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We explain the binding specifications used in Ott in this document. The explanation is for a fragment
of Ott, not including the list forms. The concrete substitution and free variable functions generated by
Ott are defined in this document. We also give a more mathematical treatment by defining a notion
of alpha-equivalence on abstract syntax terms for arbitrary binding specification. We then prove that
under appropriate conditions, the concrete substitution functions respect alpha-equivalence. Further, we
show that concrete substitutions coincides with capture-avoiding substitutions.

1 Grammar

The metavariables used in the following are:
index , i , i′, j , j′, k , k′, l , l′, m, m′, n, n′, o, o′, q , q′

terminal , t

metavarroot , mvr

nontermroot , ntr

suffix , suff

variable, var

auxfn, f

prodname, pn

The grammar of mini-Ott is:

metavar , mv ::=
| metavarroot suffix

nonterm, nt ::=
| nontermroot suffix

element , e ::= Elements of production rules
| terminal

| metavar

| nonterm

mse ::= Metavariable set expressions
| {}
| mse ∪ mse ′

| metavar

| auxfn(nonterm)

mses ::= Lists of metavariable set expressions
| [mse1 ..msen ]
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bindspec, bs ::=
| bind mse in nonterm

| auxfn = mse

prod , p ::= Grammar productions
| | element1 .. elementm :: :: prodname (+ bindspec1 .. bindspecn +)

rule, r ::=
| nontermroot :: ’’ ::= prod1 .. prodm

grammar rules, g ::=
| grammar rule1 .. rulem

Abstract syntax terms from the above grammar with concrete variables are defined as

sorted var , v ::=
| var :mvr

concrete abstract syntax term, cast ::=
| v

| prodname ( cast1 , .. , castm )

We will have a simple type structure on the above grammar to ensure some basic sanity properties.
These use the following types:

auxfn type, aut ::=
| nontermroot1 ..nontermrootn → metavarroot

auxfn type env , Φ ::=

cast type, ct ::=
| ntr

| mvr

Our substitutions are defined as a list of simultaneous substitutions of cast for var at particular sorts:

substitution, s ::=
| { cast1 / v1 , .. , castn / vn }

Finally, our interpretations will use the following auxiliary notions:

ntmv ::=
| nt

| mv

ntmv list ::=
| ntmv1 , .. , ntmvl

occurence, oc ::= Lists of natural number indices, picking out path in syntax tree
| [ ]
| n :: oc

oc set ::= Sets of occurences

oc reln ::= PER’s over occurences, represented as sets of sets of occurences
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var set ::= Sets of sorted variables

2 Rules

2.1 Utility functions and relations

We first define some utility relations (many of which are in fact defining primitive recursive partial
functions) to work on syntactic objects.

p ∈ g (ntr )

1 : g = grammar r1 .. rl
2 : ri = ntr :: ’’ ::= p1 .. pm

3 : j INDEXES p1 .. pm

pj ∈ g (ntr )
funspec lookup p prods

remove suffix (ntmv ) = ct

remove suffix (ntr suff ) = ntr
funspec remove suffix nt

remove suffix (mvr suff ) = mvr
funspec remove suffix mv

remove terminals ( e1 .. en ) = ntmv list

remove terminals ( ) = []
funspec remove terminals nil

1 : remove terminals ( e1 .. en ) = ntmv list

remove terminals ( tm e1 .. en ) = ntmv list
funspec remove terminals tm

1 : remove terminals ( e1 .. en ) = ntmv list

remove terminals (mv e1 .. en ) = mv , ntmv list
funspec remove terminals mv

1 : remove terminals ( e1 .. en ) = ntmv list

remove terminals (nt e1 .. en ) = nt , ntmv list
funspec remove terminals nt

binding mses∀j . (bsj ) ∈ ntmv ⇒ mses

binding mses ∈ nt ⇒ [ ]
funspec binding mses nt nil

1 : binding mses∀j . (bsj ) ∈ nt ⇒ mses

binding mses bind mse in nt ∀j . (bsj ) ∈ nt ⇒ mse mses
funspec binding mses nt cons t

