
Multiprocessor Architectures Don’t Really Exist
(But They Should)

(Invited Talk)

Peter Sewell
Computer Laboratory

University of Cambridge
Cambridge, UK

Url: http://www.cl.cam.ac.uk/∼pes20/weakmemory/

Abstract—Multiprocessors and high-level concurrent lan-
guages generally provide only relaxed (non-sequentially-
consistent) memory models, to permit performance optimisations.
One has to understand these models to program reliable concur-
rent systems but, despite work in this area over many years, the
specifications of real-world multiprocessors and languages are
typically ambiguous and incomplete informal-prose documents,
cannot be used for testing hardware or software, sometimes give
guarantees that are too weak to be useful, and are sometimes
simply unsound. Such informal prose is a very poor medium for
loose specifications.

This talk will review various problems with some current
specifications, for x86 (Intel 64/IA32 and AMD64), and Power
and ARM processors, and for the Java and C++ languages, and
describe ongoing work to produce rigorously defined specifica-
tions for some of these.

Processor vendors documentarchitectures, including for
example Intel 64 and IA-32 [1], AMD64 [2], ARMv7 [3],
and Power 2.06 [4]. These are the key interface between hard-
ware and software, describing to programmers (of compilers,
operating systems, and other low-level code) what behaviour
they can depend upon from the processors. Architectures are
subject to conflicting requirements; they must at least:

1) reveal enough processor behaviour for effective pro-
gramming;

2) be sound with respect to a range of previous specific
processor implementations;

3) accessible to programmers and hardware designers, and
not overwhelmingly complex (as a full processor design
would be);

4) not reveal sensitive IP; and
5) not unduly constrain future processor design.

They are, therefore, necessarilyloose specifications, describing
a range of possible programmer-visible behaviour rather than
specifying a single (completely deterministic) behaviourfor
each program. They are typically expressed in informal prose,
often with pseudocode descriptions of the behaviour of each
instruction.

In some cases this looseness is relatively straightforward,
especially for sequential code. For example, an architecture
may specify that the value of some flag is left undefined
by a particular machine instruction. Even this has the well-
known potential to cause difficulties: suppose some processor
implementations in fact leave the flag set, and some code

(perhaps inadvertently) depends on that fact. Programs are
validated by running them on specific implementations, so that
dependency may remain a lurking bug, to be discovered only
if a later processor implementation has different behaviour.

When we turn to the behaviour ofmultiprocessorsthe situa-
tion is much worse. Multiprocessor implementations typically
involve a range of optimisations (store buffers, out-of-order
execution, speculation, optimised cache protocols, etc.)which
are not observable by single-threaded programs but which give
rise to relaxed or weakly consistentmemory behaviour of
multi-threaded code. For example, in a simple implementation
with store buffers, two threads that each store to a location
and then read from the other location can, in the same
execution, read from the initial state; an outcome that would
be impossible above an intuitive sequentially consistent shared
memory. The relaxed-memory behaviour that a state-of-the-art
processor implementation exhibits may be much more subtle,
perhaps involving notions of data and control dependencies,
different kinds of barrier, various atomic operations, andso on.
Multiprocessors effectively reveal (via such behaviour) more
about their implementation choices than uniprocessors do,and
so to accommodate changes in these choices their architectural
specifications must be correspondingly looser.

However, in practice these specifications are often so flawed
as to be useless. In our previous work on x86 memory
models [5], [6] we detail problems with a number of Intel
and AMD specifications. In some cases they are simply too
ambiguous to be understood; in some cases they are too
loose, making guarantees that are much weaker than the
actual implementations and that do not suffice for reasonable
programming; and in some cases they are simply wrong,
guaranteeing that some behaviour, that real processors actually
exhibit, cannot happen.

There may be many reasons for this, but a key technical
point is that informal natural-language prose is avery poor
medium in which to express subtle loose specifications. It is
almost inevitably ambiguous, and prose specifications cannot
be directly used in verification — for testing that processor
implementations conform to the architecture, or for testing
that software runs correctly above the architecture, not merely
above some particular implementation, or of mechanised proof
of either kind of result. It is in this sense that multiprocessor



architectures do not really exist: they are not well-defined
artefacts that can be used.

