
Ott: Effective Tool Support for the Working Semanticist

Peter Sewell∗ Francesco Zappa Nardelli† Scott Owens∗ Gilles Peskine∗

Thomas Ridge∗ Susmit Sarkar∗ Rok Strniša∗
∗University of Cambridge †INRIA

http://www.cl.cam.ac.uk/users/pes20/ott

Abstract
It is rare to give a semantic definition of a full-scale programming
language, despite the many potential benefits. Partly this is because
the available metalanguages for expressing semantics — usually
either LATEX for informal mathematics, or the formal mathematics
of a proof assistant — make it much harder than necessary to work
with large definitions.

We present a metalanguage specifically designed for this prob-
lem, and a tool, ott, that sanity-checks such definitions and com-
piles them into proof assistant code for Coq, HOL, Isabelle, and (in
progress) Twelf, together with LATEX code for production-quality
typesetting, and OCaml boilerplate. The main innovations are: (1)
metalanguage design to make definitions concise, and easy to read
and edit; (2) an expressive but intuitive metalanguage for specify-
ing binding structures; and (3) compilation to proof assistant code.

This has been tested in substantial case studies, including mod-
ular specifications of calculi from the TAPL text, a Lightweight
Java with Java JSR 277/294 module system proposals, and a large
fragment of OCaml (around 306 rules), with machine proofs of var-
ious soundness results. Our aim with this work is to enable a phase
change: making it feasible to work routinely, without heroic effort,
with rigorous semantic definitions of realistic languages.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory, Verification, Standardization

1. Introduction
Problem Writing a precise semantic definition of a full-scale
programming language is a challenging task that has been done
only rarely, despite the many potential benefits. Indeed, Standard
ML remains, 17 years after publication, the shining example of a
language that is defined precisely and is at all widely used (Milner
et al. 1990). Even languages such as Haskell (Peyton Jones 2003)
and OCaml (Leroy et al. 2005), though designed by PL researchers
and in large part based on mathematical papers, rely on prose
descriptions.

Precise semantic definitions are rare for several reasons, but one
important reason is that the metalanguages that are available for ex-
pressing semantic definitions are not designed for this application,
making it much harder than necessary to work with large defini-
tions. There are two main choices for a metalanguage:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’07, October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00.

(1) Informal mathematics, expressed in LATEX (by far the most
common option).

(2) Formalised mathematics, in the language of a proof assistant
such as Coq, HOL, Isabelle, or Twelf (Coq; HOL; Isabelle;
Twelf).

For a small calculus either can be used without much difficulty.
A full language definition, however, might easily be 100 pages or
10 000 lines. At this scale the syntactic overhead of LATEX markup
becomes very significant, getting in the way of simply reading and
writing the definition source. The absence of automatic checking
of sanity properties becomes a severe problem — in our experi-
ence with the Acute language (Sewell et al. 2004), just keeping a
large definition internally syntactically consistent during develop-
ment is hard, and informal proof becomes quite unreliable. Further,
there is no support for relating the definition to an implementation,
either for generating parts of an implementation, or for testing con-
formance. Accidental errors are almost inescapable (Kahrs 1993;
Rossberg 2001).

Proof assistants help with automatic checking, but come with
their own problems. The sources of definitions are still cluttered
with syntactic noise, non-trivial encodings are often needed (e.g. to
deal with subgrammars and binding, and to work around limita-
tions of the available polymorphism and inductive definition sup-
port), and facilities for parsing and pretty printing terms of the
source language are limited. Typesetting of definitions is supported
only partially and only in some proof assistants, so one may have
the problem of maintaining machine-readable and human-readable
versions of the specification, and keeping them in sync. Moreover,
each proof assistant has its own (steep) learning curve, the commu-
nity is partitioned into schools (few people are fluent in more than
one), and one has to commit to a particular proof assistant from the
outset of a project.

A more subtle consequence of the limitations of the available
metalanguages is that they obstruct re-use of definitions across the
community, even of small calculi. Research groups each have their
own private LATEX macros and idioms — to build on a published
calculus, one would typically re-typeset it (possibly introducing
minor hopefully-inessential changes in the process). Proof assistant
definitions are more often made available (e.g. in the Archive of
Formal Proofs (AFP)), but are specific to a single proof assistant.
Both styles of definition make it hard to compose semantics in a
modular way, from fragments.
The Dream What, then, is the ideal? We would like to have a
metalanguage that is designed for the working semanticist, support-
ing common notations that have been developed over the years. In
an email or working note one might write grammars for languages
with complex binding structures, for example

t ::=
| let p = t in t’ bind binders(p) in t’

p ::=
| x binders = x
| { l1=p1,...,ln=pn } binders = binders(p1 ... pn)



and informal semantic rules, for example as below.

G |- t1:T1 ... G |- tn:Tn
------------------------------------------
G |- {l1=t1,...,ln=tn} : {l1:T1,...,ln:Tn}

These are intuitively clear, concise, and easy to read and edit.
Sadly, they lack both the precision of proof assistant definitions
and the production-quality typesetting of LATEX — but one might
hope that only a modicum of information need be added to make
them precise, and to automatically compile them to both targets.
Contribution We realize this dream: we describe a metalan-
guage specifically designed for writing semantic definitions, and
a tool, ott, that sanity-checks such definitions and compiles them
into proof assistant code, LATEX code for production-quality type-
setting, and OCaml boilerplate for implementations. The main in-
novations are:
• Metalanguage design to make definitions concise and easy to
read and edit (§2). The metalanguage lets one specify the syn-
tax of an object language, together with rules defining inductive
relations, for semantic judgements. Making these easy to express
demands rather different syntactic choices to those of typical pro-
gramming languages. The tool builds parsers and pretty-printers for
symbolic and concrete terms of the object language.
• An expressive metalanguage (but one that remains simple and
intuitive) for specifying binding (§3). Nontrivial object lan-
guages often involve complex forms of binding: not just the sin-
gle binders of lambda terms, which have received much attention,
but also structured patterns, multiple mutually recursive let def-
initions, or-patterns, dependent record patterns, etc. We introduce
a metalanguage that can express all these but that remains close to
informal practice. We give this two interpretations. Firstly, we de-
fine substitution and free variable functions for a “fully concrete”
representation, not quotiented by alpha equivalence. This is not ap-
propriate for all examples, but suffices for surprisingly many cases
(including those below), and is what the tool currently implements.
Secondly, we define alpha equivalence and capture-avoiding substi-
tution for arbitrary binding specifications, clarifying several issues.
Implementing this is future work, but we prove (on paper) that un-
der usable conditions the two notions of substitution coincide.
• Compilation to proof assistant code (§4). From a single defini-
tion in the metalanguage, the ott tool can generate proof assistant
definitions in Coq, HOL, Isabelle, and (in progress) Twelf. These
can then be used as a basis for formal proof and (where the proof
assistant permits) code extraction and animation.

This compilation deals with the syntactic idiosyncrasies of the
different targets and, more fundamentally, encodes features that
are not directly translatable into each target. The main issues are:
dependency analysis; support for common list idioms; generation
and use of subgrammar predicates; generation of substitution and
free variable functions; (for Isabelle) a tuple encoding for mutually
primitive recursive functions, with auxiliary function definitions
for nested pattern matching and for nested list types; (for Coq
and Twelf) generation of auxiliary list types for the syntax and
semantics; (for Coq) generation of useful induction principles when
using native lists; (for HOL) a stronger definition library, and (for
Twelf) translation of functions into relations.

We aim to generate well-formed and idiomatic definitions, with-
out dangling proof obligations, and in good taste as a basis for user
proof development.
• Substantial case studies (§5). The usefulness of the ott meta-
language and tool has been tested in several case studies. We have
defined type systems and operational semantics for:

metavarmetavarmetavar termvar, x ::= {{ comcomcom term variable }}
{{ isaisaisa string}} {{ coqcoqcoq nat}} {{ holholhol string}} {{ coq-equalitycoq-equalitycoq-equality }}
{{ ocamlocamlocaml int}} {{ lexlexlex alphanumalphanumalphanum}} {{ textextex \mathit{[[termvar]]} }}

grammargrammargrammar
t :: ’t_’ ::= {{ comcomcom term }}

| x :: :: Var {{ comcomcom variable}}
| \ x . t :: :: Lam (+ bindbindbind x ininin t +) {{ comcomcom lambda }}
| t t’ :: :: App {{ comcomcom app }}
| ( t ) :: MMM:: Paren {{ ichoichoicho [[t]] }}
| { t / x } t’ :: MMM:: Tsub

{{ ichoichoicho (tsubst_t [[t]] [[x]] [[t’]])}}

v :: ’v_’ ::= {{ comcomcom value }}
| \ x . t :: :: Lam {{ comcomcom lambda }}

terminals :: ’terminals_’ ::=
| \ :: :: lambda {{ textextex \lambda }}
| --> :: :: red {{ textextex \longrightarrow }}

subrulessubrulessubrules
v <:: t

substitutionssubstitutionssubstitutions
singlesinglesingle t x :: tsubst

defnsdefnsdefns
Jop :: ’’ ::=

defndefndefn
t1 --> t2 :: ::reduce::’’ {{ comcomcom [[t1]] reduces to [[t2]]}} bybyby

-------------------------- :: ax_app
(\x.t12) v2 --> {v2/x}t12

t1 --> t1’
-------------- :: ctx_app_fun
t1 t --> t1’ t

t1 --> t1’
-------------- :: ctx_app_arg
v t1 --> v t1’

Figure 1. A small ott source file, for an untyped CBV lambda
calculus, with data for Coq, HOL, Isabelle, LATEX, and OCaml.

