
The Algebra of

Finite State Processes

Peter Michael Sewell

Doctor of Philosophy

University of Edinburgh

1995

Graduation date: November 1995

Abstract

This thesis is concerned with the algebraic theory of finite state processes. The

processes we focus on are those given by a signature with prefix, summation and

recursion, considered modulo strong bisimulation. We investigate their equa-

tional and implicational theories.

We first consider the existence of finite equational axiomatisations. In order to

express an interesting class of equational axioms we embed the processes into a

simply typed lambda calculus, allowing equation schemes with metasubstitutions

to be expressed by pure equations. Two equivalences over the lambda terms are

defined, an extensional equality and a higher order bisimulation. Under a restric-

tion to first order variables these are shown to coincide and an examination of

the coincidence shows that no finite equational axiomatisation of strong bisim-

ulation can exist. We then encode the processes of Basic Process Algebra with

iteration and zero (BPA�

�

) into this lambda calculus and show that it too is not

finitely equationally axiomatisable, in sharp contrast to the extant positive result

for the fragment without zero.

For the implicational theory, we show the existence of finite computable complete

sets of unifiers for finite sets of equations between processes (with zero order vari-

ables). It follows that the soundness of sequents over these is decidable.

Some applications to the theories of higher order process calculi and non-well-

founded sets are made explicit.

i

Acknowledgements

I would like to thank my supervisor, Robin Milner, for his teaching in the practice

and purpose of research, and for his patience and enthusiasm while this thesis

mutated into its current form. Stuart Anderson provided intellectual support at

an important time and also a period of educational employment. Section 2.3 was

improved by discussions with Zoltán Ésik.

The Laboratory for the Foundations of Computer Science has provided a broad

and stimulating environment in which to work. I thank particularly the members

of the � and concurrency clubs.

This thesis was written with the aid of a voice recognition system, largely funded

by the SERC. Thanks are also due to the Department and particularly to John

Butler for providing the underlying hardware. I have been supported by SERC

studentship 90311819 and the ESPRIT BRA 6454 (CONFER). Paul Taylor’s dia-

gram and proof tree macro packages were used.

I have enjoyed my time in Scotland. This is partly due to the companionship of

my long-suffering office mates Chen, Stephen and Luc, and Alex, Anthony, David,

Dilip, Ian, John, Neil, Roberto, Savi and Steve.

Unfailing support has been provided by my parents and family.

ii

Declaration

I declare that this thesis was composed by myself and that the work presented is

my own except where otherwise stated. The main results of Chapter 3 and x4.1

have been reported in [Sew94].

Peter Sewell

This is a revised version, incorporating the suggestions of my examiners, Colin

Stirling and David Walker.

iii

Table of Contents

1. Introduction 1

1.1 Overview : 3

1.2 Notation : 3

2. Background 5

2.1 Processes and Automata : 5

2.1.1 Models : 6

2.1.2 Syntax: �-expressions : 8

2.1.3 Syntax: �-expressions : 10

2.2 Axiomatisation — some general remarks : : : : : : : : : : : : : : : 15

2.3 An overview of previous work : 20

2.3.1 Infinite systems for �-expressions : : : : : : : : : : : : : : : 22

2.3.2 Finite impure horn clause systems : : : : : : : : : : : : : : 29

2.3.3 Finite pure horn clause systems : : : : : : : : : : : : : : : : 30

2.3.4 Systems for �-expressions : : : : : : : : : : : : : : : : : : : 31

2.3.5 Infinitary rules and Denotational models : : : : : : : : : : : 35

3. Axiomatisation over �-expressions 37

3.1 Outline of chapter : 38

iv

Table of Contents v

3.2 Basic definitions : 39

3.3 Higher order bisimulation : 45

3.4 Finite state and decidability properties : : : : : : : : : : : : : : : : 48

3.5 The transition system of a substituted term : : : : : : : : : : : : : 53

3.6 The coincidence of �
ext

and �
ho

: : : : : : : : : : : : : : : : : : : 55

3.7 Loop properties : 59

4. A Miscellany 62

4.1 Axiomatisation over �-expressions : : : : : : : : : : : : : : : : : : 62

4.1.1 Axiomatisation with and without 0 : : : : : : : : : : : : : : 62

4.1.2 Axiomatisation with 1 : 65

4.2 Higher order process calculi : 66

4.2.1 Syntax and transitions : 66

4.2.2 Normal bisimulation : 68

4.2.3 The coincidence of �
ho

and �
Nr

: : : : : : : : : : : : : : : 69

4.3 Non-well-founded set theory : 71

4.4 Weak congruence: relative axiomatisability and at higher order : : 73

4.4.1 Weak higher order congruence : : : : : : : : : : : : : : : : 73

4.4.2 A finite axiomatisation of weak congruence relative to bisim-

ulation : 75

5. Implicational theory 80

5.1 The consequence relation and unification : : : : : : : : : : : : : : 81

5.2 Unification for charts : 82

5.3 Minimal sets of unifiers : 88

vi

5.4 Unification for finite processes : 89

6. Conclusion 91

6.1 Higher order bisimulation : 92

6.2 Axiomatisability : 94

6.3 Unification : 99

A. Completeness proof 100

B. Loop properties 105

Bibliography 110

Index of Axioms 117

Index 119

Chapter 1

Introduction

Finite state machines have been the subject of a great deal of work in theoretical

computer science, particularly by the language theory and process algebra com-

munities. In their various formalisations they are the basis for models or spec-

ifications of many computational phenomena. A common formalisation is the

labelled transition system consisting of a (finite) set equipped with an indexed

family of binary relations over it. Typically the set is thought of as the possi-

ble states that a modelled system may be in, with the relations as the allowable

changes of state. This is extremely general — for a particular application addi-

tional structure (such as a termination predicate on states) may be required and

the model may be too fine, containing many states which should be identified.

Many equivalences have been proposed, differing in their treatment of nonde-

terministic choice and termination. We shall largely be concerned with two, lan-

guage equivalence and bisimulation, that are reasonably canonical among them.

The introduction of an equivalence immediately raises a question of decidability.

These are both decidable over finite state systems and indeed efficient decision

procedures have been widely used in practice.

Direct presentations of finite state machines as sets and relations are awkward

to work with. Accordingly, syntactic forms have been introduced to represent

them, including a variety of process calculi and regular expressions. Any such

raise questions of expressiveness, congruence and axiomatisability (all with re-

spect to a chosen equivalence). The first two are generally straightforward. It

is desirable for the syntax to be expressively complete, i.e. for all finite state ma-

chines to be representable up to the equivalence. If any manipulation of syntactic

terms, such as equational reasoning, is to be done then the equivalence must also

1

2 Chapter 1. Introduction

be a congruence and preferably also substitutive. There are several motivations

for seeking axiomatisability results. The most obvious is that any sound system

may be useful for human or machine manipulation of terms, particularly but not

necessarily if it is complete. A number of nontrivial verification problems arising

from practice can be addressed using such systems. For this thesis a more impor-

tant motivation is that axiomatisability results (and especially their proofs) shed

light on the nature of the equivalences involved and on their interaction with the

syntax of axioms. If positive, axiomatisability results enable the semantic maps

to be presented as the unique maps from term algebras, which is sometimes con-

venient. Lastly they permit a comparison of different equivalences and with the

alternative view that takes a set of axioms as primary.

Given a syntax that admits substitution and a choice of equivalence there is a

further natural question of the existence of solutions to (or unifiers for) equations

between terms. The existence of finite computable complete sets of unifiers gives

the decidability of implications between equations.

We will largely be concerned with a single equivalence — strong bisimulation —

over the terms of a simple syntax — the �-expressions, with prefix, summation

and a binding operator for recursion. We consider the existence of finite axioma-

tisations and of finite computable complete sets of unifiers.

The existence of a finite axiomatisation obviously depends upon the strength of

the metalanguage in which axioms are written. The weakest interesting choice

is to consider equational axioms. For a syntax with binding there are further

choices of the entities that variables in axioms may range over. We embed the

�-expressions into a fragment of a simply typed lambda calculus, allowing many

non-trivial properties to be expressed as equations. Our first main result is that

no finite set of these equations can be a complete axiomatisation. There are then

almost immediate non-finite-axiomatisability results for bisimulation of certain

regular expressions and for equality of certain non-well-founded set expressions.

A key tool is a notion of higher order bisimulation which we relate to the normal

bisimulation of the higher order � calculus.

Our second main result is the construction of finite complete sets of unifiers for

finite sets of equations between �-expressions.

1.1. Overview 3

1.1 Overview

In Chapter 2 the basic definitions of syntax and semantics are introduced and the

problems of axiomatisability that arise are discussed, firstly in general terms with

reference to their motivation and then with reference to some previous work in

the field.

In Chapter 3 our main non-axiomatisability result, that there is no finite equa-

tional axiomatisation for bisimulation over �-expressions, is formulated and proved.

Chapter 4 consists of a number of applications and developments of the theory of

higher order bisimulation. We consider the axiomatisability of bisimulation over

�-expressions, relate higher order bisimulation to the higher order � calculus and

cast our results into the language of non-well-founded set theory. We also give

a definition of weak higher order congruence and show that weak congruence is

finitely axiomatisable relative to bisimulation.

In Chapter 5 there is an investigation of the implicational theory of finite state

processes (up to bisimulation). We show the existence of finite computable com-

plete sets of unifiers for sets of equations between �-expressions and hence the

decidability of implications.

There are only limited formal dependencies between chapters. The definitions

in x2.1 are used throughout and the sections of Chapter 4 should be read after

Chapter 3 (but are independent of each other).

1.2 Notation

The notation used is by and large standard, a few points are mentioned here for

reference.

Theorems, propositions, lemmas and corollaries are numbered in two sequences,

one of theorems and one of the others. The statements of a few lemmas are re-

peated in appendices with the original numbers. Subsidiary lemmas and defini-

tions within proofs are sometimes indented.

4 Chapter 1. Introduction

If �! is any binary relation on a set we write �!�

; �!

+

; �!

n

; �!

�n for its

reflexive transitive closure, its transitive closure, the n-ary self composition and

the union of�!m form � n. We often work with a family
a

�! j a 2 Act of binary

relations indexed by actions and write �! for [
a2Act

a

�!. Universal quantifiers

over actions are freely omitted.

Substitutions are written postfix with E[F=X] standing for E in which all occur-

rences of X are replaced by copies of F . The composition of substitutions � and

�

0 is written as � � �0. The substitution which is as � except where overridden by

�

0 is written �� �

0

Tuples are written with tildes, e.g. writing ~

E for a tuple E

1

: : : E

n

, or in angle

brackets, e.g. hA;B;Ci. Concatenation and append are both written simply as

juxtapositions.

The set of natural numbers is written !. We sometimes identify the number n

with the set f0; : : : ; n� 1g.

Chapter 2

Background

In this chapter the basic definitions of syntax and semantics are introduced and

the problems of axiomatisability that arise are discussed, firstly in general terms

with reference to their motivation and then with reference to some previous work

in the field.

2.1 Processes and Automata

The current applicability and history of the study of finite state machines are both

too extensive to be treated here in any depth — a very brief historical sketch will

be given. The basic notion is that of a finite discrete system together with an infor-

mal idea of its behaviour in discrete time. This is explicitly present in the work of

Turing [Tur37] and of McCulloch and Pitts [MP43], although it may well have ex-

isted earlier. It is there applied respectively to the modelling of abstract (human)

computation and concrete neural networks. In the first, machines (i.e. the finite

state controls of Turing machines) are given by explicit descriptions of the sets of

states and transition relations. In the second they are given structurally as net-

works of fundamental elements, with expressivity results relating structure and

behaviour. A more syntactic description, the regular1 or �-expressions, was intro-

duced by Kleene [Kle56] and later simplified by Copi, Elgot and Wright [CEW58].

1We avoid the use of ‘regular’. Most entities that we deal with could be qualified by

it, to no useful end.

5

6 Chapter 2. Background

They have an explicit iteration operator together with sequential composition and

summation. The paper of Kleene introduced in addition the study of the algebra

of these expressions, giving some sound equations for his interpretation (which

in the simplified formulation of [CEW58] is close to the standard language in-

terpretation). Finer interpretations were apparently first introduced by Milner

[Mil80] to give a more refined account of the interactions between a machine

and an experimenter, leading to the bisimulation equivalence of Park [Par81]. To

express all finite state machines up to bisimulation a richer syntax is required,

such as the �-expressions which have variables and an explicit recursion opera-

tor together with prefix and summation. The algebra of the four combinations of

syntax and model has been the subject of a large body of work, some of which is

discussed in x2.3. We first give precise definitions of the two models, followed by

the definitions of syntax and the basic results. Detailed references and proofs are

omitted — the latter are all either straightforward or essentially from [Kle56] or

[Mil84].

2.1.1 Models

The models are parameterised by a set Act of atomic actions, ranged over by a; b.

This is generally supposed to be nonempty but we require no other structure and

do not require it to be infinite. The set of finite sequences of actions will be writ-

ten Act

� with the empty sequence as � and concatenation as juxtaposition. Uni-

versal quantifiers over Act will generally be omitted.

We start not with labelled transition systems but with charts. These contain addi-

tional information in the form of a visibility predicate B between states and a set

Var of variables. This allows �-expressions containing free variables to be mod-

elled and permits a close tie-up between bisimulation and language equivalence

of �-expressions. The definitions are justified by Proposition 11 below relating

them to the closed term case. When dealing with �-expressions we suppose Var

to be infinite, to permit alpha conversion.

Definition A chart S is a tuple hS;�!;B; s

0

i where S is a set of states, s
0

2 S is

an initial state, �! � S � Act � S is a transition relation and B � S � Var is a

visibility predicate. We will sometimes ignore the initial state.

2.1. Processes and Automata 7

The finest equivalence on charts that we deal with is bisimulation, at the top of

the linear-branching time hierarchy. It takes full account of the nondeterministic

branching structure of the transition relations.

Definition A relation R � S � S over the state set of a chart is a bisimulation if

s R t implies:

� If s
a

�!s

0 then 9t0 : t
a

�!t

0

^ s

0

R t

0.

� If sBX then tBX.

and symmetrically. Two states are bisimilar, written s � s

0, if there exists a bisim-

ulation relating them.

Proposition 1 The relation � is itself a bisimulation.

At the bottom of the linear-branching time hierarchy are various forms of trace

or language equivalence. The following definition allows the chart and language

semantics of �-expressions to be closely related (by Proposition 12 below).

Definition The extended language of a state s of a chart is the subset of Act ��Var

containing a
1

; : : : ; a

n

; X iff there exist states s
1

; : : : ; s

n

such that s
a

1

�!s

1

: : :

a

n

�!s

n

BX.

Two states are language equivalent if they have the same extended languages.

The trace congruence of [Rab93] will also be referred to.

Definition The trace set of a state s is the subset of Act� containing a
1

; : : : ; a

n

iff

there exist states s
1

; : : : ; s

n

such that s
a

1

�!s

1

� � �

a

n

�!s

n

. Two states are trace con-

gruent if they have the same trace sets and the same extended languages.

In many applications it is necessary to abstract from certain actions which are

considered to take place ‘internally’. One equivalence that does this is the weak

(or observational) congruence of [Mil89]. This is defined in terms of a distin-

guished action � and the derived transition relations

a

=)

def
=

�

�!

�

a

�!

�

�!

�

â

=)

def
=

�

�!

�

a

�!

�

�!

�

; if a 2 Act � �

def
=

�

�!

�

; if a = � .

8 Chapter 2. Background

Definition A relationR � S�S over the state set of a chart is a weak bisimulation

if s R t implies:

� If s
a

�!s

0 then 9t0 : t
â

=)t

0

^ s

0

R t

0.

� If sBX then t

�

�!

�

BX.

and symmetrically. Two states are weak bisimilar, written s � s

0, if there exists

a bisimulation relating them. Two states are weak congruent, written s �

c

s

0, if

there is a weak bisimulation R with sW(R) t, where sW(R) t if

� If s
a

�!s

0 then 9t0 : t
a

=)t

0

^ s

0

R t

0.

� If sBX then t

�

�!

�

BX.

and symmetrically.

Proposition 2 Bisimulation is strictly finer than weak congruence and trace con-

gruence. The latter is strictly finer than language equivalence.

Bisimulation and the other equivalences are lifted to relations between charts

by applying the above definitions to a disjoint union and considering the initial

states.

2.1.2 Syntax: �-expressions

Definition The �-expressions are those of the grammar

E ::= 0

�

�

� X

�

�

� aE

�

�

� E + E

�

�

� �XE

where X and a are drawn from sets Var ;Act of variables and actions and � is a

binding operator. We adopt standard notions of free and bound variables, sub-

stitution and alpha conversion. The scope of a binder is generally as far to the

right as possible. Sum is taken to have lower precedence than prefix so aE + F

is (aE) + (F).

2.1. Processes and Automata 9

We will have occasion to refer to the infinite term equivalence =
in�nite term

induced

by unwinding the recursions in �-expressions to give finite or infinite trees. A

formal definition will not be given, however.

Definition Take the relations
a

�! j a 2 Act andB to be the least over �-expressions

such that

aE

a

�!E X BX

E

a

�!E

0

E + F

a

�!E

0

and sym. EBX

E + F BX

and sym.

E

a

�!E

0

�Y E

a

�!E

0

[�Y E =Y]

EBX X 6= Y

�Y EBX :

Any �-expression E can thus be regarded as a chart, with initial state E itself.

The rule for � differs from the more usual

E[�Y E =Y]

a

�!E

0

�Y E

a

�!E

0

but is slightly more convenient. We check that it is equipotent. Let
a

; be the least

relation over �-expressions satisfying the rules for prefix, sum and the second rule

for �.

Proposition 3 The relations
a

�! and
a

; coincide.

PROOF The following lemmas are used, both of which are provable by induction

on derivations. Closely related properties will be heavily used later (see Lemmas

35 and 52).

Lemma 4 If E
a

;F then E[G=Y]

a

;F [G=Y].

Lemma 5 IfE[F=Y]

a

�!G then eitherE
a

�!E

0 andE 0

[F=Y] = G orEBY

and F

a

�!G.

The proposition can now be proved by an induction on derivations for each direc-

tion. The only interesting cases are those in which the conclusion of a derivation

is the relevant � rule. Lemma 4 is required for the inclusion
a

�! �

a

; and Lemma

5 for the converse. 2

10 Chapter 2. Background

The �-expressions suffice to express all finite charts up to bisimulation and there-

fore also up to language equivalence.

Definition A chart hS;�!;B; s

0

i is finite if S, �! and B are all finite.

Proposition 6 A chart is bisimilar to a finite chart iff it is bisimilar to some �-

expression.

The equivalences are congruences.

Proposition 7 Bisimulation of �-expressions is a congruence, i.e. it is an equiva-

lence satisfying

E � F

aE � aF

E � E

0

F � F

0

E + F � E

0

+ F

0

E � F

�XE � �XF

and is substitutive, i.e. it satisfies

E � F

E[G=X] � F [G=X]:

Proposition 8 Language equivalence of �-expressions is a substitutive congruence.

Proposition 9 Trace congruence of �-expressions is a substitutive congruence.

Proposition 10 Weak congruence of �-expressions is a substitutive congruence.

In a given application one might well take as primary bisimulation over labelled

transition systems or closed �-expressions. The extension to open terms given

above can be justified as the coarsest reasonable such.

Proposition 11 Bisimulation of �-expressions is the largest congruence that, when

restricted to the closed �-expressions, is at least as fine as bisimulation there.

2.1.3 Syntax: �-expressions

Finite state systems have also been described using calculi with a unary or binary

iteration operator in place of explicit recursion, such as the �-expressions given by

E ::= a

�

�

� 0

�

�

� 1

�

�

� E + E

�

�

� E

:

E

�

�

� E

�

�

�

� E

?

E

where a 2 Act . There are several points to note:

2.1. Processes and Automata 11

� Actions are now taken to be nullary and there is a sequential composition.

� Two iteration operators are included. A binary iteration E

?

F represents

zero or more iterations of E followed by one of F . This was introduced in

[Kle56] and simplified in [CEW58] to the ubiquitous unary iteration, with

E

� representing zero or more iterations of E. In the presence of 1 they will

be interdefinable in our semantics, with

E

?

F = E

�

:

F and E

�

= E

?

1:

� Both a 0 and a 1 are included. In process calculus terms they will repre-

sent the unsuccessfully and successfully terminated processes respectively.

Language theoretically, they will represent the empty language and the lan-

guage containing only the empty word. In both cases they will be units and

zeros for choice and sequential composition as below.

0 + E = E = E + 0 0

:

E = 0

1

:

E = E = E

:

1

Language theoretically we will also have E :

0 = 0. In the presence of 0 and

� (but not 0 and ? alone) 1 is definable with 1 = 0

�. Calculi without 1 have

recently been studied in the setting of ACP, where the interaction of 1 and

the parallel operators may be subtle. Binary iteration has received renewed

attention in these, for example in [BBP94].

We give chart semantics using an additional judgment
p

to record successful ter-

mination. Formally we regard
p

as a distinguished element of Var and write E
p

as shorthand for EB
p

. The previous definitions of bisimulation and language

can therefore be applied.

Definition Take the relations
a

�! j a 2 Act and predicate
p

to be the least over

12 Chapter 2. Background

the �-expressions such that

a

a

�!1 1

p

E

a

�!E

0

E + F

a

�!E

0

and sym.
E

p

E + F

p and sym.

E

a

�!E

0

E

:

F

a

�!E

0

:

F

E

p

F

a

�!F

0

E

:

F

a

�!F

0

E

p

F

p

E

:

F

p

E

a

�!E

0

E

�

a

�!E

0

:

E

�

E

�

p

E

a

�!E

0

E

?

F

a

�!E

0

:

(E

?

F)

F

a

�!F

0

E

?

F

a

�!F

0

F

p

E

?

F

p

:

Note that there are no rules for 0.

The �-expressions are expressively complete for language equivalence. We first

recall the standard definition of the language denoted by a regular expression.

Definition The language denoted by a �-expression E is [[E]] where

[[a]]

def
= fag

[[0]]

def
= fg

[[1]]

def
= f�g

[[E + F]]

def
= [[E]] [[[F]]

[[E

:

F]]

def
= f st j s 2 [[E]] ^ t 2 [[F]] g

[[E

�

]]

def
= f s

1

: : : s

n

j n � 0 ^ 8i 2 1::n : s

i

2 [[E]] g

[[E

?

F]]

def
= f s

1

: : : s

n

t j t 2 [[F]] ^ n � 0 ^ 8i 2 1::n : s

i

2 [[E]] g:

This factors through the chart semantics.

Proposition 12 A word w is in the language denoted by a �-expression iff w;
p

is

in the extended language of the chart associated with the expression.

Proposition 13 A language L � Act

� is denotable by a �-expression iff fw;
p

j

w 2 L g is the extended language of a finite chart with Var = f

p

g.

2.1. Processes and Automata 13

Thus they are as expressive as the �-expressions, up to language equivalence,

however they express fewer bisimulation classes:

Proposition 14 There exists a finite chart with Var = f

p

g that is not bisimilar to

any �-expression.

Both equivalences are congruences.

Proposition 15 Bisimulation of �-expressions is a congruence, i.e. it is an equiva-

lence satisfying

E � E

0

F � F

0

E + F � E

0

+ F

0

E � E

0

F � F

0

E

:

F � E

0

:

F

0

E � F

E

�

� F

�

E � E

0

F � F

0

E

?

F � E

0 ?

F

0

and is substitutive (w.r.t. substitution of terms for actions), i.e. it satisfies

E � F

E[G=a] � F [G=a]:

Proposition 16 Language equivalence of �-expressions is a substitutive congruence.

Note that the definition of the �-expressions does not include variables — actions

play a dual role, appearing both in the definitions of the equivalences and in the

substitution rule of axiomatisations. This is standard in the literature. It is shown

to be innocuous by the previous two propositions.

A variety of subcalculi have been discussed in the literature with differing nota-

tion. For reference we include a little table:

a 0 1 +

:

� ?

a � _

:

� [CEW58]

a 0 1 +

:

� [Con71,Koz94]

a � +

:

� [Sal66]

a � +

: BPA� as in [Mol89]

a +

:

� BPA� as in [BBP94,FZ94]

a � +

:

� BPA�

�

as in [BBP94,FZ94,Fok94]

The cited work is variously concerned with algebras satisfying certain axioms or

with particular models. We therefore need to state carefully exactly what the

above correspondences are. For the first three lines the common expressions de-

note the same language in the standard interpretation, except that in [CEW58]

E

� does not necessarily contain the empty word. For the last three lines bisimu-

lation as defined below agrees with the definitions in the cited work, as follows.

14 Chapter 2. Background

For terms of f1; a;+; :g bisimulation is that of [Mol89, x6.3.1] for BPA� (identi-

fying 1 and �). As discussed there it differs from the original BPA� semantics of

[Vra86]. Our transition system differs also from the semantics of [BBP94,FZ94]

for terms of f0; a;+; :; ?g. There the rules above involving 1;

� or
p

are replaced

by the following

a

a

�!

p

E

a

�!

p

E + F

a

�!

p

and sym.

E

a

�!

p

E

:

F

a

�!

p

E

a

�!

p

E

?

F

a

�!E

?

F

F

a

�!

p

E

?

F

a

�!

p

with the bisimulation $ defined by replacing the condition

� If E 0

B

p

then F

0

B

p

.

by

� If E 0

a

�!

p

then F

0

a

�!

p

.

