
Bisimulation is not Finitely (First Order) Equationally Axiomatisable

Peter Sewell

�

LFCS, Department of Computer Science

Edinburgh University

Edinburgh, EH9 3JZ, UK

pes@dcs.ed.ac.uk

Abstract

This paper considers the existence of �nite equational

axiomatisations of bisimulation over a calculus of �-

nite state processes. To express even simple properties

such as �XE = �XE[E=X] equationally it is neces-

sary to use some notation for substitutions. Accord-

ingly the calculus is embedded in a simply typed lambda

calculus, allowing axioms such as the above to be writ-

ten as equations of higher type rather than as equa-

tion schemes. Notions of higher order transition sys-

tem and bisimulation are then de�ned and using them

the nonexistence of �nite axiomatisations containing

at most �rst order variables is shown.

The same technique is then applied to calculi of star

expressions containing a zero process | in contrast

to the positive result given in [FZ93] for BPA

?

, which

di�ers only in that it does not contain a zero.

1 Introduction

In this paper we consider the existence of �nite equa-

tional axiomatisations for bisimulationover �nite state

processes. Such questions of axiomatisability of inten-

ded models for process calculi have been widely stud-

ied, with several motivations. Firstly completeness

or nonexistence results, and particularly the proofs

thereof, provide insight into the nature and expressive-

ness of the equivalence and operators involved. This

insight may be useful in the design of less ad hoc cal-

culi. It is dependent on the metalanguage used to

express axioms | if this is very strong (e.g. a higher

order logic) then the de�nition of the equivalence can

be written down directly, whereas if it is weak then no

interesting properties can be captured. Secondly, com-

plete axiomatisations permit a comparison with the

�

Supported by SERC studentship 90311819

alternative view that takes a set of axioms as primary.

Lastly, any sound axioms may be useful for human or

machine manipulation, especially but not necessarily

if complete.

Our starting point is [Mil84] in which a simple calculus

of �-expressions is introduced, given by

E ::= 0 j X j aE j E +E j �XE

where X and a are drawn from some sets Var;Act of

variables and action constants. A complete inference

system is given for a suitable notion of bisimulation

over these consisting of rules for equivalence and con-

gruence, a number of equation schemes and the infer-

ence rule scheme

X guarded in F E = F [E=X]

E = �X F

expressing the unique existence of certain �xed points.

Axiomatisations for some other congruences such as

branching bisimulation congruence [Gla93a], diver-

gence bisimulation [Gla93b], observational congruence

[Mil89] and trace congruence [Rab93] use a similar

scheme each with a suitable ad hoc de�nition of

`guarded'. Here we investigate whether the full power

of an inference rule scheme is required.

To express even simple properties of �xed points such

as

�X E = �X E[E=X]

�X E = E[�X E=X]

�X E[X;X;X;X] =

�X E[X;X; �Y E[X;Y;X; Y]; �Y E[X;Y;X; Y]]

some notation for substitution is required. We will

embed the �-expressions in a simply typed lambda cal-

culus in which axioms such as the above can be writ-

ten as equations of higher type rather than as equa-

tion schemes. The main theorem, stated in x2, asserts

the nonexistence of �nite axiomatisations containing

at most �rst order variables. The proof rests on the

fact that �nite axiomatisations only provide bisimu-

lations of certain `widths', which we illustrate for the

�rst axiom above. Writing a

n

for

n times

z }| {

a � � �a , repeated use

of it can derive the `internal' unfolding

�X a

n

X = �X a

2

k

n

X

for any k � 0 but not

�X a

n

X = �X a

3n

X:

The details are somewhat lengthy (occupying x2{5)

but may be of some independent interest. In partic-

ular, notions of higher order transition system and

bisimulation are given which might be interesting

when considering richer higher order calculi.

The intermediate results can be applied to give an easy

proof of the nonexistence of �nite axiomatisations of

bisimulation over calculi of star expressions containing

a zero process. This is done in x6, where it is related

to the positive result of [FZ93] for BPA

?