1 : binding mses∀j . (bsj ) ∈ nt ⇒ mses

2 : ¬ (∃mse, bs = bind mse in nt )

binding mses bs ∀j . (bsj ) ∈ nt ⇒ mses
funspec binding mses nt cons f

binding mses∀j . (bsj ) ∈ mv ⇒ [ ]
funspec binding mses mv

cast@oc = cast ′

cast@[ ] = cast
funspec term at nil

1 : casti@oc = cast

pn (∀j . (castj ) )@i :: oc = cast
funspec term at cons

cast ≃ cast ′ at oc
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1 : cast1@oc = v

2 : cast2@oc = v

cast1 ≃ cast2 at oc
node ident var

1 : cast ′′
1
@oc = pn (∀i . (casti) )

2 : cast ′′
2
@oc = pn (∀i . (cast ′i ) )

cast ′′
1

≃ cast ′′
2

at oc
node ident app

We also define several relations that characterise operations on occurences, sets thereof and relations
thereupon.

head oc = i

head ( i :: oc ) = i
funspec oc head t

oc set subset oc set ′

Axiomatic definition of the subset relation on sets of occurences

1 : ∀oc, ( oc ∈ oc set ⇒ oc ∈ oc set ′ )

oc set subset oc set ′
oc subset def

oc ∈ support oc reln

Whether an occurence is in the support of a relation

1 : oc ∈ oc set

2 : oc set ∈ oc reln

oc ∈ support oc reln
oc in in def

is PER oc reln

A oc reln is a proper PER (partial equivalence relation) iff it is a set of disjoint sets (these sets are the
equivalence classes).

1 : ∀oc set , ∀oc set ′, ( ( oc set ∈ oc reln ∧ oc set ′ ∈ oc reln ) ⇒ ¬ (∃oc, ( oc ∈ oc set ∧ oc ∈ oc set ′ ) ) )

is PER oc reln
oc is PER

oc reln refines oc reln ′

A PER oc reln refines another oc reln ′ iff being related by oc reln implies being related by oc reln ′.
Since oc reln ′ relates more pairs of elements than oc reln, oc reln ′ is coarser than oc reln.

1 : ∀oc set , ( oc set ∈ oc reln ⇒ ∃oc set ′, ( oc set ′ ∈ oc reln ′ ∧ oc set subset oc set ′ ) )

oc reln refines oc reln ′
oc refines def

union closure oc reln1 oc reln2 = oc reln3

The union-closure of oc reln1 and oc reln2 is the finest PER that is coarser than both oc reln1 and
oc reln2. In other words (if equivalence relations are considered as traditional sets of pairs), it is the
smallest partial equivalence relation containing the union of oc reln1 and oc reln2.

1 : is PER oc reln3

2 : oc reln1 refines oc reln3

3 : oc reln2 refines oc reln3

4 : ∀oc reln ′, ( ( is PER oc reln ′ ∧ ( oc reln1 refines oc reln ′ ∧ oc reln2 refines oc reln ′ ) ) ⇒ oc reln3 refines oc reln ′ )

union closure oc reln1 oc reln2 = oc reln3

<< no parses (char 48): :oc reln select: oc reln = { oc set in oc reln’ ***’|’ formula } >>
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1 : ∀oc set , ( oc set ∈ oc reln ⇒ oc set ∈ oc reln ′ )
2 : ∀oc set , ( oc set ∈ oc reln ⇒ formula )
3 : ∀oc set , ( ( oc set ∈ oc reln ′ ∧ formula ) ⇒ oc set ∈ oc reln )

oc reln = { oc set ∈ oc reln ′ | formula }
oc reln select def

oc set = eponymous oc cast

1 : cast@oc = v

2 : ∀oc′, ( oc′ ∈ oc set ⇔ cast@oc′ = v )

oc set = eponymous oc cast
oc set eponymous def

2.2 Sanity checks

We will define typing judgements that check for sanity properties, such as the fact that production
names are not repeated for different productions of a non-terminal, that there is a unique definition for
a non-terminal, and that if an auxiliary function is defined for a non-terminal, every production clause
must define the function.