The bisimulations coincide, however.

Proposition 17 For terms of f0; a;+; :; ?g bisimulation � coincides with bisimula-

tion $ over BPA�

�

(identifying 0 and �) as defined in [BBP94].

PROOF Let P;Q range over terms of f0; a;+; :; ?g and E; F;G range over terms of

f1; 0; a;+;

:

;

?

g. If =
1

is the least equivalence over the latter such that 1 : E =

1

E

and
E =

1

F

E

:

G =

1

F

:

G

then it is straightforward to show that

fP;Q j 9E; F : P =

1

E � F =

1

Q g

is contained in $ and that

fE; F j 9P;Q : E =

1

P $ Q =

1

F g [fE; F j E =

1

1 =

1

F g

2.2. Axiomatisation — some general remarks 15

is contained in �. 2

2.2 Axiomatisation — some general remarks

The bulk of this thesis addresses questions of axiomatisability of equivalences

over the �- and �-expressions. As it stands these questions are poorly defined —

there is a range of possible definitions of what an axiomatisation is and the moti-

vation of Chapter 1 does not provide technical criteria that pick out a unique one.

In general the insight gained from an axiomatisation is inversely related to the ex-

pressiveness of the metalanguage in which the axioms and rules are presented.

We briefly discuss the possible spectrum. Detailed references to and discussion

of previous work are left to the next section.

We first consider infinite equational axiomatisations. The sets of all equivalent

pairs of expressions are trivially complete (and indeed also recursive, as bisimu-

lation and language equivalence of finite charts are decidable). More interesting

are sets generated in a uniform way from a small number of schemata (using

some ad hoc metanotation) such as the group or commutative identities repro-

duced in x2.3, or the axiomsC
mn

of x2.3.4. These expose some of the structure of

the equivalence concerned. They are compelling if they do this well and are sim-

ple — an informal criterion. Tighter questions can be asked about the existence

of finite axiomatisations. To make these precise and in particular to state nonex-

istence results we must define classes of allowable axiomatisations. We give a

variety of notions of ‘pure’ system, i.e. systems in which all terms that appear are

of the object language.

For an object language without binding operators, such as the �-expressions, the

situation is unproblematic. We take a finite pure equational axiomatisation to

consist of a finite set A of pairs of object language terms together with the rules

in Figure 2–1 for congruence and the following:

E = F

E = F 2 A

E = F

E[G=a] = F [G=a]:

Moving to a richer logic, a finite pure horn clause axiomatisation consists of a

finite set of expressions of the form

E

1

= F

1

^ � � � ^ E

m

= F

m

! E

0

= F

0

16 Chapter 2. Background

E = E

ref

E = F

F = E

sym

E = F F = G

E = G

tran

E = F E

0

= F

0

E + E

0

= F + F

0

+cong

E = F E

0

= F

0

E

:

E

0

= F

:

F

0

:

cong

E = F

E

�

= F

�

�cong

E = F E

0

= F

0

E

?

E

0

= F

?

F

0

?

cong

Figure 2–1: Congruence rules for �-expressions

or

E

1

= F

1

^ � � � ^ E

m

= F

m

!?;

where E; F are object language terms and m � 0, together with rules for congru-

ence, instantiation and manipulation of ^; ! and ?.

In the presence of binding operators the situation is not quite so simple, as equa-

tions between object language terms are then very inexpressive. For example al-

pha conversion or the unfolding of recursions would each require an infinite set

of equations. Instead one might write down schemata such as

E[�XE =X] = �XE

�Y E[Y=X] = �XE , if Y not free in �XE;

expressing unfolding and alpha conversion. It would be possible to give a defi-

nition (perhaps several) of a natural class of such schemata and, by formalising

the manner in which they are instantiated, a definition of a class of axiomati-

sations containing a finite set of them. We do not because it would be rather

complex — the schemata above contain metavariables over both object variables

(X; Y) and terms (E), substitutions and a simple side condition. Instead we em-

bed the �-expressions into a fragment of the simply typed lambda calculus. This

is described in detail in Chapter 3. For now we note only that it lets us take a

finite pure equational axiomatisation to be simply a finite set of pairs of lambda

terms (of appropriate types) together with standard rules for �� equality. The

2.2. Axiomatisation — some general remarks 17

first schema above can be written simply as

e :P !P .�x e = e(�x e) :P

and the second is subsumed by lambda calculus alpha conversion. A finite pure

horn clause axiomatisation would then be as before except that E; F now range

over typed lambda terms.

A number of finite horn clause axiomatisations have been given which are essen-

tially impure in that they contain rules which cannot be put into this form. We

mention two, deferring full definitions of the notation involved to later in this

chapter. Firstly the unique fixed point rule schema from [Mil84]:

E = F [E=X] ^ X guarded in F ! E = �XF

in which the ‘guarded’ condition is not equational and secondly the functorial

implication from [BÉ94]:

8i 2 m : E

i

[Y

�(j)

=X

j

]

j2m

= F

�(i)

! 8i 2 m : ~�

i

~

X

~

E = ~�

�(i)

~

Y

~

F

which has an instance for each pair m;n � 1 of natural numbers and surjective

function � :m!n.

In summary, for both �-expressions and �-expressions we have a hierarchy of

classes of axiomatisations:

� Infinite (but elegant) equational

� Finite impure horn clause

� Finite pure horn clause

� Finite pure equational

of which the first two are not formally defined. For �-expressions the last two will

be further subdivided by placing restrictions on the types allowable in axioms.

We now return to the general motivation for axiomatisability results of Chapter

1 and discuss it with respect to this hierarchy.

18 Chapter 2. Background

Human and Machine reasoning

Sound systems are in principle useful for reasoning about the equivalence of ex-

pressions. In practice, however, they are only useful for human reasoning about

relatively small expressions. For that there is no advantage in restricting to a

weak metalanguage — indeed it may be useful to apply (say) both unique fixed

point reasoning from the system of [Mil84] and the schema from the infinite sys-

tem of x2.3.1 in the same work. For larger expressions model-based techniques

which apply directly to the chart denoted by an expression seem to be preferable,

as efficient algorithms have been found. We should note that for more expressive

calculi the situation may be very different. There it may be possible to use (hu-

man) understanding of the (term) structure in a particular equivalence problem

to quickly find a good proof in a suitable formal system. It may also be possi-

ble to orient the equations of an equational axiomatisation to give a useful term

rewriting system.

Insight

As stated in Chapter 1 a more important motivation for this work is the insight

gained from proofs — of positive (completeness) or negative (non-axiomatisability)

results. In general we would like positive results as far down the hierarchy as pos-

sible since an inexpressive metalanguage requires a better understanding. (In the

extreme case of a strong logic the definitions of the equivalences could be directly

but pointlessly written down.) Conversely, negative results should be as far up as

possible although obviously their statements require formal definitions of classes

of axioms.

Expressivity and Comparison

Positive results can be used to compare different equivalences, particularly if there

is a clean extension of an axiomatisation for one which is complete for another. A

more general approach is to consider questions of relative axiomatisability, i.e. to

consider whether an equivalence �
1

is axiomatisable in one of the senses above

augmented with a rule

E �

2

F ! E = F

2.2. Axiomatisation — some general remarks 19

for another equivalence �
2

. A different form of comparison is to keep the equiv-

alence fixed and vary the expressions. The existence of an axiomatisation can be

seen as depending on the metalanguage being expressive with respect to the ob-

ject language. This can be investigated by looking for axiomatisable sub-languages

of a non-axiomatisable object language.

Other models

Throughout this section and in the greater part of the thesis we have considered

axiomatisation of the equivalences induced by a few particular, intended, models

of the expressions. An alternative approach is to consider the category of all mod-

els equipped with suitable homomorphisms. Pure equational and horn clause ax-

iomatisations (not necessarily finite) are desirable in that they permit the results

of universal algebra to be applied. For the �-expressions the notion of model is

standard and the results (from [MT92], say) are immediately applicable. In par-

ticular any pure equational (resp. horn clause) axiomatisation defines a variety

(resp. quasi variety) containing an initial model. For the �-expressions there are

several possible notions of model. Two, the preiteration algebras and strong pre-

iteration algebras, are given in [BÉ94] together with an analogue of the variety

theorem. They are specialized from work on iteration theories. These provide

a general setting for the investigation of the equational logic of fixed point op-

erators. We cannot do justice to the work here, but instead refer the reader to

[BÉ93b].

One can also look for axiomatisations which are sound in several intended mod-

els, as is done for example in [Koz94] for the �-expressions. In particular, axioms

involving a ‘guarded’ condition tend not to be valid in coarser models.

Domain theoretic models of the �-expressions will be briefly discussed in x2.3.5

along with the infinitary rules of !-induction and the approximation induction

principle.

Completeness and !-completeness

We have several times referred in an ambiguous way to completeness results.

There can be a significant difference between completeness for closed and open

20 Chapter 2. Background

terms, as shown for example in [Mol89] for a calculus with parallel composition.

We recall the definitions from x2.3.2 of that work.

Typically one might have an equivalence' defined over closed terms and a proof

system deriving judgments ` E = F between arbitrary terms. The proof system

is then said to be complete if

� for all closed E; F if E ' F then ` E = F ,

and !-complete if

� for all E and F , if E� ' F� for all closed substitutions � then ` E = F .

For �-expressions !-completeness does not seem to be a problem. The negative

result of Chapter 3 (Theorem 6) shows that there is no complete system and

so immediately that there is no !-complete system. The positive results men-

tioned in the next section (Theorems 1, 2, 3 and 4) are all with respect to all

�-expressions and so could be considered as !-completeness results.

On the other hand, one could take the pure axiomatisations obtained from the

first two and last of these by embedding into the lambda calculus. They might

then be considered to be !-complete iff all the sound identities between terms

containing higher type variables are derivable (i.e., with notation from Chapter

3: iff they are complete for �
ext

over T P

!

, not just over T P

0

). We do not have a

completeness result over T P

!

, or even over T P

1

— such a result would be of some

limited interest.

2.3 An overview of previous work

There is a substantial literature dealing with axiomatisation of equivalences over

calculi denoting finite state machines. A part of it is summarised in Figure 2–

2, classified by the equivalence, calculus and strength of logic addressed and la-

belled
p

(resp.�) if finite complete systems are given (resp. shown not to exist).

Results labelled [Sew] are contained in this thesis and have also been announced

in [Sew94]. Care must be taken when interpreting the figure as there are differ-

2.3. An overview of previous work 21

p

[Mil84](impure)
p

[BÉ94]

�

�

�

�

�

�

�

�

�

�

horn clause

p

[Sal66](impure)
p

[AG87]

p

[Bof90;Kro91]

p

[Koz94]

p

[Rab93](impure)

�[Sew]
p

[FZ94]

p

[Fok94]

�[Sew] bisimulation

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

equational

�[Red64]

�[Con71]

p

[Yan](for events � 1)

language or trace

�-expressions �-expressions

Figure 2–2: Finite axiomatisability results

ing definitions, in particular of the syntax of the �-expressions and of language

equivalence over �-expressions.

The figure is not intended to imply that all vertices have equal interest — in fact

the expressivity results of Propositions 6, 13, 14 suggest that the language/�-

expression and bisimulation/�-expression edges are more significant than the oth-

ers. Further, there are many interesting equivalences which are not shown. There

are trivial implications only along the logic (vertical) axis — relative axiomatis-

ability results would give implications along the equivalence axis but we have

none applicable.

We will first discuss the �-expression problems in some detail, not attempting to

be exhaustive or historical but rather focusing on the techniques used to show

completeness. We then discuss the �-expression work more briefly and finally

mention some more distantly related work. Soundness proofs will be omitted.

22 Chapter 2. Background

In the absence of recursion there is no difficulty. The axioms

A1 E + (F +G) = (E + F) +G

A2 E + F = F + E

A3 E + 0 = E

A4 E + E = E

together with rules for congruence are complete for bisimulation over the expres-

sions given by

E ::= 0

�

�

� aE

�

�

� E + E

(from [HM80]) and adding P1 or P1; P2

P1 aE + aF = a(E + F)

P2 a0 = 0

gives completeness for trace congruence or language equivalence respectively.

(We present these and subsequent axioms informally using metavariables E; F .

They could easily be put in a pure form in a lambda calculus similar to that of

Chapter 3.) Axiomatisations for a number of equivalences in the linear-branching

time spectrum are collected in [Gla90]. Bisimulation over arbitrary well-founded

GSOS systems is finitely axiomatised in [ABV92].

2.3.1 Infinite systems for �-expressions

We now give an infinite system for bisimulation over all �-expressions. That this

is possible is of course trivial and indeed the completeness proof, although new, is

not terribly difficult. It is included for several reasons. Firstly, it provides some in-

sight and suggests interesting conjectures about the completeness of subsystems.

Indeed the nonexistence proof of Chapter 3 arose from considering whether re-

strictions of a closely related system were complete. Secondly the proof is closely

related to those for certain finite impure horn clause systems considered in the

next section. Finally the result gives a relative axiomatisability result as an im-

mediate corollary and may be useful for completeness proofs of other systems —

e.g. the pure horn clause system of x2.3.3 — as it is only necessary to show that

all instances of these equations are derivable.

2.3. An overview of previous work 23

Together with A1–4 there are axioms for alpha conversion, recursion unfolding,

absorbing unguarded variables and a form of Bekič’s lemma.

A5 �Y E[Y=X] = �XE , if Y not free in �XE

B1 E[�XE =X] = �XE

B2 �XX + E = �XE

B3 �XE[�Y F =Y] = �XE[�Y F [�XE =X] =Y]

In addition we have a set of axioms C
mn

indexed by pairs of non-zero natural

numbers. Loosely, C
mn

expresses the equality of any m-state transition system

with one in which each state has been split into n bisimilar states. To state these

precisely we need some additional notation.

A natural number, say n, will be identified with the set f0; : : : ; n� 1g. We intro-

duce sequences of formal equations, i.e. nonempty sequences of pairs of a vari-

able (all of which must be distinct) and a �-expression. A variety of notations

will be used — the following all denote the same sequence.

hX

0

= E

0

; : : : ; X

n�1

= E

n�1

i

hX

i

= E

i

j i 2 ni

h

~

X =

~

Ei

�

�

�

B

B

B

X

0

= E

0

...

X

n�1

= E

n�1

B

B

B

�

�

�

The fixed point of a sequence is a �-expression defined by induction:

� hX = Ei

def
= �XE

� h

~

X =

~

E;X = Ei

def
= � h

~

X =

~

E[�XE =X]i:

The simultaneous substitution of n expressions E
i

j i 2 n for n distinct variables

X

i

j i 2 n will be written as [E
i

=X

i

]

i2n

. We let i and k range over m, j over n and

f over the functions from n to n. Pairs of numbers are given the product ordering.

Finally, the axiom is

C

mn

� hX

i

= E

i

[X

k

=Z

kf

]

k2m;f2n

n

j i 2 mi

= � hY

ij

= E

i

[Y

k;f(j)

=Z

kf

]

k2m;f2n

n

j i 2 m; j 2 ni;

in which we suppose that none of the X
k

or Y
kj

appear in any of the expressions

E

i

. Note that the substitutions appearing have as domain all mn

n of the Z
kf

.

The idea is rather simpler than the notation. Consider a non-binding occurrence

of a variable (say X
k

) in a sequence of m equations. If each state is split into n,

giving a sequence of mn equations, it becomes n occurrences. Each might be any

24 Chapter 2. Background

of the Y
kj

j j 2 n. To allow for any such ‘behaviour’ of the original occurrence we

begin with n

n formal variables Z
kf

for each X

k

.

For example here is C
12

, omitting the first index of the Y ’s (which is always 0):

�

D

X

0

= E

0

[X

0

X

0

X

0

X

0

]

E

= �

*

Y

0

= E

0

[Y

0

Y

0

Y

1

Y

1

]

Y

1

= E

0

[Y

0

Y

1

Y

0

Y

1

]

+

and C

22

:

�

*

X

0

= E

0

[X

0

X

0

X

0

X

0

X

1

X

1

X

1

X

1

]

X

1

= E

1

[X

0

X

0

X

0

X

0

X

1

X

1

X

1

X

1

]

+

= �

�

�

�

�

B

B

B

B

Y

00

=E

0

[Y

00

Y

00

Y

01

Y

01

Y

10

Y

10

Y

11

Y

11

]

Y

01

=E

0

[Y

00

Y

01

Y

00

Y

01

Y

10

Y

11

Y

10

Y

11

]

Y

10

=E

1

[Y

00

Y

00

Y

01

Y

01

Y

10

Y

10

Y

11

Y

11

]

Y

11

=E

1

[Y

00

Y

01

Y

00

Y

01

Y

10

Y

11

Y

10

Y

11

]

B

B

B

B

�

�

�

�

:

We show how these axioms can be used to derive the equation

�XaX = �Xa

n

X

(for any n � 1) in a simple way. Given n, consider the instance of C
1n

obtained

by taking E

0

= aZ

0;f

where f :n!n is defined by

f(x)

def
= (x+ 1) mod n:

This instance of C
1n

is

�X

0

aX

0

= �Y

0

a�Y

1

a : : : �Y

n�1

aY

0

from which the equation follows by use of B1 and A5.

The completeness of these axioms is reasonably straightforward. We show that

any expression is provably equal (using axioms A;B only) to the fixed point of a

sequence of equations in a standard form. Given such sequences for two bisimilar

expressions we construct a ‘product’ sequence of equations and use instances of

C to show that all three fixed points are provably equal. The proofs of Lemmas

18, 19, 20 and 21 are banished to Appendix A.

Notation If E = F is provable from the axioms Q together with A1–5 and rules

for congruence then we writeQ ` E = F . We work up to the equivalence induced

by A1–5 throughout.

First we give two simple results. Provable equality lifts from expressions to the

fixed points of sequences and the binaryB3 implies an m-ary form (palliating the

occasional ambiguity in the order of sequences).

2.3. An overview of previous work 25

Lemma 18 For axioms Q, if Q ` E

i

= F

i

for all i then Q ` � h

~

X =

~

Ei = � h

~

X =

~

F i.

Lemma 19 If � :m!m is a permutation with �(0) = 0 then B3 ` � hX

i

= E

i

j

i 2 mi = � hX

�(i)

= E

�(i)

j i 2 mi.

Expressions are provably equal to the fixed point of a sequence of equations that

is in a standard form.

Definition A sequence of equations hX
i

= E

i

j i 2 mi is standard if each E

i

is of

the form

E ::= 0

�

�

�W

�

�

� aX

�

�

� E + E

(where X ranges over fX
i

j i 2 m g and W ranges over all other variables) and

does not contain a free occurrence of X
0

. A standard sequence hX
i

= E

i

j i 2

mi can be regarded as a finite chart with states m, transitions i
a

�!j iff aX
j

is a

summand of E
i

, visibilities iBW iff W is a summand of E
i

and initial state 0. It

is accessible if 8i 2 m : 0�!

�

i.

Lemma 20 For any �-expressionE there is a standard accessible sequence h ~X =

~

Ei

such that B ` E = � h

~

X =

~

Ei.

Lemma 21 If h ~X =

~

Ei is standard then h ~X =

~

Ei � � h

~

X =

~

Ei.

There is a natural ‘product’ definable over bisimilar standard sequences.

Definition If hX
i

= E

i

j i 2 mi; hY

j

= F

j

j j 2 ni are standard, accessible and

bisimilar then we define a standard accessible sequence h ~X =

~

Ei
 h

~

Y =

~

F i

as follows. Let R � m � n be the largest bisimulation between the sequences

considered as charts. It is clear that if i R j then

� if W is a summand of E
i

then W is a summand of F
j

,

� if aX
i

0 is a summand of E
i

then there is some j 0 such that aY
j

0 is a summand

of F
j

and i

0

R j

0

(and symmetrically) and further that dom(R) = m, ran(R) = n and 0 R 0. Now

h

~

X =

~

Ei
 h

~

Y =

~

F i

def
= hY

ij

= G

ij

j i R ji;

26 Chapter 2. Background

where

G

ij

def
=

P

fW j W is a summand of E
i

and F

j

g

+

P

f aY

i

0

j

0

j aX

i

0 is a summand of E
i

; aY

j

0 is a summand of F
j

and i

0

R j

0

g:

Lemma 22 If h ~X =

~

Ei; h

~

Y =

~

F i are standard, accessible and bisimilar then C `

� h

~

X =

~

Ei = � (h

~

X =

~

Ei
 h

~

Y =

~

F i) and symmetrically.

PROOF We show C ` � h

~

X =

~

Ei = � hY

ij

= G

ij

j i R ji, with notation as in the

previous definition. Take E 0

i

j i 2 m to be

E

0

i

def
=

P

fW jW is a summand of E
i

g

+

P

f aZ

i

0

f

j 8j : i R j) aY

i

0

f(j)

is a summand of G
ij

g:

It is straightforward to check that the equalities

E

i

= E

0

i

[X

k

=Z

kf

]

k2m;f2n

n

G

ij

= E

0

i

[Y

k;f(j)

=Z

kf

]

k2m;f2n

n

are provable from A1–5 so by Lemma 18 so are

� h

~

X =

~

Ei = � h

~

X =

~

E

0

[X

k

=Z

kf

]

k2m;f2n

n

i

� hY

ij

= G

ij

j i R ji = � hY

ij

= E

0

i

[Y

k;f(j)

=Z

kf

]

k2m;f2n

n

j i R ji:

It remains to note that

C ` � h

~

X =

~

E

0

[X

k

=Z

kf

]

k2m;f2n

n

i = � hY

ij

= E

0

i

[Y

k;f(j)

=Z

kf

]

k2m;f2n

n

j i R ji:

2

Theorem 1 The axioms A1–5, B1–3 and fC
mn

j m;n 2 ! � ! g are sound and

complete for bisimulation over �-expressions.

PROOF Completeness is immediate from Lemmas 20, 21 and 22. 2

Complete subsets

This theorem can be sharpened somewhat. In the presence of C
12

and A1–5 ax-

iom B1 can be simplified to the following.

B1

0

�XE = E , if X not free in E.

2.3. An overview of previous work 27

Further, it is clear that if m0

> m and n

0

> n then any instance of C
mn

is an in-

stance of C
m

0

n

0 so it suffices to take enough instances of C
mn

to cover !�! (with

respect to the product ordering). One can then ask whether this is a necessary

condition. We conjecture that it is but we know only that instances with arbitrar-

ily large n are required (from the results of Chapter 3).

Relative axiomatisability

The axioms C
mn

(and also A5; B1; B3) are all sound for infinite term equality of

�-expressions. It is therefore an immediate corollary of Theorem 1 that bisimu-

lation is finitely equationally axiomatisable relative to infinite term equality, i.e.

that A1–4, B2 and the implication

E =

in�nite term

F ! E = F

are complete for bisimulation. In x4.4 we show that weak congruence is finitely

equationally axiomatisable relative to bisimulation, and hence also relative to in-

finite term equality.

One could ask whether adding P1 gives completeness for trace congruence. We

conjecture that it does not. More generally one could ask whether it or any other

equivalence in the linear-branching time spectrum is finitely equationally axioma-

tisable relative to infinite term equality. Answers to these questions would per-

haps be of technical interest. Positive results would isolate the ‘non-finitely-equational’

part of the equivalences to the C
mn

. Negative results would of course be stronger

than simple non-finite-axiomatisability results for the same equivalence. They

might nonetheless be easier to prove, being rather more focussed.

The commutative identities

A closely related infinite system has been given by Bloom and Ésik in [BÉ94]. We

will simply state the result here, without doing justice to the bulk of their work

(which is in a more general setting). We first need to define another n-ary fixed

point operator.

28 Chapter 2. Background

Definition If ~

X;

~

E are n-tuples of variables and terms then ~�

~

X

~

E is an n-tuple

of terms defined inductively:

~�XE

def
= �XE

~�

~

XX

~

EE

def
= (~�

~

X

~

E[�XH =X]); �XH

where H

def
= E[~�

~

X

~

E =

~

X]. The ith component of the tuple ~�

~

X

~

E will be written

~�

i

~

X

~

E.

There is a commutative identity for eachm;n � 1 and family of functions �
ij

:n!n j

i 2 m; j 2 n. As before, each identity loosely expresses the equality of an m-

state transition system with one in which each state has been split into n bisim-

ilar states. We let i; i0; k range over m and j; j

0

; l range over n. The commutative

identity is then

8i

0

2 m; j

0

2 n : ~�

i

0

hX

i

= E

i

[X

k

=Z

kl

]

k2m;l2n

j i 2 mi

= ~�

i

0

j

0

hY

ij

= E

i

[Y

k;�

ij

(l)

=Z

kl

]

k2m;l2n

j i 2 m; j 2 ni

in which the variables X
k

and Y

kl

are presumed not to occur free in any of the

terms E
i

. For the reader familiar with [BÉ94] this is just

�x:(t k [R=x]) = (�y:t[y

�

=x])

�

in notation which may be easier to understand at first sight, although perhaps

harder to work with.

The following two axioms are also required. For the first it is assumed thatZ does

not occur free in E.

E1 �ZE[ZZ=XY] = �X�Y E

E2 �XE[F=X] = E[�XF [E=X] =X]

These are the double iteration identity and the composition identity.

Theorem 2 ([BÉ94, Theorem 6.6]) The commutative identities together with ax-

ioms A1–5,B2,E1–2 are sound and complete for bisimulation over �-expressions.

We conjecture that in the presence of a finite number of axioms (e.g. A5,B1–

3,E1–2) the commutative identities for m;n

n imply all the consequences of C
mn

,

which in turn imply all the consequences of the commutative identities for m;n.

