
Location Independence for Mobile Agents

Peter Sewell Pawe l T. Wojciechowski Benjamin C. Pierce

University of Cambridge Indiana University

fPeter.Sewell,Pawel.Wojciechowskig@cl.cam.ac.uk pierce@cs.indiana.edu

1 Introduction

In recent years there has been an explosion of interest in wide-area distributed applications, executing

on intranets or on the global internet [CHK97]. A key concept for structuring such applications is

that of mobile agents, i.e. units of executing code that can migrate between sites. Mobile agents

require novel programming language support and raise new problems, of interaction between agents,

of robustness under network failure and recon�guration, of binding to resources, and of security. In

this paper we study the �rst of these, considering the design, semantic de�nition and implementation

of communication primitives by which mobile agents can interact.

Communication primitives can be classi�ed into two groups. At a low level there are location

dependent primitives that require an application programmer to know the current site of a mobile

agent in order to communicate with it. If a party to such communications migrates then the appli-

cation program must explicitly track its new location. At a high level there are location independent

primitives (mentioned, e.g., in [MGW97]) that allow communication with a mobile agent irrespec-

tive of its current site and of any migrations. Location independent primitives have the potential to

greatly simplify the construction of applications. Their design is problematic, however { a distributed

infrastructure is required, executing algorithms for tracking migrations and delivering messages to

migrating agents. These algorithms are highly concurrent. Moreover, their behaviour is exposed, via

performance and network failure/recon�guration, to the application programmer. There is therefore

a considerable advantage to be gained from expressing the speci�cations and implementations of

location independent primitives in a form with clear and precise semantics.

In Section 2 we propose a simple calculus of agents, building on [MPW92, FGL

+

96, Sew98], that

can migrate between sites and can interact by both location dependent and independent message

passing. It has a precise reduction semantics. Implementations of the location independent primi-

tives can be expressed as encodings, or compilations, of the whole calculus into the fragment with

only location dependent communication (henceforth, the D-fragment). This allows:

� The algorithms to be stated and understood precisely.

� A clean implementation strategy for prototype languages { implementations can be factored

into an implementation of the D-fragment (which requires no distributed infrastructure) to-

gether with an encoding realized as one phase of a compiler.

� Reasoning. One would like to have correctness results, in the absence of failures, and robustness

results, showing how the infrastructure degrades with limited failures. A functioning agent in-

frastructure will critically depend on these properties. The algorithms appear to be su�ciently

subtle to make such proofs worthwhile, yet are small enough to make them tractable.

1

� Heterogeneity. The potential applications of mobile agent technology are extremely varied,

involving agents with very di�erent patterns of migration and communication and requiring

di�erent failure guarantees. For example, one can consider an active-badge tracker (with

frequent migrations within a local network), an active-badge server (migrating only to avoid

machine reboots) and a remote database interrogator (with a single migration into a network

under a di�erent administration). Any given infrastructure algorithm will have satisfactory

behaviour only for some of these patterns of behaviour (of agents and of the network), and

therefore only for some applications. It is therefore important to associate algorithms with

common patterns of behaviour for which they are satisfactory, and to be able to provide a

heterogeneous infrastructure above a standard base language.

We conclude in Section 3 by illustrating a sample encoding that uses a forwarding-pointers algorithm.

Work on a prototype implementation, and on correctness and robustness results, is ongoing.

2 An Agent Calculus

For the implementation strategy above to be realistic it is essential that the D-fragment should be

directly implementable using the communication primitives provided by actual networks. The fun-

damental communication primitive provided by most current network technology is, at the IP level,

asynchronous, unordered, unreliable packet delivery to machines (strictly, to IP addresses). The cal-

culus is designed so that each reduction step of the D-fragment requires at most one message (asyn-

chronous, unordered, of arbitrary size) to be sent between sites. It is thus directly implementable

above a lightweight reliable datagram protocol above IP, or above TCP by using a lightweight layer

that opens and closes streams as required. We are thus abstracting from details of retransmission,

of packet fragmentation, of stream connections etc., while retaining a clear relationship between the

reduction semantics and the behaviour of an actual implementation.

For simplicity, we consider messages sent to agents themselves. In practice more structured

communication, to entities within agents, would be required, e.g. method invocations of concurrent

objects, remote procedure calls, distributed join calculus communication [FGL

+

96], distributed �-

calculus channels or multicasts. These are largely orthogonal to location independence { they are

encodable, at least conceptually, in a calculus with location independent message passing, though

usable implementations may require optimizations that are incompatible with this factorisation.

We take a site to be an instantiation of a runtime system on a machine; sites have unique names.