(1) small lambda calculi: simply typed (*) and with ML polymor-
phism, both call-by-value (CBV);

(2) systems from TAPL (Pierce 2002) including booleans, naturals,
functions, base types, units, seq, ascription, lets, fix, products,
sums, tuples, records, and variants; (*)

(3) the path-based module system of Leroy (1996), with a term
language and operational semantics based on Owens and Flatt
(2006);

(4) a language for rely-guarantee and separation logic Vafeiadis
and Parkinson (2007); (*)

(5) formalisation of the core ott binding specifications;
(6) Lightweight Java (LJ), a small imperative fragment of Java; (*)
(7) formalisations of Java module system proposals, based on JSR

277/294 (including LJ, around 140 semantic rules); and
(8) a large core of OCaml, including record and datatype definitions

(around 306 semantic rules). (*)
For the starred systems soundness results have been proved or

are well in progress, in one or more proof assistants. The TAPL
and LJ examples show that a very simple form of modular seman-
tics provided by ott can be effective — those TAPL features are
defined in separate files, roughly following the structure of the Tin-
kerType repository used to build the original text (Levin and Pierce
2003). Most of the examples were not done by the tool developers,
and (4–8) were primarily driven by other research goals, so we can



make a reasonable preliminary assessment of the user experience.
So far it is positive. For small calculi it is easy to get started with the
tool, and even for large definitions such as (7) and (8) one can fo-
cus on the semantic content rather than the LATEX or proof assistant
markup. The proof assistant representations we generate are rea-
sonably uniform, which should enable the development of reusable
proof tactics, libraries, and idioms, specific to each proof assistant.
Whilst we provide a common language for semantic definitions, we
do not aim to do the same for proofs.

This paper describes the key ideas underlying the ott metalan-
guage; it is not a user guide — but that, along with the tool itself
and a number of examples, is available on the web (Sewell and
Zappa Nardelli 2007). User feedback is very welcome. There is a
long history of related work in this area, discussed in §6, and we
conclude in §7.

2. Overview and Metalanguage Design
In this section we give an overview of the metalanguage and tool,
including its syntax and type structure.

2.1 A small example
We begin with the example in Fig. 1, which is a complete ott
source file for an untyped CBV lambda calculus, including the in-
formation required to generate proof assistant definitions in Coq,
HOL and Isabelle, OCaml boilerplate, and LATEX. The typeset LATEX
is shown in Fig. 2. This is a very small example, sufficing to illus-
trate some of the issues but not the key problems of dealing with
the scale and complexity of a full language (or even a nontrivial
calculus) which are our main motivation. We comment on those as
we go, and invite the reader to imagine the development for their
favorite programming language or calculus in parallel.
Core First consider Fig. 1 but ignore the data within {{ }}
and (+ +), and the terminals block. At the top of the figure,
the metavarmetavarmetavar declaration introduces metavariables termvar (with
synonym x), for term variables. The following grammargrammargrammar introduces
grammars for terms, with nonterminal root t, and for values v:

t :: ’t_’ ::=
| x :: :: Var
| \ x . t :: :: Lam
| t t’ :: :: App
| ( t ) :: MMM :: Paren
| { t / x } t’ :: MMM :: Tsub

v :: ’v_’ ::=
| \ x . t :: :: Lam

This specifies the concrete syntax of object-language terms, the ab-
stract syntax representations for proof-assistant mathematics, and
the syntax of symbolic terms to be used in semantic rules. The ter-
minals of the grammar (\ . ( ) { } / -->) are inferred, as those to-
kens that cannot be lexed as metavariables or nonterminals, avoid-
ing the need to specify them explicitly.

Turn now to the defnsdefnsdefns block at the bottom of the figure. This
introduces a mutually recursive collection of judgments, here just a
single judgement t1 --> t2 for the reduction relation, defined by
three rules. Consider the innocent-looking CBV beta rule:

-------------------------- :: ax_app
(\x.t12) v2 --> {v2/x}t12

Here the conclusion is a term of the syntactic form of the judgement
being defined, t1 --> t2. Its two subterms (\x.t12) v2 and
{v2/x}t12 are symbolic terms for the t grammar, not concrete
terms of the object language. They involve some object-language
constructors (instances of the Lam and App productions of the t
grammar), just as concrete terms would, but also:

termvar , x term variable
t ::= term

| x variable
| λ x . t bind x in t lambda
| t t ′ app

v ::= value
| λ x . t lambda

t1 −→ t2 t1 reduces to t2

(λ x . t12 ) v2 −→ { v2 / x } t12
AX APP

t1 −→ t ′1
t1 t −→ t ′1 t

CTX APP FUN

t1 −→ t ′1
v t1 −→ v t ′1

CTX APP ARG

Figure 2. LATEX output generated from the Fig. 1 source file

• mention symbolic metavariables (x) and nonterminals (t12 and
v2), built from the metavariable and nonterminal roots (x, t,
and v) by appending structured suffixes — here just numbers;
• depend on a subtype relationship between v and t (declared by

the subrulessubrulessubrules v <:: t, and checked by the tool) to allow v2
to appear in a position where a term of type t is expected; and
• involve syntax for parentheses and substitution. The concrete

syntax for these is given by the Paren and Tsub productions of
the t grammar, but these are metaproductions (flagged MMM), for
which we do not want abstract syntax constructors.

The ax app rule does not have any premises, but the other two rules
do, e.g.

t1 --> t1’
-------------- :: ctx_app_arg
v t1 --> v t1’

Here the premises are instances of the judgement being defined,
but in general they may be symbolic terms of a formula grammar
that includes all judgement forms by default, but can also contain
arbitrary user-defined formula productions, for side-conditions.

This core information is already a well-formed ott source file
that can be processed by the tool, sanity-checking the definitions,
and default typeset output can be generated.
Proof assistant code To generate proof assistant code we first
need to specify the proof assistant representations ranged over by
metavariables: the isaisaisa, coqcoqcoq and holholhol annotations of the metavarmetavarmetavar
block specify that the Isabelle, Coq and HOL string, nat and
string types be used. For Coq the coq-equalitycoq-equalitycoq-equality generates an
equality decidability lemma and proof script for the type.

The proof assistant representation of abstract syntax is then
generated from the grammar. For a very simple example, the Coq
compilation for t generates a free type with three constructors:
Inductive
t : Set :=

t_Var : termvar -> t
| t_Lam : termvar -> t -> t
| t_App : t -> t -> t .

The general case, rather more complex than this, is discussed in §4,
but for now note that the metaproductions do not give rise to proof
assistant constructors. Instead, the user can specify an arbitrary
translation for each. These translations (‘homs’) give clauses of



E ` e1 : t1 ... E ` en : tn
E ` field name1 : t → t1 ... E ` field namen : t → tn

t = ( t ′1 , ... , t ′l ) typeconstr name
E ` typeconstr name B typeconstr name : kind {field name ′1 ; ... ; field name′m }
field name1 ...field namen PERMUTES field name ′1 ...field name′m
length ( e1 ) ... ( en ) ≥ 1

E ` {field name1 = e1 ; ... ; field namen = en } : t
JTE RECORD CONSTR

E |- e1 : t1 ... E |- en : tn
E |- field name1 : t->t1 ... E |- field namen : t->tn
t = (t1’, ..., tl’) typeconstr name
E |- typeconstr name gives typeconstr name:kind {field name1’; ...; field namem’}
field name1...field namen PERMUTES field name1’...field namem’
length (e1)...(en)>=1
-------------------------------------------------------------------------- :: record constr
E |- {field name1=e1; ...; field namen=en} : t

Figure 3. A sample OCaml semantic rule, in LATEX and ott source forms

functions from symbolic terms to the character string of generated
proof-assistant code. In this example, the {{ ichoichoicho [[t]] }} hom
for the Paren production says that (t) should be translated into
just the translation of t, whereas the {{ ichoichoicho (tsubst t [[t]]
[[x]] [[t’]])}} hom for Tsub says that {t/x}t’ should be
translated into the proof-assistant application of tsubst t to the
translations of t, x, and t’. The (admittedly terse) ‘ichoichoicho’ speci-
fies that these translations should be done uniformly for Isabelle,
Coq, HOL, and OCaml output, and one can also specify different
translations for each.