Φ ⊢ f : aut

Φ, f : aut ⊢ f : aut
sanity auxfn head

1 : Φ ⊢ f : aut

2 : ¬ ( f = f ′ )

Φ, f ′ : aut ′ ⊢ f : aut
sanity auxfn skip

Φ ; e1 .. en ⊢ mse : metavarroot

Φ ; e1 .. en ⊢ {} : mvr
sanity mse empty

1 : Φ ; e1 .. en ⊢ mse : mvr

2 : Φ ; e1 .. en ⊢ mse ′ : mvr

Φ ; e1 .. en ⊢ mse ∪ mse ′ : mvr
sanity mse union

1 : ∃!j ∈ 1..n.ej = mvr suff

Φ ; e1 .. en ⊢ mvr suff : mvr
sanity mse mv

1 : Φ ⊢ f : ntr1 ..ntrm → mvr

2 : ∃!j ∈ 1..n.( ej = nt ∧ nt = ntri suff )

Φ ; e1 .. en ⊢ f (nt) : mvr
sanity mse f

Φ ; e1 .. en : ntr ⊢ bs ok

1 : Φ ; e1 .. en ⊢ mse : mvr

2 : ∃!j ∈ 1..n.ej = nt

Φ ; e1 .. en : ntr ⊢ bind mse in nt ok
sanity bs bind

1 : Φ ; e1 .. en ⊢ mse : mvr

2 : Φ ⊢ f : ntr1 ..ntrn → mvr

3 : ntr = ntri

Φ ; e1 .. en : ntr ⊢ f = mse ok
sanity bs auxfn

Φ ⊢ prod : ntr

1 : ∀i ∈ 1..m.Φ ; e1 .. en : ntr ⊢ bsi ok

2 : prod = | e1 .. en :: :: prodname (+ bs1 .. bsm +)

3 : ∀f ∈ dom(Phi), (Φ ⊢ f : ntr1 ..ntrq ntr ntr ′

1
..ntr ′

q′ → mvr ⇒ ∃!i ∈ 1..m.∃mse, bsi = f = mse )

Φ ⊢ prod : ntr
sanity prod elements
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Φ ⊢ rule ok

1 : rule = ntr :: ’’ ::= prod1 .. prodm

2 : ∀i ∈ 1..m.Φ ⊢ prodi : ntr

3 : ∀i ∈ 1..m.∀j ∈ 1..m.( ( prodi = | e1 .. em :: :: pn (+ bs1 .. bsn +) ∧ prodj = | e ′

1
.. e ′

m′ :: :: pn (+ bs ′
1
.. bs ′n′ +) ) ⇒ i = j

Φ ⊢ rule ok

Φ ⊢ grammar rules ok

1 : grammar rules = grammar rule1 .. rulem
2 : ∀i ∈ 1..m.Φ ⊢ rulei ok

3 : ∀i ∈ 1..m.∀j ∈ 1..m.( ( rulei = ntr :: ’’ ::= prod1 .. prodm ∧ rulej = ntr :: ’’ ::= prod ′

1
.. prod ′

n ) ⇒ i = j )

Φ ⊢ grammar rules ok
sanity

g ⊢ cast : cast type

g ⊢ v : mvr
sanity cast var

1 : | e1 .. en :: :: pn (+ bs1 .. bso +) ∈ g (ntr )
2 : remove terminals ( e1 .. en ) = ntmv1 , .. , ntmvq
3 : remove suffix (ntmv1 ) = ct1 .. remove suffix (ntmvq ) = ctq
4 : g ⊢ cast1 : ct1 .. g ⊢ castq : ctq

g ⊢ pn ( cast1 , .. , castq ) : ntr
sanity cast app

v ∈ dom ( s )

v ∈ dom ( { ∀i . (casti/vi) , cast / v , ∀j .
(

cast ′j/v
′

j

)

} )
sanity indom list

2.3 Concrete substitutions

Now, for well-typed grammar rules, we are ready to give rules for the concrete interpretation of mse on
a cast , which is the set of variables picked out by mse on cast .

concrete [[mse ]] g ( cast ) ⇒ var set

concrete [[ {} ]] g ( cast ) ⇒ {}
funspec concrete empty

1 : concrete [[mse ]] g ( cast ) ⇒ var set

2 : concrete [[mse ′ ]] g ( cast ) ⇒ var set ′

concrete [[mse ∪ mse ′ ]] g ( cast ) ⇒ var set ∪ var set ′
funspec concrete union

1 : | e1 .. en :: :: pn (+ bs1 .. bso +) ∈ g (ntr )
2 : remove terminals ( e1 .. en ) = ntmv1 , .. , ntmvq
3 : ntmvl = mv

