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Abstract

This paper considers the existence of finite equational axiomatisations of
behavioural equivalences over a calculus of finite state processes. To express
even simple properties such as �xE = �xE[E=x] some notation for substi-
tutions is required. Accordingly the calculus is embedded in a simply typed
lambda calculus, allowing such schemas to be expressed as equations between
terms containing first order variables. A notion of first order trace congruence
over such terms is introduced and used to show that no finite set of such equa-
tions is sound and complete for any reasonable equivalence finer than trace
equivalence. The intermediate results are then applied to give two nonaxioma-
tisability results over calculi of regular expressions.

Keywords: Nonaxiomatisability, Equational Logic, Process Algebra, Regular Ex-
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1 Introduction

Nondeterministic finite state machines are, in their various formalisations, the basis

for models or specifications of many computational phenomena. A common formal-

isation is the labelled transition system, consisting of a (finite) set equipped with

an indexed family of binary relations over it. Typically the set is thought of as the

possible states that a modelled system may be in, with the relations as the allowable

changes of state. In applications it is often desirable to identify labelled transition

systems that are in some sense behaviourally equivalent. Among the notions of be-

havioural equivalence that have been proposed are the trace equivalence of Hoare
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[Hoa85] and the bisimulation equivalence of Park [Par81]. A survey of these and

other notions, differing in their treatment of nondeterministic choice and termina-

tion, has been given by van Glabbeek [Gla90]. Given the additional structure of

a termination predicate on states one can also define the language equivalence of

Kleene [Kle56].

Direct presentations of labelled transition systems as sets and relations are awkward

to work with. Accordingly, syntactic forms have been introduced to represent them,

including a variety of process calculi and regular expressions. We will largely be

concerned with a simple syntax, the �-expressions of [Mil84], with zero, prefix,

summation and a binding operator for recursion.

Definition The �-expressions are those of the grammar

E ::= 0

�

�

�

x

�

�

�

aE

�

�

�

E +E

�

�

�

�xE

where x and a are drawn from countably infinite sets V and Act of variables and

actions and � is a binding operator. We adopt standard notions of free and bound

variables and substitution and work up to alpha conversion. The scope of a binder is

generally as far to the right as possible. Sum is taken to have lower precedence than

prefix so aE + F is (aE) + (F ). For n � 1 we define an+1

E = aa

n

E and a

1

E = aE.

There is an extensive literature concerned with the axiomatisation of behavioural

equivalences over the �-expressions (and other simple process calculi), with several

motivations. The most obvious is that any sound system may be useful for human

or machine manipulation of terms, particularly but not necessarily if it is complete.

This must be qualified by the existence of efficient decision procedures over finite

labelled transition systems. Completeness results also permit a comparison of differ-

ent equivalences and with the alternative view that takes a set of axioms as primary.

For this paper a more important motivation is that axiomatisability results (and es-

pecially the proofs of completeness or nonexistence) shed light on the nature of the

equivalences involved and on the expressiveness of the calculus as compared with

the expressiveness of the metalanguage of axioms. It is obviously desirable to have

completeness results using as weak (and nonexistence results using as strong) a

metalanguage as possible.

A number of complete systems have been given that contain an impure Horn clause

expressing the fact that certain equations have unique solutions (together with a

finite set of equational axioms). The first seems to be that for language equiva-

lence of �-expressions by Salomaa [Sal66]. For �-expressions there are complete

systems for bisimulation [Mil84], weak bisimulation congruence [Mil89], branch-

ing bisimulation congruence [Gla93a], divergence bisimulation [Gla93b] and trace
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congruence [Rab93]. The system of Milner for bisimulation [Mil84] is typical, using

the implication

E = F [E=x] ^ x guarded in F ! E = �xF

where x is guarded in F if every free occurrence of x in F is contained in a subex-

pression aG. The use of this auxiliary predicate was shown to be unnecessary by

Bloom and Ésik, who give in [BÉ94] a finite pure Horn clause system for bisimula-

tion using the ‘GA implication’:

�zE[zz=xy] = �zF [zz=xy] ! �zE[zz=xy] = �xF [�yE =y]

in which it is assumed that z is not free in E or F .

In this paper we confirm the intuition that the use of an implication is essential,

showing that there is no finite equational axiomatisation for any of a wide class of

equivalences over �-expressions.

To state the result a precise definition of the equational axiomatisations under con-

sideration is required, preferably as permissive as possible. For a syntax with vari-

able binding, such as the �-expressions, there does not seem to be a canonical def-

inition. To equationally express anything of interest about fixed points, such as the

simple properties below, some notation for substitution is required.

�xE = �xE[E=x]

�xE = E[�xE =x]

�xE[F=x] = E[�xF [E=x] =x]

�x E[x; x; x; x] = �x E[x; x; �y E[x; y; x; y]; �y E[x; y; x; y]]

Instead of considering axioms containing substitutions explicitly we will embed the

�-expressions in a simply typed lambda calculus and work up to �� equality. Ax-

ioms such as the above can be written as equations containing variables of higher

type rather than as equation schemes, with substitution appearing only in the rules

defining �� equality. This simplifies the technical development and also gives added

significance to some of the intermediate results as the terms of higher type can be

viewed as a fragment of a higher order process calculus (such as the higher order �

calculus of Sangiorgi [San93]).

The main theorem, stated in x2 and proved in x3,4, asserts the nonexistence of finite

axiomatisations containing at most first order variables. These axiomatisations may

contain (the embeddings of) equation schemes such as those above.
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The results of x3,4 can be applied to give a range of non-finite-axiomatisability re-

sults over finite state processes expressed with iteration instead of explicit recursion,

as regular expressions of various kinds. This is done in x5.

An overview of some of the literature and a discussion of possible generalisations

are contained in x6.

This work is a development of that presented in [Sew94, Sew95]. It differs primarily

in the main result has been generalized to all reasonable equivalences finer than

trace equivalence, rather than only those finer than bisimulation.

2 Basic definitions

This section contains the basic definitions required for a statement of the main non-

axiomatisability theorem. We first define trace equivalence and bisimulation over

the closed �-expressions, via a definition of the labelled transition system denoted

by a �-expression.

Definition The relations
a

�! j a 2 Act are the least over the �-expressions such

that

aE

a

�!E

E

a

�!E

0

E + F

a

�!E

0

F

a

�!F

0

E + F

a

�!F

0

E

a

�!E

0

�yE

a

�!E

0

[�yE =y]

The rule for � differs from the more usual

E[�yE =y]

a

�!E

0

�yE

a

�!E

0

but is slightly more convenient. It is straightforward to check that (in the absence

of parallel composition) it is equipotent.

Among the finest of behavioural equivalences is bisimulation, at the top of the

linear-branching time hierarchy of van Glabbeek [Gla90]. It takes full account of

the nondeterministic branching structure of the transition relations.

Definition Bisimulation, written �, is the largest relation over the closed �-

expressions such that if E � F then for all a 2 Act

� If E
a

�!E

0 then 9F 0

: F

a

�!F

0

^ E

0

� F

0.

� If F
a

�!F

0 then 9E0

: E

a

�!E

0

^ E

0

� F

0.

At the bottom of the linear-branching time hierarchy are various forms of trace or

language equivalence.
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Definition The trace set of a closed �-expression E is the subset of Act� containing

a

1

: : : a

m

if there exist E
1

; : : : ; E

m

such that E
a

1

�!E

1

� � �

a

m

�!E

m

. Two expressions are

trace equivalent , written E =

tr

E

0, if they have the same trace sets.

Our interest in the �-expressions, as opposed to the regular expressions, is partly

due to the expressiveness results of Milner [Mil84]. It is shown there that the �-

expressions suffice to express all finite labelled transition systems up to bisimulation

(and hence up to all coarser equivalences) but that the regular expressions do not.

2.1 Lambda calculus

We now embed the �-expressions into a simply typed lambda calculus, in which

interesting equations can be expressed. We take a single base type P and a set Con

of constants, ranged over by c, as follows.

0 :P

a :P !P for each a 2 Act

+ :P !P !P

�x :(P !P )!P

We take a set Var of variables equipped with an assignment of types, with a count-

able infinity of variables mapped onto each type and fx j x :P 2 Var g = V . The

typed terms are given by the rules in Figure 1. The free variables fv(M) of a typed

term M are as usual. A typed equation M = N :� consists of a type and a pair of

terms such that M : � and N :�. Typed �� equality is given by the rules in Figure 2.