2.3. An overview of previous work 29

2.3.2 Finite impure horn clause systems

A number of complete systems have been given that contain an impure horn clause

expressing the fact that certain equations have unique solutions (together with a

finite set of equational axioms). The first seems to be that for language equiva-

lence of �-expressions by Salomaa [Sal66]. For �-expressions there are complete

systems for bisimulation [Mil84], weak congruence [Mil89], branching bisim-

ulation congruence [Gla93a], divergence bisimulation [Gla93b] and trace con-

gruence [Rab93]. We will reproduce the system of [Mil84] for bisimulation and

sketch a completeness proof.

The axioms are A1–5,B1–2 together with rules for congruence, substitution and

D:

D E = F [E=X] ^ X guarded in F ! E = �XF

where X is guarded in F if every free occurrence of X in F is contained in a

subexpression aG. We write ` E = F if E = F is provable from these axioms.

The completeness proof below is a minor rearrangement of that given in [Mil84].

It is similar in structure to that of the previous subsection (in fact the latter was

based on this). The definitions of standard sequences of equations and of the

product of two bisimilar standard sequences are common. Now, however, instead

of showing that expressions are provably equal to the fixed points of standard

sequences they are shown to be provable solutions of standard sequences. The

axiomD is then shown to imply anm-ary form, that certain sequences have prov-

ably unique solutions (this is the only place where D is required).

Definition A expression E is a provable solution of the equations hX
i

= E

i

j i 2

mi if there exist expressions G
i

j i 2 m such that ` E = G

0

and 8i 2 m :`

G

i

= E

i

[

~

G=

~

X]. It is a provably unique solution if for any E 0 that is also a provable

solution ` E = E

0.

Lemma 23 ([Mil84, Theorem 5.9]) For any expression E there is a standard ac-

cessible sequence h ~X =

~

Ei for which E is a provable solution.

Lemma 24 If E is a provable solution of a standard h ~X =

~

Ei then E � h

~

X =

~

Ei.

PROOF Straightforward. 2

30 Chapter 2. Background

Lemma 25 ([Mil84, Proof of Theorem 5.10]) If h ~X =

~

Ei; h

~

Y =

~

F i are stan-

dard, accessible and bisimilar with provable solutions E; F then E; F are both prov-

able solutions of h ~X =

~

Ei
 h

~

Y =

~

F i.

Definition A sequence of equations hX
i

= E

i

j i 2 mi is guarded if each X

i

is

guarded in all the E
j

. Clearly any standard sequence is guarded.

Lemma 26 ([Mil84, Theorem 5.7]) Any guarded sequence of equations has a prov-

ably unique solution.

Theorem 3 ([Mil84, Theorem 5.10]) The axiomsA1–5; B1; B2; D are sound and

complete for bisimulation over �-expressions.

PROOF Completeness is immediate from the above lemmas. 2

2.3.3 Finite pure horn clause systems

The previously cited [BÉ94] by Bloom and Ésik also contains a finite pure horn

clause system. We present a minor variant which has axioms A1–5, B2 and E1–3

together with rules for congruence and substitution. E3, also known as the GA

implication, is given below. It is assumed that Z is not free in E or F .

E3 �ZE[ZZ=XY] = �ZF [ZZ=XY] ! �ZE[ZZ=XY] = �XF [�Y E =Y]

We will give an outline of the completeness proof. It uses another implication

— the functorial implication — which cannot be written as a single pure horn

clause.

Definition The functorial implicationfor a surjective function � :m!n, where

m;n � 1, is

8i 2 m : E

i

[Y

�(j)

=X

j

]

j2m

= F

�(i)

! 8i 2 m : ~�

i

~

X

~

E = ~�

�(i)

~

Y

~

F

where ~

X;

~

E (resp. ~Y ; ~F) are m-tuples (resp. n-tuples) of variables and terms and

it is supposed that no Y

k

is free in any E
i

.

The core of the completeness proof is Lemma 28 below which can be shown by

induction on n.

2.3. An overview of previous work 31

Lemma 27 ([BÉ94, Lemma 7.5]) The axiomsA5, E1–3 imply all instances of the

functorial implication for functions � :m! 1.

Lemma 28 ([BÉ94, Lemma 7.4]) The axiomsA5, E1–2 and the functorial impli-

cation for all � :m! 1 (m � 1) imply all instances of the functorial implication for

surjective � :m!n.

Lemma 29 ([BÉ94, Proof of Prop 7.1]) The axiomsA5, E1–2 and the functorial

implication for all � :m!n imply all instances of the commutative identity.

Theorem 4 ([BÉ94, Theorem 6.6]) The axioms A1–5, B2, E1–3 are sound and

complete for bisimulation over �-expressions.

PROOF Completeness is immediate from the above lemmas and Theorem 2. 2

We conjecture thatE3 is also sound for weak congruence. If so then it follows that

the axioms F1–3, which are introduced in x4.4.1 in our proof that weak congru-

ence is equational relative to bisimulation, are, together with A1–5, B1–3, E1–3,

a finite pure horn clause axiomatisation of weak congruence over �-expressions.

2.3.4 Systems for �-expressions

Unless stated otherwise all work mentioned in this subsection is with respect to

language equivalence.

It has been shown that language equivalence of �-expressions is not finitely equa-

tional. Three proofs of this are sketched in [Con71]. The first was apparently

given by Redko [Red64] and Salomaa in an incomplete form and later completed

by Pilling. We will reproduce a sketch of the second, from [Con71, p.106], here

to permit an easy comparison with our proof that bisimulation of �-expressions

is not finitely equational. Both intuitively say that any finite set of equations does

not permit the introduction of arbitrary prime factors into the lengths of loops or

iterates. Whether this can be made precise by giving a single proof for both cases

is an interesting open question.

Theorem 5 (from [Con71]) Language equivalence of �-expressions is not finitely

equationally axiomatisable.

32 Chapter 2. Background

C1 A+ 0 = A C8 A

:

(B + C) = (A

:

B) + (A

:

C)

C2 A +B = B + A C9 (B + C)

:

A = (B

:

A) + (C

:

A)

C3 (A +B) + C = A+ (B + C) C10 (A

:

B)

:

C = A

:

(B

:

C)

C4 A

:

0 = 0 C11 (A+B)

�

= (A

�

:

B)

�

:

A

�

C5 0

:

A = 0 C12 (A

:

B)

�

= 1 + A

:

(B

:

A)

�

:

B

C6 A

:

1 = A C13 (A

�

)

�

= A

�

C7 1

:

A = A

Figure 2–3: Axioms C1–13

PROOF For any prime p there is a model A
p

of the �-expressions in which all tau-

tologies of less than a certain size are satisfied but others are not. The underlying

set of the model is a set of 2p+1 �-expressions over a distinguished action x 2 Act :

jA

p

j

def
=

n

X

i2I

x

i

�

�

� I � f0; : : : ; p� 1g

o

[fx

�

g :

Using axioms C1–13 as in Figure 2–3 and the assumption x

p

= 1 it can be shown

that any �-expression over x is provably equal to a unique element of jA
p

j, defin-

ing the operations of A
p

. If � is an environment, i.e. a function � :Act!jA

p

j,

then we write [[E]]� for the interpretation of a term E in A

p

.

Let � be the equivalence relation over jA
p

j that identifies x� and
P

i2p

x

i. It can

be shown that � is a congruence and that A
p

=� satisfies all tautologies. On the

other hand A

p

clearly does not satisfy the tautology

C14:p A

�

= (A

p

)

�

:

P

i2p

A

i

at A = x. It remains to find, for any finite set of tautologies, a prime p such that

all are satisfied by A
p

.

Let the canonical �-expressions be the sums of terms, each of which is 0, 1 or

contains no occurrence of 0, 1 or +. The length of such is the number of nonzero

subterms. Any �-expression is provably equal to a canonical one, using C1–13.

Further, any expression obtained from a canonical one by replacing actions by 0

or 1 is provably equal to a canonical one of the same or smaller length.

We show that any tautology E = F with E; F both canonical and of length less

than p holds in A

p

. Suppose not (for a contradiction), i.e. for some � :Act!jA

p

j

that [[E]]� 6= [[F]]�. We can assume w.l.g. that for all actions y occurring in E; F

2.3. An overview of previous work 33

that �(y) 62 f0; 1g and further that [[E]]� =

P

i2p

x

i and [[F]]� = x

� (as A
p

= �

satisfies all tautologies). By soundness any action y occurring under a � in E or

F must occur under a � in both. �(y) must then be a single power xi, otherwise

[[E]]� = x

�. Let E 0

; F

0 be E; F with all variables that do not occur under a � re-

placed by 1. It can be shown that [[E 0

]]� 6= x

�

= [[F

0

]]� so [[E

0

]]� =

P

i2p

x

i. There

must therefore be p subterms of E 0 (as each is a single power) which is a contra-

diction. 2

Note that C14:p is not in general sound for bisimulation, so this proof cannot be

trivially adapted to show the non-axiomatisability of bisimulation over �-expressions.

Turning to positive results, complete infinite systems have been given by Krob in

[Kro91] and Bloom and Ésik in [BÉ93a].

The latter contains another set of commutative identities which are slightly awk-

ward to state without introducing a lot of specialized notation. We need to con-

sider matrices of �-expressions, defining sequential composition in the obvious

fashion and the � of a square matrix inductively on its size:

2

4

A B

C D

3

5

�

def
=

2

4

(A+B

:

D

�

:

C)

�

(A+B

:

D

�

:

C)

�

:

B

:

D

�

(D + C

:

A

�

:

B)

�

:

C

:

A

�

(D + C

:

A

�

:

B)

�

3

5

:

There is a commutative identity for eachm � n � 1, surjective function � :m!n,

family of functions �
i

:m!m j i 2 m that respect �, i.e. satisfy

8i; j 2 m : �(j) = �(�

i

(j));

and n �m matrix A of expressions A
pi

j p 2 n; i 2 m. We first define an m �m

matrix B by

B

ij

def
=

X

k2�

�1

i

(j)

A

�(i);k

and an n� n matrix C by

C

pq

def
=

X

k2�

�1

(q)

A

pk

:

Viewing � as an m� n matrix with

�

ip

= 1 , if �(i) = p

= 0 , otherwise,

34 Chapter 2. Background

the commutative identity is the n�m equations of

B

�

:

� = �

:

C

�

:

Bloom and Ésik showed that the axiom

1

�

= 1

together with the two axioms above, the commutative identities, their duals (in

a sense we leave undefined) and the semiring axioms C1–10 are complete.

The former contains the group identities proposed in [Con71]. For each finite

group hG; �; �1

; Ii there is an identity over variables X
g

j g 2 G. Suppose G =

f0; : : : ; m� 1g and I = 0. We define an m�m matrix M by

M

ij

def
= X

i

�1

�j

:

The identity is then

[

1 0 � � � 0

]

:

M

�

:

2

6

6

6

6

4

1

...

1

3

7

7

7

7

5

=

0

@

X

g2G

X

g

1

A

�

;

which is the first equation of the commutative identity for n = 1, �(i) = 0, �
i

(j) =

i � j, A
1i

= X

i

.

Krob showed that these identities for all finite groups G together with the axioms

C1–13 and

(X

:

Y)

�

= 1 +X

:

(Y

:

X)

�

:

Y

(X + Y)

�

= (X

�

:

Y)

�

:

X

�

are complete.

They are not all sound for bisimulation — taking G to be the two element group

f1;�1g with multiplication gives the identity

(a+ b

:

a

�

:

b)

�

+ a

�

:

b

:

(a + b

:

a

�

:

b)

�

= (a+ b)

�

;

the left hand side of which can evolve via
b

�! to a state which is not successfully

terminated, which the right hand side cannot.

A finite equational system has been given by Yanov [Con71, p.108] that is com-

plete for �-expressions E such that E = E + 1. Returning to bisimulation for

2.3. An overview of previous work 35

a moment, a finite equational system has been given by Fokkink and Zantema

[FZ94] for �-expressions of the form

E ::= a

�

�

� 1

�

�

� E + E

�

�

� E

:

E

�

�

� E

?

E:

It will be discussed in Chapter 4. It is not clear whether there is any precise con-

nection between these results.

Two finite impure horn clause systems have been given by Salomaa in [Sal66],

one of which has already been discussed. Finally, finite pure horn clause systems

have been given by Arkhangelskii and Gorshkov [AG87], Boffa and Krob [Bof90,

Kro91] and Kozen [Koz94]. Sample rules from these are

(E

1

+ E

2

)

�

:

E

3

= (F

1

+ F

2

)

�

:

F

3

!

(E

1

+ E

2

)

�

:

E

3

= (F

2

+ F

1

:

E

�

1

:

E

2

)

�

:

(F

3

+ F

1

:

E

�

1

:

E

3

)

E

:

E = E ! E

�

= 1 + E

E

:

F + F = F ! E

�

:

F + F = F

respectively.

2.3.5 Infinitary rules and Denotational models

There is a large body of other work involving axiomatisations over process calculi,

some of which is mentioned here for completeness. Firstly there is work (e.g.

[BBK87,BW90]) on ACP using the Approximation Induction Principle. A family

of unary operators �
n

j n 2 ! is introduced with transitions

E

a

�!F

�

n+1

(E)

a

�!�

n

(F):

The AIP is then the implication

(8n 2 ! : �

n

(E) = �

n

(F))! E = F:

It is sound for bisimulation over finitely branching labelled transition systems and

can be used to give finite complete axiomatisations for a large class of process

calculi, e.g. those that are GSOS definable [ABV92]. Being infinitary it does not

fit in any of the classes of axiomatisation considered in x2.2. In [BK84] there is a

36 Chapter 2. Background

variant of Milner’s system from [Mil84] (reproduced in x2.3.2) for a syntax close

to our sequences of formal equations.

A number of axiomatisations for calculi of infinite state processes have been pre-

sented in a sequent style, for example in [CHM94,CHM93,Chr93,HS91,Hüt91].

It is not clear whether corresponding horn clause axiomatisations can be given,

even allowing additional predicates such as ‘guardedness’ conditions.

In this thesis we are only concerned with axiomatising equivalences. Partial or-

ders over processes have been introduced for several reasons — to match a notion

of effective testing [Mil81], to allow for divergent [Wal88] and under-specified

[CS90] processes and to allow a CPO-based denotational semantics [HP80,Hen81,

Hen88,AH88,Abr91]. Walker gives in [Wal88] a complete system using a variant

of the unique fixed point rule of [Mil84]. The CPO models admit infinitary rules

such as !-induction. We recall a definition from [Hen88] for term models which

requires a definition of the syntactic approximants to a recursive term:

E

0

def
= ?

X

n+1

def
= X

(aE)

n+1

def
= aE

n+1

(E + F)

n+1

def
= E

n+1

+ F

n+1

(�XE)

n+1

def
= E

n+1

[(�XE)

n

=X]

It is then

(8n 2 ! : E

n

� F)! E � F

which again does not fit into any of the classes of axiomatisation considered in

x2.2.

I expect that the following is known in the folklore but is perhaps worth pointing

out in print. Bisimulation preorders such as those appearing in the above ref-

erences work well for strong bisimulation but less so when one abstracts from

certain actions. In particular any CPO equipped with continuous functions for

a; b; c; � and+ that satisfies axiomsA1–4 and ��X = �X will identify �-expressions

that are not even weak-completed-trace equivalent, e.g. writing �

! for �X �X

and the standard semantic function as [[]]

[[a�

!

+ a�b�c�

!

]] = [[a�

!

+ a�b�

!

+ a�b�c�

!

]];

so when using such a model divergence can only be regarded as catastrophic.

Chapter 3

Axiomatisation over �-expressions

In this chapter we formulate and prove our main non-axiomatisability result, that

there is no finite equational axiomatisation for bisimulation over �-expressions.

To state the result a precise definition of the admissible equational axiomatisa-

tions is required, preferably as large as possible. For a syntax with variable bind-

ing, such as the �-expressions, there does not seem to be a canonical definition.

Consider for example the following three rules from [Mil84].

A4 E + E = E

B1 �XE = E[�XE =X]

D E = F [E=X] ^ X guarded in F ! E = �XF

The last involves an implication and an additional predicate symbol — for either

reason we would not call it an equational axiom. The first is formally an equation

scheme, standing for the infinite set of equations obtained by replacing E by each

�-expression. Its schematic nature is harmless, however, as it could be replaced

by the equation

X +X = X

with a standard inference rule of substitution. The second is again schematic but

is not equivalent to any equation within the syntax of �-expressions. Indeed, to

equationally express anything of interest about fixed points, such as the simple

37

38 Chapter 3. Axiomatisation over �-expressions

properties below, some notation for substitution is required.

�XE = �XE[E=X]

B1 �XE = E[�XE =X]

E2 �XE[F=X] = E[�XF [E=X] =X]

C

12

�X E[X;X;X;X] = �X E[X;X; �Y E[X; Y;X; Y]; �Y E[X; Y;X; Y]]

To express these directly we could allow axioms containing substitutions and metavari-

ables over terms (E; F) and variables (X; Y), together with a rather complicated

rule for their instantiation. It would be awkward to characterise the sound ax-

ioms of this form, however, so instead we will embed the �-expressions in a sim-

ply typed lambda calculus and work up to �� equality. Axioms such as the above

can be written as equations containing variables of higher type rather than as

equation schemes, with substitution appearing only in the rules defining �� equal-

ity. This simplifies the technical development and also gives added significance

to some of the intermediate results as the terms of higher type can be viewed as

a fragment of a higher order process calculus.

The main theorem, stated in x3.2, asserts the nonexistence of finite axiomatisa-

tions containing at most first order variables. These axiomatisations may contain

(the translations of) schemes such as those above. Generalising the result to ax-

iomatisations containing variables of arbitrary type is discussed in Chapter 6.

3.1 Outline of chapter

The proof rests on the fact that finite axiomatisations only provide bisimulations

of certain ‘widths’, which we illustrate for the first axiom above. Writing a

n for
n times

z }| {

a : : : a, repeated use of �XE = �XE[E=X] can change the length of a loop only

by factors of 2, i.e. it can derive the ‘internal’ unfolding

�Xa

n

X = �Xa

2

k

n

X

for any k � 0 but not

�Xa

n

X = �Xa

pn

X

for any prime p > 2. We show that for any finite set of axioms there is some

bound corresponding to this ‘2’.

3.2. Basic definitions 39

The details are somewhat lengthy (occupying the remainder of this chapter) but

may be of some independent interest. In particular, notions of higher order tran-

sition system and bisimulation are given which might be interesting when con-

sidering richer higher order calculi. We show a finite-state property and hence

decidability of higher order bisimulation at arbitrary type.

The intermediate results can be applied to give an easy proof of the nonexistence

of finite axiomatisations of bisimulation over calculi of �-expressions containing

a zero process. This is done in Chapter 4, where it is related to the positive result

of [FZ94] for BPA� (which has no zero).

In the next section we define the lambda calculus used and state the nonexistence

result precisely. We then define an extensional equivalence �
ext

over open terms

that contains all sound equations and give a useful alternative characterisation

of it. In x3.3 higher order transition systems and higher order bisimulation are

defined and in x3.4 we show that all processes are ‘finite state’ in the appropri-

ate sense and hence that higher order bisimulation is decidable. An inductive

characterisation of the transitions of a substituted term is given in x3.5. In x3.6

higher order bisimulation and�
ext

are shown to coincide over the base type terms

containing first order variables (the T P

1

defined in the next section) — hence all

sound axioms lie within finite higher order bisimulations. Finally in x3.7 we con-

struct from these bisimulations an equivalence over terms which is preserved by

all proofs. A pair of bisimilar but inequivalent terms is then picked out.

3.2 Basic definitions

From now on we shall be considering terms of a simply typed lambda calculus

with a single base type P of processes and the following constants:

0 :P

a :P !P for each a 2 Act

+ :P !P !P

�x :(P !P)!P

We will usually work up to �� equality, using abstraction to allow parameterised

equations. This is in contrast to taking �-reduction to be of comparable compu-

tational interest to the labelled transitions, e.g. in the work of Nielson [Nie89].

40 Chapter 3. Axiomatisation over �-expressions

Notation and definitions will be taken from [Mit90]. In particular we write typ-

ing judgements and typed equations as � .E :� and � .E = F : �, where E; F

are terms, � is a type, � an assignment of types to a finite set of variables. The

inference rules for typing and �� equality are reproduced in Figure 3–1. It is pre-

sumed wherever �; x :� appears that x does not occur in � and further that the

terms appearing in a typed equation � .E = F : � are both typable with type � in

�. There is an unfortunate clash of notation between the . of typing judgments

and the visibility predicate B. As both are standard we make only a small typo-

graphical distinction — it should be clear from context which is intended. If E a

set of typed equations we write E ` � .E = F : � to mean that � .E = F : � is

derivable from E using the rules in Figure 3–1 — formally, that it is derivable by

those rules augmented by

� .E = F : �

(� .E = F :�) 2 E :

We sometimes elide existentially quantified �.

The order of a type is as usual:

order(P) = 0

order(�! �) = maxf1 + order(�); order(�)g:

We take some type assignment K with a countable infinity of variables at each

type. For k 2 ! [f!g we write T �

k

for the set of terms E for which there is some

finite � � K, containing only variables of order � k, such that � .E :�. In par-

ticular T �

0

contains terms of type � whose only free variables are of type P .

There is an obvious bijection between the �-expressions and the long �� normal

forms in T

P

0

with for example

�XaY +X $ �x �x :P: + (ay) (x):

For any equivalence over �-expressions this induces an equivalence over T P

0

, clos-

ing under �� equality.

Definition An axiomatisation for an equivalence � over �-expressions is a set E

of typed equalities that is sound, i.e.

8E; F 2 T

P

0

: E ` E = F :P) E � F

3.2. Basic definitions 41

x : � .x : �

var

fg . c :�

cst

� .M : �

�; x : � .M :�

addhyp

�; x : � .M : �

� .(�x :�: M) : �! �

! Intro

� .M :�! � � .N : �

� .MN : �

! Elim

� .M = N : �

�; x : � .M = N : �

addhyp

� .M = M :�

ref

� .M = N : �

� .N = M : �

sym

� .L = M : � � .M = N :�

� .L = N : �

tran

�; x :� .M = N : �

� .(�x :�: M) = (�x :�: N) :�! �

�

� .M = M

0

: �! � � .N = N

0

:�

� .MN = M

0

N

0

: �

�

y 62 FV (M)

� . �x : �: M = �y : �: M [y=x] : �! �

�

� .(�x :�: M)N = M [N=x] : �

�

x 62 FV (M)

� . �x : �: (Mx) = M : �! �

�

Figure 3–1: Lambda calculus

42 Chapter 3. Axiomatisation over �-expressions

and complete, i.e.

8E; F 2 T

P

0

: E ` E = F :P (E � F:

We assume w.l.g. that E contains only equalities at type P (otherwise they can be

applied to new variables of appropriate types).

Note that if � is not both a congruence for a;+; �X and substitutive (i.e. E �

F) E[G=x] � F [G=x]) then there can be no axiomatisation in this sense. Fur-

ther, bisimulation is a substitutive congruence.

Some candidate axioms (corresponding to the axiom schemes given earlier) are

given below, taking � = fe :P !P; f :P !P , z :P !P !P !P !Pg.

� .�x e = �x �x :P: e(ex) :P

B1 � .�x e = e(�x e) :P

E2 � .�x �x :P: e(fx) = e(�x �x :P: f(e(x))) :P

C

12

� .�x �x :P: zxxxx = �x �x :P: zxx(�x �y :P: zxyxy)(�x �y :P: zxyxy) :P

They can all be shown sound for bisimulation by using Theorem 8 below. Clearly

any of the axioms of the infinite system given in x2.3.1 could be written in this

form.

We define the order of a finite set of typed equalities to be the maximum order

of any variable (free or bound) therein. The main theorem can now be stated.

Theorem 6 If Act is non-empty there is no finite axiomatisation of order � 1 for

any substitutive congruence � finer than (or identical to) bisimulation that for all

n � 1 satisfies

�XaX � �Xa

n

X:

The restriction to axioms of order � 1 simplifies the problem considerably, as we

will discuss later. We have yet to prove the result without it but note that the

candidate axioms above are all of order 1, supporting the view that it admits an

interestingly rich class of axioms.

In the rest of this section we characterise the sound axioms.

Definition If � is a substitution with a finite domain that includes the free vari-

ables of E
1

; E

2

; : : : and for all x : � in its domain �(x) 2 T

�

0

then we say that � is

a substitution for E
1

; E

2

; : : : .

3.2. Basic definitions 43

Definition If � is a substitutive congruence over �-expressions the relation �
ext

over T P

!

is given by

E �

ext

F iff for all substitutions � for E; F we have E� � F�.

Sound axioms clearly lie within �
ext

. For the converse we give another charac-

terisation.

Definition If E = f�

i

.M

i

= N

i

:P j i 2 I g is a set of typed equations then the

relation =

E

over T P

0

is the smallest equivalence such that:

� If � is a substitution for M
i

; N

i

then M

i

� =

E

N

i

�.

� =

E

is a congruence for contexts of the form

C ::=

�

�

� x

�

�

� 0

�

�

� aC

�

�

� C + C

�

�

� �x �x :P: C:

� =

E

is closed under �� equivalence.

Proposition 30 If M;N 2 T

P

0

then E `M = N :P iff M =

E

N .

Corollary 31 If� is a substitutive congruence over �-expressions then a set of typed

equations E is sound for � iff E ��
ext

.