(which has no

zero). Finally x7 discusses the relationship with some

other previous and possible future work. Proofs will

largely be omitted but may be found in the author's

forthcoming thesis [Sew].

2 Basic de�nitions

From now on we shall be considering terms of a simply

typed lambda calculus with a single base type P of

processes and the following constants:

0 :P

a :P!P for each a 2 Act

+ :P !P!P

fix :(P!P)!P

Notation and de�nitions will be taken from [Mit90]. In

particular we write typability and �� provable equality

as � .E :� and E ` E = F :� where E;F are terms;

� is a type; � a context and E a set of well typed

equations. The order of a type is as usual:

order(P) = 0

order(�! �) = maxf1 + order(�); order(�)g:

We take some type assignment K with a countable

in�nity of variables at each type and for k 2 N[f!g

write T

�

k

for the set of terms E for which there is some

type � and context � � K, containing only variables

of order � k, such that � .E :�. There is an obvious

bijection between the �-expressions and the long ��

normal forms in T

P

0

with for example

�X aY +X $ fix �x :P: + (ay) (x)

For any equivalence over �-expressions this induces an

equivalence over T

P

0

, closing under �� equality.

De�nition An axiomatisation for an equivalence �

over �-expressions is a set E of typed equalities that

is sound, i.e.

8E;F 2 T

P

0

E ` E = F :P) E � F

and complete,

8E;F 2 T

P

0

E ` E = F :P (E � F:

Note that if � is not both a congruence for a;+; �X

and substitutive (i.e. E � F) E[G=x] � F [G=x])

then there can be no axiomatisation in this sense. Fur-

ther, bisimulation is a substitutive congruence.

Some sample axioms (the �rst three corresponding to

the axiom schemes given earlier) are below for � =

fx :P !P !P; y :P !P; z :P!P!P !P !Pg.

They can all be shown sound for bisimulation by using

theorem 4 below.

� .fix y = fix �x :P: y(yx) :P

� .fix y = y(fix y) :P

� . fix �x :P: zxxxx = fix �x :P:

zxx(fix �y :P: zxyxy)(fix �y :P: zxyxy) :P

� .fix �y :P: xyy = fix �y :P:

xy(fix �z :P: xzz) :P

We de�ne the order of a �nite set of typed equalities to

be the maximumorder of any variable (free or bound)

therein. For example the axioms above all have order

1. The main theorem can now be stated.

Theorem 1 If Act is non-empty there is no �nite ax-

iomatisation of order � 1 for any substitutive congru-

ence � �ner than (or identical to) bisimulation that

for all n � 1 satis�es

�X aX � �X a

n

X:

The proof of this is in several steps. In the rest of

this section we de�ne an extensional equivalence �

ext

�

over open terms that contains all sound equations. In

x3 higher order transition systems and higher order

bisimulation are de�ned and we show that all pro-

cesses are `�nite state' in the appropriate sense. In

x4 higher order bisimulation and �

ext

P

are shown to

coincide over the T

P

1

terms | hence all sound axioms

lie within �nite higher order bisimulations. Finally in

x5 we construct from these an equivalence over terms

which is preserved by all proofs and pick out bisimilar

but non equivalent terms.

First note that axiomatisations can without loss of

generality be assumed to have free variables only of

speci�ed types. In x4 there will be technical di�culties

with variables of order � 2 so for convenience we shall

assume that there are no free variables of these types.

De�nition Let T be the typed applicative structure

of all terms in the T

�

1

with App

�! �

E F

def

= EF and

const(c)

def

= c, as in [Mit90, x2.4.2].

NotationWe write `: : : substitution � for E;F ' where

E;F are some terms in T

P

!

for substitutions � whose

(�nite) domain includes the free variables of E and F

such that for all x :� �(x) 2 T

�

0

.

De�nition If � is a substitutive congruence over �-

expressions the family of typed relations �

ext

�

over T

is given by

� E �

ext

P

F i� for all substitutions � for E;F

E� � F�.

� E �

ext

�! �

F i� for all G 2 T

�

1

EG �

ext

�

FG.