If E is a set of typed equations we write E `M = N :� if M = N :� is derivable in

the system for �� equality augmented with the rule

(M = N : �) 2 E

M = N :�

ax

:

We will work up to �� equality, using abstraction to allow parameterised equations.

This is in contrast to taking �-reduction to be of comparable computational interest

x : � 2 Var

x :�

var

c : � 2 Con

c : �

cst

x :� M : �

(�x:�:M) : �! �

! Intro

M : �! � N : �

MN : �

! Elim

Figure 1: Lambda terms
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M :�

M = M : �

ref

M = N :�

N = M :�

sym

L = M : � M = N :�

L = N :�

tran

M : � x : � y :� y 62 fv(M)

�x:�:M = �y:�:M [y=x] : �! �

�

M = N : � x : �

(�x:�:M) = (�x:�:N) : �! �

�

M = M

0

: �! � N = N

0

:�

MN =M

0

N

0

: �

�

M : � N :� x : �

(�x:�:M)N = M [N=x] : �

�

M : �! � x : � x 62 fv(M)

�x:�: (Mx) = M :�! � x : �

�

Figure 2: �� equality

to the labelled transitions, e.g. in the work of Nielson [Nie89]. Some candidate ax-

ioms (corresponding to the axiom schemes given earlier) are below, taking variables

x :P , y :P , e :P !P , f :P !P and z :P !P !P !P !P .

�x e = �x �x:P: e(ex) :P

�x e = e(�x e) :P

�x �x:P: e(fx) = e(�x �x:P: f(e(x))) : P

�x �x:P: zxxxx = �x �x:P: zxx(�x �y:P: zxyxy)(�x �y:P: zxyxy) :P

These equations only contain variables of base or first order types. The proof of the

main theorem will depend strongly upon a restriction to such equations. To state

this restriction precisely we define the order of a type as usual:

order(P ) = 0

order(�! �) = maxf1 + order(�); order(�)g

and take the order of a set E of typed equations to be the least upper bound

(in the integers extended with limit points �1;+1) of the orders of the types

of variables occurring (free or bound) in E . If m � 0 we write T

m for the set of

alpha-equivalence classes of terms E in long �� normal form such that E :P and

order(fv(E)) < m. There is an evident bijection between the closed �-expressions

and the terms in T

1, with for example

�x a0 + x$ �x �x:P: + (a0) (x):

Any equivalence ' over closed �-expressions thus induces an equivalence over T 1.

If E is a set of typed equations then E is sound for ' if

8E;F 2 T

1

: E ` E = F :P ) E ' F
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and complete for ' if

8E;F 2 T

1

: E ` E = F :P ( E ' F:

The main theorem can now be stated.

Theorem 1 If ' is an equivalence over the closed �-expressions that is finer than (or

identical to) trace equivalence and for some a 2 Act and all n � 1 satisfies

�x ax ' �x a

n

x:

then there is no finite set of typed equations of order 1 that is sound and complete for

'.

3 First order traces

The proof of Theorem 1 rests on the fact that an equation that is sound for trace

equivalence can only affect the lengths of recursive loops in a rather constrained

way. For example, repeated use of the equation scheme �xE = �xE[E=x] can

change the length of a loop only by factors of 2, e.g. for any n � 1 it can derive the

‘internal’ unfolding

�x a

n

x = �x a

2

m

n

x

for any m � 0 but not

�x a

n

x = �x a

pn

x

for any prime p > 2. We show that for any finite set of sound equations there is

some bound corresponding to this ‘2’.

We first note that any first order set of typed equations can, without loss of gener-

ality, be taken to consist of equations of the form E = F :P where E and F are in

T

2. In this section we characterise the first order equations that are sound for trace

equivalence. We give an extended labelled transition system over T 2 (traces were

initially only defined over T 1) and hence an extended notion of trace congruence

=

t

over T 2. After showing some basic properties of the extended transition system

we show that E = F :P is sound iff E =

t

F . In x4 we define the ‘loops’ of a term

in T

2 and show that they are, in a certain sense, preserved by reasoning from any

finite first order set of sound equations. Theorem 1 then follows immediately.

Notation We let E;F;G;A range over T 2, m range over the natural numbers, n; p; q

range over the non-zero natural numbers. For n � 1 the type P

n is defined by

P

1

= P and P

n+1

= P !P

n. We let w; x; y range over variables of type P and
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z range over variables of type P

m+1 or P n+1. We assume that all expressions are

reduced to long �� normal form. The terms in T

2 can be described explicitly as

those of the grammar

E ::= 0

�

�

�

aE

�

�

�

E + F

�

�

�

�x �x:P:E

�

�

�

zE

1

: : : E

m

where a 2 Act , x :P , m � 0 and z :P

m+1. We write + infix and ~

E for E
1

: : : E

m

.

In order to extend the labelled transition system semantics of closed �-expressions

to T

2 two new cases must be considered — x where x :P and z

~

E where z :P n+1 for

some n � 1. The former can be dealt with using a judgment EBx, pronounced ‘E

sees x’, as in the definition of bisimulation of open �-expressions of Milner [Mil84].

For the latter we introduce new labelled transitions as below, with labels that are

pairs of a variable z and an i 2 1::n. The pair hz; ii will usually be written zi.

Definition We take labels Lab
def
= Act ] f zi j 9n � 1 : z :P

n+1

^ i 2 1::n g. We let

a range over Act and u range over Lab. We define binary relations
u

�! for u 2 Lab

and B over T 2 as the least such that

aE

a

�!E

z :P

n+1

i 2 1::n

z

~

E

zi

�!E

i

EBE

E

u

�!E

0

E + F

u

�!E

0

and sym. EBE

0

E + F BE

0

and sym.

E

u

�!E

0

�x �x:P:E

u

�!E

0

[�x �x:P:E =x]

EBE

0

�x �x:P:EBE

0

[�x �x:P:E =x]

These relations satisfy the following basic properties.

Lemma 1 For all E;F;G 2 T

2, x; y :P , z :P n+1 and substitutions �:

1. If E
u

�!F and :9z 2 dom(�); i : u = zi then E�

u

�!F�.

2. If EBF then E�BF�.

3. If E[F=x]

u

�!G then either EBx ^ F

u

�!G or 9E0

: E

u

�!E

0

^ E

0

[F=x] = G.

4. If E[F=x]BG then either EBx ^ F BG or 9E0

: EBE

0

^ E

0

[F=x] = G.

5. If EBF

u

�!G then E

u

�!G.

6. If EBF BG then EBG.

7. If E
u

�!F then fv(F ) � fv(E).

8. If EBF then fv(F ) � fv(E).
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9. If E[F=x]B y then either EB y 6= x or EBx ^ F B y.

10. If E
zi

�!F then 9 ~E : EB z

~

E ^ E

i

= F .

PROOF Straightforward inductions on the derivations of the judgments. 2

Notation If S is a set we write S

� and S

+ for the sets of sequences and non-empty

sequences over S. We write the empty sequence as � and sequence concatenation

with juxtaposition, or occasionally with : . We let h; k; l; t range over Lab

� and

write l

n for the n-ary concatenation l : : : l. If R is a binary relation we write its

transitive closure as R+ and its reflexive transitive closure as R�. We write �! for

[

u2Lab

u

�!. If l = u

1

: : : u

m

we write
l

�! for the relational composition
u

1

�! : : :

u

m

�!.

Definition The trace set and extended trace set of an E 2 T

2 are the subsets of Lab�

and Lab

�

� fx j x :P 2 Var g

tr(E)

def
= f l j 9F : E

l

�!F g

et(E)

def
= f l; x j 9F : E

l

�!F Bx g:

Two members E,F of T 2 are trace congruent, written E =

t

F , if they have the same

traces and extended traces.

Lemma 2 Trace equivalence (=
tr

) of closed �-expressions coincides with trace congru-

ence (=
t

) over T 1.

PROOF The relations
a

�! for a 2 Act over the closed �-expressions and T

1 agree

and the relations
zi

�! restricted to T

1

� T

2 are empty. Moreover for E 2 T

1 and

x :P it is clear that :(EBx). 2

Elements of T 2 are finite state in the following sense.

Lemma 3 For any E the set fF j E�!

�

F g is finite. We write jEj for the size of this

set.

PROOF Letting der(E)

def
= fF j E�!

