
Cassandra: Distributed Access Control Policies with Tunable Expressiveness

Moritz Y. Becker Peter Sewell
Computer Laboratory, University of Cambridge

JJ Thomson Avenue, Cambridge, United Kingdom
{moritz.becker, peter.sewell}@cl.cam.ac.uk

Abstract

We study the specification of access control policy in
large-scale distributed systems. Our work on real-world
policies has shown that standard policy idioms such as role
hierarchy or role delegation occur in practice in many sub-
tle variants. A policy specification language should there-
fore be able to express this variety of features smoothly,
rather than add them as specific features in an ad hoc way,
as is the case in many existing languages.

We present Cassandra, a role-based trust management
system with an elegant and readable policy specification
language based on Datalog with constraints. The expres-
siveness (and computational complexity) of the language
can be adjusted by choosing an appropriate constraint do-
main. With just five special predicates, we can easily ex-
press a wide range of policies including role hierarchy,
role delegation, separation of duties, cascading revoca-
tion, automatic credential discovery and trust negotiation.
Cassandra has a formal semantics for query evaluation and
for the access control enforcement engine. We use a goal-
oriented distributed policy evaluation algorithm that is ef-
ficient and guarantees termination. Initial performance re-
sults for our prototype implementation have been promis-
ing.

1. Introduction

The emergence of wide-area network-based services
poses new and challenging problems to security manage-
ment. The networks in question are generally heteroge-
neous, decentralised and large-scale, with possibly millions
of autonomous entities (which may be individuals, agents,
organisations or other administrative domains) that wish to
share their resources in a secure and controlled fashion.
Collaborating entities may be mutual strangers at first, thus
access control cannot be based on identity, as it is the case
in traditional approaches.

In the trust management approach [5], authorisation is
based on credentials, digitally signed certificates asserting

attributes about entities holding them. In systems support-
ing trust negotiation [19], peers establish trust between
each other by exchanging sets of suitable credentials. A
policy specification language is used to define a system’s
security policy, a set of rules specifying the security goals
in a high-level language. This approach separates pol-
icy from implementation, simplifies security administration
and facilitates policy evolution.

The diversity of emerging applications with widely dif-
fering security requirements has led to the development of a
variety of increasingly expressive policy specification lan-
guages (e.g. [5, 6, 9, 11, 14, 13, 12, 7]). Existing ones are
extended to accommodate more complex policies. For ex-
ample, the role-based trust management languageRT0 [14]
was extended to RT1 to handle parameterised roles, and
to RTT to express separation of duties [13]. Another ex-
tension of RT , RTC1 [12], provides constructs for limiting
the range of role parameters using constraints. However,
adding constructs to a language in an ad hoc fashion to in-
crease its expressiveness has several disadvantages. Firstly,
it is unlikely that the extension will cover all policies of in-
terest; secondly, the semantics and implementations of the
language have to be changed; thirdly, languages with many
constructs are harder to understand and to reason about;
and lastly, policy evaluation usually becomes computa-
tionally more expensive with increasing expressiveness (in
some cases, the language is even Turing-complete).

We have designed a trust management system,
Cassandra, in which the expressiveness of the policy speci-
fication language can be adjusted by selecting an appropri-
ate constraint domain. The advantage of this approach is
that the expressiveness (and hence the computational com-
plexity) can be chosen depending on the requirements of
the application, and can easily be changed without having
to change the language semantics. In our prototype imple-
mentation of Cassandra, a constraint domain is a separate
module that can be plugged into the policy evaluation en-
gine. We have identified a condition on constraint domains,
constraint compactness, which ensures that policy evalua-
tion is decidable and guaranteed to terminate.

By factoring out the constraint domain, the language



perform action

deactivate role

activate role

request credential

In
te

rf
ac

e

Policy
(rules & credentials)

A
cc

es
s 

C
o

n
tr

o
l E

n
g

in
e Policy

Evaluator
invoke

modify

grant access

query

Cassandra Entity remote query

Resources
(Actions)

C

Figure 1. Cassandra components.

syntax and semantics are kept small and simple. In par-
ticular, Cassandra has no explicit provisions for standard
policy idioms such as role hierarchy, separation of duties
or delegation; instead, it is truly policy-neutral in that it
can encode such idioms (and many variants). Its expres-
siveness suffices for policies found in highly complex real-
world applications; this has been shown by our work on a
large-scale security policy for a national electronic health
record system [3].

In §2 we give an informal overview of Cassandra’s pol-
icy specification language. Unlike most other systems,
Cassandra not only formally specifies the policy language
but also the access control semantics governing the dy-
namic behaviour of an entire Cassandra network. This
operational semantics is described in §3. §4 shows how
examples of standard policies, including role validity peri-
ods, role hierarchy, separation of duties, role delegation and
trust negotiation policies, can be expressed in Cassandra.
The policy specification language and semantics are for-
mally defined and an algorithm for policy evaluation is
given in §5. §6 briefly discusses our case study on secu-
rity policies for a national electronic health record system.
We also discuss our prototype implementation and prelim-
inary experimental results. Finally we discuss related work
and conclude.

2. Policy specification overview

Cassandra is a trust management system allowing a po-
tentially large network of entities to share their resources
under well-defined restrictions, specified by local access
control policies, even if they are mutual strangers. Every
entity runs its own copy of a Cassandra service, which
acts as a protective layer around the resources. Figure 1
shows the internal components of a Cassandra service. In-
teraction with other entities is done via the interface that
defines requests for performing an action (i.e. accessing a
resource), activating and deactivating a role, and request-

ing a credential that can be used to support another request
somewhere else. The access control engine handles the re-
quest by invoking the policy evaluation engine, which in
turn queries the local Cassandra policy. The expressive-
ness of the policy specification language depends on the
globally chosen constraint domain, C, an independent mod-
ule that is plugged into the policy evaluation engine. As
policies can refer to policies of other entities, policy eval-
uation may trigger queries of remote policies (possibly the
requester’s) over the network. The answer of the policy
evaluation engine is used by the access control engine to
decide whether the request is to be granted. As a result of
a request, the local policy may be modified. For example,
if a role is activated, this new fact is put into the policy;
similarly, deactivation of roles causes facts to be removed
from the policy.

