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Abstrat

The dynamis of many aluli an be most learly de�ned by a redution semantis.

To work with a alulus, however, an understanding of operational ongruenes is

fundamental; these an often be given tratable de�nitions or haraterisations using

a labelled transition semantis. This paper onsiders aluli with arbitrary redution

semantis of three simple lasses, �rstly ground term rewriting, then left-linear term

rewriting, and then a lass whih is essentially the ation aluli laking substantive

name binding. General de�nitions of labelled transitions are given in eah ase,

uniformly in the set of rewrite rules, and without requiring the presription of

additional notions of observation. They give rise to bisimulation ongruenes. As a

test of the theory it is shown that bisimulation for a fragment of CCS is reovered.

The transitions generated for a fragment of the Ambient Calulus of Cardelli and

Gordon, and for SKI ombinators, are also disussed briey.

Key words: Operational Semantis, Proess Caluli, Bisimulation, Operational

Congruenes, Term Rewriting, Labelled Transition Systems.
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1 Introdution

The dynami behaviour of many aluli an be de�ned most learly by a

redution semantis, omprising a set of rewrite rules, a set of redution on-

texts in whih they may be applied, and a strutural ongruene. These de�ne

the atomi internal redution steps of terms. To work with a alulus, how-

ever, a ompositional understanding of the behaviour of arbitrary subterms,

as given by some operational ongruene relation, is usually required. The lit-

erature ontains investigations of suh ongruenes for a large number of par-

tiular aluli. They are often given tratable de�nitions or haraterisations

via labelled transition relations, apturing the potential external interations

between subterms and their environments. De�ning labelled transitions that

give rise to satisfatory operational ongruenes generally requires some mix

of alulus-spei� ingenuity and routine work.

In this paper the problem is addressed for arbitrary aluli of ertain simple

forms. We give general de�nitions of labelled transitions that depend only

on a redution semantis, without requiring any additional observations to

be presribed. We �rst onsider term rewriting, with ground or left-linear

rules, over an arbitrary signature but without a strutural ongruene. We

then onsider aluli with arbitrary signatures ontaining symbols 0 and j,

a strutural ongruene onsisting of assoiativity, ommutativity and unit,

left-linear rules, and non-trivial sets of redution ontexts. This suÆes, for

example, to express CCS-style synhronisation. It is essentially the same as

the lass of Ation Caluli in whih all ontrols have arity 0! 0 and take some

number of arguments of arity 0! 0. In eah ase we de�ne labelled transitions,

prove that bisimulation is a ongruene and give some omparison results.

Bakground: From redutions to labelled transitions to redutions...

De�nitions of the dynamis (or small-step operational semantis) of lambda

aluli and sequential programming languages have ommonly been given as

redution relations. The �-alulus has the rewrite rule (�x:M)N�!M [N=x℄

of � redution, whih an be applied in any ontext. For programming lan-

guages, some ontrol of the order of evaluation is usually required. This has
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been done with abstrat mahines, in whih the states, and redutions be-

tween them, are ad-ho mathematial objets. More elegantly, one an give

de�nitions in the strutural operational semantis (SOS) style of Plotkin [33℄;

here the states are terms of the language (sometimes augmented by e.g. a

store), the redutions are given by a syntax-direted indutive de�nition.

Expliit reformulations using rewrite rules and redution ontexts were �rst

given by Felleisen and Friedman [15℄. (We here neglet semantis in the big-

step/evaluation/natural style.)

In ontrast, until reently, de�nitions of operational semantis for proess al-

uli have been primarily given as labelled transition relations. The entral rea-

son for the di�erene is not mathematial, but that lambda and proess terms

have had quite di�erent intended interpretations. The standard interpretation

of lambda terms and funtional programs is that they speify omputations

whih may either not terminate, or terminate with some result that annot

redue further. Conuene properties ensure that suh result terms are unique

if they exist; they an impliitly be examined, either up to equality or up to

a oarser notion. The theory of proesses, however, inherits from automata

theory the view that proess terms may both redue internally and interat

with their environments; labelled transitions allow these interations to be ex-

pressed. Redutions may reate or destroy potential interations. Termination

of proesses is usually not a entral onept, and the struture of terms, even

of terms that annot redue, is not onsidered examinable.

An additional, more tehnial, reason is that de�nitions of the redutions for

a proess alulus require either auxiliary labelled transition relations or a

non-trivial strutural ongruene. For example, onsider the CCS fragment

below.

P ::= 0

�

�

� �:P

�

�

� ��:P

�

�

� P jP � 2 A

Its standard semantis has redutions P�!Q but also labelled transitions

P

�

�!Q and P

��

�!Q. These represent the potentials that P has for synhro-

nising on �. They an be de�ned by an SOS

Out

��:P

��

�!P

In

�:P

�

�!P

Com

P

��

�!P

0

Q

�

�!Q

0

P jQ�!P

0

jQ

0

Com

0

P

�

�!P

0

Q

��

�!Q

0

P jQ�!P

0

jQ

0

Par

P

�

�!Q

P jR

�

�!Q jR

Par

0

P

�

�!Q

R jP

�

�!R jQ

where

�

�! is either �!,

�

�! or

��

�!. It has been noted by Berry and Boudol

[7℄, following work of Banâtre and Le M�etayer [5℄ on the � language, that
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semanti de�nitions of proess aluli ould be simpli�ed by working modulo

an equivalene that allows the parts of a redex to be brought syntatially

adjaent. Their presentation is in terms of Chemial Abstrat Mahines; in a

slight variation we give a redution semantis for the CCS fragment above. It

onsists of the rewrite rule ��:P j�:Q�!P jQ, the set of redution ontexts

given by

C ::=

�

�

� C jP

�

�

� P jC

and the strutural ongruene � de�ned to be the least ongruene satisfying

P � P j 0, P jQ � Q jP and P j(Q jR) � (P jQ) jR. Modulo use of � on the

right, this gives exatly the same redutions as before. For this toy alulus

the two de�nitions are of similar omplexity. For the �-alulus ([27℄, building

on [14℄), however, Milner has given a redution semantis that is muh sim-

pler than the rather deliate SOS de�nitions of � labelled transition systems

[28℄. Following this, more reent name passing proess aluli have often been

de�ned by a redution semantis in some form, e.g. the HO� [35℄, � [32℄, Join

[17℄, Blue [9℄, Spi [1℄, dpi [39℄, D� [34℄ and Ambient [10℄ Caluli.

Turning to operational ongruenes, for onuent aluli the de�nition of an

appropriate operational ongruene is relatively straightforward, even in the

(usual) ase where the dynamis are expressed as a redution relation. For ex-

ample, for a simple eager funtional programming language, with a base type

Int of integers, terminated states of programs of type Int are learly observable

up to equality. These basi observations an be used to de�ne a Morris-style

operational ongruene. Several authors have onsidered tratable harater-

isations of these ongruenes in terms of bisimulation { see e.g. [25,2,21℄ and

the referenes therein, and [22℄ for related work on an objet alulus.

For non-onuent aluli the situation is more problemati { proess aluli

having labelled transition semantis have been equipped with a plethora of

di�erent operational equivalenes, whereas rather few styles of de�nition have

been proposed for those having redution semantis. In the labelled transition

ase there are many more-or-less plausible notions of observation, di�ering

e.g. in their treatment of linear/branhing time, of internal redutions, of ter-

mination and divergene, et. Some of the spae is illustrated in the surveys

of van Glabbeek [19,20℄. The diÆulty here is to selet a notion that is ap-

propriate for a partiular appliation; one attempt is in [36℄. In the redution

ase we have the onverse problem { a redution relation does not of itself

seem to support any notion of observation that gives rise to a satisfatory

operational ongruene. This was expliitly addressed for CCS and �-aluli

by Milner and Sangiorgi in [30,35℄, where barbed bisimulation equivalenes

are de�ned in terms of redutions and observations of barbs. These are vesti-

gial labelled transitions, similar to the distinguished observable transitions in

the tests of De Niola and Hennessy [12℄. The expressive power of their al-
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uli suÆes to reover early labelled transition bisimulations as the indued

ongruenes. Related work of Honda and Yoshida [24℄ uses insensitivity as

the basi observable; that of Montanari and Sassone [31℄ takes the usual CCS

labelled transitions but by requiring ontext-losure at every step of a bisim-

ulation gives the oarsest notion of weak bisimulation that is simultaneously

a ongruene. Rensink [40℄ studies bisimulation diretly on open terms.

...to labelled transitions Summarizing, de�nitions of operational ongru-

enes, for aluli having redution semantis, have generally been based either

on observation of terminated states, in the onuent ase, or on observation

of some barbs, where a natural de�nition of these exists. In either ase, har-

aterisations of the ongruenes in terms of labelled transitions, involving as

little quanti�ation over ontexts as possible, are desirable. Moreover, some

reasonable aluli may not have a natural de�nition of barb that indues an

appropriate ongruene.

In this paper we show that labelled transitions that give rise to bisimulation

ongruenes an be de�ned purely from the redution semantis of a alu-

lus, without presribing any additional observations. We onsider only simple

lasses of redution semantis, not involving name or variable binding, but

hope that these will be a �rst step towards a generally appliable theory. As a

test of the de�nitions we show that they reover the usual bisimulation on the

CCS fragment above. We also disuss term rewriting and a fragment of the

Ambient alulus of Cardelli and Gordon. To diretly express the semantis of

more interesting aluli requires a riher framework. One must deal with bind-

ing, with rewrite rules involving term or name substitutions, with a strutural

ongruene that allows sope mobility, and with more deliate sets of redu-

tion ontexts. The Ation Caluli of Milner [29℄ are a andidate framework

that allows several of the aluli mentioned above to be de�ned leanly; this

work an be seen as a step towards understanding operational ongruenes for

arbitrary ation aluli. Bisimulation for a partiular ation alulus, repre-

senting a �-alulus, has been studied by Mifsud [26℄. More generally (in work

that is yet to be published), Jensen has onsidered a form of graph rewriting

that idealizes ation aluli and Leifer has studied lasses of Ation Caluli

obeying ertain arity restritions. The approahes adopted in these and in the

urrent work are losely related.

Labelled transitions intuitively apture the possible interations between a

term and a surrounding ontext. The entral idea of this work is to make this

intuition expliit { the labels of transitions from a term s will be ontexts

that, when applied to s, reate an ourrene of a rewrite rule. In the next

three setions we develop the theory for ground term rewriting, then for left-

linear term rewriting, and then with the addition of an ACI (assoiativity,

ommutativity and identity) strutural ongruene and redution ontexts.

Setion 5 ontains some onluding remarks. Most proofs are banished to the
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appendies or omitted; details an be found in the tehnial report [37℄. An

extended abstrat appeared in [38℄.

2 Ground term rewriting

In this setion we onsider one of the simplest possible lasses of redution

semantis, that of ground term rewriting. The de�nitions and proofs are here

rather straightforward, but provide a guide to those in the following two se-

tions.

Redutions We take essentially standard de�nitions of rewrite systems (see

e.g. [4℄ for an introdution) but for onveniene in later setions work with

ontexts and ontext omposition rather than open terms and substitution.

