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Abstract

We develop a rigorous semantics for Power and ARM multi-
processor programs, including their relaxed memory model
and the behaviour of reasonable fragments of their instruc-
tion sets. The semantics is mechanised in the HOL proof
assistant.

This should provide a good basis for informal reasoning
and formal verification of low-level code for these weakly
consistent architectures, and, together with our x86 seman-
tics, for the design and compilation of high-level concurrent
languages.

Categories and Subject Descriptors C.1.2 [Multiple
Data Stream Architectures (Multiprocessors)]: Parallel pro-
cessors; D.1.3 [Concurrent Programming ]: Parallel pro-
gramming; F.3.1 [Specifying and Verifying and Reasoning
about Programs]

General Terms Documentation, Reliability, Standardiza-
tion, Theory, Verification

Keywords Relaxed Memory Models, Semantics, Pow-
erPC, ARM

1. Introduction

Parallelism is finally going mainstream, but, despite 40 years
of research on concurrency, programming and reasoning
about concurrent systems remains very challenging. A key
issue is that most research has implicitly assumed that mem-
ory is sequentially consistent, whereas the reality is that
typical multiprocessor architectures —including x86, Sparc,
Power, Itanium, ARM, and Alpha— only provide relaxed
(or weak) memory models. For performance reasons, their
implementations involve out-of-order execution (reordering
operations within processor pipelines), and multiple levels
of caching and write buffering, to reduce latency. These
microarchitectural optimizations have observable effects at
the assembly language level: different processors can see the
events of a complete execution in different orders; they can
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have inconsistent views of the shared memory. It would not
be sound to think about such a system in terms of an in-
tuitive interleaving semantics, in which the events from dif-
ferent processors act on a single global state. Instead, we
need to understand the subtle guarantees that each archi-
tecture provides, both for low-level programming, including
implementation of concurrency libraries and OS or hypervi-
sor kernels, and for designing the new high-level concurrent
languages that are so urgently needed, so that they can be
efficiently compiled down to these architectures.

Previous work on multiprocessor memory models has ad-
dressed various more-or-less idealised architectures, and sev-
eral tutorials have been published [AG96, Luc01, LJV97].
However, typical vendor specifications are still expressed
only in informal prose, supplemented by a few litmus-test
examples of small programs. Inevitably this is ambiguous
and incomplete. The Itanium and SPARC have vendor spec-
ifications in semi-formal mathematics [Ita, Spa], but these
still leave ample room for interpretation [HJK06, YGLS04,
PD95], and the situation for x86, Power, and ARM leaves
a great deal of scope for confusion. Moreover, none of the
previous work gives a complete semantics for multiprocessor
programs, as it does not integrate the memory models with
semantics for instructions.

In this paper we describe a semantics for multiprocessor
Power and ARM programs, in a declarative axiomatic style.
It is precise, formalised in the HOL proof assistant [HOL].
The memory model (in Section 2) is integrated with instruc-
tion semantics and decoding (in Section 3) for reasonable
fragments of the instruction sets, including various ALU op-
erations, branches, loads and stores, reservations, and barri-
ers (we do not model page tables, access to device memory,
or exceptions). We also discuss a number of litmus tests
(Section 4) and some initial empirical testing against partic-
ular processors (Section 5). We believe the semantics to be
reasonably accurate, but this is work in progress: in future
work we plan more extensive testing, and we welcome feed-
back from programmers and architects with experience in
these architectures. We plan also to prove metatheoretic re-
sults, as in our complementary work on x86-CC [SSZN+09],
where we proved results about data-race-free programs and
an abstract-machine version of the memory model.

Such semantics should provide a good basis for informal
reasoning about the majority of low-level concurrent algo-
rithms, for formal verification and model-checking of such
algorithms, and for the design of high-level language support
for concurrency, all above the real multiprocessor architec-
tures that we have today.



2. The Power/ARM Axiomatic Memory
Model

Our memory model is in a axiomatic style, specifying the
legal orders of events in a valid execution of a multiproces-
sor program, as in previous formal work on relaxed memory
models. A single instruction may involve a non-atomic col-
lection of several reads or writes, so one cannot simply re-
order whole instructions. Instead one has to work at the finer
granularity of events that are individual reads and writes to
memory. Our events also include individual reads and writes
to processor registers (in contrast to most previous work),
as the interplay between dependencies through registers and
through memory is a key aspect of the model, and as the in-
struction semantics must involve register accesses.

We aim to capture Power and ARM architectures, rather
than the behaviour of particular devices. The architectures
are specifications of what can be relied upon by assembly-
level programmers, for whole families of past and (gener-
ally) future processors. They change relatively slowly, and
are very loose specifications, to admit a wide variety of pro-
cessor implementations. Our Power definition is based pri-
marily on the Power ISA Version 2.05 specification [Pow07]
(applicable to POWER6 and POWER5 processors), par-
ticularly Book II Ch.1, §3.4, and Appendix B, together
with articles [SF95, LHF05], and reference to the PowerPC
Book E [IBM02]. Our ARM definition is based upon the
ARM Architecture Reference Manual [ARM08a] (applicable
to ARMv7 processors), particularly §A3.8, and the Barrier
Litmus Test Cookbook [ARM08b].

We choose to address Power and ARM for several rea-
sons. First, they are both widely used: POWER processors
in high-end servers, and both PowerPC and ARM in embed-
ded devices. Even the latter are expected to become multi-
core, for power/performance reasons, e.g. with the ARM11
MPCore (up to 4 cores) and ARM Cortex-A9 MPCore.

Second, they give an interesting contrast to our x86 work.
The current informal-prose x86 vendor specifications, for-
malised in our x86-CC memory model [SSZN+09], are, very
roughly, causal consistency: x86-CC has a single transitively
closed happens-before relation, which has to be respected
in all processors’ views, and very strong “LOCK”’d instruc-
tions, which are atomic and are seen in the same order by all
processors.1 The Power memory model, on the other hand, is
weakly consistent. It allows more local reordering, and pro-
vides load-reserve/store-conditional and a variety of barrier
primitives. The ARM memory model is very close to that
for Power, differing only in the barrier semantics.

Third, there is little previous literature on memory mod-
els for these architectures. For PowerPC there are models
by Corella et al. [CSB] and Adir et al. [AAS03]; for ARM
there is the initial work of Chong and Ishtiaq [CI08].

Fourth, there has been extensive work on precise seman-
tics for both PowerPC and ARM in the single-processor case.
Leroy’s verified compiler research [Ler06] is founded on a
Coq model of PowerPC instructions, and Fox has verified
correspondence between an earlier ARM ISA specification
and a microarchitectural model, in HOL [Fox03].