The tsubst t mentioned in the hom for Tsub above is a proof
assistant identifier for a function that calculates substitution over
terms, automatically generated by the substitutionssubstitutionssubstitutions declara-
tion. We return in §3 to what this does, and to the meaning of the
binding specification (+ bindbindbind x ininin t +) in the Lam production.

Homs can also be used to specify proof assistant types for
nonterminals, in cases where one wants a specific proof assistant
type expression rather than a type freely generated from the syntax.
Tuned typesetting To fine-tune the generated LATEX, to produce
the output of Fig. 2, the user can add various data: (1) the {{ textextex
\mathit{[[termvar]]} }} in the metavarmetavarmetavar declaration, speci-
fying that termvars be typeset in math italic; (2) the terminals
grammar, overriding the default typesetting for terminals \ and -->
by λ and −→; and (3) {{ comcomcom . . .}} comments, annotating pro-
ductions and judgements.

One can also write textextex annotations to override the default
typesetting at the level of productions, not just tokens. For example,
in F<: one might wish to typeset term abstractions with λ and type
abstractions with Λ, and fine-tune the spacing, writing productions

| \ x : T . t :: :: Lam
{{ textextex \lambda [[x]] \mathord{:} [[T]]. \, [[t]] }}

| \ X <: T . t :: :: TLam
{{ textextex \Lambda [[X]] \mathord{<:} [[T]]. \, [[t]] }}

to typeset terms such as (\X<:T11.\x:X.t12) [T2] as
( ΛX<:T11. λx :X . t12 ) [ T2 ]. These annotations define clauses
of functions from symbolic terms to the character string of gen-
erated LATEX, overriding the built-in default clause. Similarly, one
can control typesetting of symbolic metavariable and nonterminal
roots, e.g. to typeset a nonterminal root G as Γ.
Concrete terms To fully specify the concrete syntax of the
object language one need only add definitions for the lexical form
of variables, concrete instances of metavariables, with the {{ lexlexlex
alphanumalphanumalphanum}} hom in themetavarmetavarmetavar block. Herealphanumalphanumalphanum is a built-
in regular expression. Concrete examples can then be parsed by the
tool and pretty-printed into LATEX or proof assistant code.

OCaml boilerplate The tool can also generate OCaml boiler-
plate: type definitions for the abstract syntax, and functions for sub-
stitution etc. (but not the judgments). To do this one need specify
only the OCaml representation of metavariables, by the ocamlocamlocaml hom
in the metavarmetavarmetavar block, and OCaml homs for metaproductions, here
already included in the uniform ichoichoicho homs.

2.2 List forms
For an example that is rather more typical of a large-scale seman-
tics, consider the record typing rule shown in the top half of Fig. 3,
taken from our OCaml fragment definition. The first, second, and
fourth premises are uses of judgement forms; the other premises
are uses of formula productions with meanings defined by homs.
The rule also involves several list forms, indicated with dots ‘...’,
as is common in informal mathematics. Lists are ubiquitous in pro-
gramming language syntax, and this informal notation is widely
used for good reasons, being concise and clear. We therefore sup-
port it directly in the metalanguage, making it precise so that we
can generate proof assistant definition clauses, together with the
LATEX shown.

The bottom half of Fig. 3 shows the source text for that rule —
note the close correspondance to the typeset version, making it easy
to read and edit. Looking at it more closely, we see index variables
n, m, and l occuring in suffixes. There are symbolic nonterminals
and metavariables indexed in three different ranges: e�, t�, and
field name� are indexed from 1 to n, field name ′� is indexed
from 1 to m, and t′� is indexed 1 to l. To parse list forms involving
dots, the tool finds subterms which can be antiunified by abstracting
out components of suffixes.

With direct support for lists, we need also direct support for
symbolic terms involving list projection and concatenation, e.g. in
the rules below (taken from a different case study).

{ l ′1 =v1 , .. , l ′n =vn } . l ′j −→ vj
PROJ

t −→ t ′

{ l1 =v1 , .. , lm =vm , l = t , l ′1 = t ′1 , .. , l ′n = t ′n }
−→ { l1 =v1 , .. , lm =vm , l = t ′ , l ′1 = t ′1 , .. , l ′n = t ′n }

REC

Lastly, one sometimes wants to write list comprehensions rather
than dots, for compactness or as a matter of general style. We
support comprehensions of several forms, e.g. with explicit index i
and bounds 0 to n−1, as below, and with unspecified or upper-only
bounds.

Γ ` t : { li : Ti
i∈0..n−1 }

Γ ` t . lj : Tj
PROJ



Other types commonly used in semantics, e.g. finite maps or sets,
can often be described with this list syntax in conjunction with type
and metaproduction homs to specify the proof assistant representa-
tion.

2.3 Syntactic Design
Some interlinked design choices keep the metalanguage general but
syntactically lightweight. Issues of concrete syntax are often best
avoided in semantic research, tending to lead to heated and un-
productive debate. In designing a usable metalanguage, however,
providing a lightweight syntax is important, just as it is in design-
ing a usable programming language. We aim to let the working
semanticist focus on the content of their definitions without being
blinded by markup, inferring data that can reasonable be inferred
while retaining enough redundancy that the tool can do useful error
checking of the definitions. Further, the community has developed a
variety of well-chosen concise notations; we support some (though
not all) of these. The tradeoffs are rather different from those for
conventional programming language syntax.

There are no built-in assumptions on the structure of the math-
ematical definitions (e.g., we do not assume that object languages
have a syntactic category of expressions, or a small-step reduction
relation). Instead, the tool supports definitions of arbitrary syntax
and of inductive relations over it. Syntax definitions include the full
syntax of the symbolic terms used in rules (e.g. with metaproduc-
tions for whatever syntax is desired for substitution). Judgements
can likewise have arbitrary syntax, as can formulae.

The tool accepts arbitrary context-free grammars, so the user
need not go through the contortions required to make a non-
ambiguous grammar (e.g. for yacc). Abstract syntax grammars,
considered concretely, are often ambiguous, but the symbolic terms
used in rules are generally rather small, so this ambiguity rarely
arises in practice. Where it does, we let the user resolve it with
production-name annotations in terms. The tool finds all parses of
symbolic terms, flagging errors where there are multiple possibili-
ties. It uses scannerless memoized CPS’d parser combinators, tak-
ing ideas from Johnson (1995), which is simple and sufficiently
efficient.

Naming conventions for symbolic nonterminals and metavari-
ables are rigidly enforced — they must be composed of one of their
roots and a suffix. This makes many minor errors detectable, makes
it possible to lex the suffixes, and makes parsing much less ambigu-
ous.

2.4 Workflow
To make the ott tool more usable in realistic workflows, we have
had to attend to some conceptually straightforward but pragmati-
cally important engineering issues. We mention a few to give the
flavour:
• Both LATEX and proof assistant files can be filtered, replacing de-

limited ott-syntax symbolic terms (or concrete term examples)
in documents, e.g. [[(\x.x x) x’ --> t]], by their LATEX
or proof assistant rendering. Additionally, LATEX and proof as-
sistant code can be embedded within an ott source file (and
similarly filtered). Typesetting style is indirected, so that it can
be controlled by redefining LATEX commands.
• The generated LATEX is factored into LATEX commands for in-

dividual rules, the rules of individual defndefndefns, etc., up to the
complete definition, so that parts or all of the definition can be
quoted in other documents.
• The proof assistants each have their own support, more-or-less

elaborate, for fancy syntax. For Isabelle the tool can generate
these declarations from an ott source grammar, so that they

can be used in proof scripts and in the displayed goals during
interactive proof.
• We support common prefixes for rule names and production

names (e.g. the t in Fig. 1), and allow synonyms for nonter-
minal and metavariable roots (e.g. if one wanted S, T , and U to
range over a grammar of types).

3. Binding Specifications and Substitution
How to deal with binding, and the accompanying notions of substi-
tution and free variables, is a key question in formalised program-
ming language semantics. It involves two issues: one needs to fix
on a class of binding structures being dealt with, and one needs
proof-assistant representations for them.

The latter has been the subject of considerable attention, with
representation techniques based on names, De Bruijn indices,
higher-order abstract syntax (HOAS), locally nameless terms, nom-
inal sets, and so forth, in various proof assistants. The annotated
bibliography by Charguéraud (2006) collects around 40 papers on
this, and it was a central focus of the POPLmark challenge (Ay-
demir et al. 2005).