We �x a signature onsisting of a (possibly in�nite) set � of funtion symbols,

ranged over by �, and an arity funtion j j from � to N . We say an n-hole

ontext over the signature, with holes

1

; : : : ;

n

, is linear if it has exatly one

ourrene of eah of the n holes. In this setion a; b; l; r; s; t range over terms,

A;B;C;D; F;H range over linear unary ontexts and E ranges over linear

binary ontexts. Context omposition and appliation of ontexts to (tuples

of) terms are written A

:

B and A

:

s, the identity ontext as and tupling

with +. We take a (possibly in�nite) set R of rewrite rules, eah onsisting of

a pair hl; ri of terms. The redution relation between terms over � is then

s�!t

def

, 9hl; ri 2 R; C : s = C

:

l ^ C

:

r = t

Labelled Transitions The transitions of a term s will be labelled by linear

unary ontexts. Transitions s�!t labelled by the identity ontext are simply

redutions (analogous to � -transitions). Transitions s

F

�!t for F 6= indiate

that applying F to s reates an instane of a rewrite rule, with target instane

t. For example, given a signature with onstants � and Æ, a unary , and the

rule

(�)�!Æ

we will have labelled transitions

C

:

(�)�!C

:

Æ

for all C and also

�

( )

�!Æ
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s

l

t

s

s

r

F

F 6=F =

s

t

lC

rC

Fig. 1. Contextual Labelled Transitions s

F

�!t for Ground Term Rewriting.

but not

�

C

:

( )

�! C

:

Æ

for C 6= . The labels are fF j 9hl; ri 2 R; s : F

:

s = l g and the ontextual

labelled transition relations

F

�! are de�ned by the lauses below, illustrated

in Figure 1.

� s�!t

def

, s�!t

� s

F

�!t

def

, 9hl; ri 2 R : F

:

s = l ^ r = t for F 6=

Bisimulation Congruene Let � be strong bisimulation with respet to

these transitions, i.e. the largest binary relation over terms suh that for any

s � s

0

� s

F

�!t =) 9t

0

: s

0

F

�!t

0

^ t � t

0

� s

0

F

�!t

0

=) 9t : s

F

�!t ^ t � t

0

The ongruene proof for � is straightforward. It is given in some detail as a

guide to the more intriate orresponding proofs in the following two setions,

whih have the same struture. Three lemmas (2{4) show how ontexts in

labels and in the soures of transitions interrelate; they are proved by ase

analysis using a dissetion lemma whih is standard folklore.

Lemma 1 (Dissetion) If A

:

a = B

:

b then one of the following ases holds.

(1) (b is in a) There exists D suh that a = D

:

b and A

:

D = B.

(2) (a is properly in b) There exists D with D 6= suh that D

:

a = b and

A = B

:

D.

(3) (a and b are disjoint) There exists E suh that A = E

:

( + b) and

B = E

:

(a+ ).

Lemma 2 (Forwards-1) If A

:

s�!t then one of the following holds:
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(1) There exists some H suh that t = H

:

s and for any ŝ we have

A

:

ŝ�!H

:

ŝ.

(2) There exists some

^

t, A

1

and A

2

suh that A = A

1

:

A

2

, s

A

2

�!

^

t and t =

A

1

:

^

t.

Proof By the de�nition of redution

9hl; ri 2 R; C : A

:

s = C

:

l ^ C

:

r = t

Applying the dissetion lemma (Lemma 1) to A

:

s = C

:

l gives the following

ases.

(1) (l is in s) There exists B suh that s = B

:

l and A

:

B = C. Taking

^

t = B

:

r, A

1

= A and A

2

= the seond lause holds.

(2) (s is properly in l) There exists B with B 6= suh that B

:

s = l and

A = C

:

B. Taking

^

t = r, A

1

= C and A

2

= B the seond lause holds.

(3) (s and l are disjoint) There exists E suh that A = E

:

( + l) and C =

E

:

(s+ ). Taking H = E

:

( + r) the �rst lause holds.

2

Lemma 3 (Forwards-2) If A

:

s

F

�!t and F 6= then s

F

:

A

�!t.

Proof By the de�nition of labelled transitions 9hl; ri 2 R : F

:

A

:

s = l ^ r =

t. Clearly F

:

A is linear and F

:

A 6= so s

F

:

A

�!t. 2

Lemma 4 (Bakwards) If s

F

:

A

�!t then A

:

s

F

�!t.

Proof If F

:

A = then F = A = so the onlusion is immediate, otherwise

by the de�nition of transitions 9hl; ri 2 R : F

:

A

:

s = l ^ r = t. One then has

A

:

s

F

�!t by the de�nition of transitions, by ases for F 6= and F = . 2

Proposition 5 � is a ongruene.

Proof We show

S

def

= fA

:

s; A

:

s

0

j s � s

0

^ A : 1! 1 linear g

is a bisimulation.

(1) Suppose A

:

s�!t.

By Lemma 2 one of the following holds:

(a) There exists some H suh that t = H

:

s and for any ŝ we have

A

:

ŝ�!H

:

ŝ.

Instantiating, A

:

s

0

�!H

:

s

0

, and learly H

:

s S H

:

s

0

.

(b) There exists some

^

t, A

1

and A

2

suh that A = A

1

:

A

2

, s

A

2

�!

^

t and

t = A

1

:
^

t.
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By s � s

0

there exists

^

t

0

suh that s

0

A

2

�!

^

t

0

�

^

t.

By Lemma 4 A

2

:

s

0

�!

^

t

0

.

By the de�nition of redution A

1

:

A

2

:

s

0

�!A

1

:

^

t

0

, and learly

A

1

:
^

t S A

1

:
^

t

0

.

(2) Suppose A

:

s

F

�!t for F 6= .

By Lemma 3 s

F

:

A

�!t.

By s � s

0

there exists t

0

suh that s

0

F

:

A

�!t

0

� t.

By Lemma 4 A

:

s

0

F

�!t

0

, and learly t S t

0

.

2

Remark An alternative approah would be to take transitions

� s

F

�!

alt

t

def

, F

:

s�!t

for unary linear ontexts F . Note that these are de�ned using only the redu-

tion relation, whereas the de�nition above involved the redution rules. Let

�

alt

be strong bisimulation with respet to these transitions. One an show

that �

alt

is a ongruene and moreover is una�eted by utting down the label

set to that onsidered above. In general �

alt

is stritly oarser than �. For an

example of the non-inlusion, if the signature onsists of onstants �; � and

a unary symbol  with redution rules ��!�, ��!� and (�)�!�, then

� 6� � whereas � �

alt

�. The details an be found in Appendix A. This in-

sensitivity to the possible interations of terms that have internal transitions

suggests that the analogue of �

alt

, in more expressive settings, is unlikely to

oinide with standard bisimulations for partiular aluli. Indeed, one an

show that applying the alternative de�nition to the fragment of CCS

P ::= 0

�

�

� �

�

�

� ��

�

�

� P jP � 2 A

(with its usual redution relation as de�ned in Setion 1) gives an equivalene

that identi�es � j �� with � j

�

� for �; � 2 A; these are not identi�ed in any

reasonable operational ongruene.

Remark In the proofs of Lemmas 2{4 the labelled transition exhibited for

the onlusion involves the same rewrite rule as the transition in the premise.

One ould therefore take the �ner transitions

� s�!t

def

, s�!t

� s

F

�!

hl;ri

t

def

, hl; ri 2 R ^ F

:

s = l ^ r = t for F 6=

annotated by the rewrite rule involved, and still have a ongruene result. In

some ases this gives a �ner bisimulation relation (.f. the arithmeti example

in Setion 3). There are intermediate de�nitions { in fat any partition of the

rule set R gives rise to a bisimulation that is a ongruene relation, taking
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labelled transitions annotated by the equivalene lass of the rule involved.

3 Term rewriting with left-linear rules

In this setion the de�nitions are generalised to left-linear term rewriting, as a

seond step towards a framework expressive enough for simple proess aluli.

Notation In the next two setions we must onsider more omplex dissetions

of ontexts and terms. It is onvenient to treat ontexts and terms uniformly,

working with n-tuples of m-hole ontexts for m;n � 0. Conretely, we work

in the ategory C

�

that has the natural numbers as objets and arrows

i 2 1::m

h

i

i

m

:m! 1

ha

1

i

m

:m! 1 � � � ha

n

i

m

:m! 1

ha

1

; : : : ; a

n

i

m

:m!n

ha

1

; : : : ; a

j�j

i

m

:m!j�j

h�(a

1

; : : : ; a

j�j

)i

m

:m! 1

The identity on m is id

m

def

= h

1

; : : : ;

m

i

m

, omposition is substitution, with

ha

1

; : : : ; a

n

i

m

:

hb

1

; : : : ; b

m

i

l

= ha

1

[b

1

=

1

; : : : ; b

m

=

m

℄; : : : ; a

n

[b

1

=

1

; : : : ; b

m

=

m

℄i

l

.

C

�

has stritly assoiative binary produts, written with +. If a :m! k and

b :m! l we write a � b for (a + b)

:

h

1

; : : : ;

m

;

1

; : : : ;

m

i

m

:m! k + l. Angle

brakets and domain subsripts will often be elided. We let a; b; e; q; r; s; t; u; v

range over 0!m arrows, i.e. m-tuples of terms, and A;B; : : : range over

m! 1 arrows, i.e. m-hole ontexts. Say an arrow is a permutation if it is of

the form h

�(1)

; : : : ;

�(m)

i

m

where � is a permutation of the set f1; : : : ; mg. A

family of arrows �

i

:m!m

i

for i 2 1::k where m

1

+ : : :+m

k

= m is a partition

if �

1

� : : : � �

m

is a permutation. We write perm

m;n

for the permutation

h

n+1

; : : : ;

n+m

;

1

; : : : ;

n

i

m+n

:n +m!m + n. Say an arrow ha

1

; : : : ; a

n

i

m

is

linear if it ontains exatly one ourrene of eah

1

; : : : ;

m

and aÆne if

it ontains at most one ourrene of eah. We sometimes abuse notation in

examples, writing ;

1

;

2

; : : : instead of

1

;

2

;

3

; : : : .

Remark Many slight variations of C

�

are possible. We have hosen to take

the objets to be natural numbers, instead of �nite sets of variables, to give

a lighter notation for labels. The onrete syntax is hosen so that arrows

from 0 to 1 are exatly the standard terms over �, modulo elision of the angle

brakets and subsript 0.