Cassandra’s policy specification language is based on
DatalogC , a generic extension of negation-free Datalog
(Prolog without function symbols) where the expressive-
ness can be tuned by varying the constraint domain param-
eter C [10]. A DatalogC rule is of the form

p0(~e0)← p1(~e1), .., pn(~en), c

where the pi are predicate names and the ~ei are (possi-
bly empty) expression tuples (that may contain variables)
matching the parameter types of the predicate. p0(~e0) is
the head of the rule, and the sequence of predicates on the
right hand side of the arrow is the body of the rule; c is a
constraint on the parameters occuring in the rest of the rule.
Intuitively, to deduce the head of a rule, all body predicates
must be deducable in such a way that the constraint is also
satisfied. A set of DatalogC rules can then be interpreted as
the deductive closure of the set.

The constraint of a rule, c, is a formula from some fixed
constraint domain C, a language of first order formulae
containing at least true, false and the identity predicate
“=” between C-expressions (variables, entities and possibly
other constructs). It must be closed under variable renam-
ing, conjunction (∧) and disjunction (∨). Furthermore, it
must be equipped with an interpretation that defines when
formulae are satisfied.

The expressiveness of DatalogC depends on the chosen
constraint domain C. For example, the least expressive con-
straint domain is the one where the only atomic constraints
are equalities between variables and constants. Choosing
this trivial constraint domain reduces the expressiveness of
the language to standard Datalog or Horn clauses without
function symbols. More powerful constraint domains often
include boolean, arithmetic and set constraints, and make
use of more complex expressions such as tuples, set expres-
sions and (side-effect free) function applications (e.g. to ac-
cess the current time). The computational complexity of
evaluating DatalogC programs increases with expressive-
ness: with set constraints it is already possible to encode



the Hamiltonian cycle problem, and thus all NP-complete
problems. Care must be taken not to choose a constraint
domain that is too expressive as this can result in programs
in which queries are undecidable. We will later introduce
the notion of constraint compactness to restrict constraint
domains to those that guarantee termination of queries.

In Cassandra, access control is role-based, and roles, as
well as actions, are parameterised. Role-based access con-
trol (RBAC) [17, 8] was initially introduced to simplify se-
curity administration of large enterprises. In the context of
distributed trust management, roles can more generally be
used as a representation of authenticated subject attributes
in decentralised access control [13]. Formally, a role is a
typed role name applied to an expression (that may con-
tain variables) of a matching type, e.g. Manager(Sales-
dept). Similarly, an action is an action name applied to an
expression, e.g. Read-file(file). For the remainder of the
paper, variables will be written in small letters and italics
(e.g. file), generic constants in italics but capitalised (e.g.
some entity E), and concrete constants in typewriter font
(e.g. Sales-dept).

Policies are specified by rules defining predicates that
govern access control decisions: permits defines who can
perform which action; canActivate specifies who can acti-
vate which roles (and thus implicitly defines the role mem-
bership relation); hasActivated specifies who is currently
active in which role; canDeactivate specifies who can re-
voke which role; isDeactivated is used to define automat-
ically triggered role revocation; and finally, canReqCred
rules specify the conditions to be satisfied before the ser-
vice is willing to issue and disclose a credential. User-
defined auxiliary predicates are also allowed.

In the trust management approach, access control de-
cisions are based on credentials asserting properties about
the holders. In Cassandra, the properties asserted by cre-
dentials are (constrained) predicates. Therefore, in order
to satisfy a predicate in a rule body, either the predicate
can be deduced from the local policy or it is asserted by
a foreign credential issued and signed by some other en-
tity. Such credentials are either already stored locally, or
are submitted to the service, or automatically fetched by the
service from some other entity. To put constraints on the is-
suer and the storage location of credentials, each Cassandra
predicate has an issuer and a location (constant or vari-
able) parameter, and is written loc@iss.p(~e). For example,
Alice@UCam.canActivate(Alice,Student(Maths)) is a
predicate asserting that Alice is a Maths student. If this
predicate is part of a rule body, Cassandra can contact Al-
ice over the network (unless this is Alice’s local policy) and
request the corresponding credential issued by the Univer-
sity of Cambridge.

We will often write iss.p(~e) as shorthand for
E@iss.p(~e) and p(~e) for E@E.p(~e), if E is clear from the

context. Intuitively, if a predicate loc@iss.p(~e) appears in
the body of a rule in E’s policy, and loc is equal to E,
it is deduced locally from E’s policy (if iss is not equal
to E, this must be a foreign credential). If, however, loc
is not equal to E, this means that the authority over the
predicate is delegated to the remote entity loc, so E re-
quests a credential iss.p(~e) from loc over the network. loc
will allow this only if her local policy lets her deduce both
canReqCred(E, iss.p(~e)) and iss.p(~e). If these conditions
are met, a credential containing iss.p(~e) (issued and signed
by iss) is sent back to E. A more formal treatment of the
language semantics is given in §5.1.