PROOF (of Proposition 30)

We need two facts about derivations of typing and typed equality judge-

ments:

Lemma 32 If E ` � .M = N :� then there is a derivation in which all

instances of � have an instance of ref as one premise and all rules below an

instance of tran are themselves instances of tran.

PROOF We write derivations of typed equalities in a linear syntax, using

the rule names, not in tree form. The proof is via two rewrite systems

over derivations of typed equalities. The first, generated by the rule

�(d; e) 7! tran(�(d; ref ()); �(ref (); e)); if d 6= ref () 6= e

44 Chapter 3. Axiomatisation over �-expressions

clearly terminates as it reduces the number of redexes and the normal

forms satisfy the first condition. The second, generated by the rules

�(tran(d; e); ref ()) 7! tran(�(d; ref ()); �(e; ref ()))

�(ref (); tran(d; e)) 7! tran(�(ref (); d); �(ref (); e))

add hyp(tran(d; e)) 7! tran(add hyp(d); add hyp(e))

sym(tran(d; e)) 7! tran(sym(d); sym(e))

�(tran(d; e)) 7! tran(�(d); �(e));

terminates as it reduces the total number of rules below each instance

of tran. It introduces no redexes of the first so the normal forms satisfy

both conditions of the lemma. 2

Lemma 33 If�; z : � .G : �; fg .M : � and fg .N : � then there exists some

n and G

j

j j 2 1::n such that:

� �; z : � .G

j

: � .

� G

j

is in long �� normal form and contains at most one free occurrence

of z.

� G[M=z] =

��

G

1

[M=z], G
n

[N=z] =

��

G[N=z] and 8j 2 1::n � 1 :

G

j

[N=z] =

��

G

j+1

[M=z].

PROOF Let H
1

be the normal form of G and define H
k+1

by substituting

N for the leftmost occurrence of z in H

k

and taking the normal form.

Let n be the least such that H
n

has at most one occurrence of z (n must

exist as otherwise G[N=z] is not strongly normalising) and for i 2 1::n

substitute M for all except the leftmost occurrence of z in H

i

and let G
i

be the normal form thereof. 2

Now we can prove Proposition 30. The right-to-left implication is trivial. For the

left-to-right we suppose that d is a derivation of E ` � .M = N :P in the form

of Lemma 32 and show M =

E

N by induction on d. Either the bottom rule in

d is an instance of tran and the induction hypothesis can be used or d contains

no instances of tran. The unique top rule in d is then either one of ref ; �; �; � in

which case M =

��

N and so M =

E

N , or an axiom �

i

.M

i

= N

i

:P . Suppose

�

i

= x

1

: �

1

; : : : ; x

n

: �

n

. There is a term G and new variable z such that

�; z : �

1

!� � ��

n

!P .G :P

3.3. Higher order bisimulation 45

G[�x

1

: �

1

: � � ��x

n

:�

n

: M

i

=z] =

��

M

G[�x

1

: �

1

: � � ��x

n

:�

n

: N

i

=z] =

��

N:

It now suffices to use Lemma 33 and note that G
j

[�x

1

: �

1

: � � ��x

n

:�

n

: M

i

=z] =

E

G

j

[�x

1

:�

1

: � � ��x

n

: �

n

: N

i

=z]. 2

We note that, taking � to be bisimulation, �
ext

is a congruence in the following

sense.

Proposition 34 If E �

ext

F and E

0

�

ext

F

0 then aE �

ext

aF , +EE 0

�

ext

+FF

0

and �x �x :P: E �

ext

�x �x :P: F .

PROOF Straightforward, using the analogous properties of� from Proposition 7.

2

3.3 Higher order bisimulation

To show a non-axiomatisability result we need to capture some limitation of any

finite set of sound axioms. To do this a more intensional characterisation of �
ext

,

without its quantification over all substitutions, is required. A suitable equiva-

lence is defined below in two steps. Firstly a notion of higher order transition sys-

tem is given and then higher order bisimulation (written �
ho

) is defined over it.

We generalise the definition of bisimulation over open �-expressions in [Mil84],

reproduced in x2.1.1. There (where variables are all of ‘type P ’) an extended

transition system is defined over �-expressions consisting of the usual labelled

transitions together with predicates EBX (pronounced ‘E sees X ’ or ‘X is visi-

ble in E’). An extended bisimulation then requires matching of visibilities at each

state, as well as transitions, and can be shown equal to the relevant special case

of �
ext

. The essential fact about these visibility predicates is that the transitions

of a �-expressionE[F=X] can be calculated from the visibilities ofE and the tran-

sitions of E and F . In this work variables may be of higher type and so applied

to arguments (which may themselves be of higher type), so we need a more so-

phisticated visibility predicate to get an analogous result. The restriction to low

order variables is not yet needed so this is all still over terms with free variables

of arbitrary type, i.e. the terms T P

!

.

46 Chapter 3. Axiomatisation over �-expressions

Notation From now on we take all terms mentioned to be in normal form unless

stated otherwise and work up to alpha equivalence when convenient. We write

+ infix except when emphasizing the distinction between lambda calculus terms

and others. Bisimulation over T P

0

will be written �.

Definition Take the relations
a

�! j a 2 Act and B to be the least over normal

forms in T

P

!

such that

aE

a

�!E EBE

E

a

�!E

0

E + F

a

�!E

0

and sym. EBE

0

E + F BE

0

and sym.

E

a

�!E

0

�x �y :P: E

a

�!E

0

[�x �y :P: E =y]

EBE

0

�x �y :P: EBE

0

[�x �y :P: E =y]

We will usually only be concerned with visibility judgments of the form EB x

~

F .

For example consider the term

E

def
= �x �y :P: by + x(zx + y)

with fx :P !P; z :(P !P)!Pg .E :P . We have

E

b

�!E

and EB x(zx + E):

There are a number of simple properties of the transition and visibility relations

that will be used without comment.

Lemma 35 For all E; F;G 2 T

P

!

and substitutions �:

� If E
a

�!F then E�

a

�!F�.

� If EBF then E�BF�.

� If EBF

a

�!G then E

a

�!G.

� If EBF BG then EBG.

3.3. Higher order bisimulation 47

� If E
a

�!F then FV (F) � FV (E).

� If EBF then FV (F) � FV (E).

PROOF Straightforward inductions on the derivations of the judgments. 2

Higher order bisimulation is defined using this transition system.

Definition If R is a relation on T

P

!

then the typed relations ^

R

� over T �

!

are given

by

�

^

R

P

= R

� E

^

R

�! �

F iff for all x :� 2 K, if x is not free in E; F then Ex

^

R

�

Fx.

Note that we are writing Ex for its normal form, according to the convention

above.

Notation We abbreviate the application ((xE

1

) : : :)E

n

by x ~

E, in which x is typi-

cally assumed to be of a type �
1

! : : : �

n

!P .

Definition A relation R over T P

!

is a higher order bisimulation if E R F implies

� If E
a

�!E

0 then 9F 0

: F

a

�!F

0

^ E

0

R F

0.

� If EB x

~

E then 9 ~F : F B x

~

F ^ 8i : E

i

^

R

�

i

F

i

.

and symmetrically. We write �
ho

for the union of all higher order bisimulations

and ��

ho

for �̂
ho

�.

Proposition 36 �

ho

is a higher order bisimulation and is an equivalence relation.

PROOF Straightforward except for transitivity where Proposition 38 is needed.

2

For example, if

E

def
= �x �x :P: y(yx)

F

def
= �x �x :P: yx;

48 Chapter 3. Axiomatisation over �-expressions

then E �

ho

F is shown by taking a relation fhE; F i; hyE; F ig, the only relevant

visibilities or transitions being

EB y(y(E)) F B yF

yEB yE F B yF:

The terms in the T �

!

can be viewed as a small fragment of the higher order � calcu-

lus of [San93], taking a single object sort s 7! () and the agents without parallel

composition, restriction, infinitary sum, matching, variables of sorts containing

s or infinitely many/higher order defined constants. This is discussed further in

x4.2.

3.4 Finite state and decidability properties

As we are working with a mild generalization of finite state processes it is to be ex-

pected that all higher order bisimulations between them are in some sense finitely

generated. In the sequel we need only the following result for terms in T

P

1

.

Definition The derivatives of a term E 2 T

P

1

are der(E)

def
= fF 2 T

P

1

j E;

�

F g,

where; is the least relation over T P

1

such that

E�!E

0

) E;E

0

EB x

~

E) 8i : E;E

i

:

This generalises the standard definition for transition systems.

Lemma 37 If E 2 T

P

1

then der(E) is finite. Further if E �

ho

F then there is a

higher order bisimulation contained in der(E)� der(F) relating them.

PROOF This is a special case of Corollary 46 and Proposition 47 below. 2

In the rest of this section we show a generalization of this result for terms in T

P

!

containing free variables of arbitrary types and hence the decidability of higher

order bisimulation for arbitrary terms. This is slightly subtle as any higher order

bisimulation between non-trivial terms in T

P

!

must be infinite. We will need to

know that higher order bisimulation preserves sets of free variables.

3.4. Finite state and decidability properties 49

Proposition 38 If E �

ho

F then FV (E) = FV (F).

PROOF We show that free variables are accessible via the transition system in a

sense that is preserved by higher order bisimulation.

Notation V ranges over sets of variables such that each V� and K�

�V

�

is infinite.

Definition For a set V of variables;
V

is the least relation over normal

forms in T

P

!

such that

E�!E

0

) E;

V

E

0

EB x

~

E ^ ~z \ (FV (E

i

) [V) = fg) E;

V

E

i

~z:

Lemma 39 If E;
V

F then for all terms G, variables w 2 V

P and substitu-

tions �with dom(�)[ran(�) � K�V there exists �0 with dom(�

0

)[ran(�

0

) �

K� V such that E�[G=w];
V

F�

0

[G=w].

PROOF If E
a

�!F we can take �

0

= �, otherwise EB y

~

E and F = E

i

~z

with ~z \ (FV (E

i

) [V) = fg. Take some ~z

0 such that ~z0 \ (FV (E

i

) [V [

FV (E

i

�[G=w]) [dom(�)) = fg and put �0 = [~z

0

=~z] � �. 2

Corollary 40 If E;n

V

B x

~

E, x 2 V and � is a substitution with dom(�) [

ran(�) � K � V then there exists ~

E

0 such that E�;n

V

B x

~

E

0.

Corollary 41 If E;�

V

B x

~

E and fx; yg � V then there exists ~

E

0 such that

�x �y :P: E;

�

V

B x

~

E

0.

PROOF Both are simple inductions along;n

V

. 2

Lemma 42 x 2 FV (E) iff 8V : x 2 V) 9

~

E : E;

�

V

B x

~

E.

PROOF): By induction on E, using Corollary 41 for the �x case.

(: If E;�

V

F then the free variables of F are either present in E or not

in V. 2

Suppose x 2 FV (E). Take any V containing FV (E) [FV (F). By Lemma 42

E;

n

V

B x

~

E. By induction on nwe can show F;

n

V

B x

~

F (using Corollary 40) then

by Lemma 42 x 2 FV (F). 2

50 Chapter 3. Axiomatisation over �-expressions

We give an alternative definition of higher order bisimulation that is not neces-

sarily infinite.

Definition If R is a relation on T

P

!

then the typed relations R
�

over T �

!

are given

by

� R

P

= R

� E R

�! �

F iff there exists x : � 2 K that is not free in E; F such that Ex R
�

Fx.

Definition Such an R is a loose higher order bisimulation if E R F implies

� If E
a

�!E

0 then 9F 0

: F

a

�!F

0

^ E

0

R F

0.

� If EB x

~

E then 9 ~F : F B x

~

F ^ 8i : E

i

R

�

i

F

i

.

and symmetrically.

A loose higher order bisimulation generates a higher order bisimulation as fol-

lows.

Definition If R is a relation on T

P

!

then E Cl(R) F iff there exists an injective

type-respecting substitution � :FV (E; F)!K such that E� R F�.

Proposition 43 If R is a loose higher order bisimulation then Cl(R) is a higher

order bisimulation.

PROOF

Lemma 44 If E R

�

F then for all injective � :FV (E; F)!K we have

E�

\

Cl(R)

�

F�.

PROOF By induction on the type �. 2

We now check that Cl(R) is a higher order bisimulation. SupposeE Cl(R) F , i.e.

for some � that E� R F�. If E
a

�!E

0 then E�

a

�!E

0

� so (as R a loose higher order

bisimulation) there is some B such that F�
a

�!B R

�1

E

0

�. Now � is invertible so

F = F��

�1

a

�!B�

�1 and moreover E 0

Cl(R) B�

�1.

3.4. Finite state and decidability properties 51

Suppose EB x

~

E, then E�B �(x)(

~

E�) so F�B �(x)

~

B with 8i : E
i

� R

�

i

B

i

. Now

F B x(

~

B�

�1

) and by Lemma 44 8i : E
i

\

Cl(R)

�

i

B

i

�

�1. 2

Given terms E; F and a higher order bisimulation R with E R F we shall now

show that it is possible to make particular choices of their derivatives such that

these are finite and R restricted to them is a loose higher order bisimulation.

We suppose some total order, isomorphic to the naturals, on each K� and that

V � K is a set of variables with each V� and K�

� V

� infinite. We let f range

over computable type-respecting partial functionsK!P

�n

Kwith finite and com-

putable domain. They are extended to total functions f : P

�n

K!P

�n

K by

f(A)

def
= (A� dom(f)) [

[

f f(a) j a 2 A \ dom(f) g:

The function with empty domain will be written fg. These functions will be used

to calculate the free variables of subterms in their original contexts.

Definition The full application of a term is given by

E �

f

def
= E for E :P

E �

f

def
= (Ex) �

f

for E : �! �;

where x is the first variable in (K

�

� V

�

)� f(FV (E)).

Definition The f -derivatives of a term E 2 T

P

!

are der

f

(E)

def
= fF 2 T

P

!

j

E;

�

f

F g where;
f

is the least relation over T P

!

such that

E�!E

0

) E;

f

E

0

EB x

~

E) 8i : E;

f

E

i

�

f

:

The proper f -derivatives of E are der

+

f

(E)

def
= fF 2 T

P

!

j E;

+

f

F g.

Proposition 45 If R is a higher order bisimulation with E R F then Q

def
= R \

(der

fg

E � der

fg

F) is a loose higher order bisimulation.

PROOF We can show E

^

R

�

F) E �

fg

R F �

fg

and E �

fg

Q F �

fg

) E Q

�

F by

induction on types using Proposition 38. The result is then straightforward. 2

Corollary 46 E �

ho

F iff there is a loose higher order bisimulation contained in

der

fg

E � der

fg

F .

52 Chapter 3. Axiomatisation over �-expressions

PROOF Immediate from Propositions 43 and 45. 2

Proposition 47 The set of f -derivatives der
f

(E) of a term is finite and computable.

PROOF

Lemma 48 If x 2 V then 8F 2 T

�

!

: F �

f�x7!f(FV (E)�fxg)

[�x �x :P: E =x] =

F [�x �x :P: E =x] �

f

.

PROOF Induction on �. 2

Lemma 49 If x 2 V then 8n : E[�x �x :P: E =x];

�n

f

F () 9E

0

:

E;

�n

f�x7!f(FV (E)�fxg)

E

0

^ E

0

[�x �x :P: E =x] = F .

PROOF Induction on n. 2

It is now straightforward to show by induction on E that 8f : der

+

f

(E) is finite

and computable. 2

Corollary 50 �

ho

is decidable.

PROOF By Corollary 46, to decide E �

ho

F we need only consider the set of

relations contained in der

fg

E � der

fg

F . This set is finite and computable and

moreover it is clearly decidable whether any element of it is a loose higher order

bisimulation. 2

We note that �
ho

is also a congruence in a limited sense, although this fact will

not be used until Chapter 6.

Proposition 51

1. IfE �

ho

F andE 0

�

ho

F

0 then aE �

ho

aF , +EE 0

�

ho

+FF

0 and �x �x :P: E �

ho

�x �x :P: F .

2. If E �

�

ho

F and x :� then �x : �: E �

�! �

ho

�x : �: F .

3. If E �

�

ho

F and x :�! � then xE �

�

ho

xF .

4. If E �

�! �

ho

F and x : � 62 FV (E) [FV (F) then Ex �

�

ho

Fx.

3.5. The transition system of a substituted term 53

PROOF The only interesting part is the �x case of 1, for which it suffices to check

that

fE[�x �x :P: G =x]; F [�x �x :P: G =x] j E; F;G 2 T

P

!

and E �

ho

F g

is a loose higher order bisimulation. 2

3.5 The transition system of a substituted term

In this section we consider the transitions of a substituted term such as E�. The

transition and visibility predicates are related by the following.

Lemma 52 If E 2 T

P

!

, � is a substitution for E and E�

a

�!A then either E
a

�!E

0

and E

0

� = A or EB x

~

E and �(x)(

~

E�)

a

�!A.

PROOF Induction on the derivation of E�
a

�!A. 2

In general there will be a complex pattern of � reduction involved in reducing the

�(x)(

~

E�) term appearing above to normal form. If E 2 T

P

1

and E and ran(�) are

all in normal form, however, it is simple, allowing a direct inductive characteri-

sation of the transitions of E�. The rest of this section is devoted to giving that

characterisation.

For the remainder of the chapter we consider only terms in T

P

1

, i.e. terms of type

P containing at most first order variables. We discuss whether this restriction can

be removed in x6.1.

We consider a substitution � with a finite domain containing at most first order

variables and a range with variables only of type P . We suppose that dom(�) \

FV (ran(�)) = fg. We further suppose w.l.g. that there is a set Z � K of variables

disjoint from dom(�) and FV (ran(�)) and for all y :P !� � �!P

| {z }

n times

!P 2 dom(�)

that �(y) is of the form

�z

1

:P: � � ��z

n

:P: H

y

for a term H

y

, with each z

i

2 Z.

In the sequel y ranges over dom(�), z over ZP and x over KP

� dom(�)� Z.

54 Chapter 3. Axiomatisation over �-expressions

Definition The relation B
�

� T

P

1

� (K

P

� dom(�)�Z) is the least such that

1. EB x) EB

�

x

2. EB y

~

E ^ H

y

B x) EB

�

x

3. EB y

~

E ^ H

y

B z

j

^ E

j

B

�

x) EB

�

x.

For a 2 Act let
a

�!

�

� T

P

1

� T

P

1

be the least relation such that

1. E
a

�!F) E

a

�!

�

F

2. EB y

~

E ^ H

y

a

�!H

0

) E

a

�!

�

H

0

[

~

E=~z]

3. EB y

~

E ^ H

y

B z

j

^ E

j

a

�!

�

B) E

a

�!

�

B.

Proposition 53 These relations agree with the transition system, i.e.

E�B x () EB

�

x

E�

a

�!B () 9F : E

a

�!

�

F ^ F� = B:

PROOF The right-to-left implications are straightforward inductions. To show

the others we first pick out a controlled sub-relation of the � reduction of E�.

Definition Let the relation �!
�

� T

P

1

� T

P

1

be the least relation such

that

1. y ~E�!
�

H

y

[

~

E=~z]

2. E�!
�

F) �x �w :P: E�!

�

�x �w :P: F

3. (E

j

�!

�

E

0

j

^ 8i 6= j : E

i

= E

0

i

)) c

~

E�!

�

c

~

E

0 for any constant or

variable c.

This is related to �� equality by the following.

Lemma 54 For all E there is some F such that E�!
�

�

F and FV (F) \

dom(�) = fg.

PROOF One can show that otherwise E� has an infinite sequence of �

reductions. 2

3.6. The coincidence of �
ext

and �
ho

55

Lemma 55 If E�!
�

F then E� = F�.

PROOF Induction on E�!

�

F . 2

It is related to the transition relation by

Lemma 56 IfE�!
�

F

a

�!

�

H then for someGE

a

�!

�

G�!

�

�

H. Further,

if E�!
�

F B

�

x then EB

�

x.

PROOF By somewhat tedious inductions on derivations of �!
�

. 2

Now suppose E�
a

�!B. By Lemmas 54 and 55 there is an F such that E�!
�

�

F

and E� = F

a

�!B. By the definition of
a

�!

�

we have F

a

�!

�

B so using Lemma

56 we have E
a

�!

�

A�!

�

�

B for some A. Finally by Lemma 55 we have A� = B.

Suppose E�B x. As before there is an F such that E�!
�

�

F and E� = F B x.

By the definition of B
�

we have F B
�

x so using Lemma 56 we have EB
�

x. 2

3.6 The coincidence of �
ext

and �

ho

We now show that over T P

1

the equivalences �
ext

and �
ho

coincide.

Theorem 7 If Act is nonempty and E �

ext

F then E �

ho

F .

PROOF Suppose there is some action a 2 Act . By Lemma 37 there is a largest N

such that some derivative of E or F is higher order bisimilar to a

N

0 (take N = 0

if there are none such). Using this we construct a substitution � for E; F . For

y :P !� � �!P

| {z }

m times

!P put

�(y)

def
= �z

1

:P: � � ��z

m

:P: aA

y

A

y

def
= a0 + a

N+3+y

0 +

X

i21::m

aB

i

B

i

def
= a

2i

0 + a

2i+1

z

i

(eliding some injective function from variables to the naturals). The following

three lemmas show that � is sufficiently discriminating.

Lemma 57 If E 0

2 der(E) [der(F) then 8 ~G : E

0

� 6�

ho

A

y

[

~

G� =~z].

56 Chapter 3. Axiomatisation over �-expressions

PROOF Suppose not, then E

0

�

a

�! �

ho

P

def
= a

N+2+y

0. By Lemma 52

either E 0

a

�!E

00

^ E

00

� �

ho

P or E 0

B y

0

~

E ^ A

y

0

[

~

E� =~z] �

ho

P . Both

contradict the definition of �. 2

Lemma 58 If y 6= y

0then 8 ~E; ~

F : A

y

[

~

E=~z] 6�

ho

A

y

0

[

~

F=~z].

PROOF The transition to aN+2+y

0 of the left hand side cannot be matched

by the right. 2

Lemma 59 If A
y

[

~

E=~z] �

ho

A

y

[

~

F=~z] then 8i : E
i

�

ho

F

i

.

PROOF Straightforward, by consideration of the ways in which a transi-

tion A

y

[

~

E=~z]

a

�!B

i

[

~

E=~z] can be matched. 2

We can now check that

R

def
= fE

0

; F

0

j E

0

2 der(E); F

0

2 der(F) and E

0

� �

ho

F

0

� g

is a higher order bisimulation. Consider E 0

R F

0 and suppose E

0

b

�!E

00. By

Lemma 35 E

0

�

b

�!E

00

� so F

0

�

b

�! � E

00

�. By Lemma 52 either F 0

b

�!F

00

^ F

00

� �

E

00

� — then E

00

R F

00 — or F 0

B y

~

F ^ b = a ^ A

y

[

~

F� =~z] � E

00

� — contradict-

ing Lemma 57. Now suppose E

0

B y

~

E. We have E

0

�

a

�!A

y

[

~

E� =~z] so F

0

�

a

�! �

A

y

[

~

E� =~z]. By Lemma 52 either F 0

a

�!F

00

^ F

00

� � A

y

[

~

E� =~z] — contradicting

Lemma 57 — or F 0

B y

0

~

F ^ A

y

0

[

~

F� =~z] � A

y

[

~

E� =~z] — in which case by Lemma

58 y = y

0 and by Lemma 59 8i : E
i

� � F

i

� so 8i : E
i

R F

i

. 2

Remark The presence of + is essential for this theorem. Consider a variable

y :P !P !P . The+-free normal forms in T P !P !P

0

are of the form �x

1

:P: �x

2

:P: E

for E of

E ::= 0

�

�

� aE

�

�

� x

�

�

� �x �x :P: E

and so must ignore one or both of their arguments. The appropriate definition

of �
ext

is �+free

ext

where A �

+free

ext

B iff for all substitutions for A;B with +-free

range A� � B�. Taking the terms A
def
= y 0 (y a0 0) and B

def
= y 0 (y aa0 0)

we have A �

+free

ext

B but A 6�

ho

B. This prevents a cheap proof of non-finite-

axiomatisability over the +-free fragment. For the even simpler +-free fragment

with a single action we conjecture that there is a finite equational axiomatisation

using the axiom

ff :P !P; g :P !Pg .�x �x :P: f(gx) = �x �x :P: f(g(g(x)) :P;

3.6. The coincidence of �
ext

and �
ho

57

which is sound only because this fragment is so inexpressive.

Theorem 8 If E �

ho

F then E �

ext

F .

PROOF Given E �

ho

F we must show for all substitutions � for E; F that E� �
ho

F�. This is done indirectly. We construct below transition systems E?�; F?� and

show in the next two lemmas that

E� �

ho

E?� �

ho

F?� �

ho

E�:

2

The (straightforward) direct proof is not given as in the next section information

relating the ‘loop structure’ of E� and F� is extracted from these bisimulations.

The transition system E?� differs from E� in that states that might be identified

by the non-injectivity of � are split apart. For example if

E

def
= y + aE

0

E

0

def
= �x �x :P: a(z + ax)

�(y)

def
= �(z)

def
= 0

then

E�

a

-

�

a

E

0

�

whereas E?� is

hEi

a

-

hE

0

i

a

-

�

a

hz + aE

0

i

To define E?� the inference system of x3.3 is extended to one for inferring tran-

sitions labelled by nonempty finite sequences of actions, with the rules

E

a

�!F

E

a�

�!F

single

E

a

�!F F

l

�!G

E

al

�!G

cons:

If d is an inference tree of this system with conclusionE
l

�!F we write d :E
l

�!F .