+

F g it is straightforward to show the follow-

ing.

der(0) = fg

der(aE) = fEg [ der(E)

der(E + F ) = der(E) [ der(F )

der(z

~

E) = [

i21::m

(fE

i

g [ der(E

i

)) for z :Pm+1 and m � 0

der(�x �x:P:E) = fF [�x �x:P:E =x] j F 2 der(E) g
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(The only interesting case is the inclusion � for the �x �x:P:E case, which follows

from Lemma 1, part 3.) The result follows by induction on E. 2

Lemma 4 If E =

t

F then fv(E) = fv(F ).

PROOF This follows from the observations x :P 2 fv(E) ) 9l : E

l

�!Bx and

z :P

n+1

2 fv(E)) 9l : E

l

�!

z1

�!, which can be shown by induction on E. 2

The remainder of this section is devoted to showing that =
t

is in fact a congruence

and moreover is that induced by =

tr

. We first show a sequence of technical results

relating the transition system and substitution, Lemma 5 – Corollary 14 (which are

perhaps best skimmed on a first reading). We then give characterisations of the

trace sets and extended trace sets of compound expressions and hence show that =
t

is a congruence. Finally, by constructing a discriminating substitution, we show that

if E = F :P is sound for =
tr

then E =

t

F .

For the rest of this section we let � range over substitutions such that, for m � 0 and

z :P

m+1

2 dom(�), �(z) is �x
1

:P: : : : �x

m

:P:H

z

for some H
z

2 T

2.

Definition

lab(�)

def
= f zi j 9n � 1 : z :P

n+1

2 dom(�) ^ i 2 1::n g

null(�)

def
= f zi j 9n � 1 : z :P

n+1

2 dom(�) ^ i 2 1::n ^ H

z

Bx

i

g

We first characterise the transitions of a substituted term, generalising Lemma 1

part 3 to substitutions at first order types.

Lemma 5 If E�
u

�!A then 9j 2 null(�)

� such that one of the following hold.

1. 9F : E

j

�!

u

�!F ^ A = F� ^ u 62 lab(�)

2. 9F; z; ~F ;H;m � 0 : E

j

�!F B z

~

F ^ z :P

m+1

2 dom(�) ^ H

z

u

�!H ^ A =

H[

~

F�=~x]

PROOF We show the result for � such that dom(�) \ fv(ran(�)) = fg, allowing the

substitution and � reduction to be performed incrementally.

Definition For u 2 Lab let
u

�!

�

� T

2

� T

2 be the least relation such that

1. E
u

�!F ^ u 62 lab(�)) E

u

�!

�

F

2. EB z

~

F ^ z :P

m+1

2 dom(�) ^ �(z)~x

u

�!H ^ ~x \ fv(ran(�)) = fg )

E

u

�!

�

H[

~

F=~x]

3. E
u

0

�!

u

�!

�

F ^ u

0

2 null(�)) E

u

�!

�

F

10



Definition Let the relation �!

�(�)

� T

2

� T

2 be the least relation such

that

1. For any z :Pm+1

2 dom(�) z

~

E�!

�(�)

�(z)

~

E

2. If E�!
�(�)

F and w :P 62 dom(�) then �x �w:P:E�!

�(�)

�x �w:P: F

3. For any n � 1, variable or constant c :P

n+1 and j 2 1::n, if

E

j

�!

�(�)

E

0

j

and 8i 2 1::n : i 6= j ) E

i

= E

0

i

then c

~

E�!

�(�)

c

~

E

0.

This is related to �� equality by the following.

Lemma 6 For all E there is some F such that E�!
�(�)

�

F and fv(F ) \

dom(�) = fg.

PROOF One can show that otherwise E� has an infinite sequence of �

reductions. 2

Lemma 7 If E�!
�(�)

F then E� = F�.

PROOF By induction on E�!

�(�)

F . 2

Lemma 8 If E�!
�(�)

u

�!

�

F then E

u

�!

�

�!

�(�)

�

F .

PROOF By induction on derivations of �!
�(�)

. 2

Now suppose E�

u

�!A. By Lemmas 6 and 7 there is an E

0 such that E�!
�(�)

�

E

0

and E� = E

0

u

�!A. By the definition of
u

�!

�

we have E

0

u

�!

�

A so using Lemma 8

we have E

u

�!

�

E

00

�!

�(�)

�

A for some E

00. Finally by Lemma 7 we have E

00

� = A.

2

Lemma 5 can be lifted from single actions to sequences of actions. To state the result

a pseudo-substitution on traces is required:

Definition If (u
1

: : : u

m

) 2 Lab

� and T � Lab

� then

(u

1

: : : u

m

)f�g

def
= f l

1

: : : l

m

j 8j 2 1::m : if u

j

= zi 2 lab(�) then H

z

l

j

�!Bx

i

else l

j

= u

j

g

Tf�g

def
=

S

l2T

lf�g:

Note that if t 2 lf�g and t

0

2 l

0

f�g then tt

0

2 ll

0

f�g and that if that l 2 null(�)

� then

� 2 lf�g.

Lemma 9 If E�
l

�!A then 9k 2 Lab

� such that one of the following hold.

1. 9F : E

k

�!F ^ A = F� ^ l 2 kf�g
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2. 9F; z; ~F ;H; h;m � 0 : E

k

�!F B z

~

F ^ z :P

m+1

2 dom(�) ^ H

z

h

�!H ^ A =

H[

~

F�=~x] ^ l 2 kf�g

:

h

PROOF By induction on l using Lemma 5. 2

This has an approximate converse:

Lemma 10 If E
l

�!BF and t 2 lf�g then E�

t

�!BF�.

PROOF By induction on l. 2

The analogue of Lemma 5 for B is as follows.

Lemma 11 If E�BA then 9j 2 null(�)

� such that one of the following hold.

1. 9F : E

j

�!BF ^ A = F�

2. 9F; z; ~F ;H;m � 0 : E

j

�!F B z

~

F ^ z :P

m+1

2 dom(�) ^ H

z

BH ^ A =

H[

~

F�=~x]

PROOF Again, we show the result for � such that dom(�) \ fv(ran(�)) = fg.

Definition Let B
�

� T

2

� T

2 be the least relation such that

1. EBF ) EB

�

F

2. EB z

~

F ^ z :P

m+1

2 dom(�) ^ �(z)~xBH ^ ~x \ fv(ran(�)) = fg )

EB

�

H[

~

F=~x]

3. E
u

�!B

�

F ^ u 2 null(�)) EB

�

F

Lemma 12 If E�!
�(�)

B

�

F then EB

�

�!

�(�)

�

F .

PROOF By induction on derivations of �!
�(�)

. 2

Now suppose E�BA. By Lemmas 6 and 7 there is an E

0 such that E�!
�(�)

�

E

0

and E� = E

0

BA. By the definition of B
�

we have E

0

B

�

A so using Lemma 12 we

have EB
�

E

00

�!

�(�)

�

A for some E00. Finally by Lemma 7 we have E00

� = A. 2

Corollary 13 If E�Bx then 9j 2 null(�)

� such that one of the following hold.

1. E
j

�!Bx ^ x 62 dom(�)

2. 9F; z; ~F ;m � 0 : E

j

�!F B z

~

F ^ z :P

m+1

2 dom(�) ^ H

z

Bx

PROOF This follows from Lemma 11 and the result for E� = x, which can be shown

by considering E�!

�(�)

�

x. 2

Corollary 14 If E�B�x M then 9j 2 null(�)

� such that one of the following hold.

12



1. 9M 0

: E

j

�!B�x M

0

^ M

0

� = M

2. 9z; ~F ;M 0

;m � 0 : E

j

�!B z

~

F ^ z :P

m+1

2 dom(�) ^ H

z

B�x M

0

^

M

0

[

~

F�=~x] = M

PROOF This follows from Lemma 11 and the result for E� = �x M , which can be

shown by considering E�!

�(�)

�

�x M . 2

The effects on trace sets and extended trace sets of the various operators can now

be characterised.