Theorem 2 If � is a substitutive congruence over �-

expressions then a set of typed equations E over T is

sound for � i� E ��

ext

.

Proof The left to right implication is a simple in-

duction on types. For the right to left one can de�ne

a logical relation over T and show it coincides with

�

ext

. �

3 Higher order bisimulation

In this section a more intensional de�nition of an equi-

valence is given, in two steps. Firstly a notion of higher

order transition system is given and then higher or-

der bisimulation is de�ned over it. The restriction

to low order variables is not yet needed so this is all

over T

P

!

. We generalise a de�nition in [Mil84]. There

(where variables are all of `type P ') an extended trans-

ition system is de�ned over �-expressions consisting of

the usual labelled transitions together with predicates

E B X (pronounced `E sees X' or `X is visible in

E'). An extended bisimulation then requires match-

ing of visibilities at each state as well as transitions

and can be shown equal to the relevant special case

of �

ext

. Here variables may be of higher type and

so applied to arguments (which may themselves be of

higher type) so we need a more sophisticated visibility

predicate.

Notation From now on we take all terms mentioned

to be in normal form unless stated otherwise and work

up to � equivalence when convenient. We write +

in�x except when emphasising the distinction between

lambda calculus terms and others. We write

~

E for a

tuple E

1

� � �E

n

and �! for [

a2Act

a

�!. Bisimulation

over T

P

0

will be written � and �

ext

P

as just �

ext

.

De�nition Take the relations

a

�!j

a2Act

and B to be

the least over normal forms in T

P

!

such that

aE

a

�! E x

~

E B x

~

E

E

a

�! E

0

E + F

a

�! E

0

E B E

0

E + F B E

0

and sym.

E

a

�! E

0

fix �y :P: E

a

�! E

0

[fix �y :P: E=y]

E B x

~

E x 6= y

fix �y :P: E B x

~

E[fix �y :P: E=y]

For example consider the term

E

def

= fix �y :P: by + x(�z :(P!P)!P: (zx+ y))

with fx :P!Pg .E :P . We have

E

b

�! E

and E B x(�z :(P!P)!P:(zx+ E)):

Higher order bisimulation is de�ned using this trans-

ition system:

De�nition If R is a relation on T

P

!

then the typed

relations

^

R

�

over T

�

!

are given by

�

^

R

P

= R

� E

^

R

�! �

F i� for all x :� 2 K that are not free

in E;F Ex

^

R

�

Fx.

Note that we are writing Ex for its normal form, ac-

cording to the convention above.

De�nition Such an R is a higher order bisimulation

if E R F implies

� If E

a

�! E

0

then 9F

0

F

a

�! F

0

and E

0

R F

0

� If E B x

~

E then 9

~

F F B x

~

F and 8i E

i

^

R

�

i

F

i

and vice versa.

For example if

E

def

= fix �x :P: y(yx)

F

def

= fix �x :P: yx

then E �

ho

F is shown by taking a relation

fhE;F i; hyE; F ig, the only visibilities or transitions

being

E B y(y(E)) F B yF

yE B yE F B yF:

As we are working with a mild generalization of �nite

state processes it is to be expected that all higher order

bisimulations between them are in some sense �nitely

generated. This is reasonably straightforward. Here

we need and state a result only for terms in T

P

1

.

De�nition The derivatives of a term E 2 T

P

1

are

der(E)

def

= fF 2 T

P

1

j E

�

Fg where is the least

relation over T

P

1

such that

E �! E

0

) E E

0

E B x

~

E) 8i E E

i

Lemma 1 If E 2 T

P

1

then der(E) is �nite. Further

if E �

ho

F then there is a higher order bisimulation

contained in der(E) � der(F) relating them.

Proof Straightforward. �

The terms in the T

�

!

can be viewed as a small frag-

ment of the higher order � calculus of [San93], taking

a single object sort s 7! () and the agents with no par-

allel composition, in�nitary sum, matching, variables

of sorts containing s or in�nitely many/higher order

de�ned constants. We conjecture that �

ho

coincides

with `normal bisimulation' over these.