Definition Given a substitution � for E
0

with � and notation as in x3.5 the tran-

sition system E

0

?� has states

S

def
= f hEi j E 2 der(E

0

) g

] fhH

0

[

~

E=~z]; y

~

E; di j d :H

y

l

�!H

0

and 9E 2 der(E

0

) : EB y

~

Eg

58 Chapter 3. Axiomatisation over �-expressions

with root hE
0

i. The transition relation
a

; of E
0

?� is the least relation such that

1. E
a

�!F) hEi

a

;hF i

2. EB y

~

E ^ d :H

y

a

�!H

0

) hEi

a

;hH

0

[

~

E=~z]; y

~

E; single(d)i

3. EB y

~

E ^ H

y

B z

i

^ hE

i

i

a

;s) hEi

a

;s

4. (9E 2 der(E

0

) : EB y

~

E) ^ d :H

y

l

�!H

0

^ d

0

:H

0

a

�!H

00

)

hH

0

[

~

E=~z]; y

~

E; di

a

;hH

00

[

~

E=~z]; y

~

E; cons(d; d

0

)i

5. (9E 2 der(E

0

) : EB y

~

E) ^ d :H

y

l

�!H

0

^ H

0

B z

i

^ hEi

a

;s)

hH

0

[

~

E=~z]; y

~

E; di

a

;s.

The visibilities B0 of E
0

?� are given by

1. (There is no corresponding case.)

2. EB y

~

E ^ H

y

B x) hEiB

0

x

3. EB y

~

E ^ H

y

B z

i

^ hE

i

iB

0

x) hEiB

0

x

4. (9E 2 der(E

0

) : EB y

~

E) ^ d :H

y

l

�!H

0

^ H

0

B x)

hH

0

[

~

E=~z]; y

~

E; diB

0

x

5. (9E 2 der(E

0

) : EB y

~

E) ^ d :H

y

l

�!H

0

^ H

0

B z

i

^ hEiB

0

x)

hH

0

[

~

E=~z]; y

~

E; diB

0

x.

Lemma 60 If � is a substitution for E then E� �

ho

E?�.

PROOF One can check that

fA�; hAi j hAi is a state of E?� g

[fA�; hA; F; di j hA; F; di is a state of E?� g

is a higher order bisimulation, using induction on the transition derivations. 2

Lemma 61 If E �

ho

F and � is a substitution for E; F then E?� �

ho

F?�.

3.7. Loop properties 59

PROOF By Lemma 37 there is a finite higher order bisimulation R with E R F .

Let the relation Q between the states of E?� and F?� be

Q

def
= f hE

0

i; hF

0

i j E

0

R F

0

g

[f hH

0

[

~

E=~z]; y

~

E; di; hH

0

[

~

F=~z]; y

~

F; di j there exist E 0

2 der(E) and

F

0

2 der(F) such that

E

0

B y

~

E; F

0

B y

~

F;

8j : E

j

R F

j

and d :H

y

l

�!H

0

g:

One can check that Q is a higher order bisimulation betwixt E?� and F?�, using

induction on the transition derivations. 2

3.7 Loop properties

The instantiations E�; F� of a higher order bisimilar E; F are uniform in a sense

captured by the following definition and theorem.

Definition For u � 1 take the predicate L

u

and equivalence relation �

u

over

states in a transition system to be:

� L

u

s iff s has a loop with no prime factor � u, i.e. s�!�

s

0

�!

n

s

0 for some s0

and n with no prime factor � u.

� s �

u

s

0 iff 8v � u : L

v

s, L

v

s

0.

Theorem 9 If E �

ho

F then there is some u � 1 such that for all substitutions �

for E; F E� �

u

F�.

PROOF This follows from the following two lemmas. 2

Lemma 62 If � is a substitution for E then 8u � 1 : E� �

u

E?�.

PROOF See Appendix B. 2

Definition For a finite relation U � A� B say the width of U is

width(U)

def
= maxfmax

a2A

#f b j a U b g; max

b2B

#f a j a U b gg:

60 Chapter 3. Axiomatisation over �-expressions

Lemma 63 If E �

ho

F then there is some u � 1 such that for all substitutions �

for E; F E?� �

u

F?�.

PROOF Consider the R and Q in the proof of Lemma 61. We first give a u � 1,

dependent on R but not on �, strictly greater than the width of Q. Let R0

� T

P

1

�

T

P

1

be

y

~

E R

0

y

~

F () 9E

0

2 der(E); F

0

2 der(F) : E

0

B y

~

E ^ F

0

B y

~

F ^ 8i : E

i

R F

i

and put u
def
= 1 + maxfwidth(R); width(R

0

)g. To see that E?� �
u

F?� suppose

that s Q t; v � u and L

v

s, i.e. for some s

0 and some n � 1 with no prime factors

� v that s�!�

s

0

�!

n

s

0. As Q is a higher order bisimulation there exist t
i

j i � 0

such that

s

0

s

0

s

0

� � �

Q Q Q � � �

t �!

�

t

0

�!

n

t

1

�!

n

t

2

� � �

but #f t
i

j i � 0 g < u so for some k 2 1::u � 1 we have t�!

�

t

0

�!

kn

t

0. Further,

kn has no prime factors � v. 2

The equivalences �
u

have the following congruence property.

Lemma 64 For M;N 2 T

P

0

and C[] a context from

C ::=

�

�

� x

�

�

� 0

�

�

� aC

�

�

� C + C

�

�

� �x �x :P: C

(where x :P 2 K), if M �

ho

N and M �

u

N then C[M] �

u

C[N].

PROOF By induction on contexts using the following lemma. 2

Definition loopsE

def
= f k j 9E

0

: E�!

�

E

0

�!

k

E

0

g

Lemma 65

loopsaE = loopsE

loopsE + F = loopsE [loopsF

loops�x �x :P: E = loopsE [

n

X

i2I

k

i

�

�

� 8i 2 I : E�!

k

i

B x

o

where I ranges over finite sets.

PROOF Straightforward. 2

3.7. Loop properties 61

The following is included for later use.

Lemma 66 If E�!�

F�!

l

F then there exist a term �x �x :P: G, a finite set I and

k

i

� 1 j i 2 I such that E�!�

B �x �x :P: G;

P

I

k

i

= l and 8i : G�!k

i

B x.

PROOF Induction on E using Lemma 65. 2

Finally we can put together the results of this chapter.

Lemma 67 If E is a finite set of typed equalities that is sound for bisimulation and

of order � 1 then there is some u � 1 such that for all M;N 2 T

P

0

if E `M = N :P

then M �

u

N .

PROOF We assume w.l.g. that E contains only equalities at type P . By Corollary

31 each equation lies within �
ext

and so by Theorem 7 within �
ho

. Take u to be

the largest of those given by Theorem 9 applied to each equation. By Proposition

30 M =

E

N . An induction on a derivation of this then suffices, using Lemma 64

in the inductive steps and Theorem 9 at the uses of axioms. 2

PROOF (of Theorem 6) The main theorem follows by noting that if E is sound for

an equivalence finer than bisimulation then it is sound for bisimulation and that,

if q is the smallest prime strictly greater than the u given by the previous lemma,

then

�x �x :P: ax 6�

u

�x �x :P: a

q

x:

2

Chapter 4

A Miscellany

In this chapter we include a number of applications and developments of the the-

ory of higher order bisimulation. We consider the axiomatisability of bisimulation

over �-expressions, relate higher order bisimulation to the higher order � calcu-

lus and cast our results into the language of non-well-founded set theory. We also

give a definition of weak higher order congruence and show that weak congru-

ence is finitely axiomatisable relative to bisimulation. The sections may be read

in any order.

4.1 Axiomatisation over �-expressions

Bisimulation equivalence of �-expressions has recently received attention in [BBP94],

where the addition of operators that suffice to express the regular processes is

considered. The results of the previous chapter can be used to give an easy proof

of a non-axiomatisability result for the basic calculus.

4.1.1 Axiomatisation with and without 0

To discuss axioms over �-expressions we find it convenient to introduce a set of

variables disjoint from Act . An axiomatisation will be a set of pairs of open terms

together with rules for equivalence, congruence and instantiation of variables.

This differs slightly from the usual setup in which instantiation of actions is per-

mitted.

62

4.1. Axiomatisation over �-expressions 63

Fokkink and Zantema have given (in [FZ94]) a complete axiomatisation for the

�-expressions that do not contain 0, 1 or the unary �.

Theorem 10 (Fokkink and Zantema) The axioms below are sound and complete

for bisimulation over BPA�, i.e. over expressions of fa;+; :; ?

g.

x+ y = y + x

(x+ y) + z = x + (y + z)

x + x = x

(x+ y)

:

z = x

:

z + y

:

z

(x

:

y)

:

z = x

:

(y

:

z)

x

:

(x

?

y) + y = x

?

y

x

?

(y

:

z) = (x

?

y)

:

z

x

?

(y

:

((x + y)

?

z) + z) = (x + y)

?

z

PROOF This is immediate from the result of [FZ94] and Proposition 17. 2

If the zero process is added, however, there can be no finite axiomatisation.

Theorem 11 There is no finite axiomatisation for bisimulation over any set of �-

expressions closed under f0; a;+; :g and one of f �

;

?

g.

This can be shown using the results of Chapter 3. We first note that the �-expressions

(and axioms over them) can be faithfully encoded into our lambda calculus, en-

coding sequential composition using function composition at type P !P .

Definition Take the map [[]] from �-expressions to lambda calculus terms of type

P !P to be

[[x]]

def
= x where we suppose x :P !P 2 K

[[a]]

def
= a

[[0]]

def
= �y :P: 0

[[1]]

def
= �y :P: y

[[E + F]]

def
= �y :P: + ([[E]]y)([[F]]y)

[[E

:

F]]

def
= �y :P: [[E]]([[F]]y)

[[E

�

]]

def
= �y :P: �x �z :P: + (y)([[E]]z)

64 Chapter 4. A Miscellany

[[E

?

F]]

def
= �y :P: �x �z :P: + ([[F]]y)([[E]]z)

Lemma 68 If y :P 2 K then

E � F () [[E]]y �

ho

[[F]]y:

PROOF It is straightforward to check thatE
p

() [[E]]yB y,E
a

�!E

0

) [[E]]y

a

�![[E

0

]]y

and [[E]]y

a

�!A) 9E

0

: E

a

�!E

0

^ [[E

0

]]y = A. 2

PROOF (of Theorem 11) To prove the theorem we consider a sound finite set A

of axioms. The encodings of these must be higher order bisimilar (as the terms

constructed in the proof of Theorem 7 are all expressible) so [[A]] is a sound set

in our earlier sense. By Lemma 67 there is some u such that if M;N 2 T

P

0

and

[[A]] ` M = N :P then M �

u

N . Now consider the relevant pair of terms below,

where q is the smallest prime strictly greater than u.

E

def
= a

�

:

0 E

def
= a

?

0

F

def
= (

q times

z }| {

a

:

: : :

:

a)

�

:

0 F

def
= (

q times

z }| {

a

:

: : :

:

a)

?

0

In each case [[E]]y 6�

u

[[F]]y so [[A]] 6` [[E]]y = [[F]]y :P so A 6` E = F but E � F .

2

The addition of other operators does not affect the result, so long as their seman-

tics are expressible by an encoding into lambda terms as above.

In [Fok94] Fokkink introduced a subcalculus of the �-expressions that contains

a zero process but for which bisimulation is nonetheless finitely equationally ax-

iomatisable. Denoted MPA�

�

(for Minimal Process Algebra) it is obtained by re-

quiring the first operand of sequential compositions and of binary iterations to

be single actions, i.e. in our notation the terms of

E ::= 0

�

�

� a

:

E

�

�

� E + E

�

�

� a

?

E:

Aceto and Ingólfsdóttir have recently given (in [AI95]) an extension of that ax-

iomatisation that is complete for observation congruence. These positive axioma-

tisability results, for BPA� and MPA�

�

, can be seen as depending on the inexpres-

siveness of the calculi, in that the processes required in the proof of Theorem 11

cannot be expressed.

4.1. Axiomatisation over �-expressions 65

4.1.2 Axiomatisation with 1

In the light of the previous subsection it is natural to question whether bisimu-

lation over expressions of the signature fa; 1;+; :; �

g is axiomatisable. Unfortu-

nately a naive application of the same idea does not show non-axiomatisability.

For a proof analogous to that of Theorem 11 we would need a term G such that

G

� and (G

q

)

� are bisimilar but not provably equal. By the following lemma any

such G must be successfully terminated.

Lemma 69 For q � 2, if G�

� (G

q

)

� then either G
p

or 6 9H : G�!

�

H

p

.

PROOF Suppose for a contradiction that :G
p

and G�!

+

p

. Writing n(E) for

the smallest non-zero natural such that E�!n

p

we have n(G�

) = n(G) � 1 and

n((G

q

)

�

) = q n(G

�

) > n(G

�

), hence G�

6� (G

q

)

�. 2

Taking the simplest nontrivial example G
def
= a + 1 it is easy to see that for any n

there is a bisimulation of width 2 relating ((a+ 1)

n

)

� and ((a+ 1)

n+1

)

�, namely

R

def
= f((a+ 1)

n

)

�

; ((a+ 1)

n+1

)

�

g

[fC

n

m

; C

n+1

m+1

j 0 � m � n� 1 g

[fC

n

n�1

; C

n+1

0

g

where

C

n

0

def
= 1

:

((a+ 1)

n

)

�

C

n

m

def
= (1

:

(a+ 1)

m

)

:

((a+ 1)

n

)

� , for m � 1:

The technique of Chapter 3 therefore cannot be used to show that (a + 1)

� and

((a+1)

q

)

� are not provably equal. The question of axiomatisability over fa; 1;+; :; �

g

remains open.

66 Chapter 4. A Miscellany

4.2 Higher order process calculi

The lambda calculus of x3.2 was introduced to allow a clean definition of inter-

esting classes of equational axioms over the �-expressions, not involving ad hoc

metanotation. It is, however, of additional interest when viewed as a simple frag-

ment of a higher order process calculus such as the higher order � calculus of

Sangiorgi [San93,San94]. In particular the theory of strong higher order bisim-

ulation is not well understood even for this fragment (the work of Sangiorgi is

concerned only with the weak case). We will give a precise connection between

higher order bisimulation (as defined in Chapter 3) and normal bisimulation as

defined in [San94] for the strictly higher order fragment of the higher order � cal-

culus. This confirms the intuition that, in both, the equivalence of abstractions

is checked by applying them to simple ‘new’ terms (new variables and triggers

respectively).

4.2.1 Syntax and transitions

The basic version of the higher order � calculus of [San94] has guarded summa-

tion, parallel composition, restriction and the application of a variable or con-

stant:

P ::=

X

i2I

�

i

:P

i

�

�

� P

1

jP

2

�

�

� �aP

�

�

� Y h

~

Ai

�

�

� Dh

~

Ai

where prefixes � are inputs or outputs:

� ::= a(

~

X)

�

�

� ah

~

Ai

(with a 6= �) and agents A are abstractions:

A ::= (

~

X)P:

Here ~

X and ~

A range over (possibly empty) tuples. It is assumed that all terms

obey a suitable sorting discipline. There is an evident bijection between the lambda

terms in T

P

!

(in normal form, containing only guarded summation and modulo

axioms A1–4) and the higher order � terms in which there is no parallel compo-

sition, restriction or infinitary summation, the only defined constant is

FIX

def
= (X)XhFIXhXii

4.2. Higher order process calculi 67

ah

~

Ai:P

ah

~

Ai

�!P

out

a(

~

X):P

ah

~

Ai

�!P [

~

A=

~

X]

inp

P

�

�!P

0

P jQ

�

�!P

0

jQ

par

P

ah

~

Ai

�!P

0

Q

ah

~

Ai

�!Q

0

P jQ

�

�!P

0

jQ

0

com

P

�

�!P

0

P +Q

�

�!P

0

sum

P j!P

�

�!P

0

!P

�

�!P

0

rep

Figure 4–1: Higher order � transition system

and all names appear only as inputs with a nullary sort — i.e. the terms of

P ::=

X

i2I

a

i

hi:P

i

�

�

� Y h

~

Ai

�

�

� FIXhAi:

We define higher order bisimulation (�
ho

) over these terms via the bijection. Un-

fortunately the definition of normal bisimulation and the results of [San94] are

in terms of a slightly different calculus — with replication in place of constants

and with unary variables and names, i.e. variables only of types from

� ::= P

�

�

� �!P

and names that carry single values of these types. We will therefore only obtain

a result for lambda terms that do not contain �x , however the definition will be

generalised to allow arbitrary types. We take a fragment of the higher order �

calculus that is just large enough to contain the terms of

P ::=

X

i2I

a

i

hi:P

i

�

�

� Y h

~

Ai y

and to admit a definition of normal bisimulation. The terms are those of

P ::=

X

i2I

�

i

:P

i

�

�

� P

1

jP

2

�

�

� Y h

~

Ai

�

�

�!P: z

The labelled transition system semantics for this is given in Figure 4–1, in which

� ranges over all action labels and the symmetric counterparts of par ; com and

sum are omitted. For the sub-fragment with only unary variables and names the

transition system coincides with that of [San94]. Our omission of restriction is

therefore harmless in that normal bisimulation (as defined in the next section)

68 Chapter 4. A Miscellany

over this sub-fragment coincides with normal bisimulation over the whole calcu-

lus of [San94]. A similar coincidence presumably holds between normal bisim-

ulation over the latter and normal bisimulation over the ‘reduced higher order �

calculus’ of [San93], which allows name passing in addition to process passing.

4.2.2 Normal bisimulation

Three equivalences over the higher order � calculus are defined and shown equal

in [San93] — context bisimulation, barbed congruence and normal bisimulation.

The idea behind the latter is that to check the input case of the equivalence of two

processes it suffices to consider inputs of a particular form, the triggers. A trigger

is an agent of the form

Tr

m

i

def
= (

~

X)m

i

h

~

Xi:0

for a name m

i

of suitable sort. Similarly to check the equivalence of processes

with free variables it suffices to substitute triggers on new, distinct names for the

variables and then check equivalence.

Definition A symmetric relationR over closed terms of z is a normal bisimulation

if for any P R Q and distinct ~m not in the free names of P;Q:

� If P
ahTr

m

1

;:::;Tr

m

n

i

�! P

0 then 9Q0

: Q

ahTr

m

1

;:::;Tr

m

n

i

=) Q

0 and P

0

R Q

0.

� If P
ahA

1

;:::;A

n

i

�! P

0 then 9Q0

;

~

B : Q

ahB

1

;:::;B

n

i

=) Q

0 and

P

0

j!m

1

(

~

X

1

):A

1

h

~

X

1

i j � � � j!m

n

(

~

X

n

):A

n

h

~

X

n

i

R

Q

0

j!m

1

(

~

X

1

):B

1

h

~

X

1

i j � � � j!m

n

(

~

X

n

):B

n

h

~

X

n

i:

� If P
�

�!P

0 then 9Q0

: Q=)Q

0 and P

0

R Q

0.

(Here
�

=)

def
=

�

�!

�

�

�!

�

�!

�

and =)

def
=

�

�!

�

, as usual.) The union of all normal

bisimulations is written �
Nr

. It is lifted to open terms P;Q with free variables

X; Y; : : : by

P �

Nr

Q iff P� �

Nr

Q�

where � is a substitution [Tr

m

X

=X; Tr

m

Y

=Y; : : :] for some new distinct names

m

X

; m

Y

; : : : .

4.2. Higher order process calculi 69

This is the natural generalisation of the definition of [San94] to processes with

free variables of arbitrary type, but without restriction.

4.2.3 The coincidence of �
ho

and �

Nr

Proposition 70 If P;Q are terms of y, i.e. of

P ::=

X

i2I

a

i

hi:P

i

�

�

� Y h

~

Ai

then P �

ho

Q iff P �

Nr

Q.

PROOF In the following we assume that the set of names is the disjoint union of

Act (ranged over by a) and a set M (ranged over by m). E and F range over

abstractions (~X)P of the above processes. We work up to the associativity, com-

mutativity and 0-absorbtion of j and the law !P = P j!P . A trigger substitution

� is a substitution of distinct triggers for all free variables in terms to which it is

applied. For the right-to-left direction we let

R

def
= fE; F j E� �

Nr

F� and � is a trigger substitution g

and check that this is a higher order bisimulation.

Suppose E R F and EB y

~

E. Clearly E�

m

y

h

~

E�i

�! 0 so there is some ~

B such that

F�

m

y

h

~

Bi

=) 0 and for any new ~m and ~

X

i

j i 2 1::n

!m

1

(

~

X

1

):E

1

�h

~

X

1

i j � � � j!m

n

(

~

X

n

):E

n

�h

~

X

n

i

�

Nr

!m

1

(

~

X

1

):B

1

h

~

X

1

i j � � � j!m

n

(

~

X

n

):B

n

h

~

X

n

i:

Hence there is some ~

F such that F B y

~

F and ~

F� =

~

B. Further, by the definition

of normal bisimulation, for any i and new ~m

i

(E

i

h

~

X

i

i)�� [Tr

m

i1

=X

i1

; : : :] �

Nr

(F

i

h

~

X

i

i)�� [Tr

m

i1

=X

i1

; : : :]

so (E

i

h

~

X

i

i) R (F

i

h

~

X

i

i) and E

i

^

R

�

i

F

i

.

The reasoning for E
a

�!E

0 is straightforward.

70 Chapter 4. A Miscellany

For the left-to-right direction we take

R

0

def
= fE�; F� j E �

P

ho

F and � is a trigger substitution g

[f !m(

~

X):E�h

~

Xi; !m(

~

X):F�h

~

Xi j E �

�

1

����

n

!P

ho

F

� is a trigger substitution

~

X are not free in E; F

m does not occur in ran(�) g

and close up under certain parallel compositions. Let R be the smallest relation

containing R

0

such that if P R Q; P

0

R Q

0 and no name occurs both in input

and output positions in P jP

0 or Q jQ0 then P jP

0

R Q jQ

0. We check that R is a

normal bisimulation. No communication can occur in any process in dom(R) [

ran(R) so the only transitions that need be considered are the following, in which

P R Q; E �

�

ho

F and ~m;

~

X are new:

� P jE�

ahi

�!P jE

0

� as E
a

�!E

0

R

Q jF�

� P j!m(

~

X):E�h

~

Xi

mhTr

m

1

;:::;Tr

m

n

i

�! P j!m(

~

X):E�h

~

Xi jE�hTr

m

1

; : : : ;Tr

m

n

i

R

Q j!m(

~

X):F�h

~

Xi

� P jE�

m

y

h

~

E�i

�! P j 0 as EB y

~

E

R

Q jF�

For the first, F
a

�!F

0

�

ho

E

0 so (Q jF�)

ahi

�!(Q jF

0

�) R (P jE

0

�).

For the second

Q j!m(

~

X):F�h

~

Xi

mhTr

m

1

;:::;Tr

m

n

i

�! Q j!m(

~

X):F�h

~

Xi jF�hTr

m

1

; : : : ;Tr

m

n

i:

We have Eh ~Xi �P

ho

F h

~

Xi so Eh

~

Xi�� [Tr

m

1

=X

1

; : : :] R

0

F h

~

Xi�� [Tr

m

1

=X

1

; : : :],

hence E�hTr

m

1

; : : : ;Tr

m

n

i R

0

F�hTr

m

1

; : : : ;Tr

m

n

i and the targets of the transi-

tions are related by R.

For the third there exists some ~

F such that F B y

~

F and 8i : E
i

�

�

i

ho

F

i

. It follows

that

Q jF�

m

y

h

~

F�i

�! Q j 0:

4.3. Non-well-founded set theory 71

Further, for all i and new ~

X

i

!m

i

(

~

X

i

):E

i

�h

~

X

i

i R

0

!m

i

(

~

X

i

):F

i

�h

~

X

i

i

so

(P j!m

1

(

~

X

1

):E

1

�h

~

X

1

i j � � �) R (Q j!m

1

(

~

X

1

):F

1

�h

~

X

1

i j � � �):

2

We expect that this proposition could be generalised to all lambda terms, i.e. to

P ::=

X

i2I

a

i

hi:P

i

�

�

� Y h

~

Ai

�

�

� FIXhAi;

without difficulty, although the statement would require a higher order � calculus

with both replication and constants.

The definitions of barbed congruence and context bisimulation both involve quan-

tification over higher order � contexts and so cannot be easily related to �
ho

or

�

ext

(except via the above proposition, of course). This prevents us making use

of Sangiorgi’s results to obtain a cheap proof of the equality of �
ho

and �
ext

.

4.3 Non-well-founded set theory

In the usual conception of set theory the membership relation is required to be

well-founded — there is, for example, no set which is a member of itself. The

Zermelo-Fraenkel axiomatisation expresses this by the axiom of Foundation:

FA: Any non-empty set X has an element Y such that X \Y = fg.

In [Acz88] Aczel discusses a number of alternative axioms that admit non-well-

founded sets. He focuses on the axioms of ZFC with an axiom AFA (of Anti-Foundation)

replacing FA. We recall its statement.

Definition A graph is a set of nodes together with a set of edges, i.e. ordered

pairs of the nodes. A decoration of a graph is an assignment of a set to each of its

nodes such that the elements of the set assigned to a node are the sets assigned

to the children of that node.