4 : castl = v ′

concrete [[mv ]] g ( pn ( cast1 , .. , castq ) ) ⇒ { v ′ }
funspec concrete mv

1 : | e1 .. en :: :: pn (+ bs1 .. bso +) ∈ g (ntr )
2 : remove terminals ( e1 .. en ) = ntmv1 , .. , ntmvq
3 : ntmvl = nt

4 : nt = ntr ′ suff ′

5 : castl = pn ′ ( cast ′
1
, .. , cast ′q′ )

6 : | e ′

1
.. e ′

n′ :: :: pn ′ (+ bs ′
1
.. bs ′o′ +) ∈ g (ntr ′ )

7 : bs ′k = f = mse ′

8 : concrete [[mse ′ ]] g ( castl ) ⇒ var set

concrete [[ f (nt) ]] g ( pn ( cast1 , .. , castq ) ) ⇒ var set
funspec concrete f

6



In the case that mse is a single metavariable mv (interp mse conc 3) , we pick out the variable
at the corresponding position. In the case that mse is f (nt) (interp mse conc 4), we look at the
production for the non-terminal nt that we have, and perform the calculation of the auxfn definition.

With these interpretations in hand, we can define the concrete substitution and free variable functions
generated by Ott.

subst s ∈ cast = cast ′′

subst s ∈ v = v
concrete subst var

subst { ∀i . (casti/vi) , cast / v , ∀j .
(

cast ′j/v
′

j

)

} ∈ pn ( v ) = cast
concrete subst in

1 : ¬ ( v ∈ dom ( s ) )

subst s ∈ pn ( v ) = pn ( v )
concrete subst out

1 : cast = pn (∀k . (castk ) )
2 : ¬ (∃v , cast = pn ( v ) )
3 : | e1 .. en :: :: pn (+ bs1 .. bsm +) ∈ g (ntr )
4 : remove terminals ( e1 .. en ) = ∀k . (ntmvk )
5 : ∀k . (binding mses bs1 .. bsm ∈ ntmvk ⇒ msesk )
6 : concrete [[

⋃

msesk ]] g ( cast ) ⇒ var setk
7 : ∀k . (sk = filter var setk from s)
8 : ∀k . (subst sk ∈ castk = cast ′k )
9 : cast ′ = pn (∀k . (cast ′k ) )

subst s ∈ cast = cast ′
concrete subst app

fv ntr mvr of cast = var set

1 : | e1 .. en :: :: pn (+ bs1 .. bso +) ∈ g (ntr ′ )
2 : ¬ (ntr = ntr ′ )

fv ntr mvr of pn ( v ) = {}
concrete fv out nt

1 : | e1 .. en :: :: pn (+ bs1 .. bso +) ∈ g (ntr )
2 : ¬ (mvr = mvr ′ )

fv ntr mvr of pn ( v ′ ) = {}
concrete fv out mv

1 : | e1 .. en :: :: pn (+ bs1 .. bso +) ∈ g (ntr )

fv ntr mvr of pn ( v ) = { v }
concrete fv in

fv ntr mvr of v = {}
concrete fv var

1 : cast = pn (∀k . (castk ) )
2 : ¬ (∃v , cast = pn ( v ) )
3 : | e1 .. en :: :: pn (+ bs1 .. bsm +) ∈ g (ntr )
4 : remove terminals ( e1 .. en ) = ∀k . (ntmvk )
5 : ∀k . (binding mses bs1 .. bsm ∈ ntmvk ⇒ msesk )
6 : ∀k . (concrete [[

⋃

msesk ]] g ( cast ) ⇒ var setk )
7 : ∀k . (fv ntr mvr of castk = var set ′k )
8 : var set =

⋃

{ ∀k . (var set ′k − var setk ) }

fv ntr mvr of cast = var set
concrete fv app

Notice that we treat only variables wrapped in a singleton constructor as free, or subject to substi-
tution.