Lemma 15 If z :P n+1 for some n � 1 and ~x are new then:

tr(aE) = f al j l 2 tr(E) g [ f�g

et(aE) = f al; x j l; x 2 et(E) g

tr(E + F ) = tr(E) [ tr(F )

et(E + F ) = et(E) [ et(F )

tr(�x �x:P:E) = f l

1

: : : l

m

l

m+1

j

m � 0 ^ l

m+1

2 tr(E) ^ 8i 2 1::m : l

i

; x 2 et(E) g

et(�x �x:P:E) = f l

1

: : : l

m

l

m+1

; y j

m � 0 ^ l

m+1

; y 2 et(E) ^ y 6= x ^ 8i 2 1::m : l

i

; x 2 et(E) g

tr(z

~

E) = f hz; iil j l 2 tr(E

i

) ^ i 2 1::n g [ f�g

et(z

~

E) = f hz; iil; x j l; x 2 et(E

i

) ^ i 2 1::n g

tr(E[F=x]) = tr(E) [ f lt j l; x 2 et(E) ^ t 2 tr(F ) g

et(E[F=x]) = f l; y j l; y 2 et(E) ^ y 6= x g

[f ll

0

; y j l; x 2 et(E) ^ l

0

; y 2 et(F ) g

tr(E[H=z]) = tr(E)fH=zg

[f lt j 9l

0

: 9i : l

0

hz; ii 2 tr(E) ^ l 2 l

0

fH=zg ^ t 2 tr(H~x) g

et(E[H=z]) = f l

0

; y j 9l : l; y 2 et(E) ^ l

0

2 lfH=zg g

[f l

0

l

00

; y j 9l : 9i : lhz; ii 2 tr(E) ^ l

0

2 lfH=zg ^ l

00

; y 2 et(H~x) ^ y 62 ~x g

PROOF We show the result for �x �x:P:E and E[H=z]. For the former, and the

inclusion �, suppose that m � 0, 8i 2 1::m : l

i

; x 2 et(E) and l

m+1

2 tr(E). We can

assume without loss of generality that 8i : l
i

6= �. By the definitions of tr( ); et( )

there exist F
i

for i 2 1::m+ 1 such that

8i 2 1::m : E

l

i

�!F

i

Bx and E

l

m+1

�!F

m+1

:

By the structured operational semantics of x3 (henceforth ‘the SOS’) and Lemma 1

part 1

8i 2 1::m+ 1 : �x �x:P:E

l

i

�!F

i

[�x �x:P:E=x]:

By Lemma 1 part 5

8i 2 1::m; j 2 1::m+ 1 : F

i

[�x �x:P:E=x]

l

j

�!F

j

[�x �x:P:E=x]

13



so �x �x:P:E

l

1

:::l

m+1

�! F

m+1

[�x �x:P:E=x] and l

1

: : : l

m+1

2 tr(�x �x:P:E) . If in addi-

tion F

m+1

B y 6= x then by Lemma 1 part 2 F
m+1

[�x �x:P:E=x]B y so l
1

: : : l

m+1

; y 2

et(�x �x:P:E).

For the inclusion tr(�x �x:P:E) � : : :, suppose that �x �x:P:E
u

1

�!F

1

: : :

u

p

�!F

p

for

some p � 1. By the SOS there is an E

1

such that E
u

1

�!E

1

and E

1

[�x �x:P:E=x] =

F

1

. By Lemma 1 part 3 for all i 2 1::p� 1 there exists E
i+1

such that

E

i+1

[�x �x:P:E=x] = F

i+1

and (E

i

u

i+1

�!E

i+1

_ (E

i

Bx ^ E

u

i+1

�!E

i+1

)):

The sequence u
1

: : : u

p

can then be partitioned into l

1

: : : l

m

l

m+1

as required, taking

m � 0 to be the number of occurrences of the second disjunct. For the inclusion

et(�x �x:P:E) � : : :, suppose also that F
p

B y 6= x. By Lemma 1 part 9 and the

SOS either E
p

B y or E
p

Bx ^ EB y. In either case the sequence u

1

: : : u

p

can be

partitioned into l

1

: : : l

m

l

m+1

as before — in the second taking l

m+1

= �.

For E[H=z] the inclusions � follow from Lemmas 10 and 1. The inclusion

tr(E[H=z]) � : : : is immediate from Lemma 9. The inclusion et(E[H=z]) � : : :

follows from Lemma 9 and Corollary 13. 2

Definition An equivalence relation ' over T 2 is a congruence if it is closed under

`, i.e. if fM = N :P jM ' N g ` E = F :P implies that E ' F .

Lemma 16 An equivalence relation ' over T 2 is a congruence iff for all x :P , m � 0,

z :P

m+1 and H :P

m+1, if 8i : E
i

' F

i

then

aE

1

' aF

1

E

1

+E

2

' F

1

+ F

2

�x �x:P:E

1

' �x �x:P: F

1

zE

1

: : : E

m

' zF

1

: : : F

m

E

1

[H=z] ' F

1

[H=z]

PROOF The left-to-right implication is straightforward. The other can be shown

by induction on proofs of fM = N :P j M ' N g ` E = F :P that are suitably

normalised. 2

Corollary 17 =

t

is a congruence.

PROOF By inspection of Lemma 15 =

t

satisfies the properties of Lemma 16. 2

Lemma 18 If fE
i

= F

i

:P j i 2 I g is sound for trace equivalence (=
tr

) then 8i 2 I :

E

i

=

t

F

i

.

14



PROOF Consider an equation E

i

= F

i

:P . By soundness, for all closing substitutions

� we have E

i

� =

tr

F

i

�. Taking V = fv(E

i

) [ fv(F

i

) we construct a discriminating

substitution � with domain V as follows. Let A be the set of actions occurring in E

i

or F
i

. We take distinct actions a
x

for each x :P 2 V and a

zi

for each z :P

n+1

2 V,

n � 1 and i 2 1::n, ensuring that they are not in A. Then

�(x)

def
= a

x

0 for x :P 2 V

�(z)

def
= �y

1

:P: : : : �y

n

:P: a

z1

y

1

+ : : : a

zn

y

n

for z :P n+1

2 V.

Consider the subset of T 2 with free variables contained in V and actions contained

in A. This is closed under transitions. Letting E;F range over it, by Lemmas 1 and

5:

1. 8x :P 2 V : E�

a

x

�!0 () EBx

2. 8z :P n+1

2 V; i 2 1::n : E�

a

zi

�!A () 9F : E

zi

�!F ^ F� = A

3. 8a 2 A : E�

a

�!A () 9F : E

a

�!F ^ F� = A

These imply that E
i

=

t

F

i

. 2

Remark The fact that Act is infinite is required for this result. If, for example,

Act = fa

1

; : : : ; a

n

g and E

def
= �x �x:P: a

1

x + : : : a

n

x then E = y + E :P is sound

for =

tr

but E 6=

t

y + E. This contrasts with the analogous result for bisimulation

[Sew95, Theorem 7] which requires only nonempty Act .

4 Loop properties

To show the main nonaxiomatisability result (Theorem 1) we need, for any finite

set E of sound equations, to exhibit an n � 1 such that �x �x:P: ax = �x �x:P: a

n

x

is not provable from E . This is done by constructing a family of congruences over

T

2, each of which does not contain some of these equalities, such that any E lies

within one of the family. We first define a rather intensional property of elements

of T 2, their sets of loops, and characterise the loops of a compound expression in

terms of the loops, traces and extended traces of its subexpressions. We then define

relations =

N

over T 2, indexed by sets N of non-zero natural numbers containing

1, show that if N is multiplication-closed then each =

t

\ =

N

is a congruence and

prove the theorem.

Notation We let U range over subsets of Act and write
U

�! for ([
u2U

u

�!)

�.

Definition loops

U

E

def
= f l j l 2 U

+

^ 9F : E

U

�!F

l

�!F g

15



Remark This definition is intensional in that it refers to equality of terms in T

2. In

general it gives a proper subset of the ‘semantic U -loops’ f l j l 2 U

+

^ 8n � 1 : 9F :

E

U

�!

l

n

�!F g of E.

The set loops

U

E is clearly closed under cyclic permutation, where l =

rot

l

0

()

9l

1

; l

2

: l = l

1

l

2

^ l

0

= l

2

l

1

and for T � Lab

� the cyclic permutation closure of T is

T

rot

def
= f l j 9l

0

2 T : l =

rot

l

0

g.

We now characterise the effects of the various operators on loop sets, in Lemmas

19, 22 and 23. The proofs of these are essentially a refinement of the trace part of

Lemma 15.