Redutions The usual notion of left-linear term rewriting is now expressible

as follows. We take a (possibly in�nite) setR of rewrite rules, eah onsisting of

a triple hn; L;Ri where n � 0, L :n! 1 is linear and R :n! 1. The redution

relation over f s j s : 0! 1 g is then de�ned by

s�!t

def

, 9hm;L;Ri 2 R; C : 1! 1 linear; u : 0!m :

s = C

:

L

:

u ^ C

:

R

:

u = t

10



Labelled Transitions The labelled transitions of a term s : 0! 1 will again

be of two forms, s�!t, for internal redutions, and s

F

�!T where F 6= is a

ontext that, together with part of s, makes up the left hand side of a rewrite

rule. For example, given the rule

Æ(( ))�!�( )

we will have labelled transitions

(s)

Æ( )

�!�(s)

for all terms s : 0! 1. Labelled transitions in whih the label ontributes the

whole of the left hand side of a rule would be redundant (they are not required

in the ongruene proof), so the de�nition will exlude e.g. s

Æ(( ))

�! �(s). Now

onsider the rule

�(�; ( ))�!�( )

As before there will be labelled transitions

(s)

�(�; )

�! �(s)

for all s. In addition, one an onstrut instanes of the rule by plaing the

term � in ontexts �( ; (t)), suggesting labelled transitions �

�( ;(t))

�! �(t) for

any t. Instead, to keep the label sets small, and to apture the uniformity

in t, we allow both labels and targets of transitions to be parametri in un-

instantiated arguments of the rewrite rule. In this ase the de�nition will give

�

�( ;(

1

))

�! �(

1

)

In general, then, the ontextual labelled transitions are of the form s

F

�!T , for

s : 0! 1, F : 1 + n! 1 and T :n! 1. The �rst argument of F is the hole in

whih s an be plaed to reate an instane of a rule L; the other n arguments

are parameters of L that are not thereby instantiated. The transitions are

de�ned as follows.

� s�!T

def

, s�!T .

� s

F

�!T , for F : 1 + n! 1 linear and not the identity, i� there exist

hm;L;Ri 2 R with m � n

� :m!m a permutation

L

1

:(m� n)! 1 linear and not the identity

u : 0!(m� n)

11



F

R

m� n

n

1

n

L

1

m� n

m� n

L

1

T

s

L

�

�1

m

�

u

u

Fig. 2. Contextual Labelled Transitions for Left-Linear Term Rewriting. Boxes with

m input wires (on their right) and n output wires (on their left) represent n-tuples

of m-hole ontexts. Wires are ordered from top to bottom.

suh that

L = F

:

(L

1

+ id

n

)

:

�

s = L

1

:

u

T = R

:

�

�1

:

(u+ id

n

)

The de�nition is illustrated in Figure 2. The restrition to L

1

6= id

1

exludes

transitions where the label ontributes the whole of L. The permutation � is

required so that the parameters of L an be divided into the instantiated and

uninstantiated. For example the rule

�(Æ(

1

); (

2

); �)�!�(

1

;

2

)

will give rise to transitions

Æ(s)

�( ;(

1

);�)

�! �(s;

1

) �

�(Æ(

1

);(

2

); )

�! �(

1

;

2

)

(s)

�(Æ(

1

); ;�)

�! �(

1

; s) �

�(Æ(

2

);(

1

); )

�! �(

2

;

1

)

(The last is redundant; it ould be exluded by requiring � to be a monotone

partition of m into m� n and n. )

Bisimulation Congruene A binary relation S over terms f a j a : 0! 1 g

is lifted to a relation over fA j A :n! 1 g by A [S℄ A

0

def

, 8b : 0!n : A

:

b S

A

0

:

b. Say S is a bisimulation if for any s S s

0

� s

F

�!T =) 9T

0

: s

0

F

�!T

0

^ T [S℄ T

0

� s

0

F

�!T

0

=) 9T : s

F

�!T ^ T [S℄ T

0

12



and write � for the largest suh. As before the ongruene proof requires a

simple dissetion lemma and three lemmas relating ontexts in soures and

labels. Their proofs an be found in Appendix B.

Lemma 6 (Dissetion) If A

:

a = B

:

b, for m � 0, A : 1! 1 and B :m! 1

linear, a : 0! 1 and b : 0!m then one of the following holds.

(1) (a is not in any omponent of b) There exist

m

1

and m

2

suh that m

1

+m

2

= m

�

i

:m!m

i

for i 2 f1; 2g a partition

C : 1 +m

2

! 1 linear

D :m

1

! 1 linear and not the identity

suh that

A = C

:

(id

1

+ �

2

:

b)

a = D

:

�

1

:

b

B = C

:

(D + id

m

2

)

:

(�

1

� �

2

)

i.e. there are m

1

omponents of b in a and m

2

in A.

(2) (a is in a omponent of b) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

E : 1! 1 linear

suh that

A=B

:

(�

1

� �

2

)

�1

:

(E + �

2

:

b)

E

:

a= �

1

:

b

Lemma 7 (Forwards-1) If A

:

s�!t and A : 1! 1 linear then one of the

following holds.

(1) There exists some H : 1! 1 suh that t = H

:

s and for all ŝ : 0! 1 we

have A

:

ŝ�!H

:

ŝ.

(2) There exist k � 0, F : 1 + k! 1 linear, T : k! 1, D : 1! 1 linear and

v : 0! k, suh that s

F

�!T , A = D

:

F

:

(id

1

+ v) and t = D

:

T

:

v.

Lemma 8 (Forwards-2) If A

:

s

F

�!T for A : 1! 1 linear, F : 1+n! 1 and

F 6= id

1

then one of the following holds.

(1) There exists H : 1+n! 1 suh that T = H

:

(s+ id

n

) and for all ŝ : 0! 1

we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

(2) There exist p � 0, E : 1 + p! 1 linear,

^

T : p + n! 1 and v : 0! p, suh

that s

F

:

(E+id

n

)

�!

^

T , T =

^

T

:

(v + id

n

) and A = E

:

(id

1

+ v).

13



Lemma 9 (Bakwards) If s

C

:

(E+id

n

)

�! T for E : 1 + p! 1 linear and C : 1 +

n! 1 linear then for all v : 0! p we have E

:

(s+ v)

C

�!T

:

(v + id

n

).

Theorem 10 � is a ongruene.

Proof We show S

�

, where

S

def

= fA

:

s; A

:

s

0

j s � s

0

^ A : 1! 1 linear g

is a bisimulation. First note that for any (possibly non-linear) A : 1! 1 and

s � s

0

we have A

:

s S

�

A

:

s

0

. To see this, take n � 0 and

^

A :n! 1 linear suh

that A =

^

A

:

h

1

; : : : ;

1

i

1

. Let

A

1

def

=

^

A

:

h

1

; s; s; : : : ; si

1

A

2

def

=

^

A

:

hs

0

;

1

; s; : : : ; si

1

:::

A

n

def

=

^

A

:

hs

0

; s

0

; s

0

; : : : ;

1

i

1

Eah A

i

is linear, so A

i

:

s S A

i

:

s

0

. Moreover A

i

:

s

0

= A

i+1

:

s for i 2 1::n� 1

so A

:

s = A

1

:

s S

n

A

n

:

s

0

= A

:

s

0

.

We now show that if A : 1! 1 linear, s � s

0

and A

:

s

F

�!T then there exists

T

0

suh that A

:

s

0

F

�!T

0

and T [S

�

℄ T

0

.

(1) Suppose A

:

s�!t.

By Lemma 7 one of the following holds:

(a) There exists some H : 1! 1 suh that t = H

:

s and for all ŝ : 0! 1

we have A

:

ŝ�!H

:

ŝ.

Hene A

:

s

0

�!H

:

s

0

.

Clearly t = H

:

s S

�

H

:

s

0

.

(b) There exist k � 0, F : 1+k! 1 linear, T : k! 1, D : 1! 1 linear and

v : 0!k, suh that s

F

�!T , A = D

:

F

:

(id

1

+ v) and t = D

:

T

:

v.

By s � s

0

there exists T

0

suh that s

0

F

�!T

0

^ T [�℄ T

0

.

By Lemma 9 F

:

(s

0

+ v)�!T

0

:

v.

By the de�nition of redution A

:

s

0

= D

:

F

:

(s

0

+ v)�!D

:

T

0

:

v.

Clearly t = D

:

T

:

v S

�

D

:

T

0

:

v.

(2) Suppose A

:

s

F

�!T for F : 1 + n! 1 linear and F 6= id

1

.

By Lemma 8 one of the following holds.

(a) There exists H : 1 + n! 1 suh that T = H

:

(s + id

n

) and for all

ŝ : 0! 1 we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

Hene A

:

s

0

F

�!H

:

(s

0

+ id

n

)

Clearly T = H

:

(s+ id

n

) [S

�

℄ H

:

(s

0

+ id

n

).
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(b) There exist p � 0, E : 1 + p! 1 linear,

^

T : p + n! 1 and v : 0! p,

suh that s

F

:

(E+id

n

)

�!

^

T , T =

^

T

:

(v + id

n

) and A = E

:

(id

1

+ v).

By s � s

0

there exists

^

T

0

suh that s

0

F

:

(E+id

n

)

�!

^

T

0

^

^

T [�℄

^

T

0

.

By Lemma 9 A

:

s

0

= E

:

(s

0

+ v)

F

�!

^

T

0

:

(v + id

n

).

Clearly T =

^

T

:

(v + id

n

) [S

�

℄

^

T

0

:

(v + id

n

).

Now if

A

1

:

s

1

S A

1

:

s

0

2

= A

2

:

s

2

S : : : S A

n�1

:

s

0

n

for A

i

linear and s

i

� s

0

i+1

, for i 2 1::n� 1, and A

1

:

s

1

F

�!T

1

then by the

above there exists T

n

suh that A

n�1

:

s

0

n

F

�!T

n

and T

1

[S

�

℄

n

T

n

, so T

1

[S

�

℄ T

n

.

2

Remark The de�nition of transitions above redues to that of Setion 2 if

all rules are ground. For open rules, instead of allowing parametri labels,

one ould simply lose up the rewrite rules under instantiation, by Cl(R) =

f h0; L

:

u; R

:

ui j hn; L;Ri 2 R ^ u : 0!n g, and apply the earlier de�nition.

In general this would give a stritly oarser ongruene. For an example of

the non-inlusion, take a signature onsisting of a nullary � and a unary ,

with R onsisting of the rules ( )�!( ) and ((�))�!((�)). We have

Cl(R) = f 

n

�; 

n

� j n � 1 g. The transitions are



n

� �!

R



n

� 

n

� �!

Cl(R)



n

�

�

(( ))

�!

R

((�)) �



n

�!

Cl(R)



n

�

(�)

( )

�!

R

((�)) 

m

�



n

�!

Cl(R)



m+n

�

for m;n � 1, so (�) 6�

R

((�)) but (�) �

Cl(R)

((�)). The proof of the

following proposition an be found in Appendix B.

Proposition 11 If s �

R

s

0

then s �

Cl(R)

s

0

.

Comparison Bisimulation as de�ned here is a ongruene for arbitrary left-

linear term rewriting systems. Muh work on term rewriting deals with redu-

tion relations that are onuent and terminating. In that setting terms have

unique normal forms; the primary equivalene on terms is ', where s ' t if s

and t have the same normal form. This is easily proved to be a ongruene.

In general, it is inomparable with �. To see one non-inlusion, note that �

is sensitive to atomi redution steps; for the other that � is not sensitive to

equality of terms { for example, with only nullary symbols �; �; , and rewrite

rule �!�, we have � � � and � ' , whereas � 6' � and � 6� . One might

address the seond non-inlusion by �at, adding, for any value v, a unary test

operator H

v

and redution rule H

v

(v)�!v. For the �rst, one might move to a

15



weak bisimulation, abstrating from redution steps. The simplest alternative

is to take � to be the largest relation S suh that if s S s

0

then

� s�!T =) 9T

0

: s

0

�!