For both architectures, we aim to cover the fragment re-
quired for typical low-level concurrent algorithms in main
memory, as they might appear in user or OS kernel pro-
grams. We do not deal with explicit manipulation of page

1 It appears that actual x86 processors provide an even stronger
TSO-based memory model, and the vendor specifications are
expected to change to reflect that [SSZN+09, Addendum].

tables, cache hints, self-modifying code, and so forth, and for
Power at present we cover only one of the barrier instruc-
tions (sync 0, but not lwsync, eieio, mbar, or isync).

Our definitions are mechanised in the HOL proof assis-
tant [HOL], and the axiomatic memory model definitions
are also mechanised in the Coq proof assistant [Coq], hand-
translated from the HOL. For lack of space only key extracts
are included here, but the full details are freely available
on-line [wea08]. Most of the definitions in this paper are au-
tomatically typeset from the HOL, reducing the scope for
error.

2.1 Basic Types

The basic types of our model, introduced below, describe
what a candidate execution is. They are very similar to those
we used for x86, which makes it easier to compare the three
models. It also lets us reuse tools, as we discuss in §5.

We take types address and value to both be the 32-bit
words, and take a location to be either a memory address
or a register of a particular processor. The memory model is
polymorphic on a type ′reg of registers, later instantiated to
the Power or ARM registers as appropriate. There are also
pseudo-locations Location res and Location res addr

used to express the semantics of reservations (§2.7).

location = Location reg of proc
′reg

| Location mem of address
| Location res of proc
| Location res addr of proc

These constructors are curried, so Location reg : proc →
′reg → location. To identify an instance of an instruction
in an execution, we specify its processor and its index in
program order (i.e., in the program with an unfolding of all
branches):

iiid =〈[ proc : proc;
poi : num]〉

An action is either a read or write of a value at some location,
or a synchronisation barrier (used as a marker to define the
Power sync and the ARM DMB):

dirn = R | W

synchronization = Sync

action = Access of dirn (′reg location) value
| Barrier of synchronization

A typical action might be Access W (Location mem 100) 5,
for a write of 5 to memory address 100. Finally, an event has
an instruction instance id, an event id (of type eiid = num,
unique among the events of this iiid), and an action:

event =〈[ eiid : eiid;
iiid : iiid;
action : action]〉

The semantics of a single instruction must also record any
intra-instruction causality relationships among its events.
The Power and ARM architectures make a subtle distinction
between causality due to data dependency, e.g. a write to an
address (or of a value) that was taken from a register, and
a control dependency, e.g. a write that was conditional on a
particular flag value.

For example, the Power instruction lwz GPR2,0,GPR1
below, loading register GPR2 with the value from memory
at the location in register GPR1, has an event structure



with a register read, a memory read, and a register write,
all linked by intra-instruction-causality-data:

ppc-lwz proc:0
poi:0 lwz GPR2,0,GPR1
Initial state: 0:GPR1= 100; [100]= 5

ppc-lwz: (event structure 1)

eiid:0 (of lwz GPR2,0,GPR1)

iiid: 〈proc:0;po:0〉

R 0:GPR1=100

eiid:1 (of lwz GPR2,0,GPR1)

iiid: 〈proc:0;po:0〉

R [100]=5

eiid:2 (of lwz GPR2,0,GPR1)

iiid: 〈proc:0;po:0〉

W 0:GPR2=5

iico data

iico data

The ARM LDRNE R1, [R10], on the other hand, condi-
tionally loads register R1 with the value of memory at the
location in R10, if flag EQ is zero.

ARM-ldrne proc:0
poi:0 LDRNE R1, [R10]

It therefore has two families of event structures — those in
which there is a single event, reading a non-zero flag value,
and nothing else happens:

ARM-ldrne: (event structure 2)

eiid:0 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

R 0:EQ=1

and those in which it reads a zero flag value, with an intra-
instruction-causality-control relation to the read of R10:

ARM-ldrne: (event structure 1)

eiid:0 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

R 0:EQ=0

eiid:1 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

R 0:R10=100

eiid:2 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

R [100]=5

eiid:3 (of LDRNE R1, [R10])

iiid: 〈proc:0;po:0〉

W 0:R1=5

iico control

iico data

iico data

Collecting this data together, we define an event struc-
ture E to comprise a set of events, an intra-instruction data

causality relation, and an intra-instruction control causal-
ity relation. It also specifies an architecture (Power205 or
ARMv7, see §2.5), and a reservation granule size and atom-
icity relation (see §2.7).

event structure =〈[ events : (′reg event)set;
intra causality data : (′reg event)reln;
intra causality control : (′reg event)reln;
atomicity : (′reg event)set set;
arch : architecture;
granule size exponent : num]〉

This is subject to various well-formedness conditions (such
as that the event pairs in the intra-causality relation are,
indeed, elements of the event set), which we omit here.

Given an event structure, a candidate execution witness
consists of an initial state constraint and a processor-indexed
family of view orders, together with a write serialization that
we explain in §2.3. The rest of this section is devoted to
defining when such a candidate is in fact a valid execution.

type abbrev state constraint = location → value option

type abbrev view orders : proc → (′reg event)reln

execution witness =
〈[ initial state : (′reg state constraint);

vo : (′reg view orders);
write serialization : (′reg event reln)]〉

A well-formed view order for processor p is a strict linear
order over all of its events together with all the memory
write events of other processors; we write viewed events E p
for that union.

2.2 Read Values

Our first condition simply says that any read event, of a
memory or register location (or a reservation address), reads
the value either of the most recent write to that location, if
there is one, or otherwise from the initial state. Here “most
recent” is with respect to the view order of the reading
processor. The state updates auxiliary finds the write events
before a given event e that write to the same location.

state updates E vo e =
{ew | ew ∈ (writes E) ∧ (ew , e) ∈ vo(proc e) ∧

(loc ew = loc e)}

read most recent value E initial state vo =
∀e ∈ (E .events).∀l v .

((e.action = Access R l v) ∧ reg or mem or resaddr l)
=⇒

(if (state updates E vo e) = {} then
(Some v = initial state l)

else
((Some v) ∈ {value of ew |

ew ∈ maximal elements(state updates E vo e)
(vo(proc e))}))

2.3 Coherence

Both architectures (when in the appropriate mode) provide
coherent memory: writes by two processors to the same
memory location must be seen by all processors in the same
order. In other words, for each memory location, there exists
a strict linear order on the stores to this location, and this
must be respected by all the view orders. We formalise this
by defining the candidate write serializations, each of which



is a union of a candidate order over the writes for each
memory location.

get mem l stores E l =
{e | e ∈ E .events ∧ mem store e ∧ (loc e = Some l)}

write serialization candidates E cand =
(∀(e1, e2) ∈ cand .

