
Mixed size non-atomics in C/C++11

Kyndylan Nienhuis and Mark Batty

November 7, 2016

This note describes our extension of the C/C++11 axiomatic concurrency
model [2, 4, 3, 1] to cover mixed-size nonatomic accesses.

1 The proposed model

To distinguish between character and whole object accesses we add footprints
to reads and writes. In the following example the footprint of the first write
is the whole object, while the footprint of the second write is only the second
byte.

int x = 42;

*((char *)(&x + 1)) = 0;

printf("%i", x);

This example also shows that reads can now read from multiple writes. To make
explicit which part the read is reading from which write, we also add footprints
to rf -edges. In the example the footprint of the rf -edge from the first write to
the read is the whole object minus the second byte, while the footprint of the
rf -edge between the second write and the read is just the second byte.

We leave the type footprint abstract, so that users of the proposed model
can implement it as they wish, and we only manipulate footprints using the
following functions (which also have to be implemented by users of the model).
One possibility would be to implement a footprint as a set of addresses, where
an address points to one byte in the memory, and to implement the functions
below by their corresponding functions on sets.

• val footprint empty : footprint

• val footprint is empty : footprint → bool

• val footprint inclusion : footprint → footprint → bool

• val footprint difference : footprint → footprint → footprint

• val footprint intersection : footprint → footprint → footprint

• val footprint bigunion : set footprint → footprint

The possibility of multiple rf -edges to a read means that the value of the
read can no longer simply be the value of the write the read reads from. To

1

determine this value we use the following function whose implementation is also
left to users of the model. The parameter is a set of tuples (v, f1, f2) where v

is the value of a write, f1 the footprint of the write and f2 the footprint of the
rf -edge from that write. The return value can be nothing, for example in the
case that the set is empty.

• val combine cvalues : set (cvalue ∗ footprint ∗ footprint) →
maybe cvalue

Below we discuss how the proposed model differs from the original axiomatic
model. For each definition [name] that we changed we use the name [name]-fp
for the new definition, where fp stands for footprint.

1.1 Visible side effects

In the original model the visible side effects to a read r are all the writes w to
the same location with (w, r) ∈ hb and such that there is no write to the same
location that is hb-between w and r. This is formally defined below.

val visible side effect set : set action → set (action ∗ action) →
set (action ∗ action)
let visible side effect set actions1 hb =

{ (a, b) | ∀ (a, b) ∈ hb |
is write a ∧ is read b ∧ (loc of a = loc of b) ∧
¬ (∃ c ∈ actions1. ¬ (c ∈ {a, b}) ∧

is write c ∧ (loc of c = loc of b) ∧
(a, c) ∈ hb ∧ (c, b) ∈ hb) }

This definition does not suffice anymore: the read in the example of the begin-
ning of this section can see the first write, although there is a write hb-between.
Instead we define visible side effects as follows: if there is a part f of the foot-
print of a write w that is not overwritten by writes hb-between w and r, than
(w, f, r) is a visible side effect. This is formally defined below.

val visible side effect set fp : set action → set (action ∗ action) →
set (action ∗ footprint ∗ action)
let visible side effect set fp actions1 hb =
let x = (fun (a, b) →

let overwriting footprint =
footprint bigunion {footprint of c

| ∀ c ∈ actions1
| ¬ (c ∈ {a, b}) ∧ is write c ∧
(a, c) ∈ hb ∧ (c, b) ∈ hb} in

let remaining footprint of a =
footprint difference (footprint of a) overwriting footprint in

let footprint between a and b =
footprint intersection (footprint of b) remaining footprint of a in

2

(a, footprint between a and b, b)) in
{ (a, f , b) | ∀ (a, f , b) ∈ Set.map x hb |
is write a ∧ is read b ∧ ¬ (footprint is empty f)}

1.2 Well formed rf

In the original well-formed-rf predicate (which is displayed below) we change
loc of a = loc of b by the requirement that the footprint f of the rf -edge is
included in both the footprints of a and b, and that f is non-empty. The
last conjunct of the original predicate requires there is at most one rf -edge
to each read. We now only require that for atomics (and phrase it in a dif-
ferent way) and for non-atomics we require that there is at most one rf -edge
between every pair (a, b) of write and read, and that the footprints of all the
rf -edges to the same read are disjoint. Finally, we change value written by a
to a computation that combines the values of all the writes that a read reads
from. To improve readability, we moved this requirement to a separate definition
well formed rf fp

2
, named the remainder of the predicate well formed rf fp

1
,

and defined well formed rf fp as the conjunction of these two predicates.

val well formed rf : pre execution ∗ execution witness ∗ relation list →
bool

let well formed rf (Xo, Xw ,) =
∀ (a, b) ∈ Xw .rf .
a ∈ Xo.actions ∧ b ∈ Xo.actions ∧
loc of a = loc of b ∧
is write a ∧ is read b ∧
value read by b = value written by a ∧
∀ a ′ ∈ Xo.actions . (a ′, b) ∈ Xw .rf −→ a = a ′

val well formed rf fp
1
: candidate execution fp → bool

let well formed rf fp
1
(Xo, Xw ,) =

(∀ (w , f , r) ∈ Xw .rf fp.
w ∈ Xo.actions ∧ r ∈ Xo.actions ∧
is write w ∧ is read r ∧
¬ (footprint is empty f) ∧
footprint inclusion f (footprint of w) ∧
footprint inclusion f (footprint of r) ∧
let writes of r = {(w ′, f ′) | ∀ (w ′, f ′, r ′) ∈ Xw .rf fp | r = r ′} in

(is at atomic location Xo.lk r −→ writes of r = {(w , f)}) ∧
(is at non atomic location Xo.lk r −→
(∀ (w ′, f ′) ∈ writes of r .