�

T

0

^ T [S℄ T

0

� (s

F

�!T ^ F 6= ) =) 9T

0

: s

0

�!

�

F

�!T

0

^ T [S℄ T

0

and symmetri lauses.

Say the set R of rewrite rules is right-aÆne if the right hand side of eah rule

is aÆne. The following ongruene result is proved in Appendix B; whether it

holds without the restrition on R is left open.

Theorem 12 If R is right-aÆne then � is a ongruene.

Example { Arithmeti

1

Write�

0

for the variant of � de�ned using labelled

transitions annotated by the rewrite rule involved, for transitions with non-

identity labels. As before, the ongruene proof for � an easily be adapted

to �

0

. For some rewrite systems �

0

oinides with '. Taking a signature �

omprising nullary zero and unary su and pred, and rewrite rules

(a) pred(su(

1

)) �!

1

(b) pred(zero) �! zero

gives labelled transitions

su(s)

pred( )

�!

(a)

s

zero

pred( )

�!

(b)

zero

together with the redutions �!. Here the normal forms are simply the nat-

urals su

n

(zero) for n � 0; the relations �

0

and ' oinide with eah other

and with the standard equality on natural numbers. Note that in the non-

annotated LTS every term has a weak transition �!

�

pred( )

�! so the bisimulation

� will not be suÆiently disriminating.

In general, however, �

0

and ' still di�er. For example, with unary , nullary

�, and rules (�)�!� and ((�))�!�, we have � 6�

0

(�) but all terms

have normal form �. This may be a pathologial rule set; one would like to

have onditions exluding it under whih �

0

(or �) and ' oinide.

Example { SKI Combinators Taking a signature � omprising nullary

I;K; S and binary �, and rewrite rules

S �

1

�

2

�

3

�!

1

�

3

�(

2

�

3

)

K �

1

�

2

�! h

1

i

2

I �

1

�!

1

1

It should be noted that the example given in [37,38℄ ontained errors.
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gives labelled transitions

S

�

1

�

2

�

3

�!

1

�

3

�(

2

�

3

)

S � s

�

1

�

2

�! s �

2

�(

1

�

2

)

S � s � t

�

1

�! s �

1

�(t �

1

)

K

�

1

�

2

�! h

1

i

2

K � s

�

1

�! hsi

1

I

�

1

�!

1

together with some permutation instanes of these and the redutions �!.

The signi�ane of � and � here is unlear. Note that the rules are not right-

aÆne, so Theorem 12 does not guarantee that � is a ongruene { the question

is open. It is quite intensional, being sensitive to the number of arguments

that an be onsumed immediately by a term. For example, K �(K � s) 6�

S �(K �(K � s)).

4 Term rewriting with left-linear rules, parallel and bloking

In this setion we extend the setting to one suÆiently expressive to de�ne

the redution relations of simple proess aluli. We suppose the signature �

inludes binary and nullary symbols j and 0, for parallel and nil, and take a

strutural ongruene � generated by assoiativity, ommutativity and iden-

tity axioms. Parallel will be written in�x. The redution rules R are as before.

We now allow symbols to be bloking, i.e. to inhibit redution in their argu-

ments. For eah � 2 � we suppose given a set B(�) � f1; : : : ; j�jg de�ning the

argument positions where redution may take plae. We require B(j) = f1; 2g.

The redution ontexts C � fC j C : 1! 1 linear g are generated by

id

1

2 C

i 2 B(�) hai

1

2 C

h�(s

1

; : : : ; s

i�1

; a; s

i+1

; : : : ; s

j�j

)i

1

2 C

Formally, strutural ongruene is de�ned over all arrows of C

�

as follows. It

is a family of relations indexed by domain and odomain arities; the indexes

will usually be elided. The �rst 3 rules impose the ACI properties of j; the

others are ongruene rules.

hai

m

:m! 1

hai

m

�

m;1

ha j 0i

m

ha

i

i

m

:m! 1 i 2 f1; 2g

ha

1

j a

2

i

m

�

m;1

ha

2

j a

1

i

m

ha

i

i

m

:m! 1 i 2 f1; 2; 3g

ha

1

j(a

2

j a

3

)i

m

�

m;1

h(a

1

j a

2

) j a

3

i

m

i 2 1::m

h

i

i

m

�

m;1

h

i

i

m

ha

i

i

m

�

m;1

hb

i

i

m

i 2 f1::ng

ha

1

::a

n

i

m

�

m;n

hb

1

::b

n

i

m

f �

m;n

g

g �

m;n

f

f �

m;n

g g �

m;n

h

f �

m;n

h

ha

1

::a

j�j

i

m

�

m;j�j

hb

1

::b

j�j

i

m

h�(a

1

::a

j�j

)i

m

�

m;1

h�(b

1

::b

j�j

)i

m

Redutions The redution relation over f s j s : 0! 1 g is de�ned by s�!t

i�

9hm;L;Ri 2 R; C 2 C; u : 0!m : s � C

:

L

:

u ^ C

:

R

:

u � t
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This lass of aluli is essentially the same as the lass of Ation Caluli in

whih there is no substantive name binding, i.e. those in whih all ontrols K

have arity rules of the form

a

1

: 0! 0 � � � a

r

: 0! 0

K(a

1

; : : : ; a

r

) : 0! 0

(here the a

i

are ations, not arrows from C

�

). It inludes simple proess aluli.

For example, the fragment of CCS in Setion 1 an be spei�ed by taking a

signature �

CCS

onsisting of unary �: and ��: for eah � 2 A, with 0 and j,

and rewrite rules

R

CCS

= f h2; �:

1

j ��:

2

;

1

j

2

i j � 2 Ag

B

CCS

(�:)=B

CCS

(��:) = fg

Notation For a ontext f :m!n and i 2 1::m say f is shallow in argument

i if all ourrenes of

i

in f are not under any symbol exept j. Say f is deep

in argument i if any ourrene of

i

in f is under some symbol not equal

to j. Say f is shallow (deep) if it is shallow (deep) in all i 2 1::m. Say f is

i-separated if there are no ourrenes of any

j

in parallel with an ourrene

of

i

. Say f is i-lean if

i

does not our in parallel with any term, and f is

lean if it is i-lean for all i 2 1::m, i.e. if it ontains no subterm

j

j a or a j

j

for any j.

Labelled Transitions The labelled transitions will be of the same form as

in the previous setion, with transitions s

F

�!T for s : 0! 1, F : 1 +n! 1 and

T :n! 1. A non-trivial label F may either ontribute a deep subontext of

the left hand side of a rewrite rule (analogous to the non-identity labels of the

previous setion) or a parallel omponent, respetively with F deep or shallow

in its �rst argument. The ases must be treated di�erently. For example, the

rule

� j��!

will generate labelled transitions

s j�

j�

�!s j s j�

j�

�!s j 

for all s : 0! 1. As before, transitions that ontribute the whole of the left

hand side of a rule, suh as s

j� j�

�! s j, are redundant and will be exluded. It

is neessary to take labels to be subontexts of left hand sides of rules up to

strutural ongruene, not merely up to equality. For example, given the rule

(� j�) j( j Æ)�!�
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we need labelled transitions

� j  j r

j(� j Æ)

�! � j r

Finally, the existene of rules in whih arguments our in parallel with non-

trivial terms means that we must deal with partially instantiated arguments.

Consider the rule

�(�(

1

) j

3

;

2

)�!R

The term �(�) j � ould be plaed in any ontext �( j s; t) to reate an instane

of the left hand side, with � (from the term) instantiating

1

, t (from the

ontext) instantiating

2

, and � j s (from both) instantiating

3

. There will be

a labelled transition

�(�) j �

�( j

2

;

1

)

�! R

:

h�;

1

; � j

2

i

2

parametri in two plaes but partially instantiating the seond by �.

The general de�nition of transitions is given in Figure 3. It uses addi-

tional notation { we write par

n

for h

1

j(: : : j

n

)i

n

:n! 1 and ppar

n

for

h

1

j

n+1

; : : : ;

n

j

n+n

i

n+n

:n + n!n. Some parts of the de�nition are illus-

trated in Figure 4, in whih retangles denote ontexts and terms, triangles

denote instanes of par, and hathed triangles denote instanes of ppar.

To a �rst approximation, the de�nition for F deep in 1 states that s

F

�!T

i� there is a rule L�!R, with L;R :m

1

+m

2

+m

3

! 1, suh that L an be

fatored into L

2

(with m

2

arguments) enlosing L

1

(with m

1

arguments) in

parallel with m

3

arguments. The soure s is L

1

instantiated by u, in parallel

with e; the label F is roughly L

2

; the target T is R with m

1

arguments

instantiated by u and m

3

partially instantiated by e.

The de�nition for F shallow in 1 states that s

F

�!T i� there is a rule L�!R

suh that L an be fatored into L

1

(with m

1

arguments) in parallel with

L

2

(with m

2

arguments) and with m

3

other arguments. The soure s is L

1

instantiated by u, in parallel with e and with an arbitrary term q; the label F

is roughly L

2

; the target T is R with m

1

arguments instantiated by u and m

3

partially instantiated by e, again all in parallel with q. It is worth noting that

the non-identity labelled transitions do not depend on the set of redution

ontexts.

The intention is that the labelled transition relations provide just enough in-

formation so that the redutions of a term A

:

s are determined by the labelled

transitions of s and the struture of A, whih is the main property required

for a ongruene proof. The key lemma (Lemma 27, in Appendix C.2) involves

a detailed analysis of possible ourrenes of an instane L

:

u of the left hand

side L of a rewrite rule within a term A

:

s. Inspetion of the proof of this
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Transitions s

F

�!T , for s : 0! 1, F : 1+n! 1 linear and T :n! 1, are de�ned

by:

� For F � id

1

: s

F

�!T i�

9hm;L;Ri 2 R; C 2 C; u : 0!m : s � C

:

L

:

u ^ C

:

R

:

u � T

� For F deep in argument 1: s

F

�!T i� there exist

hm;L;Ri 2 R

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m and n = m

3

+m

2

� :m!m a permutation

L

1

:m

1

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

u : 0!m

1

e : 0!m

3

suh that

L � L

2

:

(par

1+m

3

:

(L

1

+ id

m

3

) + id

m

2

)

:

�

s � par

1+m

3

:

(L

1

:

u+ e)

T � R

:

�

�1

:

(u+ ppar

m

3

:

(id

m

3

+ e) + id

m

2

)

F � L

2

:

(par

1+m

3

+ id

m

2

)

m

3

= 1 =) L

1

6� h0i

0

� For F shallow in argument 1 and F 6� id

1

: s

F

�!T i� there exist

hm;L;Ri 2 R

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m and n = m

3

+m

2

� :m!m a permutation

q : 0! 1

L

1

:m

1

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

u : 0!m

1

e : 0!m

3

suh that

L � par

2+m

3

:

(L

1

+ id

m

3

+ L

2

)

:

�

s � par

2+m

3

:

(q + L

1

:

u+ e)

T � par

2

:

(q +R

:

�

�1

:

(u+ ppar

m

3

:

(id

m

3

+ e) + id

m

2

))

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

m

3

= 0 =) L

1

6� h0i

0

Fig. 3. Contextual Labelled Transitions
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lemma may make it seem plausible that the labelled transitions provide no

extraneous information, but a preise result would be desirable.