Lemma 19 If z :P n+1 for some n � 1 then

loops

U

aE = loops

U

E if a 2 U

fg otherwise

loops

U

E + F = loops

U

E [ loops

U

F

loops

U

�x �x:P:E = loops

U

E [

n

l

1

: : : l

q

�

�

�

q � 1 ^ 8i 2 1::q : E

l

i

�!Bx ^ l

i

2 U

+

o

rot

loops

U

zE

1

: : : E

n

=

[

f loops

U

E

i

j i 2 1::n ^ zi 2 U g

PROOF We show the inclusion� for �x �x:P:E. The following fact, allowing certain

subexpressions to be ‘pulled back’ along transitions, is required.

Lemma 20 If E
l

�!F = C[G=y], x 2 fv(F ), x 62 fv(G) and y 2 fv(C) then

there is some D such that E = D[G=y] and y 2 fv(D).

PROOF By induction on l, with the base case l = u by induction on the

derivation of E
u

�!F . 2

Now consider a loop l = u

p+1

: : : u

p+q

2 loops

U

�x �x:P:E due to the transitions

�x �x:P:E

u

1

�!F

1

: : :

u

p

�!F

p

u

p+1

�! : : :

u

p+q

�!F

p+q

= F

p

for some p; q � 1 and all u
i

2 U . By the SOS there is an E

1

such that E
u

1

�!E

1

and E

1

[�x �x:P:E=x] = F

1

. By Lemma 1 part 3 8i 2 1::p+ q � 1 : 9E

i+1

:

E

i+1

[�x �x:P:E=x] = F

i+1

^ (E

i

u

i+1

�!E

i+1

_ (E

i

Bx ^ E

u

i+1

�!E

i+1

)). If x 62 fv(E

p+q

)

then E

U

�!E

p+q

= F

p

l

�!F

p

so l 2 loops

U

E. If instead x 2 fv(E

p+q

) then by

Lemma 1 parts 7, 8 x 2 fv(E

p

). We now show that E
p

= E

p+q

. Suppose not, then as

E

p

[�x �x:P:E=x] = E

p+q

[�x �x:P:E=x] there must be a subexpression �x �x:P:E

of at least one of E
p

and E

p+q

. By Lemma 20 this must also be a subexpression of

E, which is a contradiction, so E

p

= E

p+q

. Now if 8i 2 p::p+ q � 1 : E

i

u

i+1

�!E

i+1

then l 2 loops

U

E. Otherwise there exists some i 2 p::p+ q � 1 such that E
i

Bx ^

16



E

u

i+1

�!E

i+1

. The sequence u
i+1

: : : u

p+q

u

p+1

: : : u

i

can then be partitioned into l
1

: : : l

q

such that 8i 2 1::q : E

l

i

�!Bx as required. 2

Remark Lemma 20 is required as the operation of applying the substitution

[�x �x:P:E=x] does not have a strong inverse property, even on the deriva-

tives of E. For example consider E

def
= ax + �x �y:P: a�x �x:P: ax + y,

which has transitions E

a

�!x and E

a

�!�x �x:P:E. We have x[�x �x:P:E=x] =

(�x �x:P:E)[�x �x:P:E=x] but x 6= �x �x:P:E.

We now characterise the loops of a substituted term, first for a substitution at type

P and then for a substitution at type P n+1. The following lemma is required.

Lemma 21 If l 2 loops

U

E then there exist a term �x �x:P: F , a q � 1 and l

i

2 U

+

for i 2 1::q such that E
U

�!B�x �x:P: F; l =

rot

l

1

: : : l

q

and 8i : F
l

i

�!Bx.

PROOF Induction on E using Lemma 19. 2

Lemma 22 For y :P if E
U

�!B y then loops

U

E[G=y] = (loops

U

E) [ (loops

U

G) else

loops

U

E[G=y] = loops

U

E.

PROOF The inclusions � follow from Lemma 1. For the inclusions �, suppose that

l 2 loops

U

E[G=y]. Applying Lemma 21, E[G=y]

U

�!B�x �x:P: F . By Lemma 1 part

3 either E
U

�!BE

0

^ E

0

[G=y]B�x �x:P: F or E
U

�!B y ^ G

U

�!B�x �x:P: F . In the

latter case l 2 loops

U

G. In the former then by Corollary 14 eitherE0

B�x �x:P:E

00

^

E

00

[G=y] = F or E0

B y ^ GB�x �x:P: F . Again, in the latter case l 2 loops

U

G.

In the former 8i 2 1::q : E

00

l

i

�!Bx (as we can ensure by alpha conversion that

x 62 fv(G)) so l 2 loops

U

E. 2

Lemma 23 If z :P n+1

2 fv(E), H :P

n+1, n � 1 and ~x are distinct variables of type

P not in fv(H) then if E
U

�!

z1

�!

loops

U

E[H=z] = loops

U

H~x [

[

fU

�

\ lfH=zg

rot

j l 2 loops

U

0

E g

otherwise

loops

U

E[H=z] =

[

fU

�

\ lfH=zg

rot

j l 2 loops

U

0

E g

where U 0

def
= (U � fz1; : : : ; zng) [ f zi j 9t 2 U

�

: H~x

t

�!Bx

i

g.

PROOF �: As in Lemma 22, we show that any loop of E[H=z] arises from an

occurrence of �x in E (case 1.1 below) or H (cases 1.2 and 2.1 below). Suppose

l 2 loops

U

E[H=z]. By Lemma 21 there exist �x �x:P: F , t 2 U

�, q � 1 and l

i

2 U

+

for i 2 1::q such that E
t

�!B�x �x:P: F; l =

rot

l

1

: : : l

q

and 8i : F

l

i

�!Bx. By
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Lemma 9 and Corollary 14 there exist k; h 2 Lab

�, j 2 null(�)

�, E0, H 0, ~

E, i such

that one of the following hold.

1.1 E

k

�!

j

�!B�x �x:P:E

0

^ t 2 kfH=zg ^ E

0

[H=z] = F

1.2 E

k

�!

j

�!B z

~

E ^ t 2 kfH=zg ^ H~xB�x �x:P:H

0

^ H

0

[

~

E[H=z]=~x] = F

2.1 E

k

�!B z

~

E ^ t 2 kfH=zg

:

h ^ H~x

h

�!B�x �x:P:H

0

^ H

0

[

~

E[H=z]=~x] = F

2.2 E

k

�!B z

~

E ^ t 2 kfH=zg

:

h ^ H~x

h

�!Bx

i

^ E

i

[H=z]B �x �x:P: F

Case 2.2 reduces to case 1.1 or 1.2, as E

k

�!

zi

�!E

i

and, as H~x

h

�!Bx

i

, t 2

(khz; ii)fH=zg. In cases 1.2 and 2.1 we can assume (by alpha conversion) that x is

not free in H or ~

E so 8i 2 1::q : H

0

l

i

�!Bx and l 2 loops

U

H~x (noting that as t 2 U

�

we have h 2 U

�). It is straightforward to check that kj 2 U

0� (resp. that k 2 U

0�) so

E

U

�!

z1

�!. In case 1.1 kj 2 U

0� similarly. By Lemma 9, as 8i 2 1::q : E

0

[H=z]

l

i

�!Bx,

9k

i

2 Lab

� such that one of the following hold.

1 9F

i

: E

0

k

i

�!F

i

^ F

i

[H=z]B x ^ l

i

2 k

i

fH=zg

2 9F

i

;

~

F

i

;H

i

; h

i

: E

0

k

i

�!F

i

B z

~

F

i

^ H~x

h

i

�!H

i

^ H

i

[

~

F

i

[H=z]=~x]B x ^ l

i

2 k

i

fH=zg

:

h

i

Case 2 reduces to 1, as by Corollary 13 9p : H

i

Bx

p

^ F

ip

[H=z]B x (as

null(

~

F

i

[H=z]=~x) is empty and x 62 fv(H)) hence E

0

k

i

�!

zp

�!F

ip

, H~x

h

i

�!Bx

p

and

l

i

2 (k

i

hz; pi)fH=zg.

Considering case 1 only, therefore, by Corollary 13 9j

i

2 null(H=z)

�

: F

i

j

i

�!Bx

(the other clause of Corollary 13 is ruled out by x 62 fv(H)) so 8i : E0

k

i

�!

j

i

�!Bx.

As (k
1

j

1

: : : k

q

j

q

) 2 U

0� we have (k

1

j

1

: : : k

q

j

q

) 2 loops

U

0

E. Now l

i

2 (k

i

j

i

)fH=zg so

l

1

: : : l

q

2 (k

1

j

1

: : : k

q

j

q

)fH=zg so l 2 (k

1

j

1

: : : k

q

j

q

)fH=zg.