In the case that this is a compound term (subst 3), we first check to see that we do not fall into the
singleton variable case. Next, we look up the production in our grammar, and remove the terminals to get
elements that can appear in abstract terms. We look at all the bind clauses of the form bindmse ′ innt ,
and filter out the interpretation of mse ′ from the substitution before applying it to the corresponding
subterm.
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2.4 Mathematical definition

We now turn to the definition of alpha-equivalence on the concrete terms. This is defined as follows:

[[mse ]] g ( cast ) = oc set

[[ {} ]] g ( cast ) = { }
funspec interp mse empty

1 : [[mse ]] g ( cast ) = oc set

2 : [[mse ]] g ( cast ′ ) = oc set ′

[[mse ∪ mse ′ ]] g ( cast ) = oc set ∪ oc set ′
funspec interp mse union

1 : | e1 .. en :: :: pn (+ bs1 .. bso +) ∈ g (ntr )
2 : remove terminals ( e1 .. en ) = ntmv1 , .. , ntmvq
3 : ntmvl = mv

4 : castl = v ′

[[mv ]] g ( pn ( cast1 , .. , castq ) ) = { l :: [ ] }
funspec interp mse mv

1 : | e1 .. en :: :: pn (+ bs1 .. bso +) ∈ g (ntr )
2 : remove terminals ( e1 .. en ) = ntmv1 , .. , ntmvq
3 : ntmvl = nt

4 : nt = ntr ′ suff ′

5 : castl = pn ′ ( cast ′
1
, .. , cast ′q′ )

6 : | e ′

1
.. e ′

n′ :: :: pn ′ (+ bs ′
1
.. bs ′o′ +) ∈ g (ntr ′ )

7 : bs ′k = f = mse ′

8 : [[mse ′ ]] g ( castl ) = oc set

[[ f (nt) ]] g ( pn ( cast1 , .. , castq ) ) = l :: oc set
funspec interp mse f

[[ auxfn ]] g ( cast ) = oc set

1 : cast = pn ( cast1 , .. , castq )
2 : | e1 .. en :: :: pn (+ bs1 .. bso +) ∈ g (ntr )
3 : bsj = f = mse

4 : [[mse ]] g ( cast ) = oc set

[[ f ]] g ( cast ) = oc set
funspec interp auxfn def

Φ ⊢ f acceptsntr

1 : Φ ⊢ f : ntr1 ..ntrm ntr ntr ′

1
..ntr ′

n → mvr

Φ ⊢ f acceptsntr
f accepts arg

Φ ⊢ g (ntr )at cast reveals oc

1 : Φ ⊢ f acceptsntr

2 : [[ f ]] g ( cast ) = oc set

3 : oc ∈ oc set

Φ ⊢ g (ntr )at cast reveals oc
ntr reveals f

Φ ⊢ equiv both g ( cast ) = 〈 closed : oc reln1 , open : oc reln2 〉
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1 : Φ ⊢ g ok

2 : cast = pn (∀i . (casti) )
3 : | e1 .. en :: :: pn (+ bs1 .. bsm +) ∈ g (ntr )
4 : remove terminals ( e1 .. en ) = ∀i . (ntmvi)
5 : ∀i . (binding mses bs1 .. bsm ∈ ntmvi ⇒ msesi)
6 : ∀i . ([[

⋃

msesi ]] g ( cast ) = oc seti)
7 : ∀i . (Φ ⊢ equiv both g ( casti ) = 〈 closed : oc reln1 i , open : oc reln2 i 〉)
8 : oc reln1 =

⋃

{ ∀i . (i :: oc reln1 i) }
9 : oc reln2 =

⋃

{ ∀i . (i :: oc reln2 i) }
10 : oc reln3 = { ( ( eponymous oc0 cast ∩

⋃

{ ∀i . (oc seti) } ) ∪
⋃

{ ∀i . ({ oc ∈ eponymous oc0 cast |head oc = i ∧ oc

11 : union closure oc reln2 oc reln3 = oc reln4

12 : oc reln5 = { oc set ′ ∈ oc reln4 |∃oc, (Φ ⊢ g (ntr )at cast reveals oc ∧ oc ∈ oc set ′ ) }
13 : oc reln6 = oc reln1 ∪ ( oc reln4 − oc reln5 )

Φ ⊢ equiv both g ( cast ) = 〈 closed : oc reln6 , open

For the definition of the equivalence classes (equivs cast 1), we start in steps 1−−4 by looking up
the production name in our grammar, and removing the terminals. In steps 5−−6, we extract the set of
binding occurences as given by the bindspec clauses: oc set i is the set of binding occurences of variables
that bind in subterm i. In step 7−−9, we recursively calculate closed and binding equivalence relations
for all subterms.