We argue instead (as others have in the past) that architec-
tures, and particularly their more intricate concurrency aspects,
should be rigorously defined. If it were not for the need
for looseness, one could just have golden executable models,
in some well-defined deterministic programming language.
But as it is, one must express architectures in other forms,
e.g. by giving nondeterministic abstract machines or axiomatic
descriptions. In our previous work we defined a memory model
for x86 processors, x86-TSO [6], using both of those styles
and proving equivalence between them.

To the best of our knowledge, it meets the criteria above.
It is similar to the relatively well-understood SPARC TSO
model and so it should be feasible to program above it. In the
(limited) black-box testing we have been able to carry out, it
appears to be sound with respect to current implementations.
The abstract-machine presentation of the model should be
widely accessible, to programmers, hardware architects, and
programming language designers and implementors. Obvi-
ously we cannot comment on the future intentions of vendors,
but some recent vendor specifications explicitly rule out a key
example of weaker behaviour, and x86-TSO appears to be
consistent with current folk wisdom. In addition:

6) it is completely unambiguous and mathematically pre-
cise, expressed in the logic of the HOL4 mechanised
proof assistant [7];

7) it is testable: we have a tool that given a litmus-test
program can compute the set of all the executions that
the model allows (currently this tool is hand-written
from the model, but ideally it would be derived from
the statements of the model); and

8) it is integrated with an equally precise semantics for (a
fragment of) the instruction set, replacing the conven-
tional pseudocode by precise definitions of the sequen-
tial behaviour of instructions. This can be used directly
for testing [5]. (Similar rigorous specifications for the
sequential behaviour of ARM instructions have been
produced by Fox [8].)

It must be emphasised that this mathematical precision does
not come at the price of any over-specification: a precise
specification is by no means necessarily a tight specification.

To conclude, for us to have any hope of building reliable
systems, as multiprocessors become ever more dominant, it
is essential that the architectural interfaces between hardware
and software become well-defined and comprehensible to both
sides, so that it can be tested (or even proved) that hardware
conforms to its architectural specification, and that software
runs correctly above an architecture. This will be all the
more true as new proposals are made, e.g. for transactional
memory, and as low-level concurrent programming is no
longer confined (if it ever was) to a handful of operating
system lock implementors.

The ambiguity of informal prose is a very poor way
of delimiting the intended range of behaviour of a loose

specification; it should be replaced by simple, but rigorous,
mathematical techniques.

ACKNOWLEDGMENTS

This is based on joint work with Mark Batty, Anthony
Fox, Magnus Myreen, Scott Owens, Susmit Sarkar, Jaroslav
Šev̌ćık, and Tom Ridge, of the University of Cambridge; and
Jade Alglave, Thomas Braibant, Luc Maranget, and Francesco
Zappa Nardelli, of INRIA. EPSRC funding, in the form of
grant EP/F036345, is gratefully acknowledged.

REFERENCES

[1] Intel 64 and IA-32 Architectures Software Developer’s Manual (5 vols).
Intel Corporation, Mar. 2009, rev. 30.

[2] AMD64 Architecture Programmer’s Manual. Advanced Micro Devices,
Sep. 2007, (3 vols).

[3] ARM, ARM Architecture Reference Manual (ARMv7-A and ARMv7-R
edition), April 2008.

[4] Power ISATM Version 2.06. IBM, 2009.
[5] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant,

M. Myreen, and J. Alglave, “The semantics of x86-CC multiprocessor
machine code,” inProc. POPL 2009, Jan. 2009.

[6] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: x86-
TSO,” in TPHOLs 2009: Theorem Proving in Higher Order Logics, LNCS
5674, 2009, pp. 391–407.

[7] “The HOL 4 system,” http://hol.sourceforge.net/.
[8] A. C. J. Fox, “Formal specification and verification of ARM6.” in

Proc. TPHOLs, LNCS 2758, 2003, pp. 25–40.