Almost all of this work, however, deals only with the simplest
class of binding structures, the single binders we saw in the lambda
abstraction production of the §2 example:

t ::=
| λ x . t bind x in t lambda

in which a single variable binds in a single subterm. Realistic pro-
gramming languages often have much more complex binding struc-
tures, e.g. structured patterns, multiple mutually recursive let def-
initions, comprehensions, or-patterns, and dependent record pat-
terns. We therefore turn our attention to the potential range of bind-
ing structures.

3.1 The ott binding metalanguage: syntax
We introduce a novel metalanguage for specifying binding struc-
tures, expressive enough to cover all the above but remaining sim-
ple and intuitive. It comprises two forms of annotation on produc-
tions. The first, bind mse in nonterm , lets one specify that vari-
ables bind in nonterminals of the production, as in the lambda pro-
duction above. Here mse is a metavariable set expression, e.g. in
that lambda production just the singleton metavariable x of the pro-
duction. A variable can bind in multiple nonterminals, as in the ex-
ample of a simple recursive let below.

t ::=
| let rec f = t in t ′ bind f in t

bind f in t ′

More complex examples require one to collect together sets of
variables. For example, the grammar below has structured patterns,
with a let p = t in t ′ production in which all the binders of the
pattern p bind in the continuation t ′.

t ::=
| x
| ( t1 , t2 )
| let p = t in t ′ bind binders(p) in t ′

p ::=
| binders = {}
| x binders = x
| ( p1 , p2 ) binders = binders(p1) ∪ binders(p2)

This is expressed with the second form of annotation: user-defined
auxiliary functions such as the binders above. This is an auxiliary
function defined over the p grammar that identifies a set of vari-
ables to be used in the bind annotation on the let production.



The syntax of a precise fragment of the binding metalanguage
is given in Fig. 4, where we have used ott to define part of the
ott metalanguage. A simple type system (not shown) enforces
sanity properties, e.g. that each auxiliary function is only applied
to nonterminals that it is defined over, and that metavariable set
expressions are well-sorted.

Further to that fragment, the tool supports binding for the list
forms of §2.2. Metavariable set expressions can include lists of
metavariables and auxiliary functions applied to lists of nontermi-
nals, e.g. as in the record patterns below.

p ::=
| x b = x
| { l1 = p1 , .. , ln = pn } b = b(p1..pn)

This suffices to express the binding structure of almost all the nat-
ural examples we have come across, including definitions of mutu-
ally recursive functions with multiple clauses for each, Join calcu-
lus definitions (Fournet et al. 1996), dependent record patterns, and
many others.

Given a binding specification, the tool can generate substitution
functions automatically. Fig. 1 contained the block:

substitutionssubstitutionssubstitutions
singlesinglesingle t x :: tsubst

which causes ott to generate proof-assistant functions for single
substitution of term variables x by terms t over all (non-subtype)
types of the grammar — here just t, so a function named tsubst t
is generated. Multiple substitutions can also be generated, and there
is similar machinery for free variable functions.

3.2 The ott binding metalanguage: semantics
We give meaning to these binding specifications in two ways.
The fully concrete representation The first semantics (and the
only one that is currently supported by the tool) is what we term
a fully concrete representation. Perhaps surprisingly, a reasonably
wide range of programming language definitions can be expressed
satisfactorily without introducing alpha equivalence. In typical call-
by-value or call-by-name languages, there is no reduction under
term variable binders. The substitutions that arise therefore only
substitute closed terms, so there is no danger of capture. The fully
concrete representation uses abstract syntax terms with concrete
variable names, as in the example Coq type t of §2.1 (Fig. 5 gives
a general grammar of such concrete abstract syntax terms, casts).
Substitution is defined so as to not substitute for bound variables
within their scopes, but without using any renaming. Continuing
the §2.1 example, ott generates Coq code essentially as below.

Fixpoint tsubst_t (t2:t)(x1:termvar)(t2:t){struct t2}:t :=
match t2 with
| (t_Var x) =>

(if eq_termvar x x1 then t2 else (t_Var x))
| (t_Lam x t1) =>

t_Lam x (if eq_termvar x1 x) then t1
else (tsubst_t t2 x1 t1))

| (t_App t1 t’) =>
t_App (tsubst_t t2 x1 t1) (tsubst_t t2 x1 t’)

end.

Doing this in the general case highlights a subtlety: when substi-
tuting (e.g.) ts for xs, the only occurrences of x that are substi-
tutable are those in instances of productions of the t grammar that
comprise just a singleton x (e.g. here the Var production), as only
there will the result be obviously type correct. Other occurrences,
e.g. the x in the Lam production, or the x in the pattern grammars
above, are not substitutable, and, correspondingly, should not ap-
pear in the results of free variable functions. In natural examples

metavars metavarroot , mvr nontermroot , ntr
terminal , t auxfn, f
prodname, pn variable, var

grammar
metavar , mv ::=
| metavarroot suffix

nonterm, nt ::=
| nontermroot suffix

element , e ::=
| terminal
| metavar
| nonterm

metavar set expression, mse ::=
| metavar
| auxfn(nonterm)
| mse unionmse′

| {}
bindspec, bs ::=
| bindmse innonterm
| auxfn = mse

prod , p ::=
| | element1 .. elementm :: :: prodname (+ bs1 .. bsn +)

rule, r ::=
| nontermroot :: ’’ ::= prod1 .. prodm

grammar rules, g ::=
| grammar rule1 .. rulem

Figure 4. Mini-Ott in Ott: the binding specification metalanguage

concrete abstract syntax term, cast ::=
| var : mvr
| prodname ( cast1 , .. , castm )

Figure 5. Mini-Ott in Ott: concrete abstract syntax terms

one might expect all such occurrences to be bound at some point in
the grammar.

A precise definition of this fully concrete representation is avail-
able for the Mini-Ott of Fig. 4, including definitions of substitution
and free variables over the general concrete abstract syntax terms
of Fig. 5 (Sewell and Zappa Nardelli 2007), but for lack of space
we do not include it here.
Alpha equivalence The fully concrete representation suffices
for the case studies we describe here (notably including the OCaml
fragment), but sometimes alpha equivalence really is needed —
e.g. where there is substitution under binders, for dependent type
environments1, or for compositional reasoning about terms. We
have therefore defined notions of alpha equivalence and capture-
avoiding substitution over concrete abstract syntax terms, again for
an arbitrary Mini-Ott object language and binding specification.
These definitions are again precise, in Ott-Isabelle/HOL, and are
available on the web (Sewell and Zappa Nardelli 2007). Here we
explain just the key points by two examples.

1 The POPLmark F<: example is nicely expressible in ott as far as LATEX
output goes, but its dependent type environments would require explicit
alpha conversion in the rules to capture the intended semantics using the
fully concrete representation.



First, consider the OCaml or-patterns2 p1 | p2, e.g. with a pat-
tern grammar

p ::=
| x b = x
| ( p1 , p2 ) b = b(p1) ∪ b(p2)
| p1 | p2 b = b(p1) ∪ b(p2)
| None b = {}
| Some p b = b(p)

This would be subject to the conditions (captured in type rules)
that for a pair pattern ( p1 , p2 ) the two subpatterns have disjoint
domain, whereas for an or-pattern p1 | p2 they have equal domain
and types. One can then write example terms such as that below.

let ( ( None , Some x ) | ( Some x , None ) ) = y in ( x , x )

Here there is no simple notion of ‘binding occurrence’. Instead,
one should think of the two occurrences of x in the pattern, and the
two occurrences of x in the continuation, as all liable to alpha-vary
together. This can be captured by defining, inductively on concrete
abstract syntax terms cast , partial equivalence relations ecast over
the occurrences of variables within them. In the example it would
relate all four occurrences of x to each other, as below, but leave y
unrelated.

let (( None , Some x ) | ( Some x , None )) = y in ( x , x )

Given this, one can define two terms to be alpha equivalent if their
equivalence classes of occurrences can be freshly renamed to make
them identical.

For the second example, consider a system such as F<: with
type environments Γ as below.

Γ ::=
| ∅
| Γ, X<:T
| Γ, x :T

In setting up such a system, it is common to treat the terms and
types up to alpha equivalence. There is then a technical choice
about whether the judgements are also taken up to alpha equiva-
lence: in typing judgements Γ ` t : T , one can either treat Γ con-
cretely or declare the domain of Γ to bind in t and in T . Suppose
one takes the second approach, and further has each element of Γ
(X <:T or x : T ) binding (X or x) in the succeeding elements.
(All these options can be expressed in the ott bindspec metalan-
guage.) For a complete judgement such as

∅, X<:Top, Y <:X →X , x :X , y:Y ` y x : X

it is then easy to see what the binding structure is, and we can depict
the ecast as below.

∅, X<:Top, Y <:X →X , x :X , y:Y ` y x : X

For that type environment in isolation, however, i.e.