In step 10, we iterate over all binding occurences oc0 of any variable var :mvr , and build the equivalence
class of that occurence. This equivalence class has the form (C(var :mvr) ∪

⋃

i
(i::Di(var :mvr))) − U ,

where:

• C(var :mvr) is the set of binding occurences of var :mvr , computed as the occurences of var :mvr

(i.e., eponymous oc0 cast) that are binding;

• Di(var :mvr) is the set of bound occurences of var :mvr inside subterm i; D(var :mvr) is built directly
as the occurences of var :mvr whose head is some i such that var :mvr is bound in subterm i (note
that the bindspec clause that makes var :mvr bound in subterm i might mention an occurence oc

which is different from oc0);

• U is the set of occurences that are already bound in the subterm, as recorded in oc reln1.

In step 11, we take the equivalence closure of this set with the open binding sets of subterms. Finally,
we pick out all equivalence classes such that they pick out something withi the domain of an auxfn
(which means they can potentially be bound later), calling that the open bound set, and the remaining
equivalence closures of bound variable occurences are called the closed binding set of this term.

Φ ; g ⊢ cast1 ≡α cast2

1 : Φ ⊢ equiv both g ( cast1 ) = 〈 closed : oc reln1 , open : oc reln2 〉
2 : Φ ⊢ equiv both g ( cast2 ) = 〈 closed : oc reln3 , open : oc reln4 〉
3 : oc reln1 = oc reln3

4 : ∀oc, ( (¬ oc ∈ support oc reln1 ) ⇒ ( (∃cast ′
1
, cast1@oc = cast ′

1
) ⇔ (∃cast ′

2
, cast2@oc = cast ′

2
) ) )

5 : ∀oc, ( ( (¬ oc ∈ support oc reln1 ) ∧ ( (∃cast ′
1
, cast1@oc = cast ′

1
) ∧ (∃cast ′

2
, cast2@oc = cast ′

2
) ) ) ⇒ cast1 ≃ cast2 at

Φ ; g ⊢ cast1 ≡α cast2

Two terms are said to be alpha-equivalent if they have the same closed binding sets, and for each
occurence not in the closed binding set, the occurence is defined for one term if it is for the other, and
the subterms at that occurence are node-identical.

Φ ; g ⊢ s ok

1 : ∀i . (Φ ⊢ equiv both g ( casti ) = 〈 closed : oc reln1 i , open : { } 〉)
2 : ∀i . (∀oc, ( (∃v , casti@oc = v ) ⇒ oc ∈ support oc reln1 i ))
3 : ∀i . (∀pn, ∀ntr , ( ( g ⊢ pn ( vari :mvri ) : ntr ) ⇒ ( g ⊢ casti : ntr ∨ ∃pn ′, g ⊢ pn ′ ( casti ) : ntr ) ))
4 : ∀i . (¬ (∃ntr ′, ( (∃pn, g ⊢ pn ( casti ) : ntr ′ ) ∧ ( (∃f , Φ ⊢ f : ntr1 ..ntrn ntr ′ ntr ′

1
..ntr ′

m → mvri ) ∧ (∃pn ′, g ⊢ pn ′ (

Φ ; g ⊢ {∀i . (casti/vari :mvri) }ok
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Well-typed substitutions always substitute closed terms (ie all occurences of variables are within the
closed binding relation calculated in step 1). Next (step 3), we ensure that for all possible substitution
positions, the result makes sense. Finally, we impose a sanity condition which ensures that substitution
matches the notion on alpha-equivalence in step 4. This sanity condition says that we disallow substitu-
tions which substitute terms such that the result of the substitution can itself be picked out by auxfns
(to be bound later, presumably).

Φ ; g ⊢ c a subst s ∈ cast = cast ′′

Φ ; g ⊢ c a subst s ∈ v = v
subst spec var

Φ ; g ⊢ c a subst { ∀i . (casti/vi) , cast / v , ∀j .
(

cast ′j/v
′

j

)

} ∈ pn ( v ) = cast
subst spec in

1 : ¬ ( v ∈ dom ( s ) )