∃l .e1 ∈ (get mem l stores E l) ∧
e2 ∈ (get mem l stores E l)) ∧

(∀l . strict linear order(cand |(get mem l stores E l))
(get mem l stores E l))

We require that the write serialization of an execution is in-
cluded in each processor’s view order, and that the orderings
of writes by each processor to the same location, captured
with preserved coherence order below, are included in the
write serialization.

preserved coherence order E p =
{(e1, e2) | (e1, e2) ∈ po iico data E ∧

(proc e1 = p) ∧ (proc e2 = p) ∧ (loc e1 = loc e2) ∧
(mem store e1 ∧ mem store e2)}

Here po iico data is the union of the strict program order
relation and the intra-causality-data relation:

po strict E =
{(e1, e2) | (e1.iiid .proc = e2.iiid .proc) ∧

e1.iiid .poi < e2.iiid .poi ∧
e1 ∈ E .events ∧ e2 ∈ E .events}

po iico data E = po strict E ∪ E .intra causality data

po iico both E = po strict E ∪ E .intra causality data ∪
E .intra causality control

Note that coherence does not require that writes to two
different locations must be seen by all processors in the same
order.

2.4 Preserved Program Order

The essence of a weakly consistent model, such as those of
Power or ARM, is that a processor implementation is free
to re-order its own operations rather liberally, in between
synchronisation operations, so long as dependencies are re-
spected — any reordering not forbidden is permitted. The
dependencies that are respected, however, are subtly less
than what one might expect, and we need to take several
steps to define them. Moreover, the documentation speaks
of dependencies between instructions, but again we actually
need to deal in terms of dependencies between events, using
the intra-instruction causality as appropriate.

First, we identify the data dependencies through the
registers of a single processor, picking out the pairs of events
in program order (strictly, in po iico data), on a processor
p, where e1 is a write to a register and e2 is a read from the
same register, with no intervening write to the same register:

local register data dependency E p =
{(e1, e2) |

(e1, e2) ∈ po iico data E ∧
(proc e1 = p) ∧ (proc e2 = p) ∧
(∃r v1 v2.

(e1.action = Access W(Location reg p r)v1) ∧
(e2.action = Access R(Location reg p r)v2) ∧
(¬(∃e3 v3.(e1, e3) ∈ po iico data E ∧

(e3, e2) ∈ po iico data E ∧
(e3.action = Access W(Location reg p r)v3))))}

For example, in the short ARM program below, there is a
local register data dependency from the write of R1 in the
first instruction to the read of R1 in the second.

ARM-depend-A proc:0
poi:0 LDR R1, [R0]
poi:1 LDR R2, [R1]

A sample event structure for that program is shown below.
Note that the intra-instruction causality relations are part
of the event structure data, provided by the instruction se-
mantics, whereas local register data dependency (lrdd) is
calculated from the event structure and candidate execu-
tion.

ARM-depend-A: (event structure 1)

eiid:0 (of LDR R1, [R0])

iiid: 〈proc:0;po:0〉

R 0:R0=200

eiid:1 (of LDR R1, [R0])

iiid: 〈proc:0;po:0〉

R [200]=100

eiid:2 (of LDR R1, [R0])

iiid: 〈proc:0;po:0〉

W 0:R1=100

eiid:3 (of LDR R2, [R1])

iiid: 〈proc:0;po:1〉

R 0:R1=0

eiid:4 (of LDR R2, [R1])

iiid: 〈proc:0;po:1〉

R [0]=0

eiid:5 (of LDR R2, [R1])

iiid: 〈proc:0;po:1〉

W 0:R2=0

iico data

iico data

iico data

iico data

lr
d
d

For dependencies from a memory load to a memory
load, we pick out the pairs (e1, e2) of two memory loads,
in program order and by the same processor (though per-
haps to different addresses), which are transitively related
by the union of local register data dependency and the
intra-instruction data causality relation (perhaps counter-
intuitively, the intra-instruction control relation is not in-
cluded):

address or data dependency load load E p =
{(e1, e2) |

(mem load e1 ∧ mem load e2 ∧ (e1, e2) ∈ po E ∧
(proc e1 = p) ∧ (proc e2 = p) ∧
(e1, e2) ∈ ((E .intra causality data ∪

local register data dependency E p)+))}

Here r+ denotes the transitive closure of a relation r.
For example, in the ARM program below, the LDRNE

instruction is conditional on the EQ flag.

ARM-nodep proc:0
poi:0 LDR R1, [R4]
poi:1 CMP R1, #1
poi:2 LDRNE R2, [R5]

Even if the value read from that flag is 0, as in Fig. 1, there
is no address or data dependency load load from the first
memory load to the memory load of the LDRNE.

However, in the program below [ARM08b, §6.2.1.2b]
there is an address or data dependency load load from
the first memory load to the second memory load, despite
the fact that this is a “false” dependency, i.e. the address
used by the second load is not affected by the value read



ARM-nodep: (event structure 3)

eiid:0 (of LDR R1, [R4])

iiid: 〈proc:0;po:0〉

R 0:R4=200

eiid:1 (of LDR R1, [R4])

iiid: 〈proc:0;po:0〉

R [200]=0

eiid:2 (of LDR R1, [R4])

iiid: 〈proc:0;po:0〉

W 0:R1=0

eiid:3 (of CMP R1, #1)

iiid: 〈proc:0;po:1〉

R 0:R1=0

eiid:4 (of CMP R1, #1)

iiid: 〈proc:0;po:1〉

W 0:EQ=0

eiid:5 (of LDRNE R2, [R5])

iiid: 〈proc:0;po:2〉

R 0:EQ=0

eiid:6 (of LDRNE R2, [R5])

iiid: 〈proc:0;po:2〉

R 0:R5=100

eiid:7 (of LDRNE R2, [R5])

iiid: 〈proc:0;po:2〉

R [100]=2

eiid:8 (of LDRNE R2, [R5])

iiid: 〈proc:0;po:2〉

W 0:R2=2

iico data

iico data

iico data iico control

iico data

iico data

lr
d
d

lr
d
d

Figure 1.

by the first. Introducing such “false” dependencies can be
useful to constrain execution orders.

ARM-depend-B proc:0
poi:0 LDR R1, [R0]
poi:1 AND R1, R1, #0
poi:2 LDR R2, [R3,R1]

Dependencies from a memory load to a memory store are
similar, except that here both intra-instruction relations are
included:

address or data or control dependency load store E p =
{(e1, e2) |

(mem load e1 ∧ mem store e2 ∧ (e1, e2) ∈ po E ∧
(proc e1 = p) ∧ (proc e2 = p) ∧
(e1, e2) ∈ ((E .intra causality data ∪

E .intra causality control ∪
local register data dependency E p)+))}

The program below [ARM08b, §6.2.1.2c, modified with a
STR instead of a LDR at the end] illustrates such an
address or data or control dependency load store, pass-
ing through the intra-instruction-control relation. In this
case, the execution (or not) of the memory store depends
on the value returned by the memory load.

ARM-depend-C proc:0
poi:0 LDR R1, [R0]
poi:1 CMP R1, #55
poi:2 STRNE R2, [R3]

The next example [ARM08b, §6.2.1.2d, likewise modified]
is similar, except that here the result of the conditional
MOV influences the address to which the store access is
performed.