3. Access Control Semantics

Cassandra acts as a protective layer around the shared
resources, allowing network access only through an inter-
face. This interface defines requests for performing an ac-
tion, activating a role, deactivating a role, and for request-
ing a credential. Incoming requests are checked by the ac-
cess control engine against the local policy (Figure 1). En-
tities can support their requests by submitting credentials
to the service; the service will then use the assertions in the
credentials along with its own local policy to evaluate the
query. Granting a request can have side-effects on policies,
e.g. when a role is activated, a corresponding hasActivated
credential rule is added to the policy.

We have formally specified the operational semantics of
the access control engine by a labelled transition system
where the labels are the requests and the transitions are be-
tween sets of policies of all entities. Due to lack of space,
we will only give a brief overview of the request defini-
tions.

Performing an action. Suppose the requester E at-
tempts to perform the (parameterised) action A on S’s
Cassandra service. E’s request is granted if permits(E,A)
is deducible from S’s policy (and submitted credentials).

Role activation. Suppose E attempts to activate the (pa-
rameterised) role R on S’s Cassandra service. The request
is granted if the role has not already been activated and if
canActivate(E,R) can be deduced from S’s policy (and
submitted credentials). As a result of this transition, the
corresponding hasActivated credential rule is added to S’s
policy.

Role deactivation. Suppose E requests to deactivate
V ’s role R on S’s Cassandra service. The request is
granted if V is really currently active in the role R and
if canDeactivate(E, V,R) is deducible from S’s policy
(and submitted credentials). Depending on the local policy
rules, this deactivation may also trigger the deactivation of
other role activations in S’s policy (local cascading deacti-
vation). For this purpose, we need to compute the set of all



hasActivated credential rules in S’s policy for which a cor-
responding isDeactivated credential can be derived under
the assumption isDeactivated(V,R). The role activations
in this set are then removed from S’s policy.

Requesting Credentials. Suppose E requests the cre-
dential I.p(~x)← c (a digital certificate asserting p(~x)← c,
issued and signed by I) from S. S’s service first computes
the answer to the query canReqCred(E, I.p(~x)) ← c. The
answer is a constraint c0 restricting the values that ~x can
take.

If I and S are identical, the answer c1 of the query
p(~x) ← c0 is computed, and, if c1 is satisfiable, the new
credential S.p(~x) ← c1 is issued and sent to E. If I and
S are different, this means that the requested credential is a
foreign credential held by S, so it cannot be freshly issued
and signed. In this case, S sends E all her credentials of
the form I.p(~x) ← c2 such that c2 is at least as restrictive
as c0.

4. Standard policies

Unlike other policy specification languages, Cassandra
does not have special constructs for expressing standard
policies such as role hierarchies, separation of duties or
delegation. Indeed, we can show that Cassandra, equipped
with a sufficiently powerful constraint domain, can express
these policies in a concise and readable way. Having no
constructs in the language for specific policy idioms not
only keeps the language and its semantics small and sim-
ple; it also avoids the necessity of having to constantly
extend the language. Furthermore, our work on policies
for a national electronic health record infrastructure has
shown that, in large-scale real-world applications, these
“standard” policies occur in many variants and combina-
tions with subtle but significant semantic differences [3].
Cassandra was designed in such a way that the whole range
of policy variants can be expressed without additional fea-
tures. It should be noted that Cassandra was designed
specifically for authorisation policies; in particular, we do
not deal with obligation policies specifying the automatic
triggering of actions (as in [7]).

In the following, we show how standard policies can be
written in Cassandra.

Role validity periods. In the following rule, a certified
doctor (with certification issued at time t) is also member
of the role Doc() if t is at most one year ago. This is an
example where the freshness requirement of a certification
is set by the acceptor, not by the certificate issuer (as rec-
ommended in [16]). The chosen constraint domain must
contain a (side-effect free) built-in function that returns the
current time, and integer order constraints.

canActivate(x,Doc())←
canActivate(x,CertDoc(t)),
CurTime()− Years(1) ≤ t ≤ CurTime()

Auxiliary roles. Sometimes a role is used solely to ex-
press some property about its members and can be used
without prior activation. In this rule, a logged-in user can
read a file provided that the system can deduce she is the
owner of that file. Ownership is here expressed with the
auxiliary Owner role that need not be activated.

permits(x,Read(file))←
hasActivated(x,Login()),
canActivate(x,Owner(file))

Role hierarchy. In this variant of parameterised role hi-
erarchy, members of a superior role (Engineer working
in some department) are automatically also members of a
more basic role (Employee working in the same depart-
ment).

canActivate(x,Employee(dep))←
canActivate(x,Engineer(dep))

Separation of duties. In this common example for sepa-
ration of duties, a payment transaction requires two phases,
initiation and authorisation, which have to be executed
by two different people. The rule implements the dy-
namic and parameterised variant of separation of duties: an
Authoriser of a payment must not have activated the
Init role for the same payment. This restriction is imple-
mented by the user-defined countInitiators predicate. Its
definition is given by the second rule, an example of an ag-
gregate rule. The count〈z〉 aggregate operator counts how
many different values of z satisfy the body. Therefore, the
parameter n is 0 only if x has not activated the Init role
for the same payment.

canActivate(x,Authoriser(payment))←
countInitiators(n, x, payment), n = 0

countInitiators(count〈z〉, x, payment)←
hasActivated(z,Init(payment)), z = x

Role delegation. Here, an administrator can delegate her
role to somebody else by activating the DelegateAdm
role for the delegatee. The delegatee can then subsequently
activate the administrator role. The first parameter of the
administrator role specifies who the delegator was. The
second parameter n is an integer for restricting the length of
the delegation chain: the delegatee can activate the admin-
istrator role only with a “rank” n′ that is strictly less than
the delegator’s rank n but must be at least 0. Setting the
parameter to 1 for non-delegated administrators (i.e. those
at the top of a delegation chain) amounts to non-transitive
delegation. Removing the constraint on n in the second
rule results in unbounded delegation chains.