We take an agent to be a unit of executing code; agents have unique names and are, at any moment,

located at particular sites. Letting a; b; : : : range over names (of sites and of agents), the code of an

agent is a term of the grammar

P ::= 0

�

�

�

P

1

j P

2

�

�

�

create a is P

1

:P

2

�

�

�

migrate to s:P

�

�

�

av

�

�

�

(

y

)

:P

�

�

�

a@sv

�

�

�

tryhere av:P

1

else P

2

In create a is P

1

:P

2

the a binds in P

1

and P

2

; in

(

y

)

:P the y binds in P . Free name sets and

substitution will be written fn(P) and fv=xgP ; we work up to alpha conversion of bound names.

Nil and parallel The empty agent is written 0; the parallel composition of two parts of an agent

2

is written P j Q.

Creation and migration The construct create a is P

1

:P

2

allows a new agent to be spawned on

the current site, with code P

1

. After the creation P

2

commences execution as part of the spawning

agent. Both P

1

and P

2

can refer to the name a of the spawned agent. The constructmigrate to s:P

allows the agent containing it to migrate to site s; after the migration P commences execution.

Location independent communication The output av sends a message v to the agent named a,

irrespective of the site of a. The input

(

y

)

:P waits for such a message v to arrive, then executes P

with v replacing the formal parameter y.

Location dependent communication The output a@sv is similar to av except that the site s

of the destination agent must be given explicitly { if a is located at s then the message v will be

delivered to it, otherwise the output will fail silently.

Test and send If agent a is located at the current site the construct tryhere av:P

1

else P

2

will

deliver v to a and then execute P

1

, otherwise it will execute P

2

. This primitive is only required for

some algorithms.

The D-fragment is given by the subgrammar without av, the purely location independent frag-

ment (henceforth, the I-fragment) is given by the subgrammar without a@sv. To de�ne the opera-

tional semantics we extend the calculus to allow con�gurations of many agents, each with combined

code and state, to be expressed. We take primitives for declaring a term P to be part of an agent

a, for binding an agent name a and declaring it to be at site s, and for a message that has reached

its destination agent:

P ::= : : :

�

�

�

@

a

P

�

�

�

(new a@s)P

�

�

�

v

In (new a@s)P the a binds in P . Certain term formation rules are required, to forbid e.g.

(

y

)

:@

y

P ;

we omit their de�nition. A term @

a

P , where P is from the �rst syntax, denotes a program that is

initially a single agent a. We take location contexts � to be �nite partial functions from names to

names, giving the sites of free agent names. The reduction relation is given by the axioms

�; @

a

create b is P:Q �! �; (new b@s)(@

b

P j @

a

Q) if �(a) = s

�; @

a

migrate to s:P �! (�� a 7! s); @

a

P

�; @

a

bv �! �; @

b

v

�; @

a

(v j

(

y

)

:P) �! �; @

a

fv=ygP

�; @

a

b@sv �! �; @

b

v if �(b) = s

�; @

a

b@sv �! �; 0 if �(b) 6= s

�; @

a

tryhere bv:P else Q �! �; @

b

v j @

a

P if �(a) = �(b)

�; @

a

tryhere bv:P else Q �! �; @

a

Q if �(a) 6= �(b)

together with closure under structural congruence, parallel and new:

Q � P �; P�!�

0

; P

0

P

0

� Q

0

�; Q�!�

0

; Q

0

�; P�!�

0

; P

0

�; P j Q�!�

0

; P

0

j Q

(�; a 7! s); P�!(�; a 7! s

0

); P

0

�; (new a@s)P�!�; (new a@s

0

)P

0

where the structural congruence� is the least congruence relation over terms satisfying the following.

P j Q � Q j P P j (Q j R) � (P j Q) j R P j 0 � P

@

a

(P j Q) � @

a

P j @

a

Q P j (new a@s)Q � (new a@s)(P j Q) if a 62 fn(P)

(new a@s)(new b@t)P � (new b@t)(new a@s)P if a 62 fb; tg ^ b 6= s

Note that the reduction axioms allow a location dependent output b@sv to silently lose the message

v if agent b is not at site s. One would expect to prove that this can never occur for the encoding

3

of a program from the I-fragment. (The originating agent of such an output may itself migrate, so

other possible semantics, e.g. returning an error message to the originating agent, require complex

algorithms. These could be incorporated into semantic de�nitions given as encodings into the D-

fragment.)

As presented, the calculus is rather far from being a practical programming language { it does

not allow any values except names to be communicated and does not have primitives for non-

trivial computation within an agent. The choice of these primitives is largely orthogonal to location

independence { in the sample encoding of Section 3, and in our prototype implementation, we are

extending the Pict programming language of Pierce and Turner [PT97], based on the �-calculus of

Milner, Parrow and Walker [MPW92]. The agent primitives could be added to other languages.

This paper does not explicitly address questions of security, or of network failure/recon�guration.