ARM-depend-D proc:0
poi:0 LDR R1, [R0]
poi:1 CMP R1, #55
poi:2 MOVNE R4, #0
poi:3 STR R2, [R3,R4]

Note that the semantics does not require the concept of
a pure control dependency.

We now turn to the special case of memory accesses to
the same address. Here we include all such pairs: omitting
load/load or load/store would make a nonsense of the co-
herence property; store/store is also enforced by coherence,
so harmless to include here; and without store/load a load
could fail to read from a program-order-past store:

preserved program order mem loc E p =
{(e1, e2) | (e1, e2) ∈ po iico data E ∧

(proc e1 = p) ∧ (proc e2 = p) ∧ (loc e1 = loc e2) ∧
mem access e1 ∧ mem access e2}

Finally, we collect together the above, together with the
intra-instruction data and control relations (restricted to the
processor p in question):

preserved program order E p =
{(e1, e2) | (e1, e2) ∈ E .intra causality data ∧

(proc e1 = p) ∧ (proc e2 = p)} ∪
{(e1, e2) | (e1, e2) ∈ E .intra causality control ∧

(proc e1 = p) ∧ (proc e2 = p)} ∪
address or data dependency load load E p ∪
address or data or control dependency load store E p ∪
preserved program order mem loc E p

Note that program order between two register accesses,
even to the same register, is not automatically preserved
(but only if there is a local register data dependency as
above). The documentation [Pow07, p.414] states ”Because
processors may implement nonarchitected duplicates of ar-
chitected resources (e.g. GPRs, CR fields, and the Link Reg-
ister), resource dependencies (e.g. specification of the same
target register for two Load instructions) do not order stor-
age accesses.” This is illustrated by the ppc.reg example in
§4, which our model admits.

2.5 Barriers

To make concurrent programming feasible, given the lib-
eral reordering of normal operations that is permitted on
Power and ARM (as described above), both architectures
provide a variety of synchronisation instructions. Power 2.05
provides sync L, where L can be 0 (“heavyweight sync”), 1
(“lightweight sync”) or 2 (in the Server Environment spec-
ification only); an eieio (Server) or mbar MO (Embedded),
sharing the same opcode, intended for memory-mapped I/O;
and an isync, to synchronise the instruction stream. For the
fragment of the ISA we consider, the guarantees provided
by sync 0 are the same as those of mbar 0. Broadly, an
eieio provides weaker synchronisation, for stores only; an
lwsync provides synchronisation for memory accesses except
store/load pairs, and mbar for MO 6= 0 is implementation-
defined. ARMv7 provides DMB (“Data Memory Barrier”),
very similar to the Power sync 0, and the stronger DSB
(“Data Synchronisation Barrier”) which also synchronises
the execution stream, including cache, branch predictor, and
TLB maintenance operations. We formalise the Power sync
0 and ARM DMB.

Each instance of such a barrier instruction in an execution
defines two groups of memory access events: Group A, in
some sense those ‘before’ the barrier, and Group B, in some
sense ‘after’ the barrier. It ensures that all members of Group
A precede all members of Group B, in the view orders of
all processors. To express this, we start by defining those
instructions to generate a special Barrier Sync event,
which appears (only) in the view order of the processor that
executed the instruction.



check sync power 2 05 E vos =
∀es ∈ (E .events).(es.action = Barrier Sync) =⇒
let group A = {e | ((e, es) ∈ po E ∨ (e, es) ∈ vos(proc es)) ∧ mem access e} in
let group B base = {e | (es, e) ∈ po E ∧ mem access e} in
let group B ind B0 =

{e | mem access e ∧
(¬(proc e = proc es)) ∧
∃er . mem load er ∧ (er , e) ∈ vos(proc er) ∧ (proc er = proc e) ∧

∃ew . mem store ew ∧ ew ∈ B0 ∧ (ew , er) ∈ vos(proc er) ∧ (loc er = loc ew) ∧
(¬(∃ew ′

.(ew , ew ′) ∈ vos(proc er) ∧ (ew ′

, er) ∈ vos(proc er) ∧
(loc ew ′ = loc er) ∧ mem store ew ′))} in

let group B = FIX group B ind group B base in
∀p ∈ (procs E).∀ea ∈ group A.∀eb ∈ group B .(ea ∈ viewed events E p ∧ eb ∈ viewed events E p) =⇒

if (p = es.iiid . proc) then ((ea, es) ∈ vos p ∧ (es, eb) ∈ vos p) else (ea, eb) ∈ vos p

check dmb arm E vos =
∀es ∈ (E .events).(es.action = Barrier Sync) =⇒
let group A base = {e | ((e, es) ∈ vos(proc es)) ∧ mem access e} in
let group A ind A0 = {er | mem load er ∧

∃e ∈ A0.(er , e) ∈ vos(proc e)} in
let group B base = {e | (es, e) ∈ po E ∧ mem access e} in
let group B ind B0 = {e | mem access e ∧

∃ew . mem store ew ∧ ew ∈ B0 ∧ (ew , e) ∈ vos(proc e)} in
let group A = FIX group A ind group A base in
let group B = FIX group B ind group B base in
∀p ∈ (procs E).∀ea ∈ group A.∀eb ∈ group B .(ea ∈ viewed events E p ∧ eb ∈ viewed events E p) =⇒

if (p = es.iiid . proc) then ((ea, es) ∈ vos p ∧ (es, eb) ∈ vos p) else (ea, eb) ∈ vos p

Figure 2. Barrier Semantics

For Power, given such a barrier event es from processor p,
Group A consists of all memory access events that precede
es in either program order or in p’s view order. Group B is
defined inductively. It includes:� all memory access events that follow es in the p program

order; and� all memory access events e, on other processors p′, that
follow (in the p′ view order) a memory read event er (by
p′) that reads the value from a memory write event ew in
Group B (i.e., er follows ew in the p′ view order, they are
to the same location, and there is no intervening write
ew′ to the same location in that view order).

For any ea in Group A and eb in Group B, and for all
processors, whenever ea and eb are in the viewed events for
that processor (i.e. they are either memory reads by that
processor, or memory writes by any processor), we require
that ea precedes eb in that processor’s view order. For the
processor that executed the synchronisation instruction, we
also require that the barrier event lies between ea and eb.
The HOL statement of this is in Figure 2.

For ARM, the Architecture Reference Manual [ARM08a]
and the Barrier Litmus Test Cookbook [ARM08b] give two
distinct specifications. The Cookbook specification matches
the Power semantics we describe above, except that there
is no requirement that p′ 6= p. It may be that this (rather
strange) requirement is an error in the Power 2.05 specifica-
tion — the text there speaks of “processors and mechanisms
other than P1” [Pow07, II,p.413], but perhaps means “in ad-
dition to P1”.