∅, X<:Top, Y <:X →X , x :X , y:Y

while in some sense the X <: Top binds in the tail, it must not
be alpha-varied — that only becomes possible when it is put in
the complete context of a judgement. Our definitions capture this
phenomenon by defining for each term cast not just an ecast rela-
tion for ‘closed’ binding but also a similar ocast partial equivalence
relation for ‘open’ binding, relating occurrences which potentially
may alpha-vary together if this term is placed in a larger, binding,
context. The ocast is not directly involved in the definition of alpha

2 Similar binding occurs in the Join calculus, where a join definition may
mention the ‘bound’ names arbitrarily often on the left.

equivalence, but is (compositionally) used to calculate the ecast . It
is shown for this example below.

∅, X<:Top, Y <:X →X , x :X , y:Y

Nontrivial open binding also occurs in languages with dependent
patterns, e.g. those with pattern matching for existential types.

We increase confidence in these definitions by proving a theo-
rem that, under reasonable conditions, substitution of closed terms
in the fully concrete representation coincides with capture-avoiding
substitution for our notion of alpha equivalence for arbitrary bind-
ing specifications. The conditions involve the types of the desired
substitution and the auxiliary functions present — to a first approx-
imation, that the types of substitutions (e.g. t for x), are distinct
from the domains and results of auxiliary functions (e.g. binders,
collecting, from patterns p, variables x). In the absence of a widely
accepted alternative class of binding specifications, there is no way
to even formulate ‘correctness’ of that notion in general, but for
specific examples one can show that it coincides with a standard
representation. We did that (a routine exercise), for the untyped
lambda calculus. At present both of these are hand proofs, though
above mechanized definitions — we aim to mechanize them in due
course.

Generating proof assistant code that respects this notion of alpha
equivalence, for arbitrary binding specifications, is a substantial
question for future work. It could be addressed directly, in which
case one has to understand how to generalise the existing proof
assistant representations, and what kind of induction schemes to
produce, or via a uniform translation into single binders — perhaps
introducing proof-assistant binders at each bindmse point in the
grammar. A more tractable (but still rather expressive) subclass of
binding specifications can be obtained by simple static conditions
that guarantee that there is no ‘open’ binding.

4. Compilation to Proof Assistant Code
Our compilation generates proof-assistant definitions: of types; of
functions, for subgrammar predicates, for the binding auxiliaries
of §3, for single and multiple substitution, and for free variables;
and of relations, for the semantic judgements. We generate well-
formed proof assistant code, without dangling proof obligations,
and try also to make it idiomatic for each proof assistant, to provide
a good basis for mechanized proof. All this is for Coq, HOL, and
Isabelle/HOL, and work on compilation to Twelf is in progress.

4.1 Types
Each metavariable declaration gives rise simply to a proof assistant
type abbreviation, for example types termvar = "string" in
the Isabelle generated from Fig. 1. For each nonterminal root of
the user’s grammar, if (a) it is a maximal element of the subrule
order, and (b) no type hom has been specified, then we generate a
free type with a constructor for each non-meta production of the
grammar (as in the simple §2.1 example of t). Nonterminal roots
with type homs give rise to type abbreviations. Nonterminal roots
that are not maximal, e.g. the v of Fig. 1, are represented using the
type generated for the (unique) maximal element above them. For
these we also generate and use subgrammar predicates that carve
out the relevant part of that type, as discussed below.

In general there may be a complex pattern of mutual recursion
among these types. Coq, HOL and Isabelle all support mutually
recursive type definitions (with Inductive, Hol_datatype, and
datatype respectively), but it is desirable to make each mutually
recursive block as small as possible, to simplify the resulting induc-
tion principle. Accordingly, we topologically sort the rules accord-
ing to a dependency order, generating mutually recursive blocks
for each connected component and inserting any (singleton) type
abbreviations where they fit.



We also have to choose a representation for productions involv-
ing list forms. For example, for a language with records one might
write

metavar label, l ::= {{ hol string }} {{ coq nat }}
indexvar index, n ::= {{ hol num }} {{ coq nat }}
grammar
t :: E_ ::=

| { l1 = t1 , .. , ln = tn } :: :: record

In HOL and Isabelle we represent these simply with contructors
whose argument types involve proof-assistant native list types, e.g.

val _ = Hol_datatype ‘
t = E_record of (label#t) list ‘;

For Coq, however, we provide two alternatives: one can either use
native lists or lists can be translated away, depending on taste. In the
former case we generate an appropriate induction principle using
nested fixpoints, as the default principle produced by Coq is too
weak to be useful. In the latter case we synthesise an additional
type for each type of lists-of-tuples that arises in the grammar. In
the example, we need a type of lists of pairs of a label and a t:
Inductive
list_label_t : Set :=

Nil_list_label_t : list_label_t
| Cons_list_label_t : label -> t -> list_label_t

-> list_label_t

with t : Set :=
E_record : list_label_t -> t .

These are included in the topological sort, and utility functions,
e.g. to make and unmake lists, are synthesised. A similar translation
will be needed for Twelf, as it has no polymorphic list type. We also
generate, on request, default Coq proofs that there is a decidable
equality on various types.

4.2 Functions
The generated functions are defined by pattern-matching and re-
cursion. The patterns are generated by building canonical symbolic
terms from the productions of the grammar. The recursion is es-
sentially primitive recursion: for Coq we produce Fixpoints or
Definitions as appropriate; for HOL we use an ottDefine vari-
ant of the Define package; and for Isabelle we produce primrecs.
In general we have to deal both with the type dependency (the topo-
logically sorted mutually recursive types described above) and with
function dependency — for subgrammar predicates and binding
auxiliaries we may have multiple mutually recursive functions over
the same type.
Subgrammar Predicates We generate subgrammar predicates
to carve out the subsets of each free proof assistant type (from
the maximal elements of the subrule order) that represent the non-
free rules of the grammar. The non-free grammar rules are the
least subset of the rules that either (1) occur on the left of a
subrule (<::) declaration, or (2) have a (non-meta) production that
mentions a non-free rule. Note that these can include rules that
are maximal elements of the subrule order, e.g. if an expression
grammar included a production involving packaged values. The
subgrammar predicate for a type is defined by pattern matching
over constructors of the maximal type above it — for each non-
meta production of the maximal type it calculates a disjunction over
all the productions of the lower type that are subproductions of it,
invoking other subrule predicates as appropriate.
Binding Auxiliaries These functions calculate the intuitive fully
concrete interpretations of auxiliary functions defined in bindspecs,
as in §3.2, giving proof assistant sets or lists, of metavariables or
nonterminals, over each type for which the auxiliary is defined.

Substitutions and free variables The generated substitution
functions also walk over the structure of the free proof assistant
types. For each production, for each occurrence of a nonterminal
nt within it, we first calculate the things (of whatever type is in
question) binding in that nt , i.e. those that should be removed from
the domain of any substitution pushed down into it. In simple cases
these are just the interpretation of the mse ′ (of the right type) from
any bind mse ′ in nt of the production. The substitution function
clause for a production is then of one of two forms: either (1) the
production comprises a single element, of the metavariable that we
are substituting for, and this is within the rule of the nonterminal
that it is being replaced by, or (2) all other cases. For (1) the ele-
ment is compared with the domain of the substitution, and replaced
by the corresponding value from the range if it is found. For (2)
the substitution functions are mapped over the subelements, hav-
ing first removed any bound things from the domain of the substi-
tution. (Substitution does not descend through nonterminals with
type homs, as they may be arbitrarily complex, so these should
generally only be used at upper levels of a syntax, e.g. to use fi-
nite maps for type environments.) The fully concrete interpretation
also lets us define substitution for nonterminals, e.g. to substitute
for compound identifiers such as a dot-form M.x. This is all done
similarly, but with differences in detail, for single and for multi-
ple substitutions, and for the corresponding free variable functions.
For all these we simplify the generated functions by using the de-
pendency analysis of the syntax, only propagating recursive calls
where needed.
Dealing with the proof assistants Each proof assistant intro-
duced its own further difficulties. Leaving aside the purely syntactic
idiosyncrasies (which are far from trivial, but not very interesting):

For Coq, when translating lists away, generation of functions
over productions that involve list types must respect that transla-
tion. We therefore generate auxiliary functions that recurse over
those list types. Coq also needs an exact dependency analysis.

For HOL, the standard Define package tries an automatic ter-
mination proof. This does not suffice for all cases of our gener-
ated functions involving list types, so we developed an ottDefine
variant, with stronger support for proving termination of definitions
involving list operators.