It does, however, identify a level of abstraction that may be a useful basis for such work { to consider

whether a distributed infrastructure for mobile agents is secure or robust one must �rst be able to

de�ne it precisely, and have a clear understanding of how it is distributed on actual machines.

3 Example: A Forwarding Pointers Infrastructure

We conclude by sketching an encoding using a highly sequentialised forwarding-pointers algorithm.

It is intermediate in complexity between the simplest (and most unsatisfactory) centralised-server

solutions and algorithms that may be of practical use { the intention is to illustrate that such

encodings can be precisely stated in a tractable way, rather than to propose an innovative algorithm.

The core of the encoding is given in Figure 1. It has a daemon at each site that maintains

a collection of forwarding pointers; an agent that is migrating from s to s

0

synchronises with the

daemons daemon

s

and daemon

s

0

. Location independent communications are implemented via the

daemons, using the forwarding pointers where possible. If a daemon has no pointer for the destination

agent of a message then it will forward the message to the daemon on the site where the destination

agent was created; to make this possible an agent name is encoded by a triple of an agent name and

the site and daemon of its creation. Similarly, a site name is encoded by a pair of a site name and

the daemon name for that site.

To express the encoding we extend the calculus of Section 2 with primitives loosely taken from

Pict (the encoding should be extended homomorphically). We take types Site of site names, Agent T

of agents receiving values of type T , tuples [T

1

::T

n

], existential polymorphic types [#XT

1

::T

n

],

variants flabel

1

� T

1

::label

n

� T

n

g, recursive types recX = T , local (to within an agent) channels

lT carrying T , and �nite maps Map T T

0

from T to T

0

. We take primitives for communication on

local channels: for output xv, input x

(

y

)

:P , replicated input !x

(

y

)

:P , and new local channel creation

new c : lT . The extended calculus is not given a precise de�nition here { the target language of the

encoding might therefore be regarded as a form of pseudocode, albeit one that describes concurrency

and synchronisation rather more explicitly than usual. Typing environments are also elided. The

typing rules are standard except for the use of global/local typing [Sew98] to prohibit the sending of

local pointers (in this setting, local channel names) between agents, and for the use of name equality

testing over [#X Agent(X)].

4

[[0]]

a;here;buf ;ack

= 0

[[P j Q]]

a;here;buf ;ack

= [[P]]

a;here;buf ;ack

j [[Q]]

a;here;buf ;ack

[[create b :Agent T is P:Q]]

a;here;buf ;ack

= here

(

[S D

S

]

)

:

(create B :AGENT [[T]] is

(new here

0

: l [Site Daemon]; buf

0

: l [[T]]; ack

0

: l []; x : l []

let b = [B S D

S

] and [A] = a in

(D

S

@SfRegister� [[[T]] B]g j here

0

[S D

S

] j x[]

j !x

()

:

(

w

)

:(x[] j case w of

fData� vg ! buf

0

v

fAck�g ! ack

0

[] endcase)

j ack

0

()

:(A@SfAck� []g j [[P]]

b;here

0

;buf

0

;ack

0

))

):

let b = [B S D

S

] in ack

()

:(here [S D

S

] j [[Q]]

a;here;buf ;ack

))

[[migrate to u:P]]

a;here;buf ;ack

= here

(

[S D

S

]

)

:

let [U D

U

] = u and [A] = a in

D

S

@SfEmbark� [[[T]] A]g j ack

()

:(migrate to U:

(D

U

@UfRegister� [[[T]] A]g

j ack

()

:(D

S

@SfMigrated� [[[T]] A [U D

U

]]g

j ack

()

:(here [U D

U

] j [[P]]

a;here;buf ;ack

))

)) where a :Agent T in the source

[[bv]]

a;here;buf ;ack

= here

(

[S D

S

]

)

:(D

S

@SfMessage� [[[T]] b v]g j here [S D

S

])

where b :Agent T in the source

[[b@uv]]

a;here;buf ;ack

= let [U] = u and [B] = b in B@UfData� vg

[[

(

y

)

:P]]

a;here;buf ;ack

= buf

(

y

)

:[[P]]

a;here;buf ;ack

[[tryhere bv:P else Q]]

a;here;buf ;ack

= let [B] = b in

tryhere BfData� vg :[[P]]

a;here;buf ;ack

else [[Q]]

a;here;buf ;ack

daemon

s

def

= let [S D

S

] = s in new z : l(Map [#X AGENT (X)] l [Site Daemon])

zMap.empty j !z

(

Pointers

)

:

(

w

)

:case w of

fRegister� [X B]g ! case (Map.lookup Pointers [X B]) of

fFound� pg ! p

()

:(p[S D

S

] j zPointers j B@SfAck� []g)

fNotFound�g ! new p : l [Site Daemon]

(p[S D

S

] j z(Map.add Pointers [X B] p) j B@SfAck� []g) endcase

fEmbark� [X B]g ! case (Map.lookup Pointers [X B]) of

fFound� pg ! p

()