The ARM Architecture Reference Manual specification is
quite different. Its Group A is also inductive, with a base case
of all memory access events that precede es in p’s view order

(but apparently not including those preceding es in program
order), and an inductive case adding memory reads er by
any processor that precede an event e in Group A in that
processor’s view order. Its Group B base case is the same as
in Power, but its Group B inductive case adds all memory
accesses e that follow, in the view order of proc e, a memory
write in Group B. This is also formalised in Figure 2, and at
present our top-level definition uses this, not the Cookbook
version, for ARM.

2.6 A-Cumulativity and ‘Performed’

The Power specification [Pow07, p.413] says the ordering
provided by a barrier is “cumulative” if

“it also orders storage accesses that are performed by
processors and mechanisms other than P1, as follows.

- A includes all applicable storage accesses by any
such processor or mechanism that have been per-
formed with respect to P1 before the memory bar-
rier is created.

- B includes all applicable storage accesses by any
such processor or mechanism that are performed
after a load instruction executed by that processor
or mechanism has returned the value stored by a
store that is in B.”

and that sync is indeed cumulative. Here “performed” is
defined informally as follows [Pow07, p.408]:

”A load or instruction fetch by a processor or
mechanism (P1) is performed with respect to any pro-
cessor or mechanism (P2) when the value to be re-
turned by the load or instruction fetch can no longer
be changed by a store by P2. A store by P1 is per-



ew

er

es

ew0

ew1

(rf)

vos p2vos p1

ew0

es

ew1

vos p2vos p1

er

(rf)

Figure 3. Additional A-cumulativity read cases er

formed with respect to P2 when a load by P2 from
the location accessed by the store will return the value
stored (or a value stored subsequently). [...] The pre-
ceding definitions apply regardless of whether P1 and
P2 are the same entity.”

This does not lend itself to a straightforward direct formal-
isation, for two reasons. First, it implicitly refers to global
time. This is not a real problem, as we only need to consider
when one access is performed before or after another. Sec-
ond, more seriously, it is subjunctive: the first clause refers to
a hypothetical store by P2, and the second to a hypothetical
load by P2. Our formalisation defines when a specific con-
crete execution is admitted, and it would be very awkward
to express conditions in terms of modified versions of that
execution with such hypothetical accesses added.

In most cases where “performed” is used in the informal
specification, one is asking whether one memory access e1 is
performed before another e2 with respect to some processor
p, where both accesses are either writes (by any processor)
or reads by p. It then seems sufficient to interpret “e1 is
performed before e2 w.r.t p” by (e1, e2) ∈ vos p, i.e. that e1

precedes e2 in p’s view order.2

The only exception is for A-cumulativity, where we be-
lieve that the Figure 2 definition of group A is incomplete3.
Two alternative plausible extensions can be phrased in terms
of our view orders.

Conservatively, one could add the reads er by any other
processor p1 which are before (in the p1 view order) some
write ew, to the same address, that precedes the sync es (in
the syncing processor p2’s view order). Such a read er must
take its value from some earlier write (or the initial state).

{er | mem load er ∧ (¬(proc er = proc es)) ∧
∃ew . mem store ew ∧ (loc ew = loc er) ∧

(ew , es) ∈ vos(proc es) ∧
(er , ew) ∈ vos(proc er)}

More liberally, one could also include reads er that read from
the last write ew0 (to that location) before the sync, or, in
other words, the reads that do not read from a write after
the sync:

2 Recall that our view orders do not include memory reads by
other processors. This choice seems simpler to us w.r.t. the pro-
grammer’s intuition, though perhaps it is counterintuitive from
an architect’s point of view, thinking in terms of cache-line own-
ership in global time.
3 Thanks to Paul McKenney for this observation.

{er | er ∈ E .events ∧ mem load er ∧
(¬(proc er = proc es)) ∧
¬∃ew . mem store ew ∧ (loc ew = loc er) ∧

(es, ew) ∈ vos(proc es) ∧
(ew , er) ∈ vos(proc er)}

These are illustrated in Figure 3 (with (rf) indicating
the reads-from relationships). At present we do not know
whether either of them matches the architect’s intentions.

Another, more radical, possibility would be to add other-
processor’s reads to the view orders, but one would then also
need subtle conditions constraining where in the view orders
they appear.

2.7 Reservations

The Power and ARM instruction sets both include load-
reserve and store-conditional instructions, e.g. lwarx/stwcx
and LDREX/STREX. These are intended to be used in pairs: a
load-reserve loads a value from a memory address and estab-
lishes a reservation for the memory granule including that
address; to a first approximation, a later store-conditional
by the same processor to the same address succeeds iff no
other processor has written to that memory granule since.

We express this semantics with the two special locations
per processor: Location res (notionally carrying just one
bit, but embedded in a word32), and Location res addr

(carrying the reserved address). The latter behaves just
like a register, though in the instruction semantics it is
only read when the former is 1 (1w in HOL). The former,
Location res, can be read and written by load-reserve
and store-conditional instructions, but the value read is not
the most recent value written, instead being computed by
location res value below. This walks over the relevant view
order to find the most recent (in that view order) reservation,
if any, and checks that there has been no intervening (in that
view order) memory write to the same reservation granule.

location res value E vo e =
let prior reservations = {ew | ew ∈ (writes E) ∧

(ew , e) ∈ vo(proc e) ∧
(loc ew = Some (Location res addr(proc e)))} in

if (prior reservations = {}) then 0w else
let reservation = maximal elements

prior reservations(vo(proc e)) in
let intervening writes = {ew |

∃ew ′ ∈ reservation.∃a ′

.∃a v .
(ew .action = Access W(Location mem a)v) ∧
(ew ′

, ew) ∈ vo(proc e) ∧ (ew , e) ∈ vo(proc e) ∧
(value of ew ′ = Some a ′) ∧
same granule E a a ′} in

if intervening writes = {} then 0w else 1w

read location res value E initial state vo =
∀e ∈ (E .events).∀p v .

(e.action = Access R(Location res p)v) =⇒
(v = location res value E vo e)

Additionally, we need to ensure that accesses to these
special locations, and any associated memory access, are
atomic. We record this in the atomicity field of an event
structure, and check it with the predicate below.



check atomicity E vo =
∀p ∈ (procs E).∀es ∈ (E .atomicity).

∀e1 e2 ∈ es.(e1, e2) ∈ (vo p) =⇒
∀e.(e1, e) ∈ (vo p) ∧ (e, e2) ∈ (vo p) =⇒ e ∈ es

Note that any matching load-reserve/store-conditional
pair will necessarily be to the same address, and so the
definition of preserved program order mem loc will apply.
However, because the value of Location res read is com-
puted specially, as above, we do not introduce any depen-
dencies between the events of such a pair and an intervening
write by another processor.