�: Suppose E

U

�!

z1

�! and l 2 loops

U

H~x, i.e. 9t; t

0

2 U

�

; G :

E

t

�!

z1

�! ^ H~x

t

0

�!G

l

�!G. We can assume without loss of general-

ity that t does not contain any zi, then by Lemma 1 part 10 9

~

E :

E

t

�!B z

~

E and by parts 1,2 E[H=z]

t

�!B(H~x)[

~

E[H=z]=~x]. By Lemma 1 part 1

(H~x)[

~

E[H=z]=~x]

t

0

�!

l

�!G[

~

E[H=z]=~x]

l

�!G[

~

E[H=z]=~x] so by Lemma 1 part 5 9E

0

:

E[H=z]

tt

0

l

�!E

0

l

�!E

0 and as t; t0; l 2 U

� we have l 2 loops

U

E[H=z].

Suppose l

0

=

rot

l

1

: : : l

q

2 (u

1

: : : u

q

)fH=zg, l0 2 U

� and u

1

: : : u

q

2 loops

U

0

E. From

the latter we have 9t 2 U

0�

; F : E

t

�!F

u

1

:::u

q

�! F and u

1

: : : u

q

2 U

0�. The definition

of U 0 ensures that tfH=zg \ U

� is nonempty — say it contains t0. By Lemma 10

E[H=z]

t

0

�!BF [H=z] and 9G : F [H=z]

l

1

:::l

q

�!GBF [H=z] so by Lemma 1 part 5 l

0

2

loops

U

E[H=z]. 2
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Definition If N is a set of non-zero natural numbers containing 1 then

E �

N

F () 8U � Lab : 8l 2 loops

U

E : 9n 2 N : l

n

2 loops

U

F:

Note that if N � N

0 then �

N

��

N

0 and that if N is closed under multiplication

then �
N

is a preorder. We then write =

N

for the equivalence �
N

\ �

�1

N

.

Lemma 24 If x :P , m � 0, z :Pm+1, H :P

m+1, 8i : E
i

=

t

F

i

and 8i : E
i

�

N

F

i

then

aE

1

�

N

aF

1

E

1

+E

2

�

N

F

1

+ F

2

�x �x:P:E

1

�

N

�x �x:P: F

1

zE

1

: : : E

m

�

N

zF

1

: : : F

m

E

1

[H=z] �

N

F

1

[H=z]

PROOF The result for a , + and z follows from Lemma 19. For �x �x:P: , suppose

l 2 loops

U

�x �x:P:E

1

. By Lemma 19 either l 2 loops

U

E

1

or l =

rot

l

1

: : : l

q

^

8i 2 1::q : E

1

l

i

�!Bx. In the first case, as E

1

�

N

F

1

, there is n 2 N such that

l

n

2 loops

U

F

1

and by Lemma 19 l

n

2 loops

U

�x �x:P: F

1

. In the second case,

as et(E

1

) = et(F

1

), 8i : F
1

l

i

�!Bx so by Lemma 19 l 2 loops

U

�x �x:P: F

1

. This

suffices as by assumption 1 2 N .

For the [H=z] case, by Lemma 4 z 2 fv(E

1

) () z 2 fv(F

1

). If z 62 fv(E

1

) the

result is trivial. Suppose otherwise and consider l 2 loops

U

E[H=z]. If z :P then

by Lemma 22 either l 2 loops

U

E or l 2 loops

U

H ^ E

1

U

�!B z. In the first case,

as E

1

�

N

F

1

, there is n 2 N such that ln 2 loops

U

F

1

and by Lemma 22 l

n

2

loops

U

F

1

[H=z]. In the second case, as et(E

1

) = et(F

1

), F
1

U

�!B z so by Lemma 22

l

1

2 loops

U

F

1

[H=z].

If z :P n+1 for some n � 1 then by Lemma 23 either l 2 loops

U

H~x ^ E

1

U

�!

z1

�! or

l =

rot

l

1

: : : l

q

2 (u

1

: : : u

q

)fH=zg for some u
1

: : : u

q

2 loops

U

0

E

1

. In the first case, as

tr(E

1

) = tr(F

1

), F
1

U

�!

z1

�! so by Lemma 23 l 2 loops

U

F

1

[H=z]. In the second, as

E

1

�

N

F

1

, there is n 2 N such that (u
1

: : : u

q

)

n

2 loops

U

0

F

1

. As ln =

rot

(l

1

: : : l

q

)

n

2

(u

1

: : : u

q

)

n

fH=zg it follows that ln 2 loops

U

F

1

[H=z]. 2

Corollary 25 If N is closed under multiplication then =

t

\ =

N

is a congruence.

PROOF Immediate from Corollary 17, Lemma 24 and Lemma 16. 2

Any sound equation lies within �
N

for a finite N :

Lemma 26 If E =

t

F then E �

f1;:::;jF jg

F .
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PROOF If l 2 loops

U

E then there are t 2 U

� and E

0 such that E
t

�!E

0

l

�!E

0, hence

for all q � 1 we have tl

q

2 tr(E). Putting q = jF j this implies that tljF j 2 tr(F ), so

there exist F
i

for i 2 0::jF j such that F
t

�!F

0

l

�!F

1

l

�!F

2

: : :

l

�!F

jF j

. At least two

of the F
i

for i 2 0::jF j must be equal, so for some n 2 1::jF j we have ln 2 loops

U

F .

2

The main theorem can now be proved.

PROOF (of Theorem 1) Suppose ' is an equivalence over the closed �-expressions

that is finer than (or identical to) trace equivalence and E = fE

i

= F

i

:P j i 2 I g

is a finite set of typed equations with E

i

; F

i

2 T

2 that is sound for '. It follows

that E is sound for trace equivalence (=
tr

), so by Lemma 18 8i 2 I : E

i

=

t

F

i

. Let

n = max[

i2I

fjE

i

j ; jF

i

jg, let N be the multiplication-closure of f1; : : : ; ng and p the

smallest prime strictly greater than n. By Lemma 26 8i 2 I : E

i

=

N

F

i

and by

Corollary 25, if E ` E = F :P then E =

N

F .

Now N contains no multiples of p so �x �x:P: ax 6=

N

�x �x:P: a

p

x, hence if for all

q � 1 �x ax ' �x a

q

x then E cannot be complete for '. 2

5 Star expressions

Finite state systems have also been described using calculi with a unary or binary

iteration operator in place of explicit recursion, such as the �-expressions given by

E ::= c

�

�

�

0

�

�

�

1

�

�

�

E +E

�

�

�

E

:

E

�

�

�

E

�

�

�

�

E

?

E

where c ranges over some set A of actions. We include both the binary iteration

E

?

F of Kleene [Kle56], representing zero or more iterations of E followed by one

of F , and the unary iteration E

� introduced in [CEW58], representing zero or more

iterations of E.

The results of x3,4 can be applied to give simple proofs of non-finite-axiomatisability

of a range of equivalences over a range of subcalculi of the �-expressions. We first

recall some standard definitions, defining bisimulation, a trace congruence and lan-

guage equivalence over the �-expressions via a labelled transition system equipped

with a ‘successful termination’ predicate.

Definition The relations
c

�! for c 2 A and predicate
p

are the least over the �-
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expressions such that

c

c

�!1 1

p

E

c

�!E

0

E + F

c

�!E

0

and sym.
E

p

E + F

p and sym.

E

c

�!E

0

E

:

F

c

�!E

0

:

F

E

p

F

c

�!F

0

E

:

F

c

�!F

0

E

p

F

p

E

:

F

p

E

c

�!E

0

E

�

c

�!E

0

:

E

�

E

�

p

E

c

�!E

0

E

?

F

c

�!E

0

:

(E

?

F )

F

c

�!F

0

E

?

F

c

�!F

0

F

p

E

?

F

p

:

Note that there are no rules for 0. We s; t range over A�. For n � 1 we define

c

n+1

= c

:

(c

n

) and c

1

= c.

Definition Bisimulation, written �, is the largest relation over the �-expressions

such that if E � F then for all c 2 A

� If E
c

�!E

0 then 9F 0

: F

c

�!F

0

^ E

0

� F

0.

� If F
c

�!F

0 then 9E0

: E

c

�!E

0

^ E

0

� F

0.

� E

p

() F

p

.