canActivate(x,DelegateAdm(y, n))←
hasActivated(x,Adm(z, n))

canActivate(y,Adm(x, n′))←
hasActivated(x,DelegateAdm(y, n)), 0 ≤ n′ < n



With the following rule, the delegated role is automatically
revoked if the delegation role of the delegator is deacti-
vated.

isDeactivated(y,Adm(x, n′))←
isDeactivated(x,DelegateAdm(y, n))

However, we need to specify who is allowed to deactivate
a delegation role. In grant-dependent revocation (first rule
below), only the delegator herself has this power. In grant-
independent revocation (second rule below), every admin-
istrator (who has at least as high a rank as the delegator)
can deactivate the delegation.

canDeactivate(x, z,DelegateAdm(y, n))← x = z
canDeactivate(x, z,DelegateAdm(y, n))←

hasActivated(x,Adm(w, n′)), n ≤ n′

A rather paranoid policy may specify cascading revocation:
if a delegated administrator is revoked from her role, all her
delegation must also be revoked recursively.

isDeactivated(x,DelegateAdm(y, n))←
isDeactivated(z,DelegateAdm(x, n′))

The trust management system Oasis [21] has a language
construct for role appointment, a generalisation of role del-
egation. Our work on real-world policies suggests that vari-
ants of general appointment are indeed far more frequent
than role delegation [3]. Appointment and other stateful
policies can be expressed in Cassandra in a very similar
way as shown above for delegation.
Automatic trust negotiation & credential discovery.
Suppose the following rule is part of the policy of a server
holding the electronic health records (EHR) for some part
of the UK’s population. To activate the doctor role, x must
be a certified doctor in some health organisation org, and
furthermore the organisation must be a certified health or-
ganisation. Both requirements must be satisfied in the form
of credentials signed by some entity auth belonging to a
locally defined set of registration authorities.

canActivate(x,Doc(org))←
auth.canActivate(x,CertDoc(org)),
org@auth.canActivate(org,CertHealthOrg()),
auth ∈ RegAuthorities()

In the rule above, there is no location prefix in front of the
first body predicate, so the doctor certification credential
is required to already be in the local policy or have been
submitted by x together with the role activation request.
No automatic credential requests are issued the credential
is not found. On the other hand, there is a location prefix
org in front of the second body predicate: the health organ-
isation credential is automatically requested from org, or,
more precisely, the entity the variable org stands for during
actual evaluation. However, the health organisation (say,
Addenbrooke’s Hospital) will allow this retrieval request
only if its canReqCred policy allows it. With the follow-
ing rule, Addenbrooke’s specifies that it is willing to reveal

its CertHealthOrg credential, signed by the registration
authority of East England, to certified EHR servers.

canReqCred(x, y.canActivate(z,CertHealthOrg())←
x@auth.canActivate(x,CertEHRServ()),
y = RegAuthEastEngland ∧ z = Addenbrookes,
auth ∈ RegAuthorities()

The x@auth prefix specifies that the required credential
must be signed by some registration authority and that it is
to be retrieved automatically from x; in this case, x will
have been instantiated to be the EHR server. The EHR
server will in turn have canReqCred policy rules specifying
to whom its CertEHRServ credential may be disclosed.
As this example shows, a simple request can trigger mul-
tiple phases of credential exchanges between two or more
entities over the network until a sufficient level of mutual
trust has been established.

5. Language semantics and evaluation

This section defines the syntax and semantics of
Cassandra’s policy specification language. We also de-
scribe a goal-oriented algorithm for evaluating policy
queries that is sound and complete with respect to the lan-
guage, and discuss a condition for guaranteed termination
of query evaluation.

5.1. Language Semantics

Each entity Eloc on the network protects its resources
with a (possibly empty) Cassandra policy, a finite set of
Cassandra policy rules of the form

Eloc@Eiss.p0(~e0)←
loc1@iss1.p1(~e1), .., locn@issn.pn(~en), c.

The location and the issuer of the rule, Eloc and Eiss, are
entity constants, and the loci and issi are entities or entity
typed variables. The pi(~ei) are well-typed predicates, and c
is a constraint from the globally chosen constraint domain
C.

A rule with empty body of the form

Eloc@Eiss.p0(~e0)← c

is called a credential rule or just a credential. (These cor-
respond to facts in Logic Programming.) If it is sent over
the network, it can be thought of as a certificate asserting
p0(~e0), signed and issued by Eiss, and belonging to and
stored atEloc. The location and the issuer of a rule are usu-
ally identical; only in the case of a credential rule can they
be different, as Eloc may hold a foreign credential signed
by a different entity Eiss.



We will omit the prefixEloc from a rule if it is clear from
the context, and also Eiss, loci and issi if they are equal to
Eloc.

Access control decisions are based on policy
queries which have the same form as credentials:
Eloc@Eiss.p0(~e0) ← c. The answer to a query is a set
of constraints ci such that Eiss.p0(~e0) ← c ∧ ci can be
deduced from Eloc’s policy. For example, the query

UCam@UCam.canActivate(x,Student(subj))←
subj = Maths

may return the constraints {x = Alice, x = Bob}, and
the query

UCam@UCam.canActivate(x,Student(subj))←
x = Alice ∧ subj = Maths

would simply return {true}.
The semantics of a policy is defined by the set of all cre-

dentials that can be deduced from it. To formally define the
notion of deduction, we extend the notion of consequence
operator known from constraint logic programming [18].
We construct a consequence operator TP , where P is the
finite union of the policies of all entities. Given a set of
credentials I (which we distinguish only up to variable re-
naming), TP(I) returns the set of all credentials that can
be deduced from I and the policies in P in one step.