4 �

ext

=�

ho

We now show that over T

P

1

the equivalences �

ext

and

�

ho

coincide. First we consider the transitions of a

substituted term E�. The transition and visibility

predicates are related by the following.

Lemma 2 If E 2 T

P

!

, � is a substitution for E and

E�

a

�! A then either E

a

�! E

0

and E

0

� = A or

E B x

~

E and �(x)

~

E�

a

�! A.

Proof Induction on the derivation of E�

a

�! A. �

In general there will be a complex pattern of � reduc-

tion involved in reducing the �(x)

~

E� term appearing

above to normal form. If E 2 T

P

1

and E; �(x) are

in normal form, however, it is simple and a direct in-

ductive characterization of the transitions of E� can

be given. For brevity it is not reproduced here but

is important | the lack of such a result for arbitrary

E is problematic when attempting to prove a more

general nonexistence result.

Notation From now on we let E;F range over T

P

1

.

Theorem 3 If Act is nonempty and E �

ext

F then

E �

ho

F .

Proof Suppose there is some action a 2 Act. By

lemma1 there is a largest N such that some derivative

of E or F is higher order bisimilar to a

N

0 (take N = 0

if there are none such). Using this we construct a

substitution � for E;F . For y :P!� � �!P

| {z }

m times

!P put

�(y)

def

= �z

1

:P: � � ��z

m

:P: aA

y

A

y

def

= a0 + a

N+3+y

0 +

X

i21::m

aB

i

B

i

def

= a

2i

0 + a

2i+1

z

i

(eliding some injective function from variables to the

naturals). One can then check that

fE

0

; F

0

j E

0

2 der(E); F

0

2 der(F) and E

0

� �

ho

F

0

�g

is a higher order bisimulation. �

Theorem 4 If E �

ho

F then E �

ext

F .

Proof Given the premise we must show for all sub-

stitutions � for E;F that E� �

ho

F�. This is done

indirectly. We construct below transition systems

E?�; F?� and show in the next two lemmas that

E� �

ho

E?� �

ho

F?� �

ho

E�:

In the next section information relating the `loop

structure' of E� and F� is extracted from these bisim-

ulations. �

The transition system E?� di�ers from E� in that

states that might be identi�ed by the non-injectivity

of � are split apart. For example if

E

def

= y + aE

0

E

0

def

= fix �x :P: a(z + ax)

�(y)

def

= �(z)

def

= 0

then E�

a

�! E

0

�

a

�! E� whereas E?� is isomorphic

to

�

a

-

�

a

-

�

a

�

To de�ne E?� we �rst �x some notation. Given

� a substitution for E;F we suppose that for all

y :

n times

z }| {

P!� � �!P!P 2 dom(�) that �(y) is of the form

�z

1

:P: � � ��z

n

:P: H

y

with each z

i

not free in E;F

or occuring in dom(�) and y not free in any H

y

0

. The

inference system of x3 is extended to one for inferring

transitions labelled by non empty �nite sequences of

actions, with the rules

E

a

�! F

E

a::nil

�! F

E

a

�! F F

l

�! G

E

a::l

�! F

If d is an inference tree of this system with conclusion

E

l

�! F we write d :E

l

�! F .

De�nitionGiven � a substitution for E the transition

system E?� has states

S

def

= fhE

0

i j E

0

2 der(E)g

] fhH

0

[

~

E=~z]; y

~

E; di j d :H

y

l

�! H

0

and 9E

0

2 der(E) E

0

B y

~

Eg

with root hEi. The de�nitions of the transitions and

visibilities are omitted.

Lemma 3 If � is a substitution for E then

E� �

ho

E?�.

Proof One can check that

fA�; hAi j hAi is a state of E?�g

[fA�; hA;F; di j hA;F; di is a state of E?�g

is a higher order bisimulation, using induction on the

transition derivations. �

Lemma 4 If E �

ho

F and � is a substitution for E;F

then E?� �

ho

F?�.

