord_relaxed));

33

The first auxiliary thread writes to x; the second thread reads from
x and writes to y; the third thread reads from y and then from x.
With relaxed atomics, the third thread does not necessarily observe
the first thread’s write to x even if it observes the second thread’s
write to y and the second thread observes the first thread’s write
to x. Nitpick finds this execution in 4.2 seconds:

Whax=0
sbJ/ \
\ mo
Whay =0 -

N Wy x =1 rf> Riyxx=1 - erxy: 1

N B
mo> sbo | sb

\\>\er><y:1 Rixx=0

The memory model guarantees write-to-read causality for release/
acquire and SC actions. Nitpick verifies the absence of a non-SC
execution in 4.4 seconds.

8.7 Generalized Write-to-Read Causality

Nitpick’s run-time depends on the size of the search space, which is
exponential in the number of actions. To demonstrate how Nitpick
scales up to larger litmus tests, we generalize the Write-to-Read
Causality test from 2 to n locations. The generalized test consists
of 2n writes (including n initializations) and n + 1 reads, thus
3n+1 actions in total. Since the three witness variables are binary
relations over actions, the state space is of size 230Gn+1)?,



With relaxed atomics, there is an execution where the last thread
does not observe the first thread’s write. With SC atomics, no such
execution exists. The Nitpick run-times are tabulated below. For
comparison, we also include the CPPMEM run-times (on roughly
comparable hardware).

Locations | Actions States CPPMEM Nitpick

) | Gn+1) | (2360+D) | relaxed | SC |relaxed| SC

2 7 2147 00s| 05s 4s 45
3 10 2300 0.0s| 90.5s 11s 11s
4 13 2507 0.1s|>10%s 41s 40s
5 16 2768 02s|>10*s| 132s| 127s
6 19 21083 0.7s|>10*s| 384s| 376s
7 22 21452 25s|>10%s| 982s| 977s

Each additional location slows down Nitpick’s search by a fac-
tor of about 3. Although the search space grows with 2 the search
time grows slightly slower than k", which is asymptotically better
than CPPMEM’s n! worst-case complexity.

CpPPMEM outperforms Nitpick on the relaxed version of the
test because its basic constraints reduce the search space to just
2" candidate orders for rf and mo (Sect. 3.4). On the other hand,
CPPMEM scales much worse than Nitpick when the actions are SC,
because it naively enumerates all 2" - (2n+ 1)! combinations for rf,
mo, and sc that meet the basic constraints.

8.8 Further Remarks

Thanks to the optimizations presented in Sect. 6, Nitpick is about
25 times faster on medium-sized litmus tests than it was before.
Verifying the absence of a consistent non-SC execution for the
Independent Reads of Independent Writes test now takes about
5.2 seconds, compared with 130 seconds previously and 5 minutes
using CPPMEM [4, §6.1]. Larger SC tests that cannot realistically
be checked with CPPMEM are now analyzable within minutes.

On small litmus tests, Nitpick remains significantly slower than
CPPMEM, which takes less than a second on some of the tests. The
bottleneck is the translation of the memory model into FORL and
SAT. The SAT search is extremely fast for small tests and scales
much better than CPPMEM’s simplistic enumeration scheme. On
the largest problems we considered, Nitpick takes a few seconds,
which is negligible; then about 95% of the time is spent in Kodkod,
while the rest is spent in MiniSat.

For some litmus tests, CPPMEM’s basic constraints reduce the
search space considerably. We could probably speed up Nitpick
by incorporating these constraints into the model—for example,
by formalizing rf as a map from reads to writes, rather than as a
binary relation over actions. However, this would require extensive
modifications to the formalization, which we would rather avoid.

9. Related Work

The discovery of fatal flaws in the original Java memory model [25]
stimulated much research in software memory models. We attempt
to cover the most relevant work, focusing on tool support.

MemSAT [29] is an automatic tool based on Kodkod specif-
ically designed for debugging axiomatic memory models. It has
been used on several memory models from the literature, including
the Java memory model. A noteworthy feature of MemSAT is that
it produces a minimal unsatisfiable core if the model or the litmus
test is overconstrained. MemSAT also includes a component that
generates relational constraints from Java programs, akin to CPP-
MEM’s preprocessor. Nitpick’s main advantage over MemSAT for
our case study is that it understands higher-order logic.