The definition of TP assumes the existence of two com-
putable operations on C-constraints, ∃C and ⇒C . ∃Cx. (c)
computes the existential quantifier elimination of x and re-
turns the set of conjuncts in the disjunctive normal form
(DNF) of the result. If V is a set of variables, we also write
∃C−V (c) for the set of conjuncts in the DNF of c, with all
free variables apart from the ones in V existentially elimi-
nated. (This is in effect a projection of c onto the variables
V .)
⇒C is a computable subsumption relation on C-

constraints: if c1 ⇒C c2 returns true then c1 is subsumed
by c2, i.e. all substitutions that satisfy c1 also satisfy c2.

Then the consequence operator TP(I) is defined to con-
tain all credentials of the form Eloc@Eiss.p(~x) ← c0 (for
some entities Eloc, Eiss) if I contains no other credential
that already subsumes it: if Eloc@Eiss.p(~x)← c′0 ∈ I and
c0 ⇒C c′0 then c0 = c′0; and furthermore, if there is some
matching rule

Eloc@Eiss.p(~x)← P1, .., Pn, c

inP (i.e. in the policy ofEloc) such that there is a constraint
c0 with the following property:
c0 ∈ ∃C−~x(c1 ∧ .. ∧ cn), and c0 is satisfiable, for some

constraints c1, .., cn, such that each ci is a contribution from
Pi. We say ci is a contribution from Pi ≡ yloc@yiss.q(~y)
if one of the following two cases hold.

Either yloc is taken to be local, so Pi has to be deduced
from Eloc’s own local policy. This means that ci must be

equal to some
(c′i ∧ yloc=Eloc ∧ yiss=E′iss)

such that Eloc@E′iss.q(~y)← c′i is already in I.
Alternatively, yloc may refer to some remote entity

E′loc 6= Eloc, so Pi has to be deduced from E′loc’s policy.
As this amounts to a credential request and E ′loc’s creden-
tials are protected by canReqCred rules, the corresponding
canReqCred predicate must also be satisfied, as well as Pi
itself. In this case, ci is some constraint in
∃Cxe. (c′i ∧ c′′i ∧ yloc=E′loc ∧

yiss=E′iss ∧ xe=Eloc)

such that both credentials
E′loc@E

′
loc.canReqCred(xe, yiss.q(~y))← c′i and

E′loc@E
′
iss.q(~y)← c′′i are already in I.

The consequence operator TP(I) is continuous on the
powerset of credentials and thus has a unique least fixed-
point

⋃
n≥0 T

n
P (∅) which we call the fixed-point semantics

of P . It coincides with our intuitive notion of deductive
closure of the policy rules.

Sometimes we need to know not only whether a pred-
icate can be satisfied but also how often. For example, it
is often necessary to know that nobody has activated a cer-
tain role, i.e. the corresponding hasActivated predicate can
be satisfied 0 times. For these purposes, we define rules
with aggregation operators [15]. (These require the con-
straint domain C to contain equalities over set and integer
constants and variables.) A Cassandra aggregation rule is
of the form

Eloc@Eloc.p(aggop〈x〉, ~y) ← Eloc@iss.q(~x), c

where the aggregation operator aggop is either group or
count. The predicate q(~x) is required to be one that can
be satisfied with only finitely many different parameters on
Eloc, and ~x must contain x. If the operator is group, the
first argument of p stands for the finite set of all different
values of x such that the rule body can be satisfied. If the
operator is count, it stands for the cardinality of that set.
For example,

getSetOfActiveDoctors(group〈x〉, spcty)←
hasActivated(x,Doctor(spcty))

finds the set of all active doctors with specialty spcty.

5.2. Evaluation

Recall that the access control engine makes access con-
trol decisions by invoking the policy evaluation engine,
which queries the local policy. We now describe the al-
gorithms used in the policy evaluation engine.

In deductive databases, queries are usually evaluated
against a model that is pre-computed with a bottom-up
algorithm that, starting from basic facts, iteratively adds
derived facts until the fixed-point semantics is reached.



This would not be an acceptable evaluation strategy for
Cassandra: firstly, the constraints may contain (side-effect
free) function calls that depend on the environment, for ex-
ample for getting the current time, and therefore cannot be
pre-computed; secondly, the fact that rule bodies can refer
to remote predicates would require a distributed form of
bottom-up evaluation which would be highly impractical;
and thirdly, the model would have to be re-computed after
every activation or deactivation of roles as role activation
and deactivation modify policies.

The standard SLD top-down resolution algorithm
known from Logic Programming (e.g. Prolog) is not suit-
able either as it may run into infinite loops even when the
fixed-point semantics is finite. Instead, Cassandra uses a
modified version of Toman’s memoing algorithm for evalu-
ating constraint extensions of Datalog [18]. Based on SLG
resolution, it combines advantages of both the top-down
and the bottom-up approaches: it is goal-oriented and yet
preserves the termination properties of the bottom-up al-
gorithms by memoing (tabling) already seen subgoals and
their answers. To solve a subgoal for which a table en-
try already exists, the algorithm uses the tabled answers as
solutions; whenever new answers are added for the entry,
they are automatically propagated to other waiting evalua-
tion branches. If no relevant entry exists for the subgoal, a
new table entry is created and populated. We have extended
the algorithm in [18] to deal with goals referring to remote
entities.

Suppose the query Eloc@Eiss.p0(~x0) ← c0 is to be
evaluated by the Cassandra service of Eloc. Evaluation is
started by calling the Clause Resolution procedure on the
query.