For Isabelle, we chose the primrec package, to avoid any dan-
ger of leaving dangling proof obligations, and because our func-
tions are all intuitively primitive recursive. Unfortunately, in the
released (Isabelle2005) version, primrec does not support defini-
tions involving several mutually recursive functions over the same
type. For these we generate single functions calculating tuples of
results, define the intended functions as projections of these, and
generate lemmas (and simple proof scripts) characterising them in
terms of the intended definitions. Further, it does not support pat-
tern matching involving nested constructors. We therefore generate
auxiliary functions for productions with embedded list types. Is-
abelle tuples are treated as iterated pairs, so we do the same for
productions with tuples of size 3 or more. Isabelle also requires a
function definition for each recursive type. In the case where there
are multiple uses of the same type (e.g. several uses of t list
in different productions) all the functions we wish to generate need
identical auxiliaries, so identical copies must be generated. In retro-
spect, the choice to use primrec is debatable, and it has been sug-
gested that future versions of Isabelle will have a more robust def-
inition package for general functions, which should subsume some
of the above.

4.3 Relations
The semantic relations are defined with the proof-assistant induc-
tive relations packages, Inductive, Hol_reln, and inductive,
respectively. Each defns block gives rise to a potentially mutu-



symterm, st ::=
| stnb
| nonterm

symterm node body, stnb ::=
| prodname ( ste1 , .. , stem )

symterm element , ste ::=
| st
| metavar
| var : mvr

Figure 6. Mini-Ott in Ott: symbolic terms

ally recursive definition of each defn inside it (it seems clearer not
to do a topological sort here). Definition rules are expressed inter-
nally with symbolic terms. We give a simplified grammar thereof
in Fig. 6, omitting the symbolic terms for list forms. A symbolic
term st for a nonterminal root is either an explicit nonterminal or
a node, the latter labelled with a production name and containing
a list of symterm elements, which in turn are either symbolic
terms, metavariables, or variables. Each definition rule gives rise
to an implicational clause, essentially that the premises (ott sym-
bolic terms of the formula grammar) imply the conclusion (an ott
symbolic term of whichever judgement is being defined). Symbolic
terms are compiled in several different ways:
• Nodes of non-meta productions are output as applications of

the appropriate proof-assistant constructor (and, for a subrule,
promoted to the corresponding constructor of a maximal rule).
• Nodes of meta productions are transformed with the user-

specified homomorphism.
• Nodes of judgement forms are represented as applications of

the defined relation in Coq and HOL, and as set-membership
assertions in Isabelle.

Further, for each nonterminal of a non-free grammar rule, e.g. a us-
age of v’ where v<::t, an additional premise invoking the gener-
ated subrule predicate for the non-free rule is added, e.g. is_v v’.
For Coq and HOL, explicit quantifiers are introduced for all vari-
ables mentioned in the rule.

Supporting list forms requires some additional analysis. For
example, consider the record typing rule below.

Γ ` t0 :T0 .. Γ ` tn−1 :Tn−1

Γ ` { l0 = t0 , .. , ln−1 = tn−1 } :{ l0 :T0 , .. , ln−1 :Tn−1 }
TY RCD

We analyse the symbolic terms in the premises and conclusion
to identify lists of nonterminals and metavariables with the same
bounds — here t0..tn−1, T0..Tn−1, and l0..ln−1 all have bounds
0..n − 1. To make the fact that they have the same length im-
mediate in the generated code, we introduce a single proof as-
sistant variable for each such collection, with appropriate pro-
jections and list maps/foralls at the usage points. For exam-
ple, the HOL for the above is essentially as follows, with an
l_t_Typ_list : (label#t#Typ) list.
(* Ty_Rcd *) !(l_t_Typ_list:(label#t#Typ) list) (G:G) .
(EVERY (\b.b)

(MAP (\(l_,t_,Typ_). (Ty G t_ Typ_)) l_t_Typ_list))
==>
(Ty

G
(E_record (MAP (\(l_,t_,Typ_). (l_,t_)) l_t_Typ_list))
(T_Rec (MAP (\(l_,t_,Typ_). (l_,Typ_)) l_t_Typ_list)))

This seems to be a better idiom for later proof development than the
alternative of three different list variables coupled with assertions
that they have the same length. The HOL code for the REC rules we

saw in §2.2 is below — note the list-lifted usage of the is_v_of_t
predicate, and the list appends (++) in the conclusion.
(* reduce_Rec *) !(l’_t’_list:(label#t) list)

(l_v_list:(label#t) list) (l:label) (t:t) (t’:t) .
((EVERY (\(l_,v_). is_v_of_t v_) l_v_list) /\
(( reduce t t’ )))
==>
(( reduce (t_Rec (l_v_list ++ [(l,t)] ++ l’_t’_list))

(t_Rec (l_v_list ++ [(l,t’)] ++ l’_t’_list))))

For the PROJ typing rule we need a specific projection (the HOL
EL) to pick out the j’th element:
(* Ty_Proj *) !(l_Typ_list:(label#Typ) list)

(j:index) (G:G) (t:t) .
((( Ty G t (T_Rec (l_Typ_list)) )))
==>
(( Ty

G
(t_Proj t ((\ (l_,Typ_) . l_) (EL j l_Typ_list)))
((\ (l_,Typ_) . Typ_) (EL j l_Typ_list))))

For Coq, when translating away lists, we have to introduce yet
more list types for these proof assistant variables, in addition to
the obvious translation of symbolic terms, and, more substantially,
to introduce additional inductive relation definitions to induct over
them.

As outlined here, the analysis and code generation performed
by ott is reasonably complex (the tool is around 17 000 lines of
OCaml). It is therefore quite possible that the generated code is
not what is intended, either because of soundness bugs in the tool
(though none such are known at present) or through misunderstand-
ing of its semantics, and one should not treat the tool as part of a
trusted chain — it is necessary in principle to look over the gen-
erated definitions. In any proof effort, however, one will have to
become intimately familiar with those definitions in any case, so
we do not regard this as a problem.

5. Case Studies
Our primary goal is to provide effective tool support for the work-
ing semanticist. Assessing whether this has been achieved needs
substantial case studies. Accordingly, we have specified various
languages in ott, defining their type systems and operational se-
mantics, as below.
System rules LATEX Coq HOL Isabelle

defnmt defn mt defn mt
untyped CBV lambda (Fig. 1) 3

√ √ √ √
simply typed CBV lambda 6

√ √ √ √ √ √ √
ML polymorphism 22

√ √ √ √
TAPL full simple 63

√ √ √ √ √ √ √
POPLmark F<: with records 48

√
Leroy JFP96 module system 67

√ √
RG-Sep language 22

√ √ √
Mini-Ott-in-Ott 55

√ √ √2

LJ: Lightweight Java 34
√ √

(3)
LJAM: Java Module System 140

√ √
OCaml fragment 306

√ √ √ √1 √
1 see below. 2 hand proofs. 3 in progress.

These range in scale from toy calculi to a large fragment of OCaml.
They also vary in kind: some are post-facto formalizations of ex-
isting systems, and some use ott as a tool in the service of other
research goals. For most we use the tool to generate definitions in
one or more of Coq, HOL, and Isabelle, indicated by the ticks in
the ‘defn’ columns below, together with the typeset LATEX. We have
tested whether these definitions form a good basis for mechanized
proof by machine-checked proofs of metatheoretic results (gener-
ally type preservation and progress), indicated by ticks in the ‘mt’



grammargrammargrammar
t :: Tm ::= {{ comcomcom terms: }}

| let x = t in t’ :: :: Let (+ bindbindbind x ininin t’ +)
{{ comcomcom let binding }}

defnsdefnsdefns
Jop :: ’’ ::=

defndefndefn
t --> t’ :: :: red :: E {{ comcomcom Evaluation }} bybyby

----------------------------- :: LetV
let x=v1 in t2 --> [x|->v1]t2

t1 --> t1’
---------------------------------- :: Let
let x=t1 in t2 --> let x=t1’ in t2

defnsdefnsdefns
Jtype :: ’’ ::=

defndefndefn
G |- t : T :: :: typing :: T {{ comcomcom Typing }} bybyby

G |- t1:T1
G,x:T1 |- t2:T2
------------------------ :: Let
G |- let x=t1 in t2 : T2

Figure 7. An ott source file for the let fragment of TAPL

columns below. The ‘rules’ column gives the number of seman-
tic rules in each system, as a crude measure of its complexity. The
sources, generated code, and proof scripts for most of these systems
are available (Sewell and Zappa Nardelli 2007).
TAPL full simple This covers most of the simple features, up
to variants, from TAPL (Pierce 2002). It demonstrates the util-
ity of a very simple form of modularity provided by ott, allow-
ing clauses of grammars and semantic relations to be split be-
tween files. The original TAPL languages were produced using Tin-
kerType (Levin and Pierce 2003) to compose features and check
for conflicts. Here we build a system, similar to the TinkerType
sys-fullsimple, from ott source files that correspond roughly
to the various TinkerType components, each with syntax and se-
mantic rules for a single feature. The ott source for let is shown
in Fig. 7, to which we add: bool, bool typing, nat, nat typing,
arrow typing, basety, unit, seq, ascribe, product, sum,
fix, tuple, and variant, togther with infrastructure common,
common index, common labels, and common typing.