2.8 Valid Executions

Finally we can define when an execution X over an event
structure E is valid. This simply collects together the ax-
ioms stated above, together with three conditions preventing
intervening register writes between a preserved write/read
pair. In brief: the view orders are well formed; read events
read the most recent value written; the write serialisation is
a proper candidate; for each processor p, its preserved co-
herence order is in the write serialization; for each processor
p, its view order contains the write serialization, preserved
program order, and local register data dependency; there
are no intervening writes between a register write and read
from local register data dependency, and similarly for reg-
ister writes before a read from the initial state or write to
the final state; the sync or DMB condition is checked; the
reservation values are correct; and the atomicity relation is
respected.

valid execution E X =
view orders well formed E X .vo ∧
read most recent value E X .initial state X .vo ∧
X .write serialization ∈ write serialization candidates E ∧
(∀p ∈ (procs E).

preserved coherence order E p ⊆ X .write serialization ∧
X .write serialization ⊆ X .vo p ∧
preserved program order E p ⊆ X .vo p ∧
(*no intervening writes in local register data dependency*)
local register data dependency E p ⊆ X .vo p ∧
(∀(e1, e2) ∈ (local register data dependency E p).

¬(∃e3.(e1, e3) ∈ X .vo p ∧ (e3, e2) ∈ X .vo p ∧
(loc e3 = loc e1) ∧ store e3))) ∧

(*no intervening writes before a reg read from initial state*)
(∀e ∈ (E .events).(reg load e ∧

(¬(∃e0.(e0, e) ∈ po iico both E ∧ reg store e0 ∧
(loc e0 = loc e)))) =⇒

(¬(∃e0.(e0, e) ∈ X .vo(proc e) ∧ reg store e0 ∧
(loc e0 = loc e)))) ∧

(*no intervening writes after a reg write to the final state*)

(∀e ∈ (E .events).(reg store e ∧
(¬(∃e1.(e, e1) ∈ po iico both E ∧ reg store e1 ∧

(loc e1 = loc e)))) =⇒
(¬(∃e1.(e, e1) ∈ X .vo(proc e) ∧ reg store e1 ∧

(loc e1 = loc e)))) ∧
(case E .arch of

Power205 → check sync power 2 05 E X .vo
‖ ARMv7 → check dmb arm E X .vo) ∧
read location res value E X .initial state X .vo ∧
check atomicity E X .vo

2.9 Example

In Fig. 4 we show a simple example of a valid execution,
produced by memevents, for the ppc3.1 program below. Here
we store to two different locations, on two processors, and

ppc3.1: (event structure 1)

eiid:0 (of stw GPR3,0,GPR4)

iiid: 〈proc:0;po:0〉

R 0:GPR3=1

eiid:1 (of stw GPR3,0,GPR4)

iiid: 〈proc:0;po:0〉

R 0:GPR4=200

eiid:2 (of stw GPR3,0,GPR4)

iiid: 〈proc:0;po:0〉

W [200]=1

eiid:3 (of lwz GPR1,0,GPR5)

iiid: 〈proc:0;po:1〉

R 0:GPR5=100

eiid:11 (of lwz GPR2,0,GPR4)

iiid: 〈proc:1;po:1〉

W 1:GPR2=0

eiid:4 (of lwz GPR1,0,GPR5)

iiid: 〈proc:0;po:1〉

R [100]=0

eiid:5 (of lwz GPR1,0,GPR5)

iiid: 〈proc:0;po:1〉

W 0:GPR1=0

eiid:8 (of stw GPR3,0,GPR5)

iiid: 〈proc:1;po:0〉

W [100]=1

eiid:6 (of stw GPR3,0,GPR5)

iiid: 〈proc:1;po:0〉

R 1:GPR3=1

eiid:7 (of stw GPR3,0,GPR5)

iiid: 〈proc:1;po:0〉

R 1:GPR5=100

eiid:9 (of lwz GPR2,0,GPR4)

iiid: 〈proc:1;po:1〉

R 1:GPR4=200

eiid:10 (of lwz GPR2,0,GPR4)

iiid: 〈proc:1;po:1〉

R [200]=0

vo:0

iico data

iico datavo:0

vo:0

vo:1

vo:0 iico data

vo:0iico data

vo:0

vo:1

iico data

vo:1 iico data

vo:1

vo:1iico data

vo:1

iico data

vo:0

vo:1

Figure 4. A Valid Execution (ppc3.1)

each reads from the other location. There are very few
dependencies in this example, and, in the valid execution
shown, both reads are from the initial state. Note that the
union of the two view orders (vo:0 and vo:1) is cyclic.

ppc3.1 proc:0 proc:1
poi:0 stw GPR3,0,GPR4 stw GPR3,0,GPR5
poi:1 lwz GPR1,0,GPR5 lwz GPR2,0,GPR4
Initial state: 0:GPR3= 1; 0:GPR4= 200; 0:GPR5= 100;
1:GPR3= 1; 1:GPR4= 200; 1:GPR5= 100 (elsewhere 0)
Allowed: 0:GPR1=0 ∧ 1:GPR2=0



3. Instruction Semantics

As in the x86 model, the overall semantics is factored into
two parts: the instruction semantics defines, for any pro-
gram, a set of candidate event structures, and the axiomatic
memory model of the previous section defines, for each event
structure, its valid executions.

3.1 ARM

At the time of writing there are seven versions of the ARM
instruction set architecture, ARMv1 through ARMv7.4 The
ARM11 MPCore and ARM Cortex-A9 MPCore are ARMv6
and ARMv7 architectures respectively. Versions one (never
used in a commercial product) and two are now obselete.
Each successive version has provided extensions and minor
revisions to the previous version. The revisions have been
mostly conservative; for example, behaviours previously cat-
egorised as unpredictable, or implementation dependent, have
been specified later as undefined (which is handled by an
well defined exception entry mechanism) or provided with a
semantics.

Architecture ARMv3 was specified by Fox in HOL when
verifying a model of the ARM6 micro-architecture [Fox03].
This ISA model was later extended to ARMv4 and that
model has been used by Myreen et al. to verify machine
code programs [MSG08]. Architecture ARMv4T was subse-
quently specified, in its entirety, in HOL. These HOL models
are conventional, deterministic, functional specifications and
are not immediately suited to reasoning about weak mem-
ory models. Thus, we have converted and extended these
ISA models into a single monadic style specification (cover-
ing ARMv3 to ARMv5TE, together with LDREX/STREX from
ARMv6 and DMB from ARMv7). The monadic specification
supports non-determinism and reasoning about register and
memory access events. ARMv6 introduced around 100 other
new instructions, but these were mostly extra arithmetic
and bit-manipulations (also extra exclusive loads/stores, for
bytes, half-words, etc.); our semantics therefore covers es-
sentially all the interesting concurrency cases.