72 Chapter 4. A Miscellany

AFA: Any graph has a unique decoration.

Pointed graphs can therefore be taken to denote unique sets of ZFC�FA+AFA.

To say when they denote the same set we define bisimulation between pointed

graphs in the obvious way.

Definition A bisimulation between pointed graphs hN;�!; n

0

i and hN 0

;�!

0

; n

0

0

i

is a relation R � N �N

0 such that n
0

R n

0

0

and if n R n

0 then:

� If n�!n

1

then 9n0
1

: n

0

�!

0

n

0

1

^ n

1

R n

0

1

.

� If n0�!0

n

0

1

then 9n
1

: n�!n

1

^ n

1

R n

0

1

.

Proposition 71 (Aczel) Two pointed graphs denote the same set iff they are bisim-

ilar.

These definitions of pointed graphs and bisimulation are almost identical to those

of x2.1.1 of charts, taking a single action and no variables, and bisimulation thereof.

(They differ only in that the sets involved are non-well-founded and standard, re-

spectively, which we gloss over.) We can therefore take the closed �-expressions

over a single action to denote non-well-founded sets. For more intuitive notation

one could write 0 as fg, the single action as an outfix f g, + as [and fA
1

; : : : ; A

n

g

as an abbreviation for fA
1

g [� � � [fA

n

g, with for example

�X fXg = �X ffXgg

�X ffg; Xg = �X ffg; ffg; Xgg:

The collection of non-well-founded sets denotable by �-expressions is reasonably

large. It coincides with the hereditarily finite sets of [Acz88, Ch.1]. In [Acz88]

particular non-well-founded sets are described using either pictures of pointed

graphs or pointed sets of guarded equations. We expect that the simpler syntax

of �-expressions is sometimes more convenient, just as it is for process algebra.

We trivially have the following corollary of Theorem 6.

Corollary 72 There is no finite axiomatisation of order � 1 for non-well-founded

set equality of �-expressions over a single action.

4.4. Weak congruence: relative axiomatisability and at higher order 73

4.4 Weak congruence: relative axiomatisability and

at higher order

In this section we show that weak congruence of �-expressions is finitely equa-

tionally axiomatisable relative to bisimulation. We also give a definition of weak

higher order congruence. This enables us to prove the soundness of the new ax-

ioms simply by exhibiting some small weak higher order bisimulations.

4.4.1 Weak higher order congruence

The adaption of the definition of higher order bisimulation to the weak case is

straightforward. The only subtlety involved is that we must require the argu-

ments of a variable to be weak (higher order) congruent, not merely weak (higher

order) bisimilar. For example, taking x :P !P , the terms x (a0) and x (�a0) can-

not be identified as substituting the identity for xwould give non-congruent terms.

Definition LetR; S be relations over T P

!

. The relationR(R; S) over T P

!

is defined

by E R(R; S) F iff

� If E
a

�!E

0 then 9F 0

: F

a

=)F

0

^ E

0

S F

0.

� If EB x

~

E then 9 ~F : F

�

�!

�

B x

~

F ^ 8i : E

i

^

R

�

i

F

i

.

and symmetrically. The relation S(R; S) over T P

!

is defined by E S(R; S) F iff

� If E
a

�!E

0 then 9F 0

: F

â

=)F

0

^ E

0

S F

0.

� If EB x

~

E then 9 ~F : F

�

�!

�

B x

~

F ^ 8i : E

i

^

R

�

i

F

i

.

and symmetrically. For E; F 2 T

P

!

we say E is weak higher order congruent to F ,

written E �

c

ho

F , if there exist R; S such that R � R(R; S), S � S(R; S) and

E R F .

The sound axioms can be characterised as before.

74 Chapter 4. A Miscellany

Definition The relation �c

ext

over T P

!

is given by

E �

c

ext

F iff for all substitutions � for E; F we have E� �c

F�.

By Corollary 31 an axiom E = F is sound for �c precisely if E �

c

ext

F .

In the rest of this section we again consider only terms in T

P

1

, i.e. terms of type

P containing at most first order variables. We show an analogue of Theorem 8,

that any weak higher order congruent pairs of terms are sound.

Theorem 12 If E �

c

ho

F then E �

c

ext

F .

PROOF Given E �

c

ho

F and a substitution � for E; F we must show that E� �c

F�. We are not going to show a non-axiomatisability result for �c (although one

might well) and so do not need to factor this through the derived transition sys-

tems E?�, F?�. We adopt conditions on variables as in x3.5, in particular taking

�(y) to be of the form �z

1

:P: � � ��z

n

:P: H

y

. Suppose that R � R(R; S), S �

S(R; S), E R F and that R and S relate only terms contained in der(E); der(F).

We let

Q

def
= fE

0

�; F

0

� j E

0

(R [S) F

0

g

[fH

0

[

~

E�=~z]; H

0

[

~

F�=~z] j there exist E 0

2 der(E); F

0

2 der(F) such that

E

0

B y

~

E; F

0

B y

~

F;

8j : E

j

R F

j

and H

y

�!

+

H

0

g:

It is straightforward to check that Q is a weak bisimulation, using Proposition 53

and induction on the definitions of
a

�!

�

,B
�

. Moreover, ifE 0

R F

0 thenE 0

�W(Q)

F

0

�. 2

We have no immediate application for the converse, that E �

c

ext

F implies E �

c

ho

F , and so leave it and other investigation of the weak case to future work.

4.4. Weak congruence: relative axiomatisability and at higher order 75

4.4.2 A finite axiomatisation of weak congruence relative to

bisimulation

The new axioms are F1–3, which presented as schemas are:

F1 �

*

X = E + aY

Y = F + �G

+

= �

*

X = E + aY + aG

Y = F + �G

+

F2 �

*

X = E + �Y

Y = F +G

+

= �

*

X = E + �Y +G

Y = F +G

+

F3 a�XE = a�XE + �X:

We show below that these suffice to saturate (the fixed point of) any standard

equation sequence. Over saturated charts weak congruence and bisimulation co-

incide so the relative axiomatisability result follows immediately, i.e. F1–3 to-

gether with a rule

F4 E � F ! E = F

are complete for �c.

Axiom schemas F1–3 can be written as a set of pure equations between lambda

terms. Unfortunately F1 and F3 involve variables (a) ranging over Act so strictly

speaking an infinite set of such equations is required. Taking � = fe :P !P !P;

f :P !P !P; g :P !P !P; h :P !Pg and an arbitrary constant a :P !P :

F1

0

a

� .�x �x :P: (exA

1

) + (aA

1

) = (exA

1

) + (aA

1

) + (a(gxA

1

)) :P

where A
1

def
= �x �y :P: (fxy) + (�(gxy))

F2

0

� .�x �x :P: (exA

2

) + (�A

2

) = (exA

2

) + (�A

2

) + (gxA

2

) :P

where A
2

def
= �x �y :P: (fxy) + (gxy)

F3

0

a

� . a �x �x :P: hx = a �x �x :P: (hx) + (�x) :P

all instances of F10
a

and F3

0

a

for a 2 Act are required. One could take a modified

signature which has base types P and A and constants

0 :P

a :A for each a 2 Act (including �)

: :A!P !P

+ :P !P !P

�x :(P !P)!P:

76 Chapter 4. A Miscellany

The equations F30
a

j a 2 Act could then be expressed by a single equation

F3

00

f� :A; h :P !Pg .�:�x �x :P: hx = �:�x �x :P: (hx) + (�:x) :P;

and similarly for F10
a

j a 2 Act . One could then obtain a precise finite axiomatis-

ability result. We do not do this because the definitions (e.g. of weak higher order

congruence) would become somewhat more complex and no more enlightening.

The completeness proof will be presented in terms of the schematic forms F1–3.

The soundness proof shows that all instances of F10
a

, F20 and F3

0

a

are sound. It

would presumably be straightforward to carry out both for the modified signa-

ture.

Lemma 73 For any a 2 Act the axioms F10
a

, F20 and F3

0

a

are sound.

PROOF By Theorem 12 and Corollary 31 we need only show that the terms in

each equation are weak higher order congruent. For F10
a

let B;C be the left and

right hand terms of the equation respectively and let

R

def
= fhB;Ci; hA

1

[B=x]; A

1

[C=x]i; hgB(A

1

[B=x]); gC(A

1

[C=x])ig:

It is routine to check that R � R(R;R) (and hence R � S(R;R)) so B �

c

ho

C.

The reasoning for the other axioms is similar. 2

Definition A chart S = hS;�!;B; s

0

i is root-unwound if :9s : s

a

�!s

0

. It is

saturated if it is root-unwound, accessible and:

1. s
a

=)s

0

) s

a

�!s

0

2. s
�

�!

�

BX) sBX

3. s 6= s

0

) s

�

�!s.

Note that any standard sequence is, when viewed as a chart, root-unwound.

Lemma 74 For saturated charts S; T , if S �c

T then S � T .

PROOF It is routine to check that �, restricted to (S � s

0

)� (T � t

0

), is a strong

bisimulation and then that s
0

� t

0

. 2

4.4. Weak congruence: relative axiomatisability and at higher order 77

Lemma 75 If for all substitutions � with X;X

0

62 dom(�) we have ` A = B, where

A

def
= �

*

X = E�

X

0

= E

0

�

+

and B

def
= �

*

X = E

00

�

X

0

= E

0

�

+

;

then for all (possibly empty) sequences h ~Y =

~

F i, h ~Z =

~

Gi we have ` L = R, where

L

def
= �

�

�

�

�

B

B

B

B

~

Y =

~

F

X = E

X

0

= E

0

~

Z =

~

G

B

B

B

B

�

�

�

�

and R

def
= �

�

�

�

�

B

B

B

B

~

Y =

~

F

X = E

00

X

0

= E

0

~

Z =

~

G

B

B

B

B

�

�

�

�

:

PROOF By the definition of the fixed point of a sequence there is a substitution �

with domain ~

Z such that

L = �h

~

Y =

~

F�[�X

0

E

0

� =X

0

][A=X]i

R = �h

~

Y =

~

F�[�X

0

E

0

� =X

0

][B=X]i:

By the premise and congruence rules, for all i

` F

i

�[�X

0

E

0

� =X

0

][A=X] = F

i

�[�X

0

E

0

� =X

0

][B=X]

so by Lemma 18 ` L = R. 2

Lemma 76 For any standard sequence hX
i

= E

i

j i 2 mi there is a saturated

standard sequence hX
i

= F

i

j i 2 mi such that A1–5,B3,F1–3 ` �hX

i

= E

i

j i 2

mi = �hX

i

= F

i

j i 2 mi.

PROOF For a standard sequence hZ
i

= G

i

j i 2 mi, considered as a chart, let the

measure f hZ
i

= G

i

j i 2 mi be the pair

h#f i; a; j j i

a

=)j ^ :i

a

�!j g; #f i;W j i

�

�!

�

BW ^ :iBW gi:

We show by induction on f h

~

X =

~

Ei (with the product ordering) that there exists

a provably equal h ~X =

~

F i satisfying conditions 1 and 2 of the definition of a

saturated chart. The base case, f h ~X =

~

Ei = h0; 0i, is trivial. Suppose f h

~

X =

~

Ei = hp+ 1; qi.

Definition For n � 0 and states s; s0 of a chart say s
a

=)

n

s

0 if there exist

n

1

; n

2

� 0 such that s
�

�!

n

1

a

�!

�

�!

n

2

s

0, n
1

+ n

2

= n and further that

n

1

+ n

2

is minimal amongst the n

0

1

+ n

0

2

such that s
�

�!

n

0

1

a

�!

�

�!

n

0

2

s

0.

78 Chapter 4. A Miscellany

Clearly there exist i; a; j; n � 1 such that i
a

=)

n

j. In fact there exist i; a; j such that

i

a

=)

1

j, as otherwise we can pick a non-minimal subsequence of the transitions

in i

a

=)

n

j. It follows that :(i
a

�!j) and that there is some k such that either (1)

i

�

�!k

a

�!j or (2) i
a

�!k

�

�!j. Suppose (1). Then

E

i

= E

i

+ �X

k

E

k

= E

k

+ aX

j

:

By h ~X =

~

Ei standard we know that k 6= 0 6= j and by Lemma 19 w.l.g. k = i+ 1,

so h ~X =

~

Ei is

�

�

�

�

B

B

B

B

~

Y =

~

F

X

i

= E

i

+ �X

k

X

k

= E

k

+ aX

j

~

Z =

~

G

B

B

B

B

�

�

�

�

for some (possibly empty) ~

Y =

~

F and ~

Z =

~

G. By Lemma 75 this is provably

equal, using F2, to

�

�

�

�

B

B

B

B

~

Y =

~

F

X

i

= E

i

+ �X

k

+ aX

j

X

k

= E

k

+ aX

j

~

Z =

~

G

B

B

B

B

�

�

�

�

;

which has measure hp; qi. The case for (2) is similar but using F1.

Suppose f h ~X =

~

Ei = hp; q+1i. This is similar to (1) above but instantiating the

‘G’ of F2 by a variable rather than by a term aX

j

.

This completes the induction. It remains only to add � loops to ensure that con-

dition 3 holds. This is straightforward using F3. 2

Theorem 13 The axioms F1–4 are sound and complete for weak congruence (�c).

PROOF Soundness is immediate from Lemma 73 and the fact that ���c. For

completeness suppose that E �

c

F . By Lemma 20 there are standard accessible

sequences h ~X =

~

Ei, h ~Y =

~

F i such that

AB ` E = �h

~

X =

~

Ei

AB ` F = �h

~

Y =

~

F i

4.4. Weak congruence: relative axiomatisability and at higher order 79

(hereAB denotes the axiomsA1–5,B1–3 introduced in x2.3). By Lemma 76 there

are saturated sequences h ~X =

~

E

0

i, h ~Y =

~

F

0

i such that

ABF1–3 ` �h

~

X =

~

Ei = �h

~

X =

~

E

0

i

ABF1–3 ` �h

~

Y =

~

F i = �h

~

Y =

~

F

0

i:

By soundness and Lemma 21 h ~X =

~

E

0

i �

c

h

~

Y =

~

F

0

i so by Lemma 74 h ~X =

~

E

0

i � h

~

Y =

~

F

0

i. By Lemma 21 again �h

~

X =

~

E

0

i � �h

~

Y =

~

F

0

i so using F4

` �h

~

X =

~

E

0

i = �h

~

Y =

~

F

0

i. Finally, all uses of axioms from A and B can, as these

are sound for bisimulation, be replaced by uses of F4. 2

It follows that, if the pure implication E3 (from x2.3.3) could be shown sound

for �c, the axioms A1–5, B1–3, E1–3, F1–3 would be a finite pure horn clause

axiomatisation for �c. This would be as good a positive result for �c as could

be expected, as we expect that the proof of Chapter 3 could, with some added

complexity, be adapted to show that there is no finite equational axiomatisation

for �c.

Chapter 5

Implicational theory

In this chapter we investigate the implicational theory of finite state processes up

to bisimulation. We consider sequents

E

1

= F

1

^ � � � ^ E

m

= F

m

` G

1

= H

1

_ � � � _ G

n

= H

n

over �-expressions (for m;n � 0). The first two sections are devoted to show-

ing that unification problems over �-expressions have finite computable complete

sets of unifiers. The decidability of ` is an easy corollary. These results carry over

to the case of finite processes. By taking a singleton set of actions we then have

finite complete sets of unifiers for certain set and non-well-founded set problems,

generalising the result of [BB88]. We do not, however, have a good characterisa-

tion of the minimal complete sets of unifiers — some coarse cardinality bounds

thereof are given.

These sequents do not appear to provide enough power to finitely axiomatise

bisimulation (we do not give a proof of this). It was shown by Bloom and Ésik that

sequents over expressions containing first order variables suffice (see x2.3.3). The

decidability of such sequents is left for future work.

For a richer signature, sequents such as the above may be regarded as interesting

implicit process specifications, with unification results providing automated im-

plementation. The solving of equations between CCS expressions involving par-

allel composition has been studied in some depth. We refer the reader to [Liu93]

in which Liu reviews previous work and shows that rather severe restrictions on

the forms of equations are required for decidability (of the existence of solutions).

80

5.1. The consequence relation and unification 81

We note that closely related work has been done (independently) by Drost, who

in [Dro94] gives a rule based unification algorithm, a proof of its correctness and

a complexity analysis. We have not investigated how the sets of unifiers produced

are related to those described here.

5.1 The consequence relation and unification

Definition E

1

= F

1

^ � � � ^ E

m

= F

m

` G

1

= H

1

_ � � � _ G

n

= H

n

holds iff for all

substitutions � if 8i 2 1::m : E

i

� � F

i

� then 9j 2 1::n : G

j

� � H

j

�.

The following is immediate from the definition.

Proposition 77 ` is a regular, ordinary consequence relation as defined in [Avr91],

i.e. the rules below for reflexivity, cut and weakening are sound and multiplicity can

be neglected. Letting A and �;�;� range over equations and finite sets of equations

respectively:

A ` A

re

�

1

` �

1

; A A;�

2

` �

2

�

1

;�

2

` �

1

;�

2

cut

� ` �

�;� ` �

w � l

� ` �

� ` �;�

w � r

We recall some standard definitions from [BS93], instantiating them to the set-

ting of bisimulation over �-expressions.

Definition A unification problem is a finite set fE
1

= F

1

; : : : ; E

n

= F

n

g of equa-

tions between �-expressions. A unifier for this is a substitution � satisfying all the

equations up to bisimulation, i.e. such that 8i 2 1::n : E

i

� � F

i

�. The set U of

all unifiers can be ordered by � < � iff there exists a substitution � such that for

all variables x free in the problem �(x)� � �(x). (This is clearly a preorder.) A

complete set C � U of unifiers is one such that 8� 2 U : 9� 2 C : � < �. A

minimal complete set is a complete set for which < is a discrete order.

82 Chapter 5. Implicational theory

Lemma 78 If for any unification problem there is a finite computable complete set

of unifiers then the consequence relation is decidable.

PROOF Consider the sequent

E

1

= F

1

^ � � � ^ E

m

= F

m

` G

1

= H

1

_ � � � _ G

n

= H

n

and let C be a finite complete set of unifiers for the problem fE

1

= F

1

; : : : ; E

m

=

F

m

g. We show that the sequent holds iff 8� 2 C : 9j 2 1::n : G

j

� � H

j

�. The

left to right direction is immediate from the definitions. For the other, consider

an arbitrary substitution � such that 8i 2 1::m : E

i

� � F

i

�. By definition � is a

unifier so there is some � 2 C : � < �, i.e. 9� : 8x : �(x) � �(x)�. By the premise

9j 2 1::n : G

j

� � H

j

� but bisimulation is substitutive so G

j

�� � H

j

��. 2

5.2 Unification for charts

It is convenient to work with transition systems rather than directly with �-expressions.

Accordingly we define charts and chart substitution. These are essentially as in

x2.1.1, differing only in that for this chapter charts have no start state.

Definition A chart is a tuple hS;�!;Bi where S is a set of states, �! � S �

Act � S is a transition relation and B � S � Var is a visibility predicate.

Except where otherwise stated we consider only finite state charts, i.e. those for

which all three components are finite. Substitution over charts is as expected —

we give an explicit definition for concreteness.

Definition A chart substitution � is a chart (say T) together with a function � from

a finite subset A of Var to the state set of T . The result of a substitution S� is a

chart with states S] T and the least transition and visibility relations satisfying

the following clauses.

s

a

�!s

0

inl(s)

a

�!inl(s

0

)

t

a

�!t

0

inr(t)

a

�!inr(t

0

)

sB y y 2 A �(y)

a

�!t

0

inl(s)

a

�!inr(t

0

)

sBx 62 A

inl(s)B x

tB x

inr(t)B x

sB y 2 A �(y)Bx

inl(s)B x

5.2. Unification for charts 83

Notation We will often omit the injections into disjoint unions. If s is a state of

a chart S then s� is the corresponding state in S�.

Definition If S is a chart hS;�!;Bi then Var(S) is the range of B, i.e. the set of

variables visible to any state within it and Act(S) is the set of actions occurring

in it. If s is a state of a chart then vis(s)

def
= f x j sB x g.

Definition A unification problem is a finite set f s
i

= s

0

i

j i 2 I g of pairs of states

within a chart. A unifier for such is a substitution � with domain Var(S) such that

8i 2 I : s

i

� � s

0

i

�.

Notation From now on we fix a unification problem as above. We let R range

over pairs of a symmetric relation R � S � S and a relation �!
R

� Var(S) �

Act � S.

Definition For any R we define a substitution �

R

as follows. First, we introduce

new variables V
A

indexed by nonempty sets A of the variables occurring in S and

put

V

R

def
= fV

A

j 8s; s

0

2 S : s R s

0

) ((A \ vis(s) 6= fg) () (A \ vis(s

0

) 6= fg)) g:

We define a chart S
2

def
= hS] Var(S);�![B�!

R

[�!

R

;B

R

i where

sB

R

V

A

() V

A

2 V

R

^ 9x : sBx 2 A

xB

R

V

A

() V

A

2 V

R

^ x 2 A:

The substitution �

R

takes a variable x 2 Var(S) to the state x of S
2

.

Definition R is a solution bisimulation if:

1. R is a bisimulation on the chart hS;�![B�!

R

; fgi.

2. 8i 2 I : s

i

R s

0

i

.

Lemma 79 The set of solution bisimulations is finite and computable.

PROOF There are a bounded number of relations R;�!

R

and it is decidable

whether each is a solution bisimulation. 2

Lemma 80 For any solution bisimulation R, the substitution �

R

is a unifier.

84 Chapter 5. Implicational theory

PROOF The chart S�
R

has states S](S]Var(S)). We let inl(s); inr(s); x range over

these components respectively. Letting �; � range over fl; rg it is straightforward

to show that it has the transitions generated by

s

a

�!s

0

) in�(s)

a

�!in�(s

0

)

sB

a

�!

R

s

0

) in�(s)

a

�!inr(s

0

)

x

a

�!

R

s

0

) x

a

�!inr(s

0

)

and the visibilities generated by

sB

R

V

A

) in�(s)BV

A

xB

R

V

A

) xBV

A

:

It is then straightforward to check that

Q

def
= f in�(s); in�(s

0

) j s R s

0

g

is a bisimulation with 8i 2 I : inl(s

i

) Q inl(s

0

i

). 2

This gives us a finite computable set of unifiers:

f �

R

j R is a solution bisimulation g:

It remains to show that this is complete.

Definition A substitution � with domain Var(S) satisfies an R (which is not nec-

essarily a solution bisimulation) if:

3. 8s; t 2 S : s R t) s� � t�.

4. 8x 2 Var(S); s 2 S : x

a

�!

R

s () �(x)

a

�! � s�.

Lemma 81 If � is a substitution with domain Var(S) that satisfies R then � factors

through the substitution �

R

.

PROOF

Definition Given a finite set P of processes let their intersection
T

P be

some minimal member of the bisimulation class of

X

f a:q j 8p 2 P : p

a

�! � q g+

X

f x j 8p 2 P : pB x g:

If all elements of P are finite state then
T

P is also finite state.

5.2. Unification for charts 85

Definition The substitution � has range V
R

as defined above and for

V

A

2 V

R

�(V

A

)

def
=

\

f �(x) j x 2 A g:

We will show for all x 2 Var(S) that �(x) � �

R

(x)�. First we give two lemmas

exploiting the structure of the set V
R

of variables.

Lemma 82 If �(x)
a

�!p and :9s 2 S : s� � p then 9V
A

2 V

R

: x 2 A ^

8y 2 A : �(y)

a

�! � p.

Lemma 83 If �(x)B z then 9V
A

2 V

R

: x 2 A ^ 8y 2 A : �(y)B z.

PROOF Only the first is given here — the other is similar. We show that

there exists a strictly increasing sequence of setsA
k

� Var(S) with A

0

def
=

fxg all of which satisfy

8y 2 A

k

: �(y)

a

�! � p:

Suppose V
A

k

62 V

R

, otherwise we are done. There are then some s; s0 2 S

and y such that

s R s

0

y 2 A

k

\ vis(s)

fg = A

k

\ vis(s

0

):

By induction �(y)

a

�! � p so s�

a

�! � p. By clause 3 s

0

�

a

�! � p so either

� s

0

a

�!s

00

^ s

00

� � p, contradicting the premise, or

� 9y

0

2 vis(s

0

) � A

k

: �(y

0

)

a

�! � p, in which case we put A
k+1

def
=

A

k

[fy

0

g.

2

It is useful to use a simple ‘bisimulation up to’ technique.

Definition If hS;�!
S

;B

S

i; hT;�!

T

;B

T

i are charts then Q � S � T is

a bisimulation up to � if s Q t implies

� s

a

�!s

0

) 9t

0

: t

a

�!t

0

^ s

0

(� [� Q �) t

0

� sB

S

x) tB

T

x

86 Chapter 5. Implicational theory

and symmetrically.

Proposition 84 If Q is a bisimulation up to� then � [� Q � is a bisim-

ulation.

PROOF Straightforward. 2

Now let

S

1

def
= hS [Var(S);�!;B[id

Var(S)

i

S

2

def
= hS [Var(S);�![B�!

R

[�!

R

;B

R

i

Q

def
= id

S[Var(S)

:

We check below that Q is a bisimulation up to� between S

1

� and S

2

�. The result

follows by noting that the state x of S
1

is bisimilar to the one state chart ‘x’ and

that the state x of S
2

is �
R

(x) by definition.