Clause Resolution. Find all policy rules with a matching
head, i.e. of the form

Eloc@Eiss.p0(~x0)← P1, .., Pn, c1.
For all such c1, compute c2 ≡ c0 ∧ c1 if the result is sat-
isfiable. If the rule body is non-empty (n ≥ 1), call the
Query Projection procedure on the list P1, .., Pn, c2. Other-
wise call the Answer Projection procedure on the combined
constraint c2.

Query Projection. This procedure operates on a list of
predicates P1, .., Pn and a constraint c. Using the ∃C opera-
tion, project the constraint onto the free variables of the first
predicate P1 in the list and compute the DNF constraint set.
For all ci from this set, call the Answer Propagation proce-
dure on P1 ← ci, and the (possibly empty) list of remaining
predicates, P2, .., Pn.

Answer Propagation. This procedure operates on a sub-
goal P ← c, and a list of remaining predicates P2, .., Pn.
Check whether we have already encountered a query P ←
c′ such that c ⇒C c′, in which case the current goal can
be solved using answers from that query. For each already

existing answer d, combine it with the current constraint
and call the Clause Resolution procedure on the remaining
predicates in the list, or the Answer Projection procedure,
if the remaining list is empty. We also need to store the in-
formation that this query waits for answers from the proof
of P ← c′.

If, however, no such P ← c′ exists yet, we need
to spawn a new query for P ← c and wait for its an-
swers. If the location of P is remote, a credential request
is sent to the remote entity. The remote entity will then
call its Query Projection procedure on the list containing
canReqCred(Eloc, P ) and P with the constraint c.

Answer Projection. This procedure is called when the
list of body predicates is empty. The remaining constraint
is then projected onto the free variables of the query pred-
icate. The resulting constraints are stored in the answers
table and propagated to all queries currently waiting for
such answers, and execution is resumed there. If the wait-
ing party is a remote entity, the answers are sent to it over
the network in the form of credentials. The remote entity
will then invoke its Answer Projection procedure on these
answers.

On exit, the table entry for the original query will be
populated with all its answers. The algorithm is sound and
complete with respect to the language semantics.

As in other database applications, we require query eval-
uation to always terminate. Clearly, if the chosen constraint
domain C is too expressive, it is possible to write poli-
cies and queries that are uncomputable. Often, the features
that make it too expressive seem rather innocuous at first
glance. For example, constraint domains with untyped tu-
ple constructors or with negative gap-order constraints of
the form x− c < y (where c is a positive integer constant)
enable the construction of undecidable policies.

Constraint compactness [18] is a sufficient condition on
constraint domains to guarantee a finite and hence com-
putable fixed-point semantics for any finite global policy
set P . A constraint domain C is said to be constraint com-
pact if any infinite set of C-constraints in which only finitely
many variables and constants occur has a finite subset sub-
suming the entire set, that is, for every constraint c in the
infinite set there is a constraint c′ in the finite set such that
c⇒C c′.

Unfortunately, constraint compactness severely restricts
the expressiveness of the constraint language and is also
often hard to prove. We use static groundness analysis [1]
to restrict policies in such a way that variables occuring in
specific constructs will always have been grounded (so a
unique value can be deduced for each) by the time exis-
tential quantifier elimination is performed on them, given
the query patterns from §3 (e.g. canActivate queries are al-
ways fully grounded), so these constructs can be ignored.



We also use static groundness analysis to ensure that the
location prefix of body predicates becomes ground by the
time we evaluate it: otherwise the evaluator would have to
query many different entities (all, in the worst case), which
is clearly unpractical.

6. Discussion

EHR case study. Cassandra’s design process was par-
tially guided by our case study [3] on an access control
policy for a national electronic health record (EHR) sys-
tem. The background of the case study is the British Na-
tional Health Service’s current plan to develop an electronic
data spine that will contain “cradle-to-grave” medical data
for all patients in England. The project is highly risky and
challenging for several reasons: it is extremely large-scale
with 100 million records and billions of accesses per year;
the requirements are likely to change frequently, in partic-
ular those concerning access control; and it is inherently
distributed with interacting health organisations, registra-
tion authorities and the data-spine. These challenges can
best be met by a distributed trust management system that
allows policies to be specified in a sufficiently expressive
high-level language.

In our case study, we propose a distributed three-level
infrastructure to cope with the large scale. Based on official
specification documents, we have developed Cassandra
policies for the entire infrastructure. Our proposed poli-
cies contain a total of 310 rules, define 58 parameterised
roles and implement all the required access control rules.

The requirements are not only highly complex but also
contain principles unseen in traditional access control mod-
els. For example, the policies need to handle explicit pa-
tient consent, third-party disclosure consent, individualised
access decisions (e.g. a patient could prohibit access to
record items concerning a certain medical subject to a spe-
cific doctor), appointment of agents acting on a patient’s
behalf and workgroup-based access control (e.g. based on
ward or consultant team membership).

One of the main lessons learnt from the case study is that
standard policy idioms such as role appointment occur in
many different variants. We thus had to design Cassandra
in such a way that it could express all of these elegantly.
Our approach was to identify the small number of underly-
ing primitives concerning role membership, activation and
deactivation, and to base the language solely on those. The
distributed nature of the EHR policies also necessitated fea-
tures for automatic credential discovery and credential pro-
tection (automatic trust negotiation).

For the case study, we devised a sufficiently expressive
constraint domain containing tuple expressions and pro-
jections, disequalities, integer order inequalities, built-in
functions to access state-dependent data and set inclusion

constraints[3]. It is constraint-compact and thus guarantees
query termination, but its relatively high expressiveness
still makes it possible in principle to write policies that are
prohibitively expensive to evaluate. However, such policies
do not seem to occur in practice, as the recursion depth is
usually small and variables are instantiated to ground val-
ues early on.