3.2 Power

Our instruction semantics for Power is a HOL4 version of
Leroy’s specification of PowerPC assembly [Ler06], extended
with the lwarx, stwcx, and sync instructions. Leroy’s model
was translated into HOL4 and a instruction decoder was
attached to it in order to make his assembly-level model a
machine-level model. The specification defines instructions:
add, addi, addis, addze, and., andc, andi., andis., b, bctr,
bctrl, bf, bl, bs, blr, bt, cmplw, cmplwi, cmpw, cmpwi, cror,
eqv, extsb, extsh, lbz, lbzx, lha, lhax, lhz, lhzx, lwarx,
lwz, lwzx, mflr, mr, mtctr, mtlr, mulli, mullw, nand, nor,
or, orc, ori, oris, slw, sraw, srawi, srw, stb, stbx, sth,
sthx, stw, stwcx, stwx, subfc, subfic, sync, xor, xori,
xoris. Floating-point instructions were omitted.

We have a reasonable level of confidence in the correct-
ness of these instruction semantics: for ARM, based on the
verification of the ARMv3 fragment against a microarchitec-
tural model, and Myreen et al.’s verification of machine-code
programs above the semantics; for Power, based on Leroy et
al.’s extensive work. For both, further confidence will come
from empirical testing: as we did for x86 [SSZN+09], we
intend to automatically generate HOL conjectures from in-

4 There are also numerous optional extensions (variants) to these
architectures. For example: Thumb, Thumb-2, DSP and Jazelle
extensions.

strumented execution of instructions on actual processors,
and to (automatically) prove that these conjectures are true
in the semantics.

4. Litmus tests

Memory models are often illustrated (or even ‘defined’) in
terms of behaviours of small litmus-test programs that are
either allowed, required, or forbidden. In this section we
present a few such tests, as space permits; many more will
be required to give reasonable coverage of our model.

Total order on writes to the same location In lit-
mus test ppc6, in Fig. 5 (an analogue of the x86 [SSZN+09,
iwp2.6]), two processors concurrently update the same mem-
ory location (100, in GPR2) with two different values (1 and
2), while two other processors read twice from that memory
location. Coherence (§2.3) requires the existence of a strict
linear order on all the stores to one location, and this order
must be preserved by all the view orders. This implies that
the view orders of processors 2 and 3 must agree on the or-
der in which they see the stores performed by processors 0
and 1, forbidding the final state reported in the figure.

Local reordering of stores or loads to different loca-
tions The ARM and Power architectures allow processors
to reorder their individual memory accesses rather freely.
Test ppc1 below shows that a pair of stores, or a pair of
loads, to non-overlapping different memory locations, can
be reordered. The specified outcome can be obtained by
a possible execution in which the two loads performed by
proc:1 are executed in the opposite order to program order;
or alternatively a possible execution in which the two stores
performed by proc:0 are reordered. This is an analogue of
[SSZN+09, iwp2.1/amd1], except that this “Allowed” out-
come is forbidden there.

ppc1 proc:0 proc:1
poi:0 stw GPR1,0,GPR5 lwz GPR3,0,GPR6
poi:1 stw GPR2,0,GPR6 lwz GPR4,0,GPR5
Initial state: 0:GPR1= 1; 0:GPR2= 1; 0:GPR5= 200;
0:GPR6= 100; 1:GPR5= 200; 1:GPR6= 100 (elsewhere 0)
Allowed: 1:GPR3=1 ∧ 1:GPR4=0

Local reordering of stores and loads to different loca-
tions Test ppc3.1 (analogue of [SSZN+09, iwp2.3.a/amd4])
in §2.9 shows that non-overlapping memory stores and loads
can be reordered.

Write buffering In test ppc4 (an analogue of [SSZN+09,
iwp2.4/amd9]) each processor might see the other memory
store at the end of their view order, thus admitting the
outcome shown.

ppc4 proc:0 proc:1
poi:0 stw GPR1,0,GPR4 stw GPR1,0,GPR5
poi:1 lwz GPR2,0,GPR4 lwz GPR2,0,GPR5
poi:2 lwz GPR3,0,GPR5 lwz GPR3,0,GPR4
Initial state: 0:GPR1= 1; 0:GPR4= 200; 0:GPR5= 100;
1:GPR1= 1; 1:GPR4= 200; 1:GPR5= 100 (elsewhere 0)
Allowed: 0:GPR3=0 ∧ 1:GPR3=0

Shadow registers Test ppc.reg (Adir et al. [AAS03,
Test 6]) illustrates that the existence of shadow registers
is observable. The specified outcome can be obtained only
by an execution in which proc:0 executes the li and stw
instructions before the lwz and mr ones. Observe however



ppc6 proc:0 proc:1 proc:2 proc:3
poi:0 stw GPR1,0,GPR2 stw GPR1,0,GPR2 lwz GPR3,0,GPR2 lwz GPR5,0,GPR2
poi:1 lwz GPR4,0,GPR2 lwz GPR6,0,GPR2
Initial state: 0:GPR1= 1; 0:GPR2= 100; 1:GPR1= 2; 1:GPR2= 100; 2:GPR2= 100; 3:GPR2= 100 (elsewhere 0)
Forbidden: 2:GPR3=1 ∧ 2:GPR4=2 ∧ 3:GPR5=2 ∧ 3:GPR6=1

Figure 5. Total order on writes to the same location

that the li instruction writes to the r1 register, which is
read by the mr instruction that precedes it.

ppc.reg proc:0 proc:1
poi:0 lwz GPR1,0,GPR4 lwz GPR3,0,GPR5
poi:1 mr GPR2,GPR1 addi GPR3,GPR3,1
poi:2 li GPR1,1 stw GPR3,0,GPR4
poi:3 stw GPR1,0,GPR5
Initial state: 0:GPR4= 200; 0:GPR5= 100; 1:GPR4= 200;
1:GPR5= 100 (elsewhere 0)
Allowed: 0:GPR1=1 ∧ 0:GPR2=2 ∧ 1:GPR3=2 ∧ [100]=1
∧ [200]=2

Failure of transitive causality The intuitive property
that there is an acyclic transitive causality relation, includ-
ing all the dependencies of the model, does not hold for
Power and ARM, in sharp contrast to the x86. For instance,
consider the following ARM test (from [ARM08b, §6.4]), in
which proc:0 signals to proc:1 by storing the sentinel 1 (in
R0) in the shared location [R2], and “then” proc:1 signals
to proc:2 by, similarly, storing the sentinel 1 in the shared
location [R3].

proc:0 proc:1 proc:2
STR R0, [R2] b1: LDR R12, [R2] c1: LDR R12, [R3]

CMP R12, #1 CMP R12, #1
BNE b1 BNE c1
STR R0, [R3] AND R12, R12, #0

LDR R0, [R2,R12]

In Power and ARM, the final result 2:R0=0 is permissible.
This implies that proc:2 has seen the store from proc:1 before
the store from proc:0. This is the case despite the fact that
proc:1’s store can only happen after proc:1 has observed the
store from proc:0. In contrast, in an x86 analogue, 2:R0=1
would be guaranteed [SSZN+09, iwp2.5/amd8]. In these
weaker architectures, to guarantee such a result (ensuring
that proc:1 and proc:2 have the same view orders regarding
the stores) the programmer must insert a barrier just before
proc:1’s store into [R3].