NemosFinder [33] is another axiomatic memory model checker.
Memory models are coded as Prolog predicates and either checked
using constraint logic programming or SAT solving. The tool in-
cludes a specification of the Intel Itanium memory model.

Visual-MCM [22] is a generic tool that checks and graphically
displays given executions against a memory model specification.
The tool was designed primarily as an aid to hardware designers.

While the above tools are generic, many tools target specific
models. Manson and Pugh [20] developed two simulators for the
Java memory model that enumerate the possible executions of a
program. Java RaceFinder [15], an extension to Java PathFinder
[30], is a modern successor. Both of these are explicit-state model
checkers. Like CPPMEM (and its predecessor memevents [26]),
they suffer from the state-explosion problem.

We refer to Batty et al. [4], Torlak et al. [29], and Yang et al.
[33] for more related work.

10. Discussion and Conclusion

We applied the model finder Nitpick to our Isabelle/HOL formal-
ization [4] of the C++ draft standard’s memory model. Our ex-
periments involved classical litmus tests and (fortunately) did not
reveal any flaws in the C++ final draft standard. This is no surprise:
The model has already been validated by the CPPMEM simulator on
several litmus tests, and the correctness proof of the suggested Intel
x86 implementation gave further evidence that the Isabelle model
captures the draft standard’s intended semantics.

The main challenge for a diagnosis tool such as Nitpick is that
users of interactive theorem provers tend to write their specifica-
tions so as to make the actual proving easy. In contrast, if the Al-
loy Analyzer or MemSAT performs poorly on a specification, the
tool’s developers can put part of the blame on the users, arguing for
example that they have “not yet assimilated the relational idiom”
[16, p. 7]. We wish we could have applied Nitpick directly on the
Isabelle specification of the memory model, but without changes
to either Nitpick or the specification our approach would not have
scaled to handle even the simplest litmus tests.

We were delighted to see that function specialization, one of the
very first optimizations implemented in Nitpick [6, §5.1], proved
equal to the task. By propagating arguments to where they are
needed, specialization ensures that no more than two arguments
ever need to be passed at a call site—a dramatic reduction from
the 10 or more arguments taken by many of the memory model’s
functions. Without this optimization, we would have faced the
unappealing prospect of rewriting the specification from scratch.

There will always be cases where more dedicated tools are
called for, but it is pleasing when a general-purpose tool outper-
forms dedicated solutions. Our new Nitpick optimizations will be
included in the next Isabelle release and should prove beneficial to
other large formalizations.

Acknowledgments

This work would not have been possible without Peter Sewell,
who together with the last four authors specified the C++ mem-
ory model in Isabelle/HOL. Sascha Bohme, Lukas Bulwahn, Paul
Jackson, Tobias Nipkow, Peter Sewell, Mark Summerfield, Geoff
Sutcliffe, and the anonymous reviewers suggested several textual
improvements. We acknowledge funding from the Deutsche For-
schungsgemeinschaft (grant Ni491/11-2) and the British EPSRC
(grants EP/F036345, EP/F067909, EP/H005633, EP/H027351).

References

[1] Programming languages—C++. Technical Report N3290, ISO IEC
JTC1/SC22/WG21, 2011. http://www.open-std.org/jtcl/
sc22/wg21/docs/papers/2011/n3290. pdf.

[2] P. B. Andrews. An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof (2nd Ed.), volume 27 of Applied
Logic. Springer, 2002.



[3] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber.
Mathematizing C++ concurrency: The post-Rapperswil model.
Technical Report N3132, ISO IEC JTC1/SC22/WG21, 2010.
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/
2010/n3132.pdf.

[4] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber.
Mathematizing C++ concurrency. In T. Ball and M. Sagiv, editors,
POPL 2011, pages 55-66. ACM, 2011.

[5] J. C. Blanchette. Relational analysis of (co)inductive predicates,
(co)inductive datatypes, and (co)recursive functions. Softw. Qual. J.
To appear.

[6] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator
for higher-order logic based on a relational model finder. In
M. Kaufmann and L. Paulson, editors, ITP 2010, volume 6172 of
LNCS, pages 131-146. Springer, 2010.