Implementation and performance. A prototype of
Cassandra has been implemented in OCaml. The code is
factored into independent modules as depicted in Figure
1. In particular, constraint domain implementations can be
plugged into the policy evaluation engine as separate mod-
ules, as long as they provide fundamental operations of pro-
jection, satisfiability and subsumption checking. We have
implemented the constraint domain used for the EHR case
study, including a type inference mechanism that allows us
to omit explicit variable typing.

At the time of writing, role deactivation and credential
requests and the static groundness analyser are still in the
process of being implemented. Furthermore, the current
prototype only simulates the distributed system, and issued
credentials are implemented without encryption and public
key signatures.

The prototype was tested with the policies from the EHR
case study. The system behaved as expected and handled
all requests, including the most complex ones, within frac-
tions of a second. The preliminary results suggest that
Cassandra is indeed suitable for large-scale real-world ap-
plication. Of course, authoritative results can only be pro-
duced after completion of a more complete and optimised
implementation and under more realistic settings; we have
for example so far only tested the system with up to 10,000
patients [3].

Our experiments have highlighted another requirement
for policy-based trust management systems that neither our
nor existing systems currently fulfil: human users expect
textual justifications of access control decisions, especially
if their request is denied; they feel rather frustrated and
helpless if the answer is simply “request denied”, espe-
cially if the policy is complex or unknown to the user. Such
explanations could be collected from annotations of policy
rules used during deduction. The problem is non-trivial as
deduction proofs can be long and access denials can have
many and far-reaching reasons. More worryingly, the tex-
tual justification may reveal more (and perhaps, sensitive)
information than could have been deduced from the fact
of request denial alone: consider, for example, a response
such as “access denied because your daughter has prohib-
ited you from accessing all her records with the subject
‘abortion’ ”.

Related work. A large amount of work has been done
on security policy specification in a non-trust-management



context. For instance, Barker [2] uses constraint logic pro-
gramming to encode RBAC policies in a non-distributed
environment; as such, his approach does not deal with cre-
dentials, trust management and trust negotiation. Policy-
Maker [5] introduced the trust management paradigm, and
its successor, KeyNote [4] defined the first policy specifi-
cation language. Since then, many other trust management
systems have been proposed for policy specification and
distributed access control (e.g. SPKI/SDSI [6], QCM [9],
SD3 [11], RT [13], Oasis [21], Ponder[7]).

The Cassandra policy specification language was in-
spired by Oasis, a role-based trust management system in
which Datalog-based rules specify which credentials are
prerequisite for role activation and deactivation [21]. Oasis
has a special construct for role appointment, which was in-
troduced as a useful generalisation of the delegation mech-
anisms found in many other languages. Our case study sup-
ports the claim that role appointment (and its variants) is a
very useful policy idiom. Oasis is the only other system
we are aware of that supports cascading role revocation. Its
revocation mechanism works even across the network be-
tween collaborating entities. This is implemented using a
distributed event infrastructure. Another difference is that
in Oasis, revocation is triggered whenever a specified sub-
set of the role activation prerequisites ceases to hold. In
contrast, role deactivations in Cassandra are allowed to be
triggered by conditions that have nothing to do with the role
activation prerequisites. Oasis does not deal with automatic
credential discovery and trust negotiation. It also does not
possess a full formal semantics and does not guarantee ter-
mination of queries.

The RT family of role-based trust management lan-
guages [13] bears some similarities to our system. In RT,
the Datalog-based rules, or credentials, as they are called,
specify only the role membership relation: either directly,
by role hierarchy, by (direct or attribute-based) delegation
of authority, or any combination of these. The subjects of
the rule head and the body conditions are implicitly the
same, which is sufficient to express delegation but not con-
venient for appointment policies. In RT’s youngest off-
spring, RT C1 [12], rules are translated into DatalogC . Con-
straints are used only to define a range on each role param-
eter; constraints between two parameters are not permitted
in order to keep policies more comprehensible and to guar-
antee tractability. We find that a more liberal use of con-
straints is useful and necessary, as our EHR policy shows,
and can still be efficient in practice. RT roles are prefixed
with the issuing entity, just like Cassandra’s predicates are,
but do not specify the location where a matching creden-
tial may be found. RT solves this by statically specifying
for each role name whether credentials defining such roles
are stored with the issuer or the subject. Our EHR pol-
icy has rules in which predicates have locations different

from both issuer and the subject entity. A distinctive fea-
ture of the RT framework is that RT credentials contain a
link to a so-called Application Domain Specification Doc-
ument (ADSD) that defines a common vocabulary (types
of role parameters, natural language descriptions of role
names etc.) for collaborating entities.

SD3 is another Datalog-based trust management system
[11]. Similar to Cassandra, SD3 predicates can be prefixed
with an issuer (a public key), thereby delegating author-
ity of predicate definition to that key. A predicate can fur-
ther be tagged with an IP address which is used to refer to
a remote policy. SD3 is a very general system that does
not specify any access control meaning for any predicates
and can be viewed as Cassandra without constraints, roles
and access control semantics. SD3 passes the proof tree
from its highly optimised policy evaluation engine through
a simple and small proof checker to reduce the size of its
trusted computing base. This would be a technique that
could also be applied to Cassandra.