Bisimulation Congruene Bisimulation � is de�ned exatly as in the pre-

vious setion. As before, the ongruene proof requires dissetion lemmas,

analogous to Lemmas 1 and 6, lemmas showing that if A

:

s has a transition

then s has a related transition, analogous to Lemmas 2,3 and 7,8, and partial

onverses to these, analogous to Lemmas 4 and 9. All exept the statement

of the main dissetion lemma are deferred to Appendix C.

Lemma 13 (Dissetion) If m � 0,

A : 1! 1 B :m! 1

a : 0! 1 b : 0!m

with A and B linear, and A

:

a � B

:

b, then one of the following hold

(1) (a is not deeply in any omponent of b) There exist

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m

�

1

:m!m

1

; �

2

:m!m

2

and �

3

:m!m

3

a partition

C : 1 +m

2

! 1 linear and 1-separated

D :m

1

! 1 linear and deep

e

1

: 0!m

3

e

2

: 0!m

3

suh that

A � C

:

(par

1+m

3

:

(id

1

+ e

2

) + �

2

:

b)

a � par

1+m

3

:

(D

:

�

1

:

b + e

1

)

B � C

:

(par

1+m

3

:

(D + id

m

3

) + id

m

2

)

:

(�

1

� �

3

� �

2

)

�

3

:

b � ppar

m

3

:

(e

1

+ e

2

)

There are m

1

of the b in a, m

2

of the b in A and m

3

of the b potentially

overlapping A and a. The latter are split into e

1

, in a, and e

2

, in A.

(2) (a is deeply in a omponent of b) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

E : 1! 1 linear and deep

suh that

A�B

:

(�

1

� �

2

)

�1

:

(E + �

2

:

b)

E

:

a� �

1

:

b

The �rst lause of the lemma is illustrated in Figure 5. For example, onsider

A

:

a � B

:

b � �(�(�

1

) j �

1

j �

2

; �

2

), where

A = �( j �

2

; �

2

) B = �(�(

1

) j

3

;

2

)

a = �(�

1

) j �

1

b = h�

1

; �

2

; �

1

j �

2

i

0
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L

1

m

1

1

m

3

u

e

1

m

3

e

u

q

1

1

m

3

L

1

m

2

1

m

3

1

L

2

L

1

m

1

1

m

3

m

2

L

2

�

m

u

em

3

R

m

1

m

2

�

�1

m

2

L

2

L

s

F

T

�

m

L

1

1

m

3

1

L

2

u

e
m

3

R

m

1

m

2

q

m

1

m

2

m

1

�

�1

Deep Shallow

Fig. 4. Contextual Labelled Transitions Illustrated
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1

m

3

m

2

C

�

2

:

b

e

2

e

1

�

1

:

b

D

m

1

m

2

�

1

m

3

m

2

C

A a

B b

�

e

2

�

2

:

b

1

m

3

D �

1

:

b

e

1

m

3

m

1

m

1

�

�1

Fig. 5. Clause 1 of Dissetion Lemma

Clause 1 of the lemma holds, with

C = �(

1

;

2

)

D = �(

1

)

e

1

= �

1

e

2

= �

2

�

1

:

b = �

1

�

2

:

b = �

2

m = 3

m

1

= 1

m

2

= 1

m

3

= 1

�

1

= h

1

i

3

�

2

= h

2

i

3

�

3

= h

3

i

3

This dissetion should give rise to a transition

�(�

1

) j �

1

�( j

2

;

1

)

�! R

:

h�

1

;

2

;

1

j �

1

i

2

(taking A; a; B; b to be the D; s; L; u in ase i of Lemma 27).

Theorem 14 � is a ongruene.

Proof We show that (� S)

�

, where

S

def

= fA

:

s; A

:

s

0

j s � s

0

^ A : 1! 1 linear g

is a bisimulation. As before, note that for any A : 1! 1 and s � s

0

we have

A

:

s S

�

A

:

s

0

. We �rst show that if A : 1! 1 linear, s � s

0

and A

:

s

F

�!T then

there exists T

0

suh that A

:

s

0

F

�!T

0

and T � [S

�

℄ T

0

.
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(1) Suppose A

:

s

I

�!t and I � id

1

. By Lemma 27 one of the following holds:

(a) There exists some H : 1! 1 suh that t � H

:

s and

8ŝ : 0! 1 : A

:

ŝ�!H

:

ŝ.

Hene A

:

s

0

�!H

:

s

0

.

Clearly t � H

:

s S

�

H

:

s

0

.

(b) There exist n � 0, F :(1+n)! 1 linear, T :n! 1, C 2 C and v : 0!n

suh that s

F

�!T , A � C

:

F

:

(id

1

+ v) and t � C

:

T

:

v.

By s � s

0

there exists T

0

suh that s

0

F

�!T

0

^ T [�℄ T

0

.

By Lemma 30 F

:

(s

0

+ v)�!T

0

:

v.

By the de�nition of redution A

:

s

0

� C

:

F

:

(s

0

+ v)�!C

:

T

0

:

v.

Clearly t � C

:

T

:

v S

�

C

:

T

0

:

v.

(2) Suppose A

:

s

F

�!T for A : 1! 1 linear and F : 1 + n! 1 linear and deep

in 1. By Lemma 28 one of the following holds.

(a) There exists H : 1 + n! 1 suh that T � H

:

(s + id

n

) and for all

ŝ : 0! 1 we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

Hene A

:

s

0

F

�!H

:

(s

0

+ id

n

).

Clearly T � H

:

(s+ id

n

) [S

�

℄ H

:

(s

0

+ id

n

).

(b) There exist

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

suh that n = m

3

+m

2

L

12

: 1 +m

12

! 1 linear, deep in 1 and 1-separated

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

13

+m

12

+m

3

+m

2

! 1

v

3

: 0!m

13

v

2

: 0!m

12

e : 0!m

3

suh that

s

L

2

:

(par

1+m

3

+id

m

2

)

:

(L

12

+id

n

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

F � L

2

:

(par

1+m

3

+ id

m

2

)

T �

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e+ id

m

3

) + id

m

2

)

A � par

1+m

3

:

(L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

By s � s

0

there exists

^

T

0

suh that

^

T [�℄

^

T

0

and

s

0

L

2

:

(par

1+m

3

+id

m

2

)

:

(L

12

+id

n

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

0

By Lemma 31 A

:

s

0

F

�!

^

T

0

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

).

Clearly T �

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

) [S

�

℄

^

T

0

:

(v

3

+

v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

).
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() There exist

m

12

� 0 and m

2

� 0 and m

3

� 0 suh that n = m

3

+m

2

L

12

:m

12

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

3

+m

12

+m

2

! 1

v : 0!m

12

^

â : 0!m

3

suh that

s

L

2

:

(par

2+m

3

+id

m

2

)

:

(id

1

+id

m

3

+L

12

+id

m

2

)

�!

^

T

F � L

2

:

(par

1+m

3

+ id

m

2

)

T �

^

T

:

(ppar

m

3

:

(id

m

3

+

^

â) + v + id

m

2

)

A � par

2+m

3

:

(id

1

+ L

12

:

v +

^

â)

By s � s

0

there exists

^

T

0

suh that

^

T [�℄

^

T

0

and

s

0

L

2

:

(par

2+m

3

+id

m

2

)

:

(id

1

+id

m

3

+L

12

+id

m

2

)

�!

^

T

0

By Lemma 32 A

:

s

0

F

�!

^

T

0

:

(ppar

m

3

:

(id

m

3

+

^

â) + v + id

m

2

). Clearly

T �

^

T

:

(ppar

m

3

:

(id

m

3

+

^

â)+v+ id

m

2

) [S

�

℄

^

T

0

:

(ppar

m

3

:

(id

m

3

+

^

â)+

v + id

m

2

).

(3) Suppose A

:

s

F

�!T for A : 1! 1 linear and F : 1+n! 1 linear, shallow in

1 and F 6� id

1

.

By Lemma 29 one of the following holds.

(a) There exists H : 1 + n! 1 suh that T � H

:

(s + id

n

) and for all

ŝ : 0! 1 we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

Hene A

:

s

0

F

�!H

:

(s

0

+ id

n

).

Clearly T � H

:

(s+ id

n

) [S

�

℄ H

:

(s

0

+ id

n

).

(b) There exist

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

suh that n = m

3

+m

2

q : 0! 1

L

12

: 1 +m

12

! 1 linear, deep and 1-separated

L

2

:m

2

! 1 linear and deep

^

T :m

13

+m

12

+m

3

+m

2

! 1

v

3

: 0!m

13

v

2

: 0!m

12

e : 0!m

3
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suh that

s

par

2+m

3

:

(L

12

+id

m

3

+L

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T � par

2

:

(q +

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e+ id

m

3

) + id

m

2

))

A � par

2+m

3

:

(q + L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

m

3

= 0 =) L

2

6� h0i

0

By s � s

0

there exists

^

T

0

suh that

^

T [�℄

^

T

0

and

s

0

par

2+m

3

:

(L

12

+id

m

3

+L

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

0

By Lemma 33 A

:

s

0

F

�!par

2

:

(q +

^

T

0

:

(v

3

+ v

2

+ppar

m

3

:

(e+ id

m

3

) +

id

m

2

)). Clearly T � par

2

:

(q +

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) +

id

m

2

)) [S

�

℄ par

2

:

(q +

^

T

0

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

)).

() There exist

m

12

� 0 and m

2

� 0 and m

3

� 0 suh that n = m

3

+m

2

a

0

: 0! 1

L

12

:m

12

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

^

T :m

3

+m

12

+m

2

! 1

v

2

: 0!m

12

a

000

: 0!m

3

suh that

s

par

3+m

3

:

(id

1

+id

m

3

+L

12

+L

2

)

�!

^

T

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T � par

2

:

(a

0

+

^

T

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+ id

m

2

))

A � par

1+2+m

3

:

(id

1

+ a

0

+ L

12

:

v

2

+ a

000

)

m

3

= 0 =) L

2

6� h0i

0

By s � s

0

there exists

^

T

0

suh that

^

T [�℄

^

T

0

and

s

0

par

3+m

3

:

(id

1

+id

m

3

+L

12

+L

2

)

�!

^

T

0

By Lemma 34 A

:

s

0

F

�!par

2

:

(a

0

+

^

T

0

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+

id

m

2

)). Clearly T � par

2

:

(a

0

+

^

T

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+

id

m

2

)) [S

�

℄ par

2

:

(a

0

+

^

T

0

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+ id

m

2

)).