We give only the transition part for pairs hs; si 2 Q — the rest is similar. There

are two cases for transitions of s�:

� s

a

�!s

0

^ s�

a

�!s

0

�. Then s�

a

�!s

0

�.

� sB x ^ �(x)

a

�!p ^ s�

a

�!p. Suppose 9s0 2 S:s

0

� � p. Then by 4(x

a

�!

R

s

0

so s

a

�!

S

2

s

0 and s�

a

�!s

0

� Q

�1

s

0

� � p. Now suppose not. Then by Lemma

82 9V
A

2 V : x 2 A ^ �(V

A

)

a

�! � p so sB

R

V

A

and s�

a

�! � p.

For transitions of s� there are three cases:

� s

a

�!s

0

^ s�

a

�!s

0

�. Then s�

a

�!s

0

�.

� sB x

a

�!

R

s

0

^ s�

a

�!s

0

�. Then by 4) �(x)

a

�! � s

0

� so s�

a

�! � s

0

� Q s

0

�.

� sB

R

V

A

^ �(V

A

)

a

�!q ^ s�

a

�!q. Then by the definitions ofB
R

and � s�
a

�! �

q.

2

Remark It is not the case that for any solution bisimulation �

R

satisfies R — the

right-to-left implication of 4 may fail, essentially because �!
R

is too small. For

example takeS
def
= hf1; 2; 3g; fg; fh1; xigi, the problem f2 = 3g,R

def
= fh2; 3i; h3; 2ig

5.2. Unification for charts 87

and �!

R

def
= fx

a

�!2g. Here V
R

= fV

fxg

g and �

R

(x) = V

fxg

+ a0. We have

�

R

(x)

a

�! � (3�

R

) but :(x
a

�!

R

3).

Lemma 85 If � is a unifier then there is a solution bisimulationR(�) that is satisfied

by it.

PROOF Define R;�!
R

by:

3. 8s; t 2 S : s R t () s� � t�.

4. 8x 2 Var(S); s 2 S : x

a

�!

R

s () �(x)

a

�! � s�.

Trivially, R is symmetric (and reflexive), is satisfied by � and 8i 2 I : s

i

R s

0

i

.

It remains to check that R is a bisimulation on hS;�! [B�!

R

; fgi. Suppose

s� � t�. There are two possible transitions:

� s

a

�!s

0, in which case s�
a

�!s

0

�.

� sB y

a

�!

R

s

0, in which case �(y)
a

�! � s

0

� so s�

a

�! � s

0

�.

In either case t�
a

�! � s

0

� and one of the following holds.

� t

a

�!t

0

^ t

0

� � s

0

�. Then t (

a

�![B

a

�!

R

) t

0

R s

0.

� tB y ^ �(y)

a

�! � s

0

�. Then y

a

�!

R

s

0 so t (

a

�![B

a

�!

R

) s

0

R s

0.

2

Theorem 14 The set f �
R

j R is a solution bisimulation g is a finite computable

complete set of unifiers.

PROOF It is finite and computable by Lemma 79 and contains only unifiers by

Lemma 80. For completeness suppose � is an arbitrary unifier. By Lemma 85

there is a solution bisimulation R satisfied by it, then by Lemma 81 � factors

through �

R

. 2

Corollary 86 The consequence relation ` over sets of equations between �-expressions

is decidable.

PROOF By Lemma 78. 2

88 Chapter 5. Implicational theory

Remark The conjunction can be internalised, i.e.

E

1

= F

1

^ � � � ^ E

m

= F

m

` G

1

= H

1

_ � � � _ G

n

= H

n

holds iff

X

i21::m

a

i

E

i

=

X

i21::m

a

i

F

i

!

` G

1

= H

1

_ � � � _ G

n

= H

n

does.

5.3 Minimal sets of unifiers

The complete sets of the previous section can be reduced somewhat, as follows.

Corollary 87 The set of all �
R;�!

R

where

� R;�!

R

is a solution bisimulation.

� R is an equivalence relation containing bisimulation over S.

� R;�!

R

is minimal with respect to set inclusion among the R0

;�!

R

satisfying

the above.

is a complete set of unifiers.

PROOF From Theorem 14 and the observations that for hR;�!
R

i; hR

0

;�!

R

i if

R � R

0 then �

R

< �

R

0 and if R0 is the reflexive symmetric transitive closure of R

then �

R

= �

R

0 . 2

These may still not be minimal. For example the set for the problem a0+x = a0+x

contains both x 7! V

fxg

and x 7! a0+V

fxg

. We do not have a nice characterisation

of the minimal sets (in contrast to that of [BB88] for certain set equations) but

coarse bounds on their size can be easily given. An upper bound from counting

the number of relations R;�!
R

is

2

jSj�jSj

� 2

jVar(S)j�jAct(S)j�jSj

:

For an exponential lower bound, the problem

a0 = a0 +

X

i21::n

x

i

has 2n incomparable unifiers.

5.4. Unification for finite processes 89

5.4 Unification for finite processes

Theorem 14 further implies the existence of finite complete sets of unifiers for

the finite process expressions, i.e. those given by

E ::= 0

�

�

� X

�

�

� aE

�

�

� E + E:

The reasoning is general and may well be known. We suppose � is a substitutive

congruence and consider a subset T of terms satisfying the following (allowing

E; F to range over all �-expressions).

� Var � T

� E; F 2 T) E[F=x] 2 T

� E[F=x] �2 T) 9E

0

2 T : E � E

0

� E[F=x] �2 T ^ x 2 FV (E)) 9F

0

2 T : F � F

0

^ FV (F

0

) � FV (F)

The finite process expressions and bisimulation clearly satisfy these conditions.

Definition A T -unification problem is a finite set fE
1

= F

1

; : : : ; E

n

= F

n

g of

equations between members of T . A T -unifier for this is a substitution � with

range in T satisfying all the equations up to bisimulation, i.e. such that 8i 2 1::n :

E

i

� � F

i

�. The set U
T

of all T -unifiers can be ordered by � <

T

� iff there exists

a substitution � with range in T such that for all variables x free in the problem

�(x)� � �(x). (This is clearly a preorder.) A T -complete set C � U

T

of T -unifiers

is one such that 8� 2 U

T

: 9� 2 C : �

T

<

T

�.

Proposition 88 If C is complete for a T -problem and satisfies

8� 2 C : 8E 2 ran(�) : E �2 T) E 2 T

then C \ U

T

is T -complete for it.

PROOF The last two conditions above imply their vector forms, i.e.

� E[

~

F=~x] �2 T) 9E

0

2 T : E � E

0

90 Chapter 5. Implicational theory

�

~

E[

~

F=~x] �2 T

m

^ ~x � FV (

~

E)) 9

~

F

0

2 T

n

: 8i : F

i

� F

0

i

^ FV (F

0

i

) �

FV (F

i

)

by induction on the length of ~x. Now suppose � is a T -unifier. By C complete

there is a substitution � such that 8x:�(x)� � �(x). By the second and first vector

forms we can find �

0 and �

0 with ranges in T . The premise then implies that the

range of � is also in T and we have � <

T

�. 2

Corollary 89 There are finite computable complete sets of unifiers for problems over

the finite process expressions.

PROOF It remains only to note that if 9E 0

2 T : E

0

� E then such an E

0 can be

constructed. 2

Remark The consequence relation `

f

obtained by restricting to finite process

expressions is strictly larger than `. The inclusion is trivial and for example ax =

x `

f

a0 = 0 but ax = x 6` a0 = 0.

Remark Lemmas 81 and 85 hold for infinite state unifiers � (of finite state prob-

lems) so the set of unifiers given in Theorem 14 is also complete for such and the

consequence relation `
i

obtained by allowing arbitrary charts coincides with `

over the finite state problems.

Chapter 6

Conclusion

The main contributions of the thesis are, briefly, as follows.

In Chapter 2 a conceptually simple (albeit notationally complex) infinite set of

equation schemes over �-expressions was given and shown to be complete for

bisimulation. This gave rise to conjectures about the completeness of various sub-

sets, one of which led to the result of Chapter 3.

In Chapter 3 a simply typed lambda calculus was introduced in which a large class

of equation schemes over �-expressions can be expressed as equations. A higher

order bisimulation was defined over the lambda terms, shown to be decidable

and (when restricted to terms with first order variables) to coincide with a more

extensional equality. Examination of the coincidence showed that equational ax-

ioms preserve certain loop properties and hence that no finite, equational, first

order axiomatisation for bisimulation over the �-expressions can exist.

In Chapter 4 it was shown that no finite equational axiomatisation for bisimula-

tion over sets of �-expressions containing a zero process can exist, in sharp con-

trast to the extant positive result for BPA�. The lambda terms were viewed as a

fragment of the higher order � calculus and higher order bisimulation was shown

to coincide with the normal bisimulation of Sangiorgi. The work was related to

the theory of non-well-founded sets. Finally, a finite equational axiomatisation of

weak congruence relative to bisimulation was given. The soundness proof made

use of a definition of weak higher order congruence.

In Chapter 5 it was shown that unification problems over �-expressions have fi-

91

92 Chapter 6. Conclusion

nite computable complete sets of unifiers and hence that certain sequents over

�-expressions are decidable.

In the rest of this chapter we discuss possible future work, including the several

problems that have been left open.

6.1 Higher order bisimulation

In Chapter 3 we were able to show the coincidence of�
ho

and�
ext

only for terms

containing variables of at most first order types. We conjecture that the coinci-

dence holds for all terms but have been unable to prove either inclusion. Our

proof for the first order case depended on an inductive characterisation of the

transitions of a substituted term E� (Proposition 53) which in turn depended on

a tight relationship between �-reduction and transitions (Lemma 56). These can-

not be simply generalized to the general case, for which we expect that a more

sophisticated induction (corresponding to a normalisation proof for general � re-

duction) is required. It is natural to consider the lifting of �
ho

and �
ext

to logical

relations over terms of all types (containing variables of arbitrary types). This

enables a number of related conjectures to be stated.

We recall from [Mit90] the definition of logical relation over the typed applicative

structure of terms in the T �

!

.

Definition If � is a relation over T P

!

then

LR

�

P def
= �

E

LR

�

�! �

F

def
= 8E

0

; F

0

2 T

�

!

: E

0

LR

�

�

F

0

) EE

0

LR

�

�

FF

0

:

The relations
LR

�

�

are a logical relation if for each constant c : � (here with c one

of 0; a;+; �x) we have c
LR

�

�

c.

It is immediate from Propositions 34 and 51 that
LR

�

�

ext

and
LR

�

�

ho

are logical partial

equivalence relations. The conjectures can now be stated, in each of which the

types � and � are universally quantified.

Conjecture 90

1.
LR

�

�

ext

is reflexive.

6.1. Higher order bisimulation 93

2.
LR

�

�

ho

is reflexive.

3. If E �

�

ho

F and G : � then E[G=x] �

�

ho

F [G=x].

4. ��

ho

=

LR

�

�

ho

.

5. �
ho

� �

ext

.

6. �
ho

= �

ext

.

7. ��

ho

=

LR

�

�

ext

.

There are a number of implications between these, mostly trivial. We note that

using Proposition 51 clause 3 can be shown to be equivalent to the congruence

of ��

ho

for application on the left or right. Further, clause 3 implies clause 5 and

is implied by clause 6. We note also that clause 4 is equivalent to the conjunction

of clauses 2 and 3, using straightforward inductions on types.

A possible starting point for the inclusion�
ho

��

ext

is therefore the proof by San-

giorgi that context bisimulation is a congruence for application [San94, Appendix

B]. The work in [Sta82], in which �� equality is reduced to �� equality at a par-

ticular type, may also be relevant.

For the inclusion �
ext

��

ho

a simple proof would need, for any E �

ext

F , a sub-

stitution � for E; F such that a higher order bisimulation relating E and F can be

extracted from a bisimulation relating E� and F�. A sample problematic case is

the pair of terms

E

def
= x (�w :P: x (�u :P: cw + du))

F

def
= x (�w :P: x (�u :P: cu+ dw));

where x :(P !P)!P , which are not higher order bisimilar. This rules out sub-

stitutions of the form

�(x)

def
= �y :P !P: a

x

(y G);

with y not free in G, as for these E� � F�.

There are three other obvious developments of higher order bisimulation.

94 Chapter 6. Conclusion

In x3.4 higher order bisimulation was shown to be decidable by the exponential

technique of checking whether any relation over a given set is a loose bisimula-

tion. One could look for a tighter complexity result, based on the partition re-

finement algorithm of Paige and Tarjan [PT87].

For higher order process calculi one is interested in equivalences that abstract

from internal actions. In x4.4 we defined a weak higher order congruence, �c

ho

,

that does this. One could develop the theory of �c

ho

, in particular by showing a

converse to Theorem 12, i.e. showing that �c

ext

��

c

ho

, and exhibiting a tight con-

nection between �c

ho

and the equivalences over the higher order � calculus. The

literature contains many different equivalences over transition systems that ab-

stract from internal actions. There is at least as much scope for different higher

order equivalences, and even less understanding of the criteria for choosing be-

tween them.

Throughout this thesis we have considered only sequential nondeterministic pro-

cesses from very simple signatures. For these it is possible to characterise the

extensional equality �
ext

over open terms by a bisimulation involving visibility

judgments, resting on results such as

E[F=X]

a

�!A iff (E

a

�!E

0

^ E

0

[F=X] = A) _ (EBX ^ F

a

�!A)

for the �-expressions and Proposition 53 for lambda terms with first order vari-

ables. There does not appear to be an analogous result for terms involving paral-

lel composition (although formulating a precise result to that effect is nontrivial).

One could investigate the class of GSOS-definable (say) operators for which there

are analogues of the visibility judgment and higher order bisimulation — perhaps

something like those for which the target of any transition depends only on the

‘near future’ behaviour of all except one argument.

6.2 Axiomatisability

The space of possible finite axiomatisability results is very large. They can be

classified along three main dimensions.

Syntax: we have considered �-expressions and several classes of �-expressions.

6.2. Axiomatisability 95

Equivalence: this can be loosely subdivided into a linear-branching time dimen-

sion and a dimension of abstraction from internal actions. We have considered

infinite term equality, (strong) bisimulation, weak congruence and (strong) lan-

guage/trace congruence.

Logic: we have considered equational and horn clause (both pure and impure)

axiomatisations.

For axiomatisations over �-expressions there are further dimensions, namely the

orders of free variables that may occur in axioms and whether variables over ac-

tions are admitted. We have generally considered only the first order case.

Some of the known results were summarised in Figure 2–2, page 21. It is repro-

duced below, omitting references. The results shown are for strong equivalences,

that do not abstract from internal actions, and the results for �-expressions are

for axioms with at most first order variables and without variables over actions.

p

(impure)
p

� �

horn clause

p

(impure)
p

p

(impure)

�

p

�

bisimulation

� � �

equational
�

p

(for events � 1)
language or trace

�-expressions �-expressions

There are a great many conjectures suggested by this and by the multi-dimensional

diagram of which it is a slice. A few of these seem to have some compelling in-

terest, albeit largely technical. They are discussed below. It should be noted that

bisimulation of �-expressions is very close to infinite term equality of terms from

an arbitrary first order signature with recursion. Some of these questions could

be posed in that more general setting.

In the diagrams below conjectures are indicated by ‘?’, sometimes annotated by
p

or� if we expect a positive or negative result. Relative axiomatisability results

are indicated by double arrows).

96 Chapter 6. Conclusion

With variables of arbitrary order

arbitrary order ?� ?�

first order �(Thm. 6)
(

�(Thm. 6)

bisimulation infinite term equality

�-expressions

strong

equational

We would like to generalise Theorem 6 to allow variables of arbitrary order, not

simply those of first order. A proof would presumably depend on a proof of the

coincidence of �
ho

and �
ext

for all terms, as discussed in the previous section.

For simplicity one could first consider infinite term equality. In the first order case

this might enable the (somewhat complex) proof of Theorem 6 to be simplified

and in the arbitrary order case be a useful stepping stone towards the result for

bisimulation.

A further question is the existence of good (possibly infinitary) !-complete ax-

iomatisations for bisimulation, i.e. axiomatisations complete for �
ext

over T P

!

or

T

P

1

, not just over T P

0

.

Abstracting from �

horn clause
p

[BÉ94]
?

p

p

[Mil89](impure)

equational �(Thm. 6)
) (Thm. 13)

?�

bisimulation weak congruence

�-expressions

branching time

first order

with and without

action variables

The left edge is the back right edge of the cube. As discussed in x4.4.2, to express

interesting axioms about weak congruence as pure typed equations we need to

6.2. Axiomatisability 97

modify the signature slightly, adding a base typeA of actions and taking constants

0 :P

a :A for each a 2 Act (including �)

: :A!P !P

+ :P !P !P

�x :(P !P)!P:

We conjecture that the proof of Theorem 6 could be adapted to this signature

without difficulty and to weak congruence at the cost of some uninteresting com-

plications. A more interesting result would be to show that axiom E3, used in

the pure horn clause axiomatisation of bisimulation in [BÉ94] and reproduced

in x2.3.3, is sound for weak congruence. Together with the result of [BÉ94] and

Theorem 13 (the relative axiomatisation of weak congruence over bisimulation)

this would give a pure horn clause axiomatisation for weak congruence.

Linear time

horn clause
?

p

p

[Rab93](impure)

p

[BÉ94]

equational ?�

?(

�(Thm. 6)

trace congruence bisimulation

�-expressions

strong

first order

with and without

action variables

This is the right hand face of the cube. The non-axiomatisability proof of Theorem

6 for bisimulation of �-expressions and that reproduced in x2.3.4 from [Con71]

for language equivalence of �-expressions are based on similar intuitions, that

a finite set of axioms cannot introduce an arbitrary prime factor into the length

of a recursion or iteration. We would like to make this precise, e.g. by giving a

non-axiomatisability proof for all equivalences, finer than or equal to trace con-

gruence, over �-expressions and hence over �-expressions.

Another interesting question about trace congruence is whether it is equation-

ally axiomatisable relative to bisimulation. A negative result would immediately

give non-axiomatisability. A positive result could be combined with the result of

98 Chapter 6. Conclusion

[BÉ94], if E3 is sound for trace congruence, to give a pure horn clause axioma-

tisation.

Bisimulation of �-expressions

�f0; 1; a;+;

:

;

?

g(Thm. 11)

�

�

�

�

� @

@

@

@

@

�f0; a;+;

:

;

?

g(Thm. 11) ?f1; a;+;

:

;

?

g

�

�

�

�

� @

@

@

@

@ �

�

�

�

�

p

f0; a

:

;+; a

?

g[Fok94]
p

fa;+;

:

;

?

g[FZ94]

�-expressions

bisimulation

strong

equational

This expands the lower back left corner of the cube. The lines indicate signature

inclusions. As discussed in x4.1.2 we would like to know whether bisimulation

over the expressions of f1; a;+; :; ?

g is equationally axiomatisable and cannot

use a simple adaption of the proof of Theorem 11, depending only on the widths

of axioms, to show that it is not. One could also investigate whether the axioma-

tisation of weak congruence over f0; a : ;+; a ?

g given in [AI95] can be adapted

to fa;+; :; ?

g, possibly using ideas from the proof of Theorem 13 that over �-

expressions weak congruence is axiomatisable relative to bisimulation.

Incompleteness of axiomatisations with unbounded width

The proof of Theorem 6 is somewhat crude in that it ignores all information about

putative axiomatisations except for the widths of the bisimulations that they pro-

vide. We conjectured in x2.3.4 that there are subsets of the axioms C
mn

of un-

bounded width that are incomplete even together with any finite set of other ax-

ioms. One might begin by generalising Proposition 92 below.

Definition For n � 1 an n-lts is a finite transition system over n actions, each

state having exactly one outgoing transition on each action (and no visibilities).

For k � 1 we write �k for the transitive closure of the union of all bisimulations

of width � k.

6.3. Unification 99

The 1-lts’ are particularly simple, enabling us to give a precise characterisation of

�

k.

Proposition 91 For any 1-lts S there exist m � 0; n � 1 such that S �

1

S

n;m

def
=

a

m+n�1

�Xa

n

X.

Proposition 92 If m;m

0

� 0, n; n0 � 1 and k � 2 then S

n;m

�

k

S

n

0

;m

0 iff for all

primes p, if n and n

0 have different numbers of factors of p then p � k.

PROOF Straightforward, along the lines of the proof of Lemma 63. 2

6.3 Unification

In Chapter 5 we showed that for unification problems over �-expressions (equiv-

alently, over lambda terms containing only zero order variables) there exist finite

computable complete sets of unifiers up to bisimulation. It remains, however, to

characterise the minimal such sets.

It follows from their existence that the soundness of sequents over �-expressions

is decidable. We would like to have a decidability result for sequents over lambda

terms containing first order variables, particularly as these suffice to express the

axiomatisation of Bloom and Ésik.

Appendix A

Completeness proof

This appendix contains the deferred parts of the proof of Theorem 1, i.e. com-

pleteness for the infinite system of x2.3. First we give a little technical result.

Lemma 93 If z
j

is not free in ~

F for any j and z
j

is not free in E for non-zero j then

` � hX = E;

~

Y =

~

F ;

~

Z =

~

Gi = � hX = E[� h

~

Z =

~

Gi=Z

0

];

~

Y =

~

F i:

PROOF We show the two sides are alpha equivalent by induction on the size of

~

Z. The base case is trivial. For the inductive step:

� hX = E;

~

Y =

~

F ;

~

Z =

~

G;Z = Gi

= � hX = E[�ZG=Z];

~

Y =

~

F [�ZG=Z];

~

Z =

~

G[�ZG=Z]i by def �

= � hX = E;

~

Y =

~

F ;

~

Z =

~

G[�ZG=Z]i by premise

= � hX = E[� h

~

Z =

~

G[�ZG=Z]i =Z

0

];

~

Y =

~

F i by ind. hyp.

= � hX = E[� h

~

Z =

~

G;Z = Gi =Z

0

];

~

Y =

~

F i by def �.

2

Lemma 18 For axioms Q, if Q ` E

i

= F

i

for all i then Q ` � h

~

X =

~

Ei = � h

~

X =

~

F i.

PROOF By induction in the length of ~

X. The base case is just �-congruence. For

the inductive step we need to know that if Q ` E = F then Q ` E[G=X] =

F [G=X] which can be shown by induction on proofs, noting that none of the ax-

ioms constrain the forms of instantiations of metavariables (up to alpha conver-

sion). 2

100

101

Lemma 19 If � :n!n is a permutation with �(0) = 0 then B3 ` � hX

i

= E

i

j i 2

ni = � hX

�(i)

= E

�(i)

j i 2 ni.

PROOF We show the result for permutations which simply exchange two values,

which suffices. Here ~

Y =

~

F may be the empty sequence.

� h

~

X =

~

E;X = E; Y = F;

~

Y =

~

F i

= � h

~

X =

~

E�;X = E�; Y = F�i by def � for some � with domain ~

Y

= � h

~

X =

~

E�

2

4

�Y F�[�XE�[�Y F� =Y] =X] = Y

�XE�[�Y F� =Y] = X

3

5

i by def �

= � h

~

X =

~

E�

2

4

�Y F�[�XE� =X] = Y

�XE�[�Y F�[�XE� =X] =Y] = X

3

5

i by B3 and Lem. 18

= � h

~

X =

~

E; Y = F;X = E;

~

Y =

~

F i by def �

2

Lemma 20 For any �-expressionE there is a standard accessible sequence h ~X =

~

Ei

such that B ` E = � h

~

X =

~

Ei.

PROOF This is immediate from Lemmas 94 and 96 following. 2

Definition A sequence of equations h ~X =

~

Ei is almost standard if each E

i

is of

the form

E ::= 0

�

�

� X

�

�

� aX

�

�

� E + E

(whereX ranges over all variables) and does not contain a free occurrence ofX
0

.

Lemma 94 For any expression E there is an almost standard sequence h ~X =

~

Ei

such that B ` E = � h

~

X =

~

Ei.

PROOF It is straightforward to show that for any E there is an expression �Y F

such that:

1. B ` E = �Y F .

2. Y does not occur in F .

3. F is of the form F ::= 0

�

�

� X

�

�

� a�XF

�

�

� �XF

�

�

� F + F .

4. The bound variables of �Y F are distinct from each other and from the free

variables.

102 Appendix A. Completeness proof

5. �Y F has no subexpressions of the form �ZZ +G.

We define a sequence of equations ��1

(�Y F) for any �Y F that satisfies 3–5 as

follows.

�

�1

�Y

l�1

X

0

a

i

�X

i

F

i

+

l+m�1

X

l

�X

i

F

i

+

n

X

0

Y

k

!

def
=

�

�

�

B

B

B

Y =

l�1

X

0

a

i

X

i

+

l+m�1

X

l

X

i

+

n

X

0

Y

k

�

�1

(�X

i

F

i

) j i 2 l +m

B

B

B

�

�

�

Conditions 3,5 ensure that it is possible to write F in the form appearing in the

left hand side. Condition 4 ensures that the result is a well defined equation se-

quence. Conditions 2,3 ensure that it is almost standard. It therefore suffices to

show that B ` ��

�1

(�Y F) = �Y F , which we do by induction on F . The induc-

tive step requires the following.

Lemma 95 If:

� The sets of bound variables of �X
i

F

i

are disjoint for distinct i 2 n.

� The bound variables of �X
i

F

i

and free variables of �X
j

F

j

are disjoint

for i 6= j.