Proof By lemma1 there is a �nite higher order bisim-

ulation R with E R F . Let the relation Q between the

states of E?� and F?� be

Q

def

= fhE

0

i; hF

0

i j E

0

R F

0

g

[fhH

0

[

~

E=~z]; y

~

E; di; hH

0

[

~

F=~z]; y

~

F ; di j

9E

0

2 der(E); F

0

2 der(F) such that

E

0

B y

~

E;F

0

B y

~

F ;

8j E

j

R F

j

and d :H

y

l

�! H

0

g

One can check that Q is a higher order bisimulation

betwixt E?� and F?�, using induction on the trans-

ition derivations. �

5 Loop properties

The instantiations E�; F� of a higher order bisimilar

E;F are uniform in a sense captured by the following

de�nition and theorem.

De�nition For u � 1 take the predicate L

u

and equi-

valence relation �

u

over states in a transition system

to be

� L

u

s i� s has a loop with no prime factor � u,

i.e. s �!

�

s

0

�!

n

s

0

for some s

0

and n with no

prime factor � u.

� s �

u

s

0

i� 8v � u L

v

s, L

v

s

0

Theorem 5 If E �

ho

F then there is some u � 1

such that for all substitutions � for E;F E� �

u

F�.

Proof This follows from the following two lemmas.�

Lemma 5 If � is a substitution for E then for all

u � 1 E� �

u

E?�.

Proof This is a little intricate and is omitted. �

De�nition For a �nite relation U � A � B say the

width of U is

maxfmax

a2A

#fb j a U bg;max

b2B

#fa j a U bgg:

Lemma 6 If E �

ho

F then there is some u � 1 such

that for all substitutions � for E;F E?� �

u

F?�.

Proof Consider the R and Q in the proof of lemma

4. There is a u � 1, dependent on R but not on

�, strictly greater than the width of Q. To see that

E?� �

u

F?� suppose that s Q t; v � u and L

v

s, i.e.

for some s

0

and some n � 1 with no prime factors � v

s �!

�

s

0

�!

n

s

0

. As Q is a higher order bisimulation

there exist t

i

j

i�0

such that

s

0

s

0

s

0

� � �

Q Q Q � � �

t �!

�

t

0

�!

n

t

1

�!

n

t

2

� � �

but #ft

i

j i � 0g < u so for some k 2 1::u � 1

t �!

�

t

0

�!

kn

t

0

. Further, kn has no prime factors

� v. �

The equivalences �

u

have the following congruence

property.

Lemma 7 For M;N 2 T

P

0

and C[] a context from

C ::= j x j 0 j aC j C +C j fix �a :P: C

(where x :P 2 K), if M �

ho

N and M �

u

N then

C[M] �

u

C[N].

Proof Straightforward. �

Lemma 8 If E is a �nite set of typed equalities that

is sound for bisimulation and of order � 1 then there

is some u � 1 such that for all M;N 2 T

P

0

if E `

M = N :P then M �

u

N .

Proof We assume wlog that E contains only equalit-

ies at type P . By theorem 2 each equation lies within

�

ext

and so by theorem 3 within �

ho

. Take u to be

the largest of those given by theorem 5 applied to each

equation. An induction on a (suitably normalised) de-

rivation of E ` M = N :P then su�ces, using lemma

7 in the inductive steps and theorem 5 at the uses of

axioms. �

The main theorem follows by noting that if E is sound

for an equivalence �ner than bisimulation then it is

sound for bisimulation and that, if q is the smallest

prime strictly greater than the u given by the previous

lemma, then

fix �x :P: ax 6�

u

fix �x :P: a

q

x:

�(of theorem 1)

6 Star expressions

Finite state systems have also been described using

calculi with a unary or binary iteration operator in

place of explicit recursion, such as the following star

expressions

E ::= x j a j 0 j 1 j E + E j E

:

E j E

�

j E

?

E

where a 2 Act. This is as expressive as the �-

expressions, up to language equivalence, however it

expresses fewer bisimulation classes ([Mil84]). The

results of the previous sections can be applied to give

an easy proof of the nonaxiomatisability of bisimula-

tion over these. First we make precise the transition

system and bisimulation semantics used.