The problem of trust negotiation has been addressed in
[19], where various different negotiation strategies (which,
when and in which order credentials are disclosed) are dis-
cussed. Their Credential Access Policy (CAP) corresponds
to Cassandra’s canReqCred rules specifying the prerequi-
sites for credential disclosure. Cassandra’s uniform treat-
ment of rules during evaluation gives us trust negotiation
almost “for free”, with a negotiation strategy similar to
their “Parsimonious Strategy”. It has been pointed out
that this strategy can leak information about possession of
credentials without actually disclosing them. The “Eager
Strategy” does not have this problem but is less efficient.
[20] prevents the problem by adding another policy protec-
tion layer. [22] argue that entities should be given the free-
dom to choose their own negotiation policy. They identify
a large family of strategies that are mutually compatible.

Conclusions and future work. We have developed a
trust management system, Cassandra, with a role-based
policy specification language in which the expressiveness
can be tuned according to need by choosing an appropriate
constraint domain. Apart from management of role permis-
sions, activations and (cascading) deactivations, the system
also uniformly provides flexible automatic credential re-
trieval and automatic trust negotiation. With the constraint
domain we devised for the EHR case study, Cassandra’s
expressiveness surpasses that of existing systems while pre-
serving a strong termination property. The policy language
is small, simple and devoid of any redundant constructs
such as delegation or hierarchies and yet it can express
a wide variety of policies. Cassandra, including the lan-
guage, the access control engine and the goal-oriented dis-
tributed policy evaluation algorithm, is fully and formally
specified and thus amenable to formal reasoning.



We plan to use Cassandra’s formal framework to prove
security properties about specific policies. Along the same
lines, we wish to formalise a low-level model of Cassandra
that specifies the underlying network protocols, the pub-
lic key infrastructure and the design of certificates. We will
also investigate possibilities for making answers to requests
more descriptive and user-friendly without leaking sensi-
tive information.

To gather more reliable test results, we need to build a
complete prototype that is truly distributed and uses digital
certificates for sending credentials over the network. We
hope to improve efficiency by using a standard relational
database for policy rule lookups. Such an implementation
will enable us to test real-world policies in a more realistic
setting, with millions of role activations and entities that
interact via an unreliable network.

Acknowledgments We acknowledge support from a
Gates Cambridge Scholarship (Becker), a Royal Society
University Research Fellowship (Sewell), EPSRC grant
GRN24872, and EC FET-GC project IST-2001-33234
PEPITO. The authors thank Arne Heizmann for corrections
and comments. We also thank the reviewers for their valu-
able comments.

References

[1] N. Baker and H. Sondergaard. Definiteness analysis for
CLP(R). In Australian Computer Science Conference,
pages 321–332, 1993.

[2] S. Barker and P. J. Stuckey. Flexible access control
policy specification with constraint logic programming.
ACM Transactions on Information and System Security,
6(4):501–546, 2003.

[3] M. Y. Becker and P. Sewell. Cassandra: Flexible trust
management, applied to electronic health records. In Pro-
ceedings of the 17th IEEE Computer Security Foundations
Workshop, June 2004. To appear.

[4] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust management for public-key infrastructures (position
paper). Lecture Notes in Computer Science, 1550:59–63,
1999.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In IEEE Symposium on Security and Privacy,
pages 164–173, 1996.

[6] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,
and R. L. Rivest. Certificate chain discovery in SPKI/SDSI.
Journal of Computer Security, 9(4):285–322, 2001.

[7] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The
Ponder policy specification language. In Policy Workshop,
2001.

[8] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control. 4, (3):224–274, 2001.

[9] C. A. Gunter and T. Jim. Policy-directed certificate re-
trieval. Software - Practice and Experience, 30(15):1609–
1640, 2000.

[10] J. Jaffar and M. J. Maher. Constraint logic programming:
a survey. Journal of Logic Programming, 19/20:503–581,
1994.

[11] T. Jim. SD3: A trust management system with certified
evaluation. In Proceedings of the 2001 IEEE Symposium
on Security and Privacy, pages 106–115, 2001.

[12] N. Li and J. C. Mitchell. Datalog with constraints: A foun-
dation for trust management languages. In Proceedings of
the 5th International Symposium on Practical Aspects of
Declarative Languages, pages 58–73, 2003 2003.

[13] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust management framework. In Proceedings of
the 2002 IEEE Symposium on Security and Privacy, pages
114–130, 2002.

[14] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed
credential chain discovery in trust management: extended
abstract. In ACM Conference on Computer and Communi-
cations Security, pages 156–165, 2001.

[15] P. Revesz. Introduction to constraint databases. Springer
Verlag, 2002.

[16] R. L. Rivest. Can we eliminate certificate revocations lists?
In Financial Cryptography, pages 178–183, 1998.

[17] R. Sandhu. Rationale for the RBAC96 family of access con-
trol models. In Proceedings of the 1st ACM Workshop on
Role-Based Access Control, 1997.

[18] D. Toman. Memoing evaluation for constraint extensions of
datalog. Constraints, 2(3/4):337–359, 1997.

[19] W. Winsborough, K. Seamons, and V. Jones. Automated
trust negotiation. In DARPA Information Survivability Con-
ference and Exposition, volume 1, pages 88–102, 2000.

[20] W. H. Winsborough and N. Li. Towards practical auto-
mated trust negotiation. In Proceedings of the 3rd Inter-
national Workshop on Policies for Distributed Systems and
Networks, pages 92–103, 2002.

[21] W. Yao, K. Moody, and J. Bacon. A model of OASIS
role-based access control and its support of active secu-
rity. ACM Transactions on Information and System Secu-
rity, 5(4), 2002.

[22] T. Yu, M. Winslett, and K. E. Seamons. Supporting struc-
tured credentials and sensitive policies through interopera-
ble strategies for automated trust negotiation. ACM Trans-
actions on Information and System Security, 6(1):1–42,
2003.