It also proved easy to largely reproduce the TAPL visual style
and (though we did no proof) to add subtyping.
Leroy JFP96 module system This formalizes the path-based
type system of Leroy (1996, §4), extended with a term language
and an operational semantics.
RG-Sep language This is a concurrent while language used for
ongoing work combining Rely-Guarantee reasoning with Separa-
tion Logic, defined and proved sound by Vafeiadis and Parkinson
(2007).
Mini-Ott-in-Ott This precisely defines the ott binding speci-
fications (without list forms) with their fully concrete representa-
tion and alpha equivalence. The metatheory here is a proof that for
closed substitutions the two coincide. To date only a hand proof has
been completed; we plan to mechanize it in due course.
LJ and LJAM LJ, by Strniša and Parkinson, is an imperative
fragment of Java. LJAM extends that (again using ott modularity)
with a formalization of the core part of JSR-277 and a proposal
for JSR-294, which together form a proposal for a Java module
system (Strniša et al. 2007).

OCaml fragment This covers a substantial core of OCaml —
to a first approximation, all except subtyping, objects, and mod-
ules. Notable features that are handled are: ML-style polymor-
phism; pattern matching; mutable references; finiteness of the in-
teger type; generative definitions of record and variant types; and
generative exception definitions. It does not cover much of the stan-
dard library, mutable records, arrays, pattern matching guards, la-
bels, polymorphic variants, objects, or modules.

We have tried to make our definition mirror the behaviour of
the OCaml system rather closely. The OCaml manual (Leroy et al.
2005) defines the syntax with a BNF; our syntax is based on that.
It describes the semantics in prose; our semantics is based on a
combination of that and our experience with the language.
Experience Our experience with these examples has been very
positive. The tool does make it easy to work with these definitions,
allowing one to focus on the content rather than the proof assistant
or LATEX markup. We have not had to hand-edit the Ott output.

For our most substantial example, the OCaml fragment, we have
proved type preservation and progress for the expression language,
all machine-checked in HOL. The need for alpha-equivalence-
aware reasoning arises only for type variables and type schemes.
We use a de Bruijn encoding of type variables to support the for-
mal proof effort. Since Ott does not currently support the automatic
generation of such representations, we deal directly with the index
shifting functions in the Ott source. This proof effort has taken only
around 3 man-months, and the preceeding definition effort was only
another few man-weeks. Compared with our previous experiences
this is remarkably lightweight: it has been possible to develop this
as an example, rather than requiring a major research project in
its own right. Apart from ott, the work has been aided by HOL’s
powerful first-order reasoning automation and its inductive defini-
tion package, and by the use of the concrete representation.

6. Related Work
As Strachey (1966) writes in the Proceedings of the first IFIP
Working Conference, Formal Language Description Languages:

A programming language is a rather large body of new
and somewhat arbitrary mathematical notation introduced
in the hope of making the problem of controlling computing
machines somewhat simpler.

and the problem of dealing precisely with this notation, with the
need for machine support in doing so, has spawned an extensive
literature, of which we touch only on the most related points.

The proof assistants that we build on, Coq, HOL, Isabelle, and
Twelf, are perhaps the most directly related work (Coq; HOL; Is-
abelle; Twelf). Ever since original LCF (Milner 1972), one of the
main intended applications of these and related systems has been
reasoning about programs and programming languages, and they
have been vastly improved over the years to make this possible. Re-
cently they have been used for a variety of substantial languages,
including for example the verifying compiler work of Blazy et al.
(2006) (Coq), a C expression semantics by Norrish (1999) (HOL),
work on Java by Klein and Nipkow (2006) (Isabelle), and an inter-
nal language for SML by Lee et al. (2007) (Twelf). They are, how-
ever, all more-or-less general-purpose tools — by adding front-end
support that is specific to the problem of defining programming lan-
guage syntax and semantics, we believe ott can significantly ease
the problems of working with large language definitions.

Several projects have aimed at automatically generating pro-
gramming environments and/or compilers from language descrip-
tions, including early work on the Synthesiser Generator (Reps
and Teitelbaum 1984). Kahn’s CENTAUR system (Borras et al.
1988) supported natural-semantics descriptions in the TYPOL lan-



guage, compiling them to Prolog for execution, together with a
rich user interface including an editor, and a language METAL
to define abstract and concrete syntax (Terrasse (1995) also con-
sidered compilation of TYPOL to Coq). Related work by Klint
(1993) and colleagues produced the ASF+SDF Meta-environment.
Here SDF provides rich support for defining syntax, while ASF al-
lows for definitions in an algebraic specification style. Again it is
a programming environment, with a generic syntax-directed edi-
tor. The ERGO Support System (Lee et al. 1988) also had a strong
user-interface component, but targeted (among others) ADT-OBJ
and λProlog. Mosses’s work on Action Semantics and Modular
SOS (Mosses 2002) has been supported by various tools, but makes
strong assumptions on the form of the semantic relations being de-
fined. Moving closer in goals to ott, ClaReT (Boulton 1997) took
a sophisticated description of syntax and pretty printing, and a de-
notational semantics, and generated HOL definitions.

In contrast to the programming environments above, ott is a
more lightweight stand-alone tool for definitions, designed to fit
in with existing editing, LATEX and proof-assistant workflows and
requiring less initial investment and commitment to use. (Its sup-
port for production parsing and pretty printing is less developed
than several of the above, however.) Moreover, in contrast to CEN-
TAUR and to research on automatic compiler generation, ott is
not focussed on producing executable definitions — one can de-
fine arbitrary semantic relations which may or may not be algorith-
mic. The generality of these arbitrary inductive relation definitions
means that ott should be well-suited to much present-day seman-
tics work, for type systems and/or operational semantics.

PLTredex (Matthews et al. 2004) is a domain-specific language
for expressing reduction relation definitions and animating them.
It is currently being used on a ‘full-language’ scale, for an R6RS
Scheme definition (Findler and Matthews 2007), but is by de-
sign restricted to animation of reduction semantics. The Ruler sys-
tem (Dijkstra and Swierstra 2006) provides a language for express-
ing type rules, generating LATEX and implementations but not proof
assistant definitions, used for a Haskell-like language.

Turning to direct support for binding, Twelf is suited to HOAS
representations. FreshML (Shinwell et al. 2003), Alpha Prolog (Ch-
eney and Urban 2004) and MLSOS (Lakin and Pitts 2007) both use
nominal logic- and functional programming approaches, the latter
two with a view to prototyping of semantics. Cαml (Pottier 2006)
is the most substantial other work we are aware of that introduces
a large and precisely defined class of binding specifications, from
which it generates OCaml code for type definitions and substitu-
tions. Types can be annotated with sets of atom sorts, with occur-
rences of atoms of those sorts treated as binding within them. inner
and outer annotations let one specify that subterms are either inside
or outside an enclosing binder. This seems to us less intuitive than
the ott binding specifications. We conjecture that the two have
mutually incomparable expressiveness.

Representing binding within proof assistants was a key aspect
of the POPLmark challenge (Aydemir et al. 2005), and several
comparisons have been produced, including those of Aydemir et al.
(2007) and Berghofer and Urban (2006). Owens (1995) discusses
pattern binding using locally nameless representations in Isabelle.

The work on concise concrete syntax by Tse and Zdancewic
(2006) has similar lightweight syntax definition goals to ott, tak-
ing a concise description of a grammar but producing the conven-
tional object-language parsing and pretty printing tools.

It is interesting to contrast our OCaml fragment example with
attempts to verify aspects of the SML Definition. Early attempts,
by Syme (1993), VanInwegen (1996), and Gunter and Maharaj
(1995), faced severe difficulties, both from the mathematical style
of the Definition and the limitations of HOL at the time whereas,
using ott and HOL 4, we have found our example reasonably

straightforward. Lee et al. (2007) take a rather different approach.
They factor their (Twelf) definition into an internal language, and
(yet to appear) a substantial elaboration from a source language
to that. They thus deal with a much more sophisticated type theory
(aimed at supporting source features that we do not cover, including
modules), so the proof effort is hard to compare, but their semantic
rules are further removed from source-language programs.

7. Conclusion
Summary We have introduced the ott metalanguage and tool
for expressing semantics, incorporating metalanguage design to
make definitions easy to read and edit, a novel and expressive
metalanguage for expressing binding, and compilation to multiple
proof assistants.

We hope that this work will enable a phase change: from the
current state, in which working with fully-rigorous definitions of
real programming languages requires heroic effort, to a world in
which that is routine.