:(zPointers j B@SfAck� []g)

fNotFound�g ! 0 endcase

fMigrated� [X B [U D

U

]]g ! case (Map.lookup Pointers [X B]) of

fFound� pg ! zPointers j p[U D

U

] j B@UfAck� []g

fNotFound�g ! 0 endcase

fMessage� [X [B U D

U

] v]g ! case (Map.lookup Pointers [X B]) of

fFound� pg ! zPointers j p

(

[R D

R

]

)

:tryhere BfData� vg :p[R D

R

]

else (D

R

@RfMessage� [X [B U D

U

] v]g j p[R D

R

])

fNotFound�g ! zPointers j D

U

@UfMessage� [X [B U D

U

] v]g endcase

endcase

In the target A;B are agent names, R;S; U are site names, D

R

; D

S

; D

U

are the associated daemon

names, buf ; ack are local channels, and here ; x; z; p are local channels used as locks.

Figure 1: A Forwarding-Pointers Distributed Infrastructure

5

The semantic function [[P]]

a;here;buf ;ack

is parameterised by the name a of the agent that P is

part of, and by local channel names here ; buf ; ack , used respectively to store the agent's current

site and daemon name, to bu�er messages received by the agent and to bu�er acknowledgements

received by the agent. The daemons are agents (that never migrate) of type Daemon , i.e.

rec Z = AgentfRegister� [#X AGENT (X)] Embark� [#X AGENT (X)]

Migrated� [#X AGENT (X) [Site Z]] Message� [#X [AGENT (X) Site Z] X] g

where AGENT (X) = AgentfData�X Ack� []g. The encoding of types is homomorphic except for

[[Agent T]] = [AGENT ([[T]]) Site Daemon] and [[Site]] = [Site Daemon]. Putting this all together,

a program @

b

P , consisting of an agent b accepting values of type T , initiated at site s

1

with free

site names s

1

; : : : ; s

n

, is encoded by

Q = �

�

@

D

s

1

daemon

s

1

j : : : j @

D

s

n

daemon

s

n

�

j @

a

�

�

new here : l [Site Daemon]; x : l [] (heres

1

j [[create b :Agent T is P:0]]

a;here;x;x

)

�

where a; x; here and the D

s

i

are fresh names and � is the substitution replacing each s

i

by [s

i

D

s

i

]

and a by [a s

1

D

s

1

]. The encoding is then with respect to a location context � mapping a to site s

1

and each D

s

i

to site s

i

. In an implementation the daemons could either be built into each runtime

system or, more
exibly, could be migrated on demand from a daemon server, to any site that wished

to participate in this infrastructure.

The simplest correctness result for this infrastructure would be that @

b

P is observationally

equivalent to Q. Identifying the appropriate notion of observational equivalence for the extended

calculus is not trivial, but appears to be feasible { a generalisation of [Sew97], in which this was

considered for an idealised non-distributed Pict, may be required.

Acknowledgements The authors would like to thank Ken Moody for many stimulating discussions,

and to acknowledge support from EPSRC grant GR/K 38403 and the Wolfson Foundation.

References

[CHK97] D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents: Are they a good idea? In Mobile

Object Systems { Towards the Programmable Internet. LNCS 1222, pages 25{48, 1997.

[FGL

+

96] C. Fournet, G. Gonthier, J. L�evy, L. Maranget, and D. R�emy. A calculus of mobile agents. In Pro-

ceedings of CONCUR '96. LNCS 1119, pages 406{421. Springer-Verlag, August 1996. Available

from http://pauillac.inria.fr/~fournet/.

[MGW97] D. S. Milojicic, S. Guday, and R. Wheeler. Old wine in new bottles: Applying OS process migra-

tion technology to mobile agents. In ECOOP Workshop on Mobile Object Systems 97, June 1997.

To appear in LNCS. Available from http://cuiwww.unige.ch/~ecoopws/ws97/abstracts.html.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I + II. Information

and Computation, 100(1):1{77, 1992.

[PT97] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. To appear

in Proof, Language and Interaction: Essays in Honour of Robin Milner, MIT Press. Available

from http://www.cs.indiana.edu/hyplan/pierce/pierce/ftp/, 1997.

[Sew97] P. Sewell. On implementations and semantics of a concurrent programming language. In Pro-

ceedings of CONCUR '97. LNCS 1243, pages 391{405. Springer-Verlag, 1997. Available from

http://www.cl.cam.ac.uk/users/pes20/.

[Sew98] P. Sewell. Global/local subtyping and capability inference for a distributed �-calculus. In

Proceedings of ICALP '98. LNCS, July 1998. To appear. Technical report available from

http://www.cl.cam.ac.uk/users/pes20/.

6