Now if

r

1

� A

1

:

s

1

S A

1

:

s

0

2

� A

2

:

s

2

S : : : S A

n�1

:

s

0

n
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for A

i

linear and s

i

� s

0

i+1

, for i 2 1::n� 1, and r

1

F

�!T

1

then by the losure of

transitions under �, and the above, there exists T

n

suh that A

n�1

:

s

0

n

F

�!T

n

and T

1

[(� S)

�

℄ T

n

.

2

Remark The de�nitions allow only rather rude spei�ations of the set C of

redution ontexts. They ensure that C has a number of losure properties,

whih are used in the proof of Lemma 27 (in Appendix C.2). Some redution

semantis require more deliate sets of redution ontexts. For example, for

a list ons onstrutor one might want to allow redution ontexts ons( ; e)

and ons(v; ), where e is arbitrary but v ranges only over some given set of

values. This would require a non-trivial generalisation of the theory.

Example { CCS synhronization For our CCS fragment the de�nition

gives

�:u j r

j ��:

1

�! u j

1

j r

��:u j r

j�:

1

�! u j

1

j r

together with struturally ongruent transitions, i.e. those generated by

s

0

� s s

F

�!T T � T

0

F � F

0

s

0

F

0

�!T

0

and the redutions.

Proposition 15 � oinides with bisimulation over the labelled transitions

of Setion 1.

Proof Write �

std

for the standard bisimulation over the labelled transitions of

Setion 1. To show�

std

is a bisimulation for the ontextual labelled transitions,

suppose P �

std

P

0

and P

j ��:

1

�!T . There must exist u and r suh that P �

�:u j r and T � u j

1

j r, but then P

�

�! � u j r, so there exists Q

0

suh that

P

0

�

�!Q

0

�

std

u j r. There must then exist u

0

and r

0

suh that P

0

� �:u

0

j r

0

and

Q � u

0

j r

0

, hene P

0

j ��:

1

�!u

0

j

1

j r

0

. Using the fat that �

std

is a ongruene we

have 8s : u j s j r �

std

u

0

j s j r so T [�

std

℄ u

0

j

1

j r

0

.

For the onverse, suppose P � P

0

and P

�

�!Q. There must exist u and r suh

that P � �:u j r and Q � u j r, but then P

j ��:

1

�!u j

1

j r, so there exists T

0

suh

that P

0

j ��:

1

�!T

0

^ (u j

1

j r) [�℄ T

0

. There must then exist u

0

and r

0

suh that

P

0

� �:u

0

j r

0

and T

0

� u

0

j

1

j r

0

, hene P

0

�

�!u

0

j r

0

. By the de�nition of [ ℄ we

have P

0

� u j 0 j r � u

0

j 0 j r

0

. 2
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The standard transitions oinide (modulo strutural ongruene) with the

ontextual labelled transitions with their parameter instantiated by 0. One

might look for general onditions on R under whih bisimulation over suh

0-instantiated transitions is already a ongruene, and oinides with �.

Example { Ambient movement The CCS fragment is degenerate in sev-

eral respets { in the left hand side of the rewrite rule there are no nested

non-parallel symbols and no parameters in parallel with any non-0 term, so

there are no deep transitions and no partial instantiations. As a less degen-

erate example we onsider a fragment of the Ambient Calulus [10℄ without

binding. The theory gives rise to a labelled transition relation and bisimula-

tion ongruene that appear plausible, though we leave an exat omparison

with the bisimulation in [10℄ to future work. The signature �

Amb

has unary

m[ ℄ (written out�x), in m:, out m: and open m:, for all m 2 A. Of these only

the m[ ℄ allow redution. The rewrite rules R

Amb

are

n[in m:

1

j

2

℄ jm[

3

℄ �! m[n[

1

j

2

℄ j

3

℄

m[n[out m:

1

j

2

℄ j

3

℄ �! n[

1

j

2

℄ jm[

3

℄

open m:

1

jm[

2

℄ �!

1

j

2

The de�nition gives the transitions below, together with struturally ongruent

transitions, permutation instanes, and the redutions.

in m:s j r

n[ j

1

℄ jm[

2

℄

�! m[n[s j r j

1

℄ j

2

℄

n[in m:s j t℄ j r

jm[

1

℄

�! m[n[s j t℄ j

1

℄ j r

m[s℄ j r

n[in m:

1

j

2

℄ j

�! m[n[

1

j

2

℄ j s℄ j r

out m:s j r

m[n[ j

1

℄ j

2

℄

�! n[s j r j

1

℄ jm[

2

℄

n[out m:s j t℄ j r

m[ j

1

℄

�! n[s j t℄ jm[r j

1

℄

open n:s j r

jn[

1

℄

�! s j

1

j r

n[s℄ j r

open n:

1

j

�!

1

j s j r

5 Conlusion

We have given general de�nitions of ontextual labelled transitions, and bisim-

ulation ongruene results, for three simple lasses of redution semantis. It is

preliminary work { the de�nitions may inform work on partiular interesting

aluli, but to diretly apply the results they must be generalized to more ex-

pressive lasses of redution semantis. Several diretions are suggested below.
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There is, of ourse, no guarantee that for any partiular alulus the bisim-

ulation given by the general theory will be satisfatory. The CCS example

may be suggestively positive, but the fat that di�erent sets of redution rules

(de�ning the same redution relation) an give rise to di�erent bisimulation

relations implies that in some ases the bisimulation is bound not to be desir-

able. Examination of more serious examples is required. Moreover, any general

theory is liable to involve heavier notation than work on a single partiular

alulus, where one an �nely tune the notation and de�nitions { one might

well expet to have to hand-optimise the general labelled transitions produed

for a partiular alulus in order to obtain a tratable set.

Colouring The de�nition of labelled transitions in Setion 4 is rather intriate

{ for tratable generalisations, to more expressive settings, one would like a

more onise haraterisation. A promising approah seems to be to work

with oloured terms, in whih eah symbol exept j and 0 is given a tag from

a set of olours. This gives a notion of ourrene of a symbol in a term

that is preserved by strutural ongruene and ontext appliation, and hene

provides a di�erent way of formalising the idea that the label of a transition

s

F

�!T must be part of a redex within F

:

s. For the ase of ground term

rewriting with parallel one an de�ne labelled transitions by

� s

F

�!t

def

, 9hl; ri 2 R; s; D : 1! 1 linear : F

red

:

s � D

blue

:

l

red

^ jsj � s ^

t � D

:

r

where bold s ranges over terms of the oloured signature, supersripts olour

all the symbols in the unoloured term to whih they are applied, and j j

removes olour tags. This appears to give rise to satisfatory bisimulation

ongruenes, with essentially the same labelled transitions as the de�nition of

Setion 4 restrited to the ground ase.

Summation The de�nitions and results of Setion 4 are for signatures with a

single ACI operator, whih allow the redution semantis of the CCS fragment

P ::= 0

�

�

�:P

�

�

��:P

�

�

P jP � 2 A

to be expressed. To express the redution semantis of the fragment with

summation

P ::= 0

�

�

�:P

�

�

��:P

�

�

P jP

�

�

P + P � 2 A

requires two ACI operators (with + bloking); the redution rules are then

(��:P +Q) j(�:P

0

+Q

0

)�!P jP

0

Extending the theory to a lass of signatures inluding this would involve new

dissetion results.

29



Higher order rewriting Funtional programming languages an generally be

equipped with straightforward de�nitions of operational ongruene, involving

quanti�ation over ontexts. As disussed in the introdution, in several ases

these have been given tratable haraterisations in terms of bisimulation. One

might generalise the term rewriting ase of Setion 3 to some notion of higher

order rewriting [42℄ equipped with non-trivial sets of redution ontexts, to

investigate the extent to whih this an be done uniformly.

Name binding To express aluli with mobile sopes, suh as the �-alulus

and its desendants, one requires a syntax with name binding, and a strutural

ongruene allowing sope extrusion. Generalising the de�nitions of Setion 4

to the lass of all non-higher-order ation aluli would take in a number of

examples, some of whih urrently lak satisfatory operational ongruenes,

and should show how the indexed struture of � labelled transitions arises

from the rewrite rules and strutural ongruene.

Ultimately one would like to treat onurrent funtional languages. In parti-

ular ases it has been shown that one an de�ne labelled transitions that give

rise to bisimulation ongruenes, e.g. by Ferreira, Hennessy and Je�rey for

Core CML [16℄. To express the redution semantis of suh languages would

require both higher order rules and a rih strutural ongruene.

Observational ongruenes We have foussed on strong bisimulation,

whih is a very intensional equivalene. It would be interesting to know the

extent to whih ongruene proofs an be given uniformly for equivalenes

that abstrat from branhing time, internal redutions et. More partiularly,

one would like to know whether Theorem 12 holds without the restrition to

right-aÆne rewrite rules. As usual, one would expet bisimulation to di�er

from any truly observational equivalene for a programming language. It is

arguable, however, that it will always be �ner { if the language primitives for

external input and output are designed to appear (from inside the language)

just as other internal interations, then the ontextual labelled transitions

should arry enough information. On a related note, one an de�ne barbs

for an arbitrary alulus by s # () 9F 6� id

1

; T : s

F

�!T , so s # i� s has

some potential interation with a ontext. Conditions under whih this barbed

bisimulation ongruene oinides with � ould provide a useful test of the

expressiveness of aluli.

Strutural operational semantis This work has taken redution seman-

tis as primary, showing how labelled transition relations an be de�ned from

a set of redution rules. These de�nitions are not, however, indutive on term

struture { we have not onstruted an SOS from a set of redution rules. Sev-

eral authors taken labelled transitions as primary, onsidering aluli equipped

with labelled transitions de�ned by an SOS in some well-behaved format; .f.

among others [3,6,8,13,18,23,41℄. The relationship between the two is unlear
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{ one would like onditions on rewrite rules that ensure the labelled tran-

sitions of Setion 4 are de�nable by a funtorial operational semantis [41℄.

Conversely, one would like onditions on an SOS ensuring that it is hara-

terised by a redution semantis. General ongruene results have also been

given for aluli with semantis given by open-map-preserving funtors, e.g.

in [11℄. Again, the relationship with the present work requires study.
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A Proofs for Setion 2

For the inlusion of � in �

alt

:

Proposition 16 If s � t then s �

alt

t.

Proof It is straightforward to show that f s; s

0

j s � s

0

g is a bisimulation

with respet to

F

�!

alt

. 2

For the example showing the non-inlusion, the terms are 

n

(�) and 

n

(�) for

n � 0. The transitions are



n

(�)�! 

n

(�)



n

(�)�! 

n

(�)



n

(�)�! 

n�1

(�) if n � 1

�

( )

�!�

so � 6� � whereas the alternative transitions are



n

(�) �!

alt



n

(�)



n

(�) �!

alt



n

(�)



n

(�) �!

alt



n�1

(�) if n � 1



n

(�)

( )

�!

alt



1+n

(�)



n

(�)

( )

�!

alt



1+n

(�)



n

(�)

( )

�!

alt



n

(�)

(onsidering only those from the ut-down label set) so � �

alt

�.
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B Proofs for Setion 3

Proof of Lemma 6 The proof is by indution on the struture of A and B.