(w = w ′ −→ f = f ′) ∧
(w 6= w ′ −→ footprint is empty (footprint intersection f f ′)))))

val well formed rf fp
2
: candidate execution fp → bool

let well formed rf fp
2
(Xo, Xw ,) =

3

(∀ r ∈ Xo.actions .
let writes of r = {(w , f) | ∀ (w , f , r ′) ∈ Xw .rf fp | r = r ′} in

(¬ (null writes of r)) −→
value read by r =
combine cvalues (Set.setMapMaybe (fun (w , f) → match value written by w with

| Just v → Just (v , footprint of w , f)
| Nothing → Nothing
end)

writes of r))

val well formed rf fp : candidate execution fp → bool

let well formed rf fp ex =
well formed rf fp

1
ex ∧ well formed rf fp

2
ex

1.3 Consistent non-atomic rf

The consistent-non-atomic-rf predicate requires that non-atomic reads only
read from visible side effects. Both rf - and vse-edges now have footprints, but it
would be wrong to require that the rf -edge is a visible side effect with the same
footprint: in a racy program there could be distinct writes w and w′ such that
(w, f, r) and (w′, f, r) are both visible side effects, and r could read only a part of
w and read the rest from w′. This means that the rf -edges to r would not have
f as footprint, so they are not included in vse. Instead we require that for every
rf -edge there is a vse-edge whose footprint includes the footprint of the rf -edge.

val consistent non atomic rf : pre execution ∗ execution witness ∗
relation list → bool

let consistent non atomic rf (Xo, Xw , :: (“vse”, vse) ::) =
∀ (w , r) ∈ Xw .rf . is at non atomic location Xo.lk r −→
(w , r) ∈ vse

val consistent non atomic rf fp : candidate execution fp → bool

let consistent non atomic rf fp (Xo, Xw , rel1) =
∀ (w , f , r) ∈ Xw .rf fp. is at non atomic location Xo.lk r −→
∃ (w ′, f ′, r ′) ∈ rel1.vse fp. w = w ′ ∧ r = r ′ ∧ footprint inclusion f f ′

1.4 Determinate reads

The original determinate-reads predicate requires that a load r has an rf -edge
to it if and only if there exists a visible side effect to r. In our proposed model
we instead require that the union of the footprints of the rf -edges to r equals
the union of the footprints of the vse-edges to r.

val det read : pre execution ∗ execution witness ∗ relation list →
bool

let det read (Xo, Xw , :: (“vse”, vse) ::) =

4

∀ r ∈ Xo.actions .
is load r −→
(∃ w ∈ Xo.actions . (w , r) ∈ vse) =
(∃ w ′ ∈ Xo.actions . (w ′, r) ∈ Xw .rf)

val det read fp : candidate execution fp → bool

let det read fp (Xo, Xw , rel1) =
∀ r ∈ Xo.actions .
is load r −→
footprint bigunion {f | ∀ (w , f , r ′) ∈ rel1.vse fp | r = r ′} =
footprint bigunion {f | ∀ (w , f , r ′) ∈ Xw .rf fp | r = r ′}

1.5 Indeterminate reads

The original function indeterminate-reads returns the set of reads that have no
rf -edge to them. In our proposed model this function returns the set of reads r
whose footprint is not covered by the footprints of the rf -edges to r.

val indeterminate reads : candidate execution → set action

let indeterminate reads (Xo, Xw ,) =
{b | ∀ b ∈ Xo.actions | is read b ∧ ¬ (∃ a ∈ Xo.actions . (a, b) ∈ Xw .rf)}

val indeterminate reads fp : candidate execution fp → set action

let indeterminate reads fp (Xo, Xw , rel1) =
{b | ∀ b ∈ Xo.actions |

is read b ∧
let footprint of writes =

footprint bigunion {f | ∀ (w , f , r ′) ∈ Xw .rf fp | r ′ = b} in

¬ (footprint inclusion (footprint of b) (footprint of writes))}

1.6 Races

Both in unsequenced-races and in data-races we change loc of a = loc of b by
footprint overlap (footprint of a) (footprint of b), which is defined as follows.

val footprint overlap : footprint → footprint → bool

let footprint overlap f1 f2 =
¬ (footprint is empty (footprint intersection f1 f2))

References

[1] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
Mathematizing C++ concurrency. In Proc. POPL, 2011.

[2] Hans-J Boehm and Sarita V Adve. Foundations of the C++ concurrency

5

memory model. In ACM SIGPLAN Notices, volume 43, pages 68–78. ACM,
2008.

[3] WG14. ISO/IEC 14882:2011.

[4] WG14. ISO/IEC 9899:2011.

6