De�nitionTake the relations

a

�!j

a2Act

and predicate

p

to be the least over closed star expressions such that

a

a

�! 1 1

p

E

a

�! E

0

E + F

a

�! E

0

and sym.

E

p

E + F

p

E

a

�! E

0

E

:

F

a

�! E

0

:

F

E

p

F

a

�! F

0

E

:

F

a

�! F

0

E

p

F

p

E

:

F

p

E

a

�! E

0

E

�

a

�! E

0

:

E

�

E

�

p

E

a

�! E

0

E

?

F

a

�! E

0

:

(E

?

F)

F

a

�! F

0

E

?

F

a

�! F

0

F

p

E

?

F

p

De�nition Say closed star expressions E;F are bisim-

ilar, written �

p

, if there is a symmetric relation R

such that E R F and for all E

0

R F

0

� If E

0

a

�! E

00

then 9F

00

F

0

a

�! F

00

and E

00

R F

00

� If E

0

p

then F

0

p

.

This di�ers from the semantics of [BBP93, FZ93] in

that to give semantics to 1 a judgement

p

is used

instead of

a

�!

p

. For terms of f1; a;+;

:

g it is that of

[Mol89, x6.3.1] for BPA

�

(identifying 1 and �).

Proposition 1 For terms of f0; a;+;

:

;

?

g bisimula-

tion as de�ned above coincides with bisimulation over

BPA

?

�

(identifying 0 and �) as de�ned in [BBP93].

Proof Straightforward. �

Theorem 6 There is no �nite axiomatisation for

bisimulation over any set of star expressions closed

under f0; a;+;

:

g and one of f

�

;

?

g.

This is shown below. It contrasts nicely with the fol-

lowing.

Theorem 7 (Fokkink and Zantema) The axioms

below are sound and complete for bisimulation over

expressions of fa;+;

:

;

?

g.

x+ y = y + x

(x + y) + z = x+ (y + z)

x+ x = x

(x+ y)

:

z = x

:

z + y

:

z

(x

:

y)

:

z = x

:

(y

:

z)

x

:

(x

?

y) + y = x

?

y

x

?

(y

:

z) = (x

?

y)

:

z

x

?

(y

:

((x+ y)

?

z) + z) = (x+ y)

?

z

Proof This is immediate from the result of [FZ93]

and proposition 1 above. �

The star expressions can be faithfully embedded into

our lambda calculus:

De�nition Take the map [[]] from star expressions to

lambda calculus terms of type P!P to be

[[x]] = x where we suppose x :P!P 2 K

[[a]] = a

[[0]] = �y :P: 0

[[1]] = �y :P: y

[[E + F]] = �y :P: + ([[E]]y)([[F]]y)

[[E

:

F]] = �y :P: [[E]]([[F]]y)

[[E

�

]] = �y :P: fix �z :P: + (y)([[E]]z)

[[E

?

F]] = �y :P: fix �z :P: + ([[F]]y)([[E]]z)

Lemma 9 If y :P 2 K then

E �

p

F () [[E]]y �

ho

[[F]]y:

Proof Straightforward. �

To show theorem 6 consider a sound �nite set A of

axioms. The encodings of these must be higher order

bisimilar (as the terms constructed in the proof of the-

orem 3 are all expressible) so [[A]] is a sound set in our

earlier sense. By lemma 8 there is some u such that

if M;N 2 T

P

0

and [[A]] ` M = N :P then M �

u

N .

Now consider the relevant pair of terms below, where

q is the smallest prime strictly greater than u.

E

def

= a

�

:

0 E

def

= a

?

0

F

def

= (

q times

z }| {

a

:

: : :

:

a)

�

:

0 F

def

= (

q times

z }| {

a

:

: : :

:

a)

?

0

In each case [[E]]y 6�

u

[[F]]y so [[A]] 6` [[E]]y = [[F]]y :P

so A 6` E = F but E �

p

F . �(of theorem 6)

The addition of other operators does not a�ect the

result, so long as their semantics is expressible by an

encoding into lambda terms as above.