2

Proof of Lemma 7 By the de�nition of labelled transitions

9hm;L;Ri 2 R; C : 1! 1 linear; u : 0!m : A

:

s = C

:

L

:

u ^ C

:

R

:

u = t

Applying Lemma 1 to A

:

s = C

:

(L

:

u) gives the following ases.

(1) (L

:

u is in s) There exists B : 1! 1 linear suh that s = B

:

L

:

u and

A

:

B = C. Taking k = 0, F = id

1

, T = B

:

R

:

u, D = A and v = hi

0

the

seond lause holds.

(2) (s is properly in L

:

u) There exists B : 1! 1 linear with B 6= suh that

B

:

s = L

:

u and A = C

:

B. Applying Lemma 6 to B

:

s = L

:

u one of

the following hold.

(a) (s is not in any omponent of u) There exist

m

1

and m

2

suh that m

1

+m

2

= m

�

i

:m!m

i

for i 2 f1; 2g a partition

F : 1 +m

2

! 1 linear

G :m

1

! 1 linear and not the identity

suh that

B = F

:

(id

1

+ �

2

:

u)

s = G

:

�

1

:

u

L = F

:

(G+ id

m

2

)

:

(�

1

� �

2

)

i.e. there are m

1

omponents of u in s and m

2

in B. Taking k = m

2

,

T = R

:

(�

1

� �

2

)

�1

:

(�

1

:

u+ id

m

2

), D = C and v = �

2

:

u the seond

lause holds. By B 6= id

1

we know F 6= id

1

. There is a transition

s

F

�!R

:

(�

1

� �

2

)

�1

:

(�

1

:

u+ id

m

2

)

with witness

hm;L;Ri 2 R

m

1

and m

2

suh that m

1

+m

2

= m

(�

1

� �

2

) :m!m a permutation

G :m

1

! 1 linear and not the identity

F : 1 +m

2

! 1 linear and not the identity

�

1

:

u : 0!m

1
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(b) (s is in a omponent of u) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

F : 1! 1 linear

suh that

B=L

:

(�

1

� �

2

)

�1

:

(F + �

2

:

u)

F

:

s=�

1

:

u

Taking H = C

:

R

:

(�

1

� �

2

)

�1

:

(F + �

2

:

u) the �rst lause holds.

(3) (s and L

:

u are disjoint) There exists E : 2! 1 linear suh that A =

E

:

( + L

:

u) and C = E

:

(s + ). Taking H = E

:

( + R

:

u) the �rst

lause holds.

2

Proof of Lemma 8 By the de�nition of labelled transitions there exist

hm;L;Ri 2 R with m � n

� :m!m a permutation

L

1

:(m� n)! 1 linear and not the identity

u : 0!(m� n)

suh that

L = F

:

(L

1

+ id

n

)

:

�

A

:

s = L

1

:

u

T = R

:

�

�1

:

(u+ id

n

)

Let m

1

= m � n and m

2

= n. Applying Lemma 6 to A

:

s = L

1

:

u one of the

following hold.

(1) (s is not in any omponent of u) There exist

m

1

1

and m

1

2

suh that m

1

1

+m

1

2

= m

1

�

i

:m

1

!m

1

i

for i 2 f1; 2g a partition

E : 1 +m

1

2

! 1 linear

G :m

1

1

! 1 linear and not the identity

suh that

A = E

:

(id

1

+ �

2

:

u)

s = G

:

�

1

:

u

L

1

= E

:

(G+ id

m

1

2

)

:

(�

1

� �

2

)

i.e. there are m

1

1

omponents of u in s and m

1

2

in A. Taking p = m

1

2

,

^

T = R

:

((�

1

� �

2

+ id

m

2

)

:

�)

�1

:

(�

1

:

u + id

m

12

+ id

m

2

) and v = �

2

:

u we

33



have lause 2. There is a transition

G

:

�

1

:

u

F

:

(E+id

n

)

�! R

:

((�

1

� �

2

+ id

m

2

)

:

�)

�1

:

(�

1

:

u+ id

m

12

+ id

m

2

)

with witness

hm;L;Ri 2 R

m

11

and m

12

+m

2

suh that m

11

+m

12

+m

2

= m

((�

1

� �

2

+ id

m

2

)

:

�) :m!m a permutation

G :m

11

! 1 linear and not the identity

F

:

(E + id

n

) : 1 +m

12

+m

2

! 1 linear and not the identity

�

1

:

u : 0!m

11

(2) (s is in a omponent of u) m

1

� 1 and there exist

�

1

:m

1

! 1 and �

2

:m

1

!(m

1

� 1) a partition

J : 1! 1 linear

suh that

A=L

1

:

(�

1

� �

2

)

�1

:

(J + �

2

:

u)

J

:

s= �

1

:

u

Taking H = R

:

�

�1

:

((�

1

� �

2

)

�1

:

(J + �

2

:

u) + id

m

2

) we have lause 1.

There is a transition

A

:

ŝ

F

�!R

:

�

�1

:

((�

1

� �

2

)

�1

:

(J + �

2

:

u) + id

m

2

)

:

(ŝ + id

m

2

)

with witness

hm;L;Ri 2 R

m

1

and m

2

suh that m

1

+m

2

= m

� :m!m a permutation

L

1

:m

1

! 1 linear and not the identity

F : 1 +m

2

! 1 linear and not the identity

(�

1

� �

2

)

�1

:

(J

:

ŝ + �

2

:

u) : 0!m

1

2

Proof of Lemma 9 There are three ases. Firstly, suppose p + n = 0 and

C

:

(E + id

n

) = id

1

. It must then be that C = id

1

and E = id

1

, so the

onlusion is trivially true. Otherwise, by the de�nition of labelled transitions

there exist

hm;L;Ri 2 R with m � (p + n)

� :m!m a permutation

L

1

:(m� (p+ n))! 1 linear and not the identity

u : 0!(m� (p+ n))
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suh that

L = C

:

(E + id

n

)

:

(L

1

+ id

(p+n)

)

:

�

s = L

1

:

u

T = R

:

�

�1

:

(u+ id

(p+n)

)

Consider arbitrary v : 0! p.

(1) Case C = id

1

. Here n = 0 so

E

:

(s+ v) = L

:

�

�1

:

(u+ v)

�!R

:

�

�1

2

:

(u+ v)

= T

:

v

(2) Case C 6= id

1

. There is a transition

E

:

(s+ v)

C

�!T

:

(v + id

n

)

with witness

hm;L;Ri 2 R

(m� n) and n suh that (m� n) + n = m

� :m!m a permutation

E

:

(L

1

+ id

p

) :(m� n)! 1 linear and not the identity

C : 1 + n! 1 linear and not the identity

(u+ v) : 0!(m� n)

2

Proof of Proposition 11 We hek �

R

is a bisimulation for the transitions

F

�!

Cl(R)

. Consider s �

R

s

0

.

(1) Suppose s�!

Cl(R)

t. Trivially s�!

R

t. By s �

R

s

0

there exists t

0

suh that

s

0

�!

R

t

0

and t �

R

t

0

. Trivially s

0

�!

Cl(R)

t

0

.

(2) Suppose s

F

�!

Cl(R)

t and F 6= id

1

. By de�nition there exist hm;L;Ri 2 R

and v : 0!m suh that F

:

s = L

:

v and R

:

v = t. Applying Lemma 6

one of the following hold.

(a) (s is not in any omponent of v) There exist

m

1

and m

2

suh that m

1

+m

2

= m

�

i

:m!m

i

for i 2 f1; 2g a partition

C : 1 +m

2

! 1 linear

D :m

1

! 1 linear and not the identity

suh that

F = C

:

(id

1

+ �

2

:

v)

s = D

:

�

1

:

v

L = C

:

(D + id

m

2

)

:

(�

1

� �

2

)
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i.e. there are m

1

omponents of v in s and m

2

in F . Here

s

C

�!

R

R

:

(�

1

� �

2

)

�1

:

(�

1

:

v + id

m

2

). By s �

R

s

0

there exists T

0

suh

that s

0

C

�!

R

T

0

and R

:

(�

1

� �

2

)

�1

:

(�

1

:

v + id

m

2

) [�

R

℄ T

0

. By the

de�nition of transitions there exist

hm

0

; L

0

; R

0

i 2 R with m

0

� m

2

� :m

0

!m

0

a permutation

L

0

1

:(m

0

�m

2

)! 1 linear and not the identity

u

0

: 0!(m

0

�m

2

)

suh that

L

0

= C

:

(L

0

1

+ id

m

2

)

:

�

s

0

= L

0

1

:

u

0

T

0

= R

0

:

�

�1

:

(u

0

+ id

m

2

)

and we have

F

:

s

0

=C

:

(s

0

+ �

2

:

v)

=C

:

(L

0

1

:

u

0

+ �

2

:

v)

=C

:

(L

0

1

+ id

m

2

)

:

�

:

�

�1

:

(u

0

+ �

2

:

v)

=L

0

:

�

�1

:

(u

0

+ �

2

:

v)

so s

0

F

�!

Cl(R)

R

0

:

�

�1

:

(u

0

+ �

2

:

v) = T

0

:

�

2

:

v. By the de�nition of [ ℄

we have t = R

:

v = R

:

(�

1

��

2

)

�1

:

(�

1

:

v+ id

m

2

)

:

�

2

:

v �

R

T

0

:

�

2

:

v.

(b) (s is in a omponent of v) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

E : 1! 1 linear

suh that

F =L

:

(�

1

� �

2

)

�1

:

(E + �

2

:

v)

E

:

s=�

1

:

v

Here t = R

:

(�

1

� �

2

)

�1

:

(E + �

2

:

v)

:

s and s

0

F

�!

Cl(R)

R

:

(�

1

�

�

2

)

�1

:

(E+�

2

:

v)

:

s

0

. By Theorem 10 R

:

(�

1

��

2

)

�1

:

(E+�

2

:

v)

:

s �

R

R

:

(�

1

� �

2

)

�1

:

(E + �

2

:

v)

:

s

0

.

2

Proof of Theorem 12 First note that if the rewrite rules R are right-aÆne

then the onlusions of Lemmas 7 and 8 an be strengthened to require H

aÆne. We show that S [ f s; s j s : 0! 1 g, where

S

def

= fA

:

s; A

:

s

0

j s � s

0

^ A : 1! 1 linear g
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is a bisimulation of the form spei�ed. Consider A : 1! 1 linear and s � s

0

.

We show that if A

:

s�!t then there exists t

0

suh that A

:

s

0

�!

�

t

0

and t S t

0

or t = t

0

. Moreover, if A

:

s

F

�!T for F 6= id

1

then there exists T

0

suh that

A

:

s

0

�!

�

F

�!T

0

and T [S℄ T

0

or T [=℄ T

0

.

(1) Suppose A

:

s�!t. By Lemma 7 one of the following holds:

(a) There exists some H : 1! 1 suh that t = H

:

s and for all

ŝ : 0! 1 we have A

:

ŝ�!H

:

ŝ. Moreover, H is aÆne. It follows that

A

:

s

0

�!H

:

s

0

. If H is linear then learly t = H

:

s S H

:

s

0

, otherwise

H does not use its argument so t = H

:

s = H

:

s

0

.