The ott tool can be used in several different ways. Most sim-
ply, it can aid informal LATEX mathematics, permitting definitions,
and terms in proofs and exposition, to be written without syntac-
tic noise. By parsing (and so sort-checking) this input it quickly
catches a range of simple errors, e.g. inconsistent use of judgement
forms. There is then a smooth path to fully-rigorous proof assis-
tant definitions: those ott definitions can be annotated with the
additional information required to generate proof assistant code. In
general one may also want to restructure the definitions to suit the
formalization. Our experience so far suggests this is not a major
issue, and hence that one can avoid early commitment to a par-
ticular proof assistant. The tool can be used at different scales: it
aims to be sufficiently lightweight to be used for small calculi, but
it is also designed and engineered with the pragmatics of working
with full-scale programming languages in mind. Our case studies
suggest that it achieves both goals. Furthermore, we hope it will
make it easy to re-use definitions of calculi and languages, and
also fragments thereof, across the community. Widely accepted de
facto standard definitions would make it possible to discuss pro-
posed changes to existing languages in terms of changes to those
definitions, rather than solely in terms of toy calculi.
Future work There are many interesting directions for future
work. First, while the fully concrete representation of binding is
surprisingly widely applicable, it is far from expressing all one
would like to do. We plan to explore proof assistant representations
for arbitrary binding specifications, as outlined in §3.2. Another
mathematical question is to consider in what sense the definitions
ott generates for the different target proof assistants have the same
meaning. This is intuitively plausible, but the targets are based on
different logics, so it is far from trivial.

The Twelf code generation remains to be completed, and a num-
ber of other features would be useful: support for function defini-
tions (not just inductive relations); support for contexts, with auto-
matically generated context application and composition functions;
support for generating multiple overlapping languages from a sin-
gle source (e.g. sugared and non-sugared); and generation of pro-
duction parsers.

With more experience using the tool, we aim also to polish
the generated proof-assistant definitions and improve the available
proof automation — for example, to make proof scripts less depen-
dent on the precise structure and ordering of the definitions.

Being able to easily generate defintions for multiple proof as-
sistants also opens up new possibilities for (semi-)automatically
testing conformance between semantic definitions and produc-
tion implementations, above the various proof assistant support



for proof search, tactic-based symbolic evaluation, code extraction
from proofs, and code generation from definitions.

Finally, we look forward to further experience and user feed-
back from the tool.
Acknowledgements We thank the other members of the POPLmark
team, especially Benjamin Pierce, Stephanie Weirich and Steve Zdancewic,
for interesting discussions on this work, James Leifer for comments on a
draft, our early adopters for user feedback, and Keith Wansbrough, Matthew
Fairbairn and Tom Wilkie for their work on various ott predecessors. We
acknowledge the support of EPSRC grants GR/T11715 and EP/C510712,
and a Royal Society University Research Fellowship (Sewell).
References
AFP. The archive of formal proofs. http://afp.sf.net.
B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich.

Engineering formal metatheory, 2007. http://www.chargueraud.
org/arthur/research/2007/binders/.

B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce,
P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic.
Mechanized metatheory for the masses: The POPLmark Challenge. In
Proc. TPHOLs, LNCS 3603, 2005.

S. Berghofer and C. Urban. A head-to-head comparison of de Bruijn indices
and names. In Proc. Int. Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, pages 46–59, 2006.

S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C compiler
front-end. In Int. Symp. on Formal Methods, LNCS 2085, 2006.

P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. Centaur: the system. In Proc. SDE 3, pages 14–24, 1988.

R. J. Boulton. A tool to support formal reasoning about computer lan-
guages. In Proc. TACAS, LNCS 1217, pages 81–95, 1997.

A. Charguéraud. Annotated bibliography for formalization of
lambda-calculus and type theory. http://fling-l.seas.
upenn.edu/∼plclub/cgi-bin/poplmark/index.php?title=
Annotated Bibliography, July 2006.

J. Cheney and C. Urban. Alpha-Prolog: A logic programming language
with names, binding and alpha-equivalence. In Proc. ICLP, LNCS 3132,
pages 269–283, 2004.

Coq. The Coq proof assistant, v.8.0. http://coq.inria.fr/.
A. Dijkstra and S. D. Swierstra. Ruler: Programming type rules. In

Proc. Functional and Logic Programming, LNCS 3945, 2006.
R. B. Findler and J. Matthews. Revised5.92 report on the algorithmic

language Scheme, Chapter 10, Formal Semantics, Jan. 2007.
C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus

of mobile agents. In Proc. CONCUR ’96, LNCS 1119, 1996.
E. Gunter and S. Maharaj. Studying the ML module system in HOL. The

Computer Journal: Special Issue on Theorem Proving in Higher Order
Logics, 1995.

HOL. The HOL 4 system, Kananaskis-3 release. http://hol.
sourceforge.net/.

Isabelle. Isabelle 2005. http://isabelle.in.tum.de/.
M. Johnson. Memoization in top-down parsing. Comput. Linguist., 21(3):

405–417, 1995.
S. Kahrs. Mistakes and ambiguities in the definition of Standard ML.

Technical Report ECS-LFCS-93-257, University of Edinburgh, 1993.
G. Klein and T. Nipkow. A machine-checked model for a Java-like lan-

guage, virtual machine, and compiler. TOPLAS, 28(4):619–695, 2006.
P. Klint. A meta-environment for generating programming environments.

ACM Trans. on Soft. Eng. and Methodology, 2(2):176–201, April 1993.
M. R. Lakin and A. M. Pitts. A metalanguage for structural operational

semantics. In Symposium on Trends in Functional Programming, 2007.
D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory of

Standard ML. In Proc. POPL, January 2007.

P. Lee, F. Pfenning, G. Rollins, and W. Scherlis. The Ergo Support System:
An integrated set of tools for prototyping integrated environments. In
Proc. SDE 3, 1988.

X. Leroy. A syntactic theory of type generativity and sharing. Journal of
Functional Programming, 6(5):667–698, 1996.

X. Leroy et al. The Objective Caml system release 3.09 documentation and
user’s manual, Oct. 2005.

M. Y. Levin and B. C. Pierce. Tinkertype: A language for playing with
formal systems. Journal of Functional Programming, 13(2), Mar. 2003.

J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A visual environment
for developing context-sensitive term rewriting systems. In Proc. RTA,
2004.

R. Milner. Implementation and applications of Scott’s logic for computable
functions. In Proc. ACM conference on Proving assertions about pro-
grams, pages 1–6, 1972.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

P. D. Mosses. Pragmatics of Modular SOS. In Proc. AMAST, LNCS 2442,
pages 21–40, 2002.

M. Norrish. Deterministic expressions in C. In Proc. 8th ESOP (ETAPS),
LNCS 1576, pages 147–161, 1999.

C. Owens. Coding binding and substitution explicitly in Isabelle. In
Proceedings of the First Isabelle Users Workshop, pages 36–52, 1995.

S. Owens and M. Flatt. From structures and functors to modules and units.
In Proc. ICFP, 2006.

S. Peyton Jones, editor. Haskell 98 Language and Libraries. The Revised
Report. CUP, 2003.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
F. Pottier. An overview of Cαml. In ACM Workshop on ML, ENTCS 148(2),

pages 27–52, Mar. 2006.
T. Reps and T. Teitelbaum. The synthesizer generator. In Proc. SDE 1,

pages 42–48, 1984.
A. Rossberg. Defects in the revised definition of Standard ML. Technical

report, Saarland University, 2001. Updated 2007/01/22.
P. Sewell and F. Zappa Nardelli. Ott, 2007. http://www.cl.cam.ac.uk/

users/pes20/ott/.
P. Sewell, J. J. Leifer, K. Wansbrough, M. Allen-Williams,

F. Zappa Nardelli, P. Habouzit, and V. Vafeiadis. Acute: High-
level programming language design for distributed computation. design
rationale and language definition. Technical Report UCAM-CL-TR-
605, University of Cambridge Computer Laboratory, Oct. 2004. See
also the ICFP’05 paper.

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming
with binders made simple. In Proc. ICFP, 2003.

C. Strachey. Towards a formal semantics. In Formal Language Description
Languages for Computer Programming. North Holland, 1966.

R. Strniša, P. Sewell, and M. Parkinson. The Java Module System: core
design and semantic definition. In Proc. OOPSLA, 2007. To appear.

D. Syme. Reasoning with the formal definition of Standard ML in HOL. In
TPHOLs, LNCS 780, pages 43–59, 1993.

D. Terrasse. Encoding Natural Semantics in Coq. In Proc. AMAST, LNCS
936, pages 230–244, 1995.

S. Tse and S. Zdancewic. Concise concrete syntax, 2006. Submitted.
http://www.cis.upenn.edu/∼stse/javac.

Twelf. Twelf 1.5. http://www.cs.cmu.edu/∼twelf/.
V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation

logic. In Proc. CONCUR, 2007.
M. VanInwegen. The Machine-Assisted Proof of Programming Language

Properties. PhD thesis, Univ. of Pennsylvania, 1996. Computer and
Information Science Tech Report MS-CIS-96-31.