Φ ; g ⊢ c a subst s ∈ pn ( v ) = pn ( v )
subst spec out

1 : cast = pn (∀k . (castk ) )
2 : ¬ (∃v , cast = pn ( v ) )
3 : | e1 .. en :: :: pn (+ bs1 .. bsm +) ∈ g (ntr )
4 : remove terminals ( e1 .. en ) = ∀k . (ntmvk )
5 : ∀k . (Φ ; g ⊢ cast ′k ≡α castk ∧ (∀oc, ∀v , ( v ∈ dom ( s ) ⇒ ¬ ( cast ′k@oc = v ) ) ))
6 : ∀k . (subst sk ∈ cast ′k = cast ′′k )
7 : ∀k . (Φ ; g ⊢ cast ′′k ≡α cast ′′′k )
8 : cast ′ = pn (∀k . (cast ′′′k ) )

Φ ; g ⊢ c a subst s ∈ cast = cast ′
subst spec app

3 Relating concrete binding and alpha-equivalence

Lemma 3.1 (Substitutions on node-identical occurences produce node-identical results). Suppose cast1 ≃
cast2 at oc. Then for any substitution s, if subst s in cast1 = cast ′1 , and subst s in cast1 = cast ′1 , then

cast ′1 ≃ cast ′2 at oc.

Proof. By induction on the cases for substitution and node-equality.

We introduce a bit of notation. Call an occurence oc defined for a term cast if there is a subterm at
oc, ie if there exists a cast ′ such that termat oc cast = cast ′.

Also, call an occurence oc closed bound in a term cast if Phi ⊢ equiv both g ( cast ) = 〈 closed :
oc reln1 , open : oc reln2 〉 and oc ∈ union{oc set |oc set ∈ oc reln1}.

Lemma 3.2 (Binding occurences are not substituted). For any s, Ψ, g, cast1 , cast2 and mse, if

Φ ; g ⊢ s ok, g ⊢ cast1 : cast type, subst s in cast1 = cast2 and if oc ∈ [[mse]] g ( cast1 ) then oc is

defined for cast2 and is the same term as in cast1 .

Proof. This is proved by induction on the structure of mse. For mse = { }, this is immediate. For
mse = mse1 unionmse2 , the inductive hypothesis on the two sets [[mse1 ]] and [[mse2 ]] give us the required
results.

Now consider if mse = mv . Then the subterm at that occurence to be well-typed must be var : mvr .
Notice that bare variables are not substituted for by the concrete substitution function. Thus this case
is covered.

The final case is if mse = f (nt). Looking at the definition of the concrete substitution function, this
occurence is defined in the result. It is always the same subterm, except when this variable occurence is
wrapped in a singleton production. Assume then for purpose of contradiction that this variable occurence
is wrapped in a singleton production prodname for some nonterminal root ntr . Since it was picked up
by an auxfn, there must be a auxfn f which takes ntr to the sort of metavariables in mse, ie mvr . But
this is impossible for well-typed substitutions, since then there must be a singleton production for the
substituent for the same nonterminal, and this nonterminal is in the domain of an auxfn. Thus we have
the required contradiction.
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Lemma 3.3 (Closed bound occurences are not substituted). For any s, Ψ, g, cast1 and cast2 , if

Φ ; g ⊢ s ok, g ⊢ cast1 : cast type, subst s in cast1 = cast2, and an occurence oc is closed bound in

the term cast1 , then oc is defined for cast2 and in fact is closed bound in the term cast2 .

Proof. We perform induction on the structure of the term, and look at the calculation of the closed
binding set. We notice that an occurence can turn out to be closed bound in one of three ways.

First, the occurence might be a lift of an occurence already closed bound on a subterm. This case
goes through by inductive hypothesis, since the subterm is smaller.

Second, the occurence might be of a variable var : mvr in the subtree corresponding to nt , where a
bindspec clause bindmse innt present attached to the production. We will call these occurences bound
occurences. The variable var : mvr must lie within the var set which is the concrete interpretation
concrete [[mse ]] of the term cast1 . Looking at the definition of concrete substitutions, this set is fil-
tered out from the domain of substitution, and thus the occurence remains unchanged in the result of
substitution.

Third, the occurence might lie within [[mse ]] for a bindspec clause bindmse innt . We will call these
occurences binding occurences. In this case we defer to the lemma 3.2.