7 Discussion

There is a substantial literature dealing with axio-

matisation of equivalences over calculi denoting �nite

state systems. Some of this is referred to in the dia-

gram below, classi�ed by the equivalence, calculus and

strength of logic addressed and labelled

p

(resp. �) if

�nite complete systems are given (resp. shown not to

exist). It is far from exhaustive. In particular no men-

tion is made of calculi with parallel operators or proof

systems with in�nitary rules such as the approxima-

tion induction principle of ACP or the ! rule arising

from domain theoretic models [Hen88]. Care must be

taken when comparing the results as there are di�ering

de�nitions, for example of the star expressions.

Looking �rst at the equational face, it was shown

by Redko [Red64, completed by Pilling] and Conway

[Con71] that no �nite system exists for language equal-

ity of star expressions. The latter and the present work

can both be seen as stemming from the impossibility

of equationally expressing arbitrary `internal' unfold-

ings of iteration/recursion. It would be nice to have

a single proof capturing this. Yanov gave a �nite sys-

tem for language equality of the star expressions whose

languages contain the empty word [Yan] and we have

already seen the �nite system of Fokkink and Zantema

for bisimulation of star expressions without a zero pro-

cess [FZ93].

Turning to the implicational face, for language equi-

valence of star expressions several �nite systems have

been given, of which we recall just a couple of rules.

Salomaa gave an impure system in [Sal66] using the

rule

E = E

:

F + G the empty word not in language(F)

E = G

:

F

�

which has a side condition that is not preserved

by substitution. Pure systems have been given by

Arkhangelskii and Gorshkov [AG87], Bo�a and Krob

[Bof90, Kro91] and Kozen [Koz91]. Sample rules from

these are

(a

1

+ a

2

)

�

:

a

3

= (b

1

+ b

2

)

�

:

b

3

(a

1

+ a

2

)

�

:

a

3

= (b

2

+ b

1

:

a

�

1

:

a

2

)

�

:

(b

3

+ b

1

:

a

�

1

:

a

3

)

x

:

x = x

x

�

= 1 + x

x

:

y + y = y

x

�

:

y + y = y

For bisimulation of �-expressions a �nite implicational

system has been given by Milner [Mil84] with the im-

pure rule we saw in x1. A �nite pure system has been

given by

�

Esik [

�

Esi93] using the rule

fix �u :P: tuu = fix �u :P: t

0

uu

fix �u :P: tuu = fix �v :P: t(fix �u :P: t

0

uv)v

p

[Mil84](impure)

p

[

�

Esi93]

implicational

p

[Sal66](impure)

p

[AG87]

p

[Bof90; Kro91]

p

[Koz91]

�[Sew]

p

[FZ93]

�[Sew] bisimulation

equational

�[Red64]

�[Con71]

p

[Yan](for events � 1)

language

star expressions �-expressions

derived from work on iteration theories.

Finally we should mention that various illuminating

in�nite but simple equational systems exist. Discus-

sion of these may be found for example for language

equivalence of star expressions in [Kro91], in the gen-

eral setting of iteration theories in [BE93a, BE93b,

BET93] and for bisimulation of �-expressions in [Sew].

As to future work, several directions spring to mind.

Firstly one could attempt to remove the restriction in

the present work to axioms of order one. This requires

an improved understanding of the interaction between

� reduction and the transition relation | probably

involving a richer notion of higher order transition

system | that might be interesting for its own sake.

Secondly one could consider coarser equivalences and

richer signatures, for example with a base type A of

actions and a constant : :A!P !P . This would be

closer to the higher order � calculus, with it's distinc-

tion between names and variables.

Acknowledgements I would like to thank particu-

larlymy supervisor, Robin Milner, for many comments

and discussions about this work and also Zolt�an

�

Esik

and Alex Simpson. Paul Taylor's diagram and proof

tree macro packages were used.