Definition The trace set and terminated trace set of a �-expression E are the subsets

of A�

tr(E)

def
= f s j 9F : E

s

�!F g

tt(E)

def
= f s j 9F : E

s

�!F

p

g:

Two �-expressions E,F are trace congruent, written E =

t

F , if they have the same

traces and terminated traces.

Definition Two �-expressions E,F are language equivalent, written E =

l

F , if they

have the same traces.

A variety of subcalculi of �-expressions have been discussed in the literature with

21



differing notation. For reference we include a little table:

c 0 1 +

:

� ?

c � _

:

� [CEW58]

c 0 1 +

:

� [Con71, Koz94]

c � +

:

� [Sal66]

c � +

: BPA� as in [Mol89]

c +

:

� BPA� as in [BBP94, FZ94]

c � +

:

� BPA�

�

as in [BBP94, FZ94, Fok94]

The cited work is variously concerned with algebras satisfying certain axioms or

with particular models. We therefore need to state carefully exactly what the above

correspondences are. For the first three lines the common expressions denote the

same language in the standard interpretation (except that in [CEW58] E� does not

necessarily contain the empty word) as follows.

Definition The language denoted by a �-expression E is lang(E), where

lang(c)

def
= fcg

lang(0)

def
= fg

lang(1)

def
= f�g

lang(E + F )

def
= lang(E) [ lang(F )

lang(E

:

F )

def
= f st j s 2 lang(E) ^ t 2 lang(F ) g

lang(E

�

)

def
= f s

1

: : : s

m

j m � 0 ^ 8i 2 1::m : s

i

2 lang(E) g

lang(E

?

F )

def
= f s

1

: : : s

m

t j t 2 lang(F ) ^ m � 0 ^ 8i 2 1::m : s

i

2 lang(E) g:

Lemma 27 lang(E) = tt(E).

PROOF Straightforward. 2

For the last three lines bisimulation as defined below agrees with the definitions in

the cited work, as follows. For terms of 1; c;+; : the transition system and bisimu-

lation coincide with the transition system and bisimulation �

=

of [Mol89, x6.3.1]

for BPA� (identifying 1 and �). As discussed there it differs from the original

BPA� semantics of [Vra86]. The transition system differs from the semantics of

[BBP94, FZ94] for terms of 0; c;+; :; ?, where predicates
a

�!

p

are used instead of
p

. However, bisimulation coincides with the bisimulation $ over BPA�

�

(identifying

0 and �) defined therein.

Proposition 28 � � =

t

� =

l

PROOF Straightforward. 2
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An equation over the �-expressions is simply a pair of �-expressions. If E is a set of

equations we write E ` E = F if E = F is derivable using the rules in Figure 3

augmented with the rule
(E = F ) 2 E

E = F

ax

:

Note that ` allows substitution of terms for actions, as is usual when dealing with

regular expressions but in contrast to the situation for �-expressions.

Definition A relation over the �-expressions is a congruence if it is closed under `.

Proposition 29 Bisimulation (�), trace congruence (=
t

) and language equivalence

(=
l

) are all congruences.

PROOF Straightforward. 2

To apply the results of x3,4 to show non-finite-axiomatisability over subcalculi of the

�-expressions we first note that the �-expressions can be faithfully embedded into

our lambda calculus, encoding sequential composition using function composition

at type P !P .

Definition We identify A with f c j c :P !P 2 Var g and take the map [[ ]] from

�-expressions to lambda calculus terms of type P !P to be

[[c]]

def
= c

[[0]]

def
= �x:P: 0

[[1]]

def
= �x:P: x

[[E + F ]]

def
= �x:P: ([[E]]x) + ([[F ]]x)

E = E

ref

E = F

E[G=c] = F [G=c]

sub

E = F

F = E

sym

E = F F = G

E = G

tran

E = F E

0

= F

0

E +E

0

= F + F

0

+cong

E = F E

0

= F

0

E

:

E

0

= F

:

F

0

:

cong

E = F

E

�

= F

�

�cong

E = F E

0

= F

0

E

?

E

0

= F

?

F

0

?

cong

Figure 3: Congruence rules for �-expressions
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[[E

:

F ]]

def
= �x:P: [[E]]([[F ]]x)

[[E

�

]]

def
= �x:P:�x �y:P: x+ ([[E]]y)

[[E

?

F ]]

def
= �x:P:�x �y:P: ([[F ]]x) + ([[E]]y)

Trace congruence of �-expressions coincides with that defined over T 2, as follows.

Fixing some x :P 2 Var :

Lemma 30 E =

t

F iff [[E]]x =

t

[[F ]]x.

PROOF The following can be shown by routine inductions, using Lemma 1.

1. E
p

() [[E]]xB x

2. E
c

�!E

0

) [[E]]x

c1

�![[E

0

]]x

3. [[E]]x

c1

�!A) 9E

0

: E

c

�!E

0

^ [[E

0

]]x = A.

These imply that c
1

: : : c

m

2 tr(E) () hc

1

; 1i : : : hc

m

; 1i 2 tr([[E]]x) and that

c

1

: : : c

m

2 tt(E) () hc

1

; 1i : : : hc

m

; 1i; x 2 et([[E]]x). 2

Embedding a set of equations by

[[fE

i

= F

i

j i 2 I g]]

def
= f [[E

i

]]x = [[F

i

]]x :P j i 2 I g;

the embedding respects provability.

Lemma 31 If E ` E = F then [[E ]] ` [[E]]x = [[F ]]x :P

PROOF By induction on proofs, using the fact that [[E[F=c]]] = [[E]][[[F ]]=c] in the sub

case. 2

Lemma 32 If E = fE

i

= F

i

j i 2 I g is a finite set of equations between �-expressions

with 8i 2 I : E

i

=

t

F

i

then there is some N � N, closed under multiplication and

containing 1, such that 8E;F : (E ` E = F ) ) [[E]]x =

N

[[F ]]x and there is some

p � 1 that is not a factor of any n 2 N .

PROOF Let n = max[

i2I

fj[[E

i

]]xj ; j[[F

i

]]xjg, let N be the multiplication-closure of

f1; : : : ; ng and p the smallest prime strictly greater than n. By Lemma 30 8i 2 I :

[[E

i

]]x =

t

[[F

i

]]x so by Lemma 26 8i 2 I : [[E

i

]]x =

N

[[F

i

]]x. Now suppose E ` E = F .

By Lemma 31 [[E ]] ` [[E]]x = [[F ]]x :P so by Corollary 25 [[E]]x =

N

[[F ]]x. 2

Theorem 2 If ' is an equivalence over a subcalculus of �-expressions that is closed

under 0, c, : and either � or ? and ' lies between trace congruence and bisimulation

then there is no finite axiomatisation for '.
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PROOF Consider a finite set E of equations that is sound for ' (and hence sound for

=

t

). Take N and p as given by Lemma 32 and consider the relevant pair of terms

below.
E

1

= (c

p

)

�

:

0 F

1

= c

�

:

0

E

2

= (c

p

)

?

0 F

2

= c

?

0

We have E

1

� F

1

and E

2

� F

2

, hence E

1

' F

1

(resp. E

2

' F

2

). Now [[E

1

]]x =

[[E

2

]]x = �x �y:P: 0 + c

p

y and [[F

1

]]x = [[F

2

]]x = �x �y:P: 0 + cy. These do not lie in

=

N

so by Lemma 32 E

1

= F

1

(resp. E
2

= F

2

) is not provable from E . 2

Theorem 3 There is no finite axiomatisation for trace congruence over any subcalculus

of �-expressions that is closed under c, +, : and either � or ?.

PROOF Consider a finite set E of equations that is sound for =

t

. Take N and p as

given by Lemma 32 and consider the relevant pair of terms below.

E

3

= (c

p

)

�

:

(c+ : : :+ c

p�1

) F

3

= c

�

:

c

E

4

= (c

p

)

?

(c+ : : :+ c

p�1

) F

4

= c

?

c

We have E
3

=

t

F

3

and E

4

=

t

F

4

. Now [[E

3

]]x = [[E

4

]]x = �x �y:P: (cx+: : :+c

p�1

x)+

c

p

y and [[F

3

]]x = [[F

4

]]x = �x �y:P: cx + cy. These do not lie in =

N

so by Lemma 32

E

3

= F

3

(resp. E
4

= F

4

) is not provable from E . 2

Theorem 2 implies that there is no finite axiomatisation for bisimulation over BPA�

�

,

in sharp contrast to the following positive result of Fokkink and Zantema.