Lemma 3.4 (Substitution preserves closed bound equivalence classes). For any s, Ψ, g, cast1 and cast2 ,

if Φ ; g ⊢ s ok, g ⊢ cast1 : cast type, subst s in cast1 = cast2. Say that Φ ⊢ equiv both g ( cast1 ) =
〈 closed : oc reln11 , open : oc reln12 〉 and Φ ⊢ equiv both g ( cast2 ) = 〈 closed : oc reln21 , open :
oc reln22 〉. Then oc reln11 ⊆ oc reln21.

Proof. We argue by induction on the term, and looking at the calculation of the closed equivalence rela-
tion. By induction, the closed equivalence classes of the subterms are still present in the result. Further,
for any occurence which is closed bound, the subterm is not changed by substitution, by lemma 3.3.
Thus each occurence previously closed bound will still be picked up. No new occurence will be picked
up, since well-typedness of substitution ensures that the substituents are closed. Since the set of auxfns
have not changed, no occurence which was previously closed bound will become open-bound, or vice
versa.

Theorem 3.5. For any s, Ψ, g, cast1 and cast2 , if Φ ; g ⊢ s ok, g ⊢ cast1 : cast type, g ⊢ cast2 :
cast type, Φ ; g ⊢ cast1 ≡α cast2, subst s in cast1 = cast ′

1
, and subst s in cast2 = cast ′

2
, then Φ ; g ⊢

cast ′
1
≡α cast ′

2
.

Proof. We prove this by looking at the definition of ≡α, knowing that Φ ; g ⊢ cast1 ≡α cast2.
There are now two cases for an occurence oc which is defined for cast1. Either it is within closed

bound in cast1, or it is not. We will look at these cases in turn.
In the case that it is closed bound, since the two closed binding relations have to be the same for alpha-

equivalent terms, the same occurence must be defined and indeed closed bound for cast2 (Note that the
variable at that occurence need not be identical). We know by lemma 3.3 that the applied substitutions
do not touch these occurences, and that the corresponding equivalence class remains within the set of
closed equivalence relations for the results of the substitution.

In the case that it is not closed bound, the subterms of the two terms at that occurence are node-
identical. The result of substitution on these subterms are therefore themselves node-identical, by
lemma 3.1.

Using these facts, we now show that the results are themselves α-equivalent. This involves two steps.
First, we have to show that the closed equivalence relations are identical for the two resultant terms.

We follow the construction of the closed equivalence relation at each node of the syntax tree of cast ′1 . If
this subterm was already present in cast1 , then all pre-existing closed equivalence classes must still be
present in the new equivalence relation, by lemma 3.4. Further, the only new additions can be due to
new subterms created by the substitution. Notice however that substitutions only changed the structure
of the term at occurences which are not closed bound. In these cases the subterms at occurences were
node-identical. Thus only identical equivalence classes of closed occurences are added to the closed
equivalence relations of both terms. Further, since well-typed substitutions substitute only closed terms,
we get that there are no additional equivalence classes of open bound occurences.

Second, all occurences which are not closed bound in the result are defined for both resultant terms if
it is defined for any one resultant term, and the terms at such occurences are node-identical. So consider
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an occurence which is not closed bound. If this occurence was defined in the initial term, it cannot have
been closed bound, since the closed equivalence relation of the result includes that of the initial term,
by lemma 3.4. Thus by the previous statements, it is defined and node-identical in both terms. If on
the other hand, it is an occurence not defined in the initial term, since the substitution only acted on
node-identical terms, it must be defined and identical in both resultantterms.

Theorem 3.6 (Correspondence of concrete and capture-avoiding substitution). For any s, Ψ, g, cast and

cast ′, if Φ ; g ⊢ s ok, g ⊢ cast : cast type, subst s in cast = cast ′, then Φ ; g ⊢ c a subst s in cast =
cast ′.

Proof. This theorem is proved by induction on the structure of the term.
For the cases where the term is a variable, or a singleton production containing a variable, concrete

substitution and capture-avoiding substitutions are defined identically.
For a non-singleton production, capture avoiding substitution carries on by alpha-renaming all bound

variables to fresh ones. The concrete substitution on the other hand filters out bound variables. We
thus pick some fresh variable (that is, one not appearing in the term at all) and performing the alpha-
renaming. Since we have countably infinite variables, this can always be done. Now, by theorem 3.5,
we get that the result of applying the concrete substitution is alpha-equivalent to the capture-avoiding
substitution performed by our chosen renaming. Looking at the rule ca subst 3, this allows us to match
up with the premise 7. This completes the case.
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