[7] P. Cenciarelli, A. Knapp, and E. Sibilio. The Java memory model:
Operationally, denotationally, axiomatically. In R. De Nicola, editor,
ESOP 2007, volume 4421 of LNCS, pages 331-346. Springer, 2007.

[8] A. Church. A formulation of the simple theory of types. J. Symb.
Log., 5:56-68, 1940.

[9] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers. Concurrency Verification:
Introduction to Compositional and Noncompositional Methods,
volume 54 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2001.

[10] N. Eén and N. Sorensson. An extensible SAT-solver. In
E. Giunchiglia and A. Tacchella, editors, SAT 2003, volume 2919 of
LNCS, pages 502-518. Springer, 2004.

[11] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

[12] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation, volume 78 of LNCS. Springer,
1979.

[13] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
MIT Press, 2006.

[14] J. Jiijens and T. Weber. Finite models in FOL-based crypto-protocol
verification. In P. Degano and L. Vigano, editors, ARSPA-WITS 2009,
volume 5511 of LNCS, pages 155-172. Springer, 2009.

[15] K. Kim, T. Yavuz-Kahveci, and B. A. Sanders. Precise data race
detection in a relaxed memory model using heuristic-based model
checking. In ASE 2009, pages 495-499. IEEE, 2009.

[16] V. Kuncak and D. Jackson. Relational analysis of algebraic datatypes.
In H. C. Gall, editor, ESEC/FSE 2005. ACM, 2005.

[17] C. Lameter. Effective synchronization on Linux/NUMA systems.
Presented at the Gelato Conference 2005.

[18] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. [EEE Trans. Comput.,
28(9):690-691, 1979.

[19] A. Lochbihler. Verifying a compiler for Java threads. In A. D.
Gordon, editor, ESOP 2010, volume 6012 of LNCS, pages 427-447.
Springer, 2010.

[20] J. Manson and W. Pugh. The Java memory model simulator. In
Formal Techniques for Java-like Programs (FTfJP) 2002.

[21] A. Mclver and T. Weber. Towards automated proof support for
probabilistic distributed systems. In G. Sutcliffe and A. Voronkov,
editors, LPAR 2005, number 3835 in LNAI, pages 534-548. Springer,
2005.

[22] A. C.Melo and S. C. Chagas. Visual-MCM: Visualising execution
histories on multiple memory consistency models. In P. Zinterhof,
M. Vajtersic, and A. Uhl, editors, ACPC 1999, volume 1557 of LNCS,
pages 500-509. Springer, 1999.

[23] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[24] S. Owens, P. Bohm, F. Zappa Nardelli, and P. Sewell. Lightweight
tools for heavyweight semantics. In /7P 2011. Springer. To appear.

[25] W. Pugh. The Java memory model is fatally flawed.
Concurrency—Practice and Experience, 12(6):445-455, 2000.

[26] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge,
T. Braibant, M. O. Myreen, and J. Alglave. The semantics of x86-CC
multiprocessor machine code. In Z. Shao and B. C. Pierce, editors,
POPL 2009, pages 379-391. ACM, 2009.

[27] J. Sevcik and D. Aspinall. On validity of program transformations in
the Java memory model. In J. Vitek, editor, ECOOP 2008, volume
5142 of LNCS, pages 27-51. Springer, 2008.

[28] E. Torlak and D. Jackson. Kodkod: A relational model finder. In
O. Grumberg and M. Huth, editors, TACAS 2007, volume 4424 of
LNCS, pages 632—-647. Springer, 2007.

[29] E. Torlak, M. Vaziri, and J. Dolby. MemSAT: Checking axiomatic
specifications of memory models. In B. G. Zorn and A. Aiken,
editors, PLDI 2010, pages 341-350. ACM, 2010.

[30] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model
checking programs. Autom. Softw. Eng. J., 10(2):203-232, 2003.

[31] T. Weber. A SAT-based Sudoku solver. In G. Sutcliffe and
A. Voronkov, editors, LPAR 2005 (Short Papers), pages 11-15, 2005.

[32] T. Weber. SAT-Based Finite Model Generation for Higher-Order
Logic. Ph.D. thesis, Dept. of Informatics, T.U. Miinchen, 2008.

[33] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos:

A framework for axiomatic and executable specifications of memory
consistency models. In /PDPS 2004. IEEE, 2004.