Theorem 4 (Fokkink and Zantema [FZ94]) The axioms below are sound and com-

plete for bisimulation over BPA�, i.e. over expressions of c;+; :; ?.

c+ d = d+ c

(c+ d) + e = c+ (d+ e)

c+ c = c

(c+ d)

:

e = c

:

e+ d

:

e

(c

:

d)

:

e = c

:

(d

:

e)

c

:

(c

?

d) + d = c

?

d

c

?

(d

:

e) = (c

?

d)

:

e

c

?

(d

:

((c+ d)

?

e) + e) = (c+ d)

?

e
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6 Discussion

In this section we give a brief overview of some previous work and mention some

possible generalisations. The overview is far from exhaustive, in particular exclud-

ing work using infinitary rules (such as the Approximation Induction Principle of

ACP and !-induction), work on the axiomatisation of partial orders, on equivalences

strictly between trace congruence and bisimulation, on calculi with parallel compo-

sition or on infinite state calculi. This leaves a substantial literature dealing with

axiomatisation of equivalences over calculi denoting finite state machines. A part of

it is summarised in Figure 4, classified by the equivalence, calculus and strength of

logic addressed and labelled
p

(resp. �) if finite complete systems are given (resp.

shown not to exist). Care must be taken when interpreting the figure as there are

differing definitions, in particular of the calculi of �-expressions and of language

and trace equivalences. Results without citations are those of this paper. Results

labelled [Sew95] were also announced in [Sew94]. The figure is not intended to

imply that all vertices have equal interest.

The first negative result, that language equivalence of �-expressions is not finitely

equationally axiomatisable, was apparently given in an incomplete form by Redko

[Red64] and Salomaa and later completed by Pilling. Three proofs are given by Con-

way [Con71]. Salomaa gave a finite impure Horn clause axiomatisation in [Sal66],

p

[Mil84](impure)
p

[BÉ94]

�

�

�

�

�

�

�

�

Horn clause

p

[Sal66](impure)
p

[AG87]
p

[Bof90, Kro91]
p

[Koz94]

p

[Rab93](impure)

�

�[Sew95]
p

[FZ94]

�

�[Sew95]
bisimulation

�

�

�

�

�

�

�

�

�

�

�

�

equational

�

�[Red64]

�[Con71]
p

[Yan](for events � 1)

�

language or trace

�-expressions �-expressions

Figure 4: Finite axiomatisability results
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using the implication

E = E

:

F +G ^ � 62 lang(F )! E = G

:

F

�

which asserts the uniqueness of certain fixed points. Similar axiomatisations have

been given for a number of equivalences over �-expressions. The figure shows that

of Milner for bisimulation [Mil84], using an implication reproduced in x1, and that

of Rabinovich for trace congruence [Rab93]; there are also results by Milner for

weak bisimulation congruence [Mil89] and van Glabbeek for branching bisimula-

tion congruence [Gla93a] and divergence bisimulation [Gla93b].

Finite pure Horn clause axiomatisations have been given for language equivalence of

�-expressions by Arkhangelskii and Gorshkov [AG87], Boffa [Bof90], Krob [Kro91]

and Kozen[Koz94]. A finite pure Horn clause axiomatisation for bisimulation of

�-expressions has been given by Bloom and Ésik [BÉ94], using an implication re-

produced in x1.

Finite equational axiomatisations have been given by Yanov for language equiva-

lence of the �-expressions whose languages contain the empty word [Yan] and by

Fokkink and Zantema for bisimulation of the subcalculus of �-expressions without

zero, unit or unary � [FZ94].

The nonexistence of finite equational axiomatisations for bisimulation was shown

by the author for �-expressions and for subcalculi of �-expressions containing zero

[Sew95, Sew94].

Various infinite but simple equational axiomatisations have been given, e.g. for lan-

guage equivalence of �-expressions by Conway [Con71] and Krob [Kro91], in the

general setting of iteration theories by Bloom, Ésik and Taubner [BÉ93a, BÉ93b,

BÉT93] and for bisimulation of �-expression by the author [Sew95].

6.1 Other signatures

Our nonaxiomatisability result for �-expressions (Theorem 1) is weaker than might

be desired, in that the typed equations considered do not contain variables ranging

over actions. The signature of the lambda calculus used could be modified slightly,

adding a base type A of actions and taking constants

0 :P

a :A for each a 2 Act

: :A!P !P

+ :P !P !P

�x :(P !P )!P:
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We conjecture that the proof of Theorem 1 could be adapted to this signature with-

out essential difficulty. This signature also allows the statement of nonaxiomatis-

ability results about equivalences that abstract from a distinguished action � 2 Act ,

such as the weak bisimulation congruence of [Mil89]. We conjecture that the proof

could be adapted to these at the cost of some uninteresting complications.

More generally, one might consider an arbitrary signature of first order constants

together with �x :(B!B)!B for some base types B. The first order transition

system of x3 could be adapted by treating constants in the same way as variables,

e.g. by replacing the rules for prefix and sum by

c :P

n+1

2 Con i 2 1::n

c

~

E

ci

�!E

i

:

This would simplify the technical results of x3. For the signature of x2 the original

transition relations can be recovered from the new, with e.g. the original
a

�! equal

to the new (

+1

�![

+2

�!)

�

a1

�!.

6.2 Relative axiomatisability

Questions of axiomatisability can be sharpened by considering whether one equiv-

alence is finitely equationally axiomatisable relative to another, i.e. whether, for

equivalences '
1

and '

2

, there is a finite set of equations that together with the

implication

E '

1

F ! E = F

are sound and complete for '
2

. The author showed in [Sew95] that for the

�-expressions bisimulation is axiomatisable relative to infinite term equality (the

equality induced by unwinding recursions to give infinite trees), with the equations

E + (F +G) = (E + F ) +G

E + F = F +E

E + 0 = E

E +E = E

and that weak bisimulation congruence is axiomatisable relative to bisimulation,

with the equations

�x (E + ay)[�y F + �G=y] = �x (E + ay + aG)[�y F + �G=y]

�x (E + �y)[�y F +G=y] = �x (E + �y +G)[�y F +G=y]

a�x E = a�x E + �x:
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These are presented as schemas over �-expressions, but are expressible as typed

equations in the signature of x6.1.

Whether trace congruence or language equivalence are axiomatisable relative to

bisimulation remains open.

6.3 Equational axiomatisability over �-expressions

The results for finite equational axiomatisability over subcalculi of �-expressions

show a delicate interaction between the equivalence and the expressiveness of the

subcalculus. This is depicted in Figure 5, in which each vertex is labelled with a

subset of f0; 1; ?; �g and denotes the subcalculus of �-expressions closed under those

operators and also under :, + and c for c 2 A. Some of the operators f0; 1; ?; �g are

interdefinable (up to bisimulation), in particular E ?

F � E

�

:

F , E�

� E

?

1 and

1 � 0

�. This is indicated by double lines joining the equivalent subcalculi. The

finite equational axiomatisability results of each subcalculus are shown to the right

of its vertex. The results shown are consequences of Theorem 2 (for all equivalences

between trace congruence and bisimulation), Theorem 3 (for trace congruence), the

theorem of [Con71, page 106] (for language equivalence) and the positive result of

[FZ94] (for bisimulation) reproduced as Theorem 4.

The figure does not show positive results by Yanov [Yan] for language equivalence

of the �-expressions whose languages contain the empty word, Fokkink [Fok94] for
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Figure 5: Finite equational axiomatisability over subcalculi of �-expressions
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bisimulation over MPA�

�

, i.e. the subcalculus

E ::= 0

�

�

�

c

:

E

�

�

�

E +E

�

�

�

c

?

E;

by Aceto and Ingólfsdóttir [AI95] for weak bisimulation congruence over MPA�

�

and

by Aceto, Fokkink, van Glabbeek, and Ingólfsdóttir [AFvGI96] for a number of con-

gruences that abstract from internal actions. Finally, in [AFI96] Aceto, Fokkink,

and Ingólfsdóttir have shown that equivalences between ready simulation and com-

pleted trace equivalence are not finitely axiomatisable over BPA�.

The most interesting open problem seems to be that of finding a single nonaxioma-

tisability proof for all equivalences between language equivalence and bisimulation,

for the back face of the cube. A possible approach might be to consider the normed

U -loops of E 2 T

2, i.e. f l j 9F; x : E
U

�!F

l

�!F

U

�!Bx g.
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