5. Testing

We tested the Power examples in §4, and others, on two ma-
chines: a two-cpu PowerPC G5, and an eight-core POWER5.
We used our litmus tool [SSZN+09]: the test, written in as-
sembly language, is encapsulated in a C skeleton; the tool
spawns the threads that compose the test, taking care to
start them close to simultaneously, and checks if the final
state it obtained is consistent with the constraints we spec-
ified; each test is iterated many thousands of times.

In all cases, the results observed were consistent with the
Allowed or Forbidden behaviour of the test. We observed
all the non-sequentially-consistent behaviour relating to the
testing of address dependencies (ppc1, ppc3.1), and we found
a witness exhibiting intra-processor forwarding (ppc4). The
results for ppc6 were consistent with the coherence axiom

of the model, and the results for a sync test were consistent
with the cumulative ordering of sync, both as expected. We
did not observe a witness exhibiting the existence of register
duplicates (ppc.reg). It may be that we did not repeat this
test enough times to exhibit this behaviour, or that the
processors we used to test it do not make use of this feature,
even if it is allowed by the architecture.

We are developing a single memevents tool for explor-
ing the consequences of our semantics, with (hand-written)
executable versions of our x86, Power, and ARM memory
models, using the OCaml module system to factor out the
architecture-dependent aspects. For x86 this is complete for
the relevant tests [SSZN+09]. For Power and ARM, it is work
in progress: of the tests in the previous section, currently
ppc1 and ppc3.1 can be executed by memevents, which anal-
yses all possible executions; they have the behaviour speci-
fied. Litmus tests for Power and ARM tend to have rather
more events than those for x86, so further engineering is
required to support the other tests.

6. Related Work

The most closely related work is that of Adir, Attiya and
Shurek [AAS03], who define a PowerPC memory model.

This model uses operations instead of events: an opera-
tion corresponds more directly to an instruction, as a pair
(In, Out), where In is the set of input assignments and Out
the set of output assignments to distinct resources (that is,
pairs (x, v) where x is a resource, or location in our termi-
nology, and v a value). The preserved program order and al-
lowable view orders are given in terms of operations, which
imposes a certain atomicity on the events launched by a
given instruction.

They include foreign read events from a shared resource
in the view order of a given processor. This corresponds to
the internal behaviour of some cache protocols, but seems
not to be necessary for the assembly-language-programmer
visible semantics.

They also sketch semantics for reservations: the memory
is assumed to be partitioned into reservation granules, al-
though granularity discussions are omitted. The return code
of a stwcx. is also provided, which corresponds in our setup
to setting CR0[EQ] to 0 or 1 according on whether or not the
instruction has succeeded. Each plain store, and lwarx and
stwcx instructions take the reservations granules as both in-
puts and outputs. A lwarx will set the reservation to the
address from which it loads. If a store writes to a location
that has been reserved by another processor, the associated
reservation is set to the special symbol ⊥. This corresponds
in our setup to the read value reserved property. It is un-
clear whether there might be spurious dependencies arising
from accesses to the reservation data.

They provide a description of the sync instruction. How-
ever, it refers to a non-cumulative sync, which is no longer
the case since PPC 1.09. Thus, several examples proposed
are no longer allowed.



Recent work on memory models for high-level languages,
including Java, X10, and C++ [MPA05, AS07, SJMvP07,
BA08], is also relevant. There one must deal not just with
reordering by the processor, but also arising from compiler
optimizations. We hope that having precise descriptions of
the underlying architecture will assist such work.

7. Discussion

We have presented a semantics for multiprocessor programs
above the Power and ARM architectures.

In this final section we introduce several criteria that such
a semantics should satisfy, and discuss the extent to which
our semantics does so.

First, it should be precise. It may be a loose specification,
but it should unambiguously define what is and is not
permitted. Ours is expressed in mechanised mathematics,
in a well-defined logic, and using a proof assistant (HOL).

Second, it should have good coverage. We do not attempt
to model the entirety of each architecture (to do so, in-
cluding all the page-table operations etc., would be a mam-
moth task). However, we do model a large enough fragment
for much low-level concurrent programming, including the
memory model for “Normal” (ARM) and “Memory Coher-
ence Required” (Power) memory.

Third, it should be accurate with respect to the architec-
ture. This is a subtle point, as the architectures are informal
prose, not themselves precisely defined objects — indeed, es-
tablishing such precise definitions is the main goal of this pa-
per. Nonetheless, the semantics should be informally sound
with respect to the architecture, i.e. any behaviour that is
admitted by the informal specification should be admitted
by the formal specification. The semantics might be looser
than the informal specification, but not too much so, oth-
erwise it may fail to capture a property that programmers
need. We have taken care to interpret the informal prose
specifications as best we can. We have described our model
here in its own terms, for clarity and brevity, but in a longer
version of this paper we intend to spell out the correspon-
dence between the informal prose and our specification. For
example, the Power and ARM specifications speak in terms
of actions being “performed” or “observed”; these concepts
generally are modelled by our view orders.

Fourth, it should be accurate with respect to processor
implementations. This can be tested empirically, as we did
for x86, and we intend to do so again here. In principle, it can
also be established by proof, showing that the semantics is an
accurate abstraction of a microarchitectural model (e.g. as
in Fox’s verification for ARM6 w.r.t ARMv3 [Fox03]). That
would be highly desirable, but very challenging: for modern
multiprocessors, such a model would be very large, and also
proprietary.

Fifth, it should be strong enough for reasonable programs.
The semantics should constrain the behaviour of the proces-
sors enough that reasonable programs can be shown to have
their intended behaviour. This applies also to the informal
specifications, and there it is almost impossible to assess:
one simply cannot determine all the possible behaviours of a
non-trivial program, by hand, against those documents. For
our precise model it should be possible to prove (for small
programs) how they behave, and to test larger programs
against a nondeterministic emulator which can exhibit all
valid executions. It should also be possible to prove general
metatheoretic results, e.g. that programs that are (in some
model-specific sense) data-race-free behave sequentially con-
sistently.

Sixth, it should be accessible, to low-level programmers,
builders of verification tools, language designers and im-
plementors, and hardware architects, as the interface be-
tween these four groups. Our axiomatic model is moder-
ately complex, but we believe this reflects the complexity of
the intended vendor architecture. It is written in relatively
straightforward typed logic, and can be stated in full in only
a few pages. Time will tell whether this, augmented by fur-
ther examples, suffices. Certainly having a precise math-
ematical specification should make it easier to write self-
consistent tutorial documents. We have primarily targeted
the first three groups, writing a specification that is rela-
tively free of microarchitectural concepts.
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