� The bound variables of �X
i

F

i

and free variables ofE are disjoint apart

from X

i

.

then

B ` �

*

Y = E

�

�1

(�X

i

F

i

) j i 2 n

+

= �Y E[�X

i

F

i

=X

i

]

i2n

:

PROOF By induction on n. For n = 0 it is simply the definition of �. For

103

n+ 1 :

�

�

�

�

B

B

B

Y = E

�

�1

(�X

i

F

i

) j i 2 n

�

�1

(�X

n

F

n

)

B

B

B

�

�

�

= �

*

Y = E[��

�1

(�X

n

F

n

) =X

n

]

�

�1

(�X

i

F

i

) j i 2 n

+

by Lemma 93

= �

*

Y = E[�X

n

F

n

=X

n

]

�

�1

(�X

i

F

i

) j i 2 n

+

by outer induction

= �Y E[�X

n

F

n

=X

n

][�X

i

F

i

=X

i

]

i2n

by inner induction

= �Y E[�X

i

F

i

=X

i

]

i2n+1

:

2

2

Lemma 96 For any almost standard sequence h ~X =

~

Ei there is a standard acces-

sible sequence h ~X =

~

F i such that B ` � h

~

X =

~

Ei = � h

~

X =

~

F i.

PROOF Using Lemma 19, B2 and Lemma 18 we can ensure that no E

i

is of the

form X

i

+G. We proceed by induction on the size of

fX

i

j X

i

is a summand of some E
j

g:

Using Lemma 19, if this set is not empty then we can assume it contains X
n�1

.

Let ~

F; F be ~

E with each occurrence of X
n�1

as a summand of some E
j

replaced

by a new variable W . These occurrences of X
n�1

can be provably replaced with

E

n�1

as follows (writing ~

Y ; Y for ~

X).

� h

~

Y =

~

F [Y=W]; Y = F i

= � h

~

Y =

~

F [Y=W][�Y F =Y]i by def �

= � h

~

Y =

~

F

2

4

�Y F =W

�Y F =Y

3

5

i

= � h

~

Y =

~

F

2

4

F [�Y F =W] =W

�Y F =Y

3

5

i by B1 and Lemma 18

= � h

~

Y =

~

F [F=W][�Y F =Y]i

= � h

~

Y =

~

F [F=W]; Y = F i by def �.

Establishing accessibility is straightforward. 2

Lemma 21 If h ~X =

~

Ei is standard then h ~X =

~

Ei � � h

~

X =

~

Ei.

104 Appendix A. Completeness proof

PROOF Straightforward. 2

Appendix B

Loop properties

In this appendix we relate the loop structures of the transition systems E� and

E?�, showing that loops in one can be matched ‘on the nose’ by loops in the other

instead of merely ‘up to bisimulation’. We show the following:

Lemma 97 If � is a substitution for E
r

then loops(E

r

�) = loops(E

r

?�).

It is then straightforward to show Lemma 62 of section 3.6. The interesting direc-

tion is the inclusion �. It does not follow from the bisimilarity of E
r

� and E

r

?�

as the action of � may be non-injective — we may have

E

r

��!

�

E��!

l

E

0

�

with E� = E

0

� but E 6= E

0. We show below that for any loop of E
r

� there is

another with the same length headed by an instance of �x and then that any

such can be matched in E

r

?�.

Notation We write S for the set of states of E?� and for s 2 S write fst(s) for

the underlying term of s, i.e.

fst(hEi)

def
= E

fst(hE; y

~

E; di)

def
= E:

We adopt the assumptions on � from x3.5, letting y range over dom(�), z; Z over

Z

P andw overK�dom(�)�FV (ran(�))�Z (which we assume contains infinitely

many variables at type P).

Intuitively if s 2 S and fst(s)�B �x M then this instance of �x comes either from

the term fst(s) or from the substitution �. To capture this we define new visibility

predicates:

105

106 Appendix B. Loop properties

Definition LetB0

;B

00

� S�T

P

1

be the least relations satisfying the clauses below.

The numbering of clauses matches that in the definition of E?� in x3.6.

1. EBF) hEiB

0

F

2. n/a.

3. EB y

~

E ^ H

y

B z

j

^ hE

j

iB

0

F) hEiB

0

F

4. n/a.

5. EB y

~

E ^ d :H

y

l

�!H

0

^ H

0

B z

j

^ hE

j

iB

0

F) hH

0

[

~

E=~z]; y

~

E; diB

0

F

1. n/a.

2. EB y

~

E ^ H

y

BH

0

) hEiB

00

H

0

3. EB y

~

E ^ H

y

B z

j

^ hE

j

iB

00

F) hEiB

00

F

4. EB y

~

E ^ d :H

y

l

�!H

0

^ H

0

BH

00

) hH

0

[

~

E=~z]; y

~

E; diB

00

H

00

5. EB y

~

E ^ d :H

y

l

�!H

0

^ H

0

B z

j

^ hE

j

iB

00

F) hH

0

[

~

E=~z]; y

~

E; diB

00

F

These relations are complementary.

Lemma 98 If fst(s)�B �x �w :P: A then one of the following holds.

1. 9E
0

: sB

0

�x �w :P: E

0

^ E

0

� = A

2. 9H
0

;

~

E : sB

00

�x �w :P: H

0

^ H

0

[

~

E� =~z] = A

PROOF First suppose s = hEi and show the result by induction onE�B �x �w :P: A

using Proposition 53. The result for s not of this form is then a simple case anal-

ysis. 2

Transitions of E� can be matched in E?�.

Lemma 99 If one of

1. s
def
= hE[�x �w :P: F =w]i and E�

a

�!A

107

2. s
def
= hH

0

[

~

E[�x �w :P: F =w] =

~

Z]; y

~

E[�x �w :P: F =w]; di 2 S and

H

0

[

~

E=

~

Z]�

a

�!A

hold then there exists t 2 S such that s
a

�!t and either there exists E 0 such that

t = hE

0

[�x �w :P: F =w]i and A = E

0

�

or there exists y0; ~E 0

; H

00

; d

0 such that

t = hH

00

[

~

E

0

[�x �w :P: F =w] =

~

Z

0

]; y

0

~

E

0

[�x �w :P: F =w]; d

0

i and A = H

00

[

~

E

0

=

~

Z

0

]�:

PROOF Suppose 1. By Proposition 53 there exists E
1

such that E
a

�!

�

E

1

and

E

1

� = A. The conclusion can be shown by induction on the definition of
a

�!

�

.

Now suppose 2. By the assumptions on variables H

0

[

~

E=

~

Z]� = H

0

[

~

E� =

~

Z]

so H

0

[

~

E� =

~

Z]

a

�!A and either H 0

a

�!H

00

^ H

00

[

~

E� =

~

Z] = A or H 0

BZ

j

^ E

j

�

a

�!A.

The first case is trivial, the second follows from part 1. 2

Transitions of E� that are headed by an instance of �x can be matched in E?� by

transitions which have a destination state that is somewhat independent of their

start state.

Lemma 100 If hEi 2 S; EB �x �w :P: F and F�

a

�!A then there exists t 2 S

such that

8hE

00

i 2 S : E

00

B �x �w :P: F) hE

00

i

a

�!t

and either there exists E 0 such that

t = hE

0

[�x �w :P: F =w]i and A = E

0

�

or there exists y0; ~E 0

; H

00

; d

0 such that

t = hH

00

[

~

E

0

[�x �w :P: F =w] =

~

Z

0

]; y

0

~

E

0

[�x �w :P: F =w]; d

0

i and A = H

00

[

~

E

0

=

~

Z

0

]�:

PROOF By Proposition 53 there exists F 0 such that F
a

�!

�

F

0 and F

0

� = A. The

result follows by considering cases of the definition of
a

�!

�

, using Lemma 99 for

case 3. 2

This can be strengthened to deal with all states of E?�.

Lemma 101 If s 2 S; sB

0

�x �w :P: F and F�

a

�!A then there exists t 2 S such

that

8s

0

2 S : s

0

B

0

�x �w :P: F) s

0

a

�!t

108 Appendix B. Loop properties

and either there exists E 0 such that

t = hE

0

[�x �w :P: F =w]i and A = E

0

�

or there exists y0; ~E 0

; H

00

; d

0 such that

t = hH

00

[

~

E

0

[�x �w :P: F =w] =

~

Z

0

]; y

0

~

E

0

[�x �w :P: F =w]; d

0

i and A = H

00

[

~

E

0

=

~

Z

0

]�:

PROOF By an easy induction there exists hEi 2 S such that EB �x �w :P: F . By

Lemma 100 there exists t 2 S such that

8hE

00

i 2 S : E

00

B �x �w :P: F) hE

00

i

a

�!t

and the second clause of the conclusion holds. It remains to check by induction

on B0 that

8s

0

2 S : s

0

B

0

�x �w :P: F) s

0

a

�!t:

2

Lemma 102 If one of

1. s
def
= hE[�x �w :P: F =w]i and E�Bw

2. s
def
= hH

0

[

~

E[�x �w :P: F =w] =

~

Z]; y

~

E[�x �w :P: F =w]; di 2 S and

H

0

[

~

E=

~

Z]�Bw

hold then sB

0

�x �w :P: F .

PROOF Suppose 1. By Proposition 53 EB

�

w. The conclusion can be shown by

induction on the definition of B
�

. The result for 2 is then straightforward. 2

Finally we can prove:

Lemma 97 If � is a substitution for E
r

then loops(E

r

�) = loops(E

r

?�).

PROOF �: Suppose hE
r

i�!

�

s�!

l

s. By tracking transitions along the higher or-

der bisimulation in the proof of Lemma 60 we can see that

E

r

��!

�

fst(s)��!

l

fst(s)�:

�: Suppose E

r

��!

�

A�!

l

A. By Lemma 66 there exists a term �x �w :P: B, a

finite set I and k

i

� 1 j i 2 I such that E
r

��!

�

B �x �w :P: B;

P

I

k

i

= l and

8i : B�!

k

i

Bw.

109

By tracking transitions along the higher order bisimulation of Lemma 60 we have

hE

r

i�!

�

s for some s with fst(s)�B �x �w :P: B.

By Lemma 98 one of the following holds.

1. sB0

�x �w :P: F ^ F� = B.

By induction on n if F��!n

A then there exist t 2 S such that

8s

0

2 S : s

0

B

0

�x �w :P: F) s

0

�!

n

t

and either there exists E 0 such that

t = hE

0

[�x �w :P: F =w]i and A = E

0

�

or there exists y0; ~E 0

; H

00

; d

0 such that

t = hH

00

[

~

E

0

[�x �w :P: F =w] =

~

Z

0

]; y

0

~

E

0

[�x �w :P: F =w]; d

0

i

and A = H

00

[

~

E

0

=

~

Z

0

]�, using Lemma 101 for the base case and Lemma 99

for the inductive step.

Finally, by Lemma 102, for all i 2 I, if s0B0

�x �w :P: F then

s

0

�!

k

i

B

0

�x �w :P: F

so s (and hence hE
r

i) has a loop of length l.

2. sB00

�x �w :P: H

0

^ H

0

[

~

E� =~z] = B.

We know that w is not free in ~

E� so must have for each i that

H

0

�!H

i

�!

k

i

�1

Bw:

By induction on sB

00

�x �w :P: H

0

there is some y ~E; d such that

s�!hH

i

[�x �w :P: H

0

=w][

~

E=~z]; y

~

E; di:

Further, this state has a loop of length l.

2

Bibliography

[Abr91] Samson Abramsky. A domain equation for bisimulation. Information

and Control, 92,2:161–218, 1991.

[ABV92] Luca Aceto, Bard Bloom, and Frits Vaandrager. Turning SOS rules into

equations. Technical Report CS-R9218, CWI, June 1992. To appear in

the LICS ’92 special issue of Information and Computation.

[Acz88] Peter Aczel. Non-well-founded Sets, volume 14 of CSLI Lecture Notes.

CSLI, 1988.

[AG87] K. B. Arkhangelskii and P. V. Gorshkov. Implicational axioms for the al-

gebra of regular languages. Doklady Akad. Nauk, USSR, ser A., 10:67–

69, 1987. (in Russian).

[AH88] L. Aceto and M. Hennessy. Termination, deadlock and divergence.

Technical Report 6/88, Sussex University, 1988.

[AI95] L. Aceto and A. Ingólfsdóttir. A complete equational axiomatization

for prefix iteration with silent steps. Research Report RS–95–5, BRICS

(Basic Research in Computer Science, Centre of the Danish Research

Foundation), Department of Mathematics and Computer Science, Aal-

borg University, January 1995.

[Avr91] Arnon Avron. Simple consequence relations. Information and Compu-

tation, 92:105–139, 1991.

[BB88] Franz Baader and Wolfram Büttner. Unification in commutative idem-

potent monoids. Theoretical Computer Science, 56:345–353, 1988.

110

Bibliography 111

[BBK87] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. On the consistency of

Koomen’s fair abstraction rule. Theoretical Computer Science, 51:129–

176, 1987.

[BBP94] J. A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration.

The Computer Journal, 37(4):243–258, 1994. Also as University of

Amsterdam Programming Research Group report P9314.

[BÉ93a] Stephen L. Bloom and Zoltán Ésik. Equational axioms for regular sets.

Math. Struct. in Comp. Science, 3:1–24, 1993.

[BÉ93b] Stephen L. Bloom and Zoltán Ésik. Iteration Theories: The Equational

Logic of Iterative Processes. EATCS Monographs on Theoretical Com-

puter Science. Springer-Verlag, 1993.

[BÉ94] Stephen L. Bloom and Zoltán Ésik. Iteration algebras of finite state

process behaviors. Draft, February 1994.

[BK84] J. A. Bergstra and J. W. Klop. A complete inference system for regular

processes with silent moves. Technical Report CS-R8420, CWI, 1984.

[Bof90] M. Boffa. Une remarque sur les systèmes complets d’identités ra-

tionelles. Theoret. Inform. Applic., 24(4):419–423, 1990.

[BS93] Franz Baader and Jörg H. Siekmann. Handbook of Logic in Artificial In-

telligence and Logic Programming, chapter ‘Unification Theory’. Oxford

University Press, 1993.

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge

Tracts in Theoretical Computer Science 18. Cambridge University

Press, 1990.

[CEW58] Irving M. Copi, Calvin C. Elgot, and Jesse B. Wright. Realization of

events by logical nets. Journal of the ACM, 5(2):181–196, April 1958.

[CHM93] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Decomposabil-

ity, decidability and axiomatisability for bisimulation equivalence on

112 Appendix B. Loop properties

basic parallel processes. In Proc. 8th IEEE Symposium on Logic in Com-

puter Science, pages 386–396, New York, 1993. IEEE Computer Society

Press.

[CHM94] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Decidable sub-

sets of CCS. The Computer Journal, 37(4):233–242, 1994.

[Chr93] Søren Christensen. Decidability and Decomposition in Process Algebras.

PhD thesis, University of Edinburgh, 1993. Also as CST–105–93.

[Con71] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall,

1971.

[CS90] Rance Cleveland and Bernhard Steffen. A preorder for partial process

specifications. In CONCUR 90, pages 141–151, 1990.

[Dro94] N. J. Drost. Unification in an algebra with choice and action prefix.

Technical Report P9321, Programming Research Group, University of

Amsterdam, July 1994.

[Fok94] W. J. Fokkink. A complete equational axiomatisation for prefix itera-

tion. Information Processing Letters, 52(6):333–337, December 1994.

Also as CWI report CS-R9415.

[FZ94] Wan Fokkink and Hans Zantema. Basic process algebra with itera-

tion: Completeness of its equational axioms. The Computer Journal,

37(4):259–267, 1994. Also as CWI report CS–R9368.

[Gla90] R. J. van Glabeek. The linear time — branching time spectrum. In

J. C. M. Baeten and J. W. Klop, editors, Proceedings CONCUR 90, Ams-

terdam, LNCS 458, pages 278–297, 1990.

[Gla93a] R. J. van Glabeek. A complete axiomatization for branching

bisimulation congruence of finite-state behaviours. In Andrzej M.

Borzyszkowski and Stefan Sokolowski, editors, Proceedings 18th

MFCS, LNCS 711, pages 473–484, 1993.

Bibliography 113

[Gla93b] R. J. van Glabeek. Divergence bisimulation. Personal communication,

1993.

[Hen81] Matthew Hennessy. A term model for synchronous processes. Infor-

mation and Control, 51:58–75, 1981.

[Hen88] Matthew Hennessy. Algebraic Theory of Processes. The MIT Press,

1988.

[HM80] Matthew Hennessy and Robin Milner. On observing nondeterminism

and concurrency. In J. W. de Bakker and J. van Leeuwen, editors, Pro-

ceedings 7th Colloquium on Automata, Languages and Programming,

LNCS 85, pages 299–309. Springer-Verlag, 1980.

[HP80] M. C. B. Hennessy and G. D. Plotkin. A term model for CCS. In Pro-

ceedings 9th MFCS, LNCS 88, 1980.

[HS91] H. Hüttel and C. Stirling. Actions speak louder than words: proving

bisimilarity for context-free processes. In Proc. 6th IEEE Symposium

on Logic in Computer Science, pages 376–386, New York, 1991. IEEE

Computer Society Press.

[Hüt91] H. Hüttel. Decidability, Behavioural Equivalences and Infinite Transition

Graphs. PhD thesis, University of Edinburgh, 1991. CST–86–91.

[Kle56] S. C. Kleene. Representation of events in nerve nets and finite au-

tomata. In C. E. Shannon and J. McCarthy, editors, Automata Studies,

pages 3–41. Princeton University Press, 1956. Annals of Mathematics

Studies 34.

[Koz94] Dexter Kozen. A completeness theorem for Kleene algebras and the al-

gebra of regular events. Information and Computation, 110:366–390,

1994. Also in LICS ’91.

[Kro91] Daniel Krob. Complete systems of B-rational identities. Theoretical

Computer Science, 89:207–343, 1991.

114 Appendix B. Loop properties

[Liu93] Xinxin Liu. On decidability and small model property of process equa-

tions. Technical Report 93:10, School of Cognitive and Computing Sci-

ences, University of Sussex, 1993.

[Mil80] Robin Milner. A Calculus of Communicating Systems, LNCS 92.

Springer-Verlag, 1980. Also published as LFCS report ECS-LFCS-86-

7.

[Mil81] Robin Milner. A modal characterisation of observable machine-

behaviour. In Proceedings CAAP ’81, LNCS 112, pages 25–34, 1981.

[Mil84] Robin Milner. A complete inference system for a class of regular be-

haviours. Journal of Computer and System Sciences, 28(3):439–466,

1984.

[Mil89] Robin Milner. A complete axiomatisation for observational congru-

ence of finite state behaviours. Information and Computation, 81:227–

247, 1989.

[Mit90] John C. Mitchell. Type systems for programming languages. In The

Handbook of Theoretical Computer Science, chapter 8. Elsevier Science,

1990.

[Mol89] Faron Moller. Axioms for Concurrency. PhD thesis, University of Edin-

burgh, 1989.

[MP43] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas

immanent in nervous activity. Bulletin of Mathematical Biophysics,

5:115–133, 1943.

[MT92] K. Meinke and J. V. Tucker. Handbook of Logic in Computer Science, vol-

ume 1, chapter ‘Universal Algebra’, pages 189–411. Clarendon press,

Oxford, 1992.

[Nie89] Flemming Nielson. The typed �-calculus with first-class processes. In

Proc. PARLE ’89, LNCS 366. Springer-Verlag, 1989.

Bibliography 115

[Par81] D. M. R. Park. Concurrency and automata on infinite sequences. In

Proc. 5th G.I. Conference, LNCS 104. Springer-Verlag, 1981.

[PT87] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM

Journal on Computing, 16(6):973–989, 1987.

[Rab93] Alexander Rabinovich. A complete axiomatisation for trace congru-

ence of finite state behaviors. In Austin and Main, editors, Proceedings

of Mathematical Foundations of Programming Semantics (IX), LNCS,

1993. (to appear).

[Red64] V. N. Redko. On defining relations for the algebra of regular events.

Ukrain. Mat. Zh., 16:120–126, 1964. (in Russian).

[Sal66] Arto Salomaa. Two complete axiom systems for the algebra of regular

events. Journal of the ACM, 13(1):158–169, January 1966.

[San93] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order

and Higher-Order Paradigms. PhD thesis, University of Edinburgh,

1993.

[San94] Davide Sangiorgi. Bisimulation in higher-order process calculi. In

Proceedings of the IFIP Working Conference on Programming Concepts,

Methods and Calculi (PROCOMET ’94), pages 207–224, 1994.

[Sew94] Peter Sewell. Bisimulation is not finitely (first-order) equationally ax-

iomatisable. In Proc. 9th IEEE Symposium on Logic in Computer Science,

pages 62–70. IEEE, 1994.

[Sta82] R. Statman. Completeness, invariance and �-definability. The Journal

of Symbolic Logic, 47(1):17–26, March 1982.

[Tur37] A. M. Turing. On computable numbers, with an application to the

entscheidungsproblem. Proceedings of the London Mathematical Soci-

ety (second series), 42:230–265, 1937.

116 Appendix B. Loop properties

[Vra86] J. L. M. Vrancken. The algebra of communicating processes with

empty process. Technical Report FVI 86-01, University of Amsterdam,

Department of Computer Science, 1986.

[Wal88] D. J. Walker. Bisimulations and divergence. In Proc. 3rd IEEE Sympo-

sium on Logic in Computer Science, pages 186–192, 1988.

[Yan] Yanov. See [Con71, p. 108].

Index of axioms

A1 E + (F +G) = (E + F) +G 22

A2 E + F = F + E 22

A3 E + 0 = E 22

A4 E + E = E 22

A5 �Y E[Y=X] = �XE , if Y not free in �XE 23

B1 E[�XE =X] = �XE 23

B1

0

�XE = E , if X not free in E. 26

B2 �XX + E = �XE 23

B3 �XE[�Y F =Y] = �XE[�Y F [�XE =X] =Y] 23

C

mn

� hX

i

= E

i

[X

k

=Z

kf

]

k2m;f2n

n

j i 2 mi

= � hY

ij

= E

i

[Y

k;f(j)

=Z

kf

]

k2m;f2n

n

j i 2 m; j 2 ni

23

C1–13 � � � 32

C14:p A

�

= (A

p

)

�

:

P

i2p

A

i

32

D E = F [E=X] ^ X guarded in F ! E = �XF 29

E1 (double iteration) �ZE[ZZ=XY] = �X�Y E 28

E2 (composition) �XE[F=X] = E[�XF [E=X] =X] 28

E3 (GA implication)
�ZE[ZZ=XY] = �ZF [ZZ=XY]

! �ZE[ZZ=XY] = �XF [�Y E =Y]

30

117

118 Appendix B. Loop properties

F1 �

*

X = E + aY

Y = F + �G

+

= �

*

X = E + aY + aG

Y = F + �G

+

75

F2 �

*

X = E + �Y

Y = F +G

+

= �

*

X = E + �Y +G

Y = F +G

+

75

F3 a�XE = a�XE + �X: 75

F4 E � F ! E = F 75

P1 aE + aF = a(E + F) 22

P2 a0 = 0 22

commutative identity for �-expressions

~�

i

0

hX

i

= E

i

[X

k

=Z

kl

]

k2m;l2n

j i 2 mi

= ~�

i

0

j

0

hY

ij

= E

i

[Y

k;�

ij

(l)

=Z

kl

]

k2m;l2n

j i 2 m; j 2 ni

27

commutative identity for �-expressions

B

�

:

� = �

:

C

�

33

functorial implication

8i 2 m : E

i

[Y

�(j)

=X

j

]

j2m

= F

�(i)

! 8i 2 m : ~�

i

~

X

~

E = ~�

�(i)

~

Y

~

F

30

group identity

[

1 0 � � � 0

]

:

M

�

:

2

6

6

6

6

4

1

...

1

3

7

7

7

7

5

=

�

P

g2G

X

g

�

�

34

Index

�

u

, 59

axiomatisation, 40

!-complete, 19

complete, 42

pure equational, 15, 16

pure horn clause, 15, 17

sound, 40

bisimulation, 7

higher order �
ho

, 47

loose higher order, 50

normal �
Nr

, 68

of pointed graphs, 72

solution, 83

weak �, 8

chart, 6, 82

finite, 10

root-unwound, 76

saturated, 76

chart substitution, 82

commutative identity, 27, 33

composition identity (E2), 28

decoration, 71

der() or derivatives, 48

double iteration identity (E1), 28

equation sequence, 23

accessible, 25

almost standard, 101

fixed point of, 23

guarded, 30

product of, 25

provable solution, 29

standard, 25

expressions

�-, 10

�-, 8

extensional equality �
ext

, 43

functorial implication, 30

GA implication (E3), 30

graph, 71

group identity, 34

higher order � calculus, 66

infinite term equivalence =
in�nite term

,

9

iteration theories, 19

lambda calculus, 39, 41

language

of �-expressions, 12

language equivalence, 7

loops, 60

L

u

, 59

n-lts, 98

order(), 40

relative axiomatisability, 18, 21, 27,

73

119

120 Index

substitution for ..., 42

substitutive, 10, 13, 42

T -unification problem, 89

T -unifier, 89

T

�

k

, 40

trace congruence, 7

transition system

E?�, 57

higher order, 46

of a standard sequence, 25

of the �-expressions, 11

of the �-expressions, 9

unification problem, 81, 83

unifier, 81, 83

visibility predicate B, 6

W(R), 8

weak congruence �c, 8

weak extensional equality �c

ext

, 74

weak higher order congruence�c

ho

, 73

width(), 59