References

[AG87] K.B. Arkhangelskii and P.V. Gorshkov. Im-

plicational axioms for the algebra of regular

languages. Doklady Akad. Nauk, USSR, ser

A., 10:67{69, 1987. (in Russian).

[BBP93] J.A. Bergstra, I. Bethke, and A. Ponse. Pro-

cess algebra with iteration. Technical Report

P9314, University of Amsterdam, Program-

ming Reseach Group, June 1993.

[BE93a] Stephen L. Bloom and Zolt�an

�

Esik. Equa-

tional axioms for regular sets. Math. Struct.

in Comp. Science, 3:1{24, 1993.

[BE93b] Stephen L. Bloom and Zolt�an

�

Esik. Itera-

tion Theories: The Equational Logic of It-

erative Processes. EATCS Monographs on

Theoretical Computer Science. Springer Ver-

lag, 1993.

[BET93] Stephen L. Bloom, Zolt�an

�

Esik, and Dirk

Taubner. Iteration theories of synchroniz-

ation trees. Information and Computation,

102(1), January 1993.

[Bof90] M. Bo�a. Une remarque sur les syst�emes

complets d'identit�es rationelles. Theoret. In-

form. Applic., 24(4):419{423, 1990.

[Con71] J.H. Conway. Regular Algebra and Finite

Machines. Chapman and Hall, 1971.

[

�

Esi93] Zolt�an

�

Esik. Personal communication.

November 1993.

[FZ93] Willem Jan Fokkink and Hans Zantema. Ba-

sic process algebra with iteration: Complete-

ness of its equational axioms. Technical Re-

port CS{R9368, CWI, 1993.

[Gla93a] R.J. van Glabeek. A complete axiomat-

ization for branching bisimulation congru-

ence of �nite-state behaviours. In An-

drzej M. Borzyszkowski and Stefan Soko-

lowski, editors, Proceedings 18th Interna-

tional Symposium on Mathematical Founda-

tions of Computer Science 1993; LNCS 711,

pages 473{484, 1993.

[Gla93b] R.J. van Glabeek. Divergence bisimulation.

Personal communication, 1993.

[Hen88] M.C.B Hennessy. Algebraic Theory of Pro-

cesses. London MIT Press, 1988.

[Koz91] Dexter Kozen. A completeness theorem for

Kleene algebras and the algebra of regular

events. In Proc., 7th IEEE Symp. on Logic

in Computer Science, pages 214{225, 1991.

[Kro91] Daniel Krob. Complete systems of b-rational

identities. Theoretical Computer Science,

89:207{343, 1991.

[Mil84] Robin Milner. A complete inference system

for a class of regular behaviours. Journal of

Computer and System Sciences, 28(3):439{

466, 1984.

[Mil89] Robin Milner. A complete axiomatisation

for observational congruence of �nite state

behaviours. Information and Computation,

81:227{247, 1989.

[Mit90] John C. Mitchell. Type systems for program-

ming languages. In The Handbook of Theor-

etical Computer Science, chapter 8. Elsevier

Science, 1990.

[Mol89] Faron Moller. Axioms for Concurrency. PhD

thesis, University of Edinburgh, 1989.

[Rab93] Alexander Rabinovich. A complete axiomat-

isation for trace congruence of �nite state

behaviors. In Austin and Main, editors,

Proceedings of Mathematical Foundations of

Programming Semantics (IX), LNCS, 1993.

(to appear).

[Red64] V.N. Redko. On de�ning relations for the

algebra of regular events. Ukrain. Mat. Zh.,

16:120{126, 1964. (in Russian).

[Sal66] Arto Salomaa. Two complete axiom systems

for the algebra of regular events. Journal of

the ACM, 13(1):158{169, January 1966.

[San93] Davide Sangiorgi. Expressing Mobility in

Process Algebras: First-Order and Higher-

Order Paradigms. PhD thesis, University of

Edinburgh, 1993.

[Sew] Peter Sewell. PhD thesis, University of Ed-

inburgh. Forthcoming.

[Yan] Yanov. See [Con71,p. 108].