(b) There exist k � 0, F : 1+k! 1 linear, T : k! 1, D : 1! 1 linear and

v : 0!k, suh that s

F

�!T , A = D

:

F

:

(id

1

+ v) and t = D

:

T

:

v.

(i) Case F = id

1

. By s � s

0

there exists T

0

suh that s

0

�!

�

T

0

^ T �

T

0

. By the de�nition of redution A

:

s

0

�!

�

A

:

T

0

and learly

t = A

:

T S A

:

T

0

.

(ii) Case F 6= id

1

. By s � s

0

there exist s

00

and T

0

suh that

s

0

�!

�

s

00

F

�!T

0

^ T � T

0

. By Lemma 9 F

:

(s

00

+ v)�!T

0

:

v. By

the de�nition of redution A

:

s

0

= D

:

F

:

(s

0

+ v)�!

�

D

:

F

:

(s

00

+

v)�!D

:

T

0

:

v, and learly t = D

:

T

:

v S D

:

T

0

:

v.

(2) Suppose A

:

s

F

�!T for F : 1+n! 1 linear and F 6= id

1

. By Lemma 8 one

of the following holds.

(a) There exists H : 1 + n! 1 suh that T = H

:

(s + id

n

) and for all

ŝ : 0! 1 we have A

:

ŝ

F

�!H

:

(ŝ+id

n

). Moreover, H is aÆne. It follows

that A

:

s

0

F

�!H

:

(s

0

+ id

n

). If H is linear in its �rst argument then

T = H

:

(s + id

n

) [S℄ H

:

(s

0

+ id

n

), otherwise H does not use its

argument so T = H

:

(s+ id

n

) = H

:

(s

0

+ id

n

) so T [=℄ H

:

(s

0

+ id

n

).

(b) There exist p � 0, E : 1 + p! 1 linear,

^

T : p + n! 1 and v : 0! p,

suh that s

F

:

(E+id

n

)

�!

^

T , T =

^

T

:

(v + id

n

) and A = E

:

(id

1

+ v). By

s � s

0

there exist s

00

and

^

T

0

suh that s

0

�!

�

s

00

F

:

(E+id

n

)

�!

^

T

0

^

^

T [�℄

^

T

0

.

By the de�nition of redutions A

:

s

0

�!

�

A

:

s

00

. By Lemma 9 A

:

s

00

=

E

:

(s

00

+v)

F

�!

^

T

0

:

(v+ id

n

). Clearly T =

^

T

:

(v+ id

n

) [S℄

^

T

0

:

(v+ id

n

).

2

C Proofs for Setion 4

This appendix ontains the lemmas required for the main ongruene result of

Setion 4. It is divided into three subsetions, of dissetion, forwards, and bak-

wards lemmas respetively. Only Lemma 27 of xC.2, showing that if A

:

s�!t

then s has a suitable labelled transition, is proved in detail; other proofs an

be found in the tehnial report version.
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C.1 Dissetion Lemmas

This subsetion ontains the statements of lemmas required for the proof of

the main dissetion lemma (Lemma 13), together with the statements of some

auxiliary simple dissetion results used elsewhere.

Lemma 17 If B :m! 1 linear then there exist m

1

, m

3

, �

1

:m!m

1

and

�

3

:m!m

3

a partition, and B

0

:m

1

! 1 linear and deep, suh that m =

m

1

+m

3

and B � par

1+m

3

:

(B

0

+ id

m

3

)

:

(�

1

� �

3

).

Lemma 18 If C : 1 +m! 1 linear then there exist m

1

, m

2

, �

1

:m!m

1

and

�

2

:m!m

2

a partition, and C

0

:(1+m

2

)! 1 linear and 1-separated, suh that

m = m

1

+m

2

and C � C

0

:

(par

1+m

1

+ id

m

2

)

:

(id

1

+ �

1

� �

2

).

Lemma 19 If B :m! 1 is linear for m � 0 then there exist n 2 1::m, m̂

i

� 1

for i 2 1::n summing to m, �

i

:m! m̂

i

for i 2 1::n a partition, B

i

: m̂

i

! 1

for i 2 1::n linear and shallow, and B

0

:n! 1 linear and lean, suh that

B � B

0

:

(B

1

+ : : :+B

n

)

:

(�

1

� : : :� �

n

).

Lemma 20 If m � 0, B :m! 1 is linear and lean, b : 0!m, and B

:

b � ,

then there exist B

0

:m! 1 linear and b

0

: 0!m suh that B � B

0

, b � b

0

and

 = B

0

:

b

0

.

Lemma 21 If m � 0,

A : 1! 1 B :m! 1

a : 0! 1 b : 0!m

with A and B linear, and A

:

a = B

:

b, then one of the lauses of the onlusion

of Lemma 13 holds.

Proof By Lemmas 6, 18 and 17. 2

Proof of Lemma 13 The proof is by indution on the derivations of stru-

tural ongruene, showing that if A

:

a � B

:

b or B

:

b � A

:

a then one of the

lauses of the onlusion holds. The degenerate ases m = 0, A = id

1

and

B = id

1

are dealt with separately. 2

Lemma 22 If

A : 1! 1 B : 1! 1

a : 0! 1 b : 0! 1

with A and B linear, and A

:

a � B

:

b, then one of the following holds.

(1) (a and b are disjoint) There exists E : 2! 1 linear suh that A � E

:

( +b)

and B � E

:

(a+ ).
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(2) (a and b overlap) There exist C : 1! 1 linear and z

A;b

, z

a;B

and z

a;b

suh

that

A � C

:

(z

A;b

j ) a � z

a;B

j z

a;b

B � C

:

(z

a;B

j ) b � z

A;b

j z

a;b

and moreover z

a;b

6� 0

(3) (A is properly in B and b is deeply in a) There exists D : 1! 1 linear and

deep suh that a � D

:

b and A

:

D � B.

(4) (B is properly in A and a is deeply in b) There exists D : 1! 1 linear and

deep suh that D

:

a � b and A � B

:

D.

Lemma 23 If m � 0,

a

1

: 0! 1 C :m! 1

a

2

: 0! 1 d : 0!m

with C linear, and a

1

j a

2

� C

:

d, then there exist

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m

�

i

:m!m

i

for i 2 f1; 2; 3g a partition

C

1

:m

1

! 1 linear and deep

C

2

:m

2

! 1 linear and deep

e

1

: 0!m

3

e

2

: 0!m

3

suh that

a

1

� par

1+m

3

:

(C

1

:

�

1

:

d+ e

1

)

a

2

� par

1+m

3

:

(C

2

:

�

2

:

d+ e

2

)

C � par

2+m

3

:

(C

1

+ C

2

+ id

m

3

)

:

(�

1

� �

2

� �

3

)

�

3

:

d � ppar

m

3

:

(e

1

+ e

2

)

There are m

1

of the d in a

1

, m

2

of the d in a

2

and m

3

of the d potentially

overlapping a

1

and a

2

. The latter are split into e

1

, in a

1

, and e

2

, in a

2

.

Lemma 24 If m � 0,

a

1

: 0! 1 C :m! 1

a

2

: 0! 1 d : 0!m

with C linear and deep, and a

1

j a

2

� C

:

d, then there exist

m

1

and m

2

suh that m

1

+m

2

= m

�

i

:m!m

i

for i 2 f1; 2g a partition

C

1

:m

1

! 1 linear and deep

C

2

:m

2

! 1 linear and deep
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suh that

a

1

� C

1

:

�

1

:

d

a

2

� C

2

:

�

2

:

d

C � par

2

:

(C

1

+ C

2

)

:

(�

1

� �

2

)

There are m

1

of the d in a

1

and m

2

of the d in a

2

.

Lemma 25 If m � 1,

A : 1! 1 b : 0!m

s : 0! 1

with A linear and deep, and A

:

s � par

m

:

b, then there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

^

A : 1! 1 linear and deep

â : 0!(m� 1)

suh that

A � par

m

:

(

^

A + â)

^

A

:

s+ â � (�

1

� �

2

)

:

b

Lemma 26 If m � 1,

A : 1! 1 b : 0!m

s : 0! 1

with A linear and shallow, and A

:

s � par

m

:

b, then there exist

â : 0!m

ŝ : 0!m

suh that

A � par

1+m

:

(id

1

+ â)

s � par

m

:

ŝ

ppar

m

:

(â + ŝ) � b

C.2 Forwards Lemmas

The three lemmas in this subsetion show that if A

:

s has some labelled tran-

sition, where A : 1! 1 is linear, then either the transition is independent of s

or s has a related labelled transition. We have hosen to onsider arbitrary A

{ one ould instead restrit to atomi A, in whih the hole is under exatly

one symbol. It is not lear whether this would allow signi�ant simpli�ations.
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Lemma 27 If A

:

s

I

�!t for A : 1! 1 linear and I � id

1

then one of the

following holds.

(1) There exists some H : 1! 1 suh that t � H

:

s and

8ŝ : 0! 1 : A

:

ŝ�!H

:

ŝ.

(2) There exist

n � 0

F :(1 + n)! 1 linear

T :n! 1

C 2 C

v : 0!n

suh that s

F

�!T , A � C

:

F

:

(id

1

+ v) and t � C

:

T

:

v.

Proof By the de�nition of labelled transitions

9hm;L;Ri 2 R; B 2 C; u : 0!m : A

:

s � B

:

L

:

u ^ B

:

R

:

u � t

The proof involves a number of ases, summarized below.

1 s and L

:

u are disjoint. Clause 1 holds.

2 s and L

:

u may overlap.

a the overlap is trivial. Clause 1 holds.

b the overlap is non-trivial. Clause 2 holds with F shallow in 1 and not id

1

.

3 L

:

u is deeply in s. Clause 2 holds with F = id

1

.

4 s is deeply in L

:

u.

a s is not deeply in any omponent of u.

i s non-trivially overlaps L. Clause 2 holds with F deep in 1.

ii s does not overlap L. Clause 1 holds.

b s is deeply in a omponent of u. Clause 1 holds.

We now onsider the ases in detail. Eah ase involves veri�ation of the

existene of a labelled transition and of other equational onditions. The exis-

tential witness for a labelled transition is generally given expliitly; the state-

ments of the required equational onditions are often elided (but an be found

in the tehnial report version). Applying Lemma 22 to A

:

s � B

:

(L

:

u) we

have

(1) (s and L

:

u are disjoint) There exists E : 2! 1 linear suh that

A � E

:

( + L

:

u) B � E

:

(s+ )

Putting H = E

:

( +R

:

u) we have lause 1 of the onlusion.

(2) (s and L

:

u overlap) There exist D : 1! 1 linear and z

A;L

:

u

, z

s;B

and z

s;L

:

u

suh that
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A�D

:

(z

A;L

:

u

j )

B�D

:

(z

s;B

j )

s� z

s;B

j z

s;L

:

u

L

:

u� z

A;L

:

u

j z

s;L

:

u

and moreover z

s;L

:

u

6� 0 Applying Lemma 23 to z

s;L

:

u

j z

A;L

:

u

� L

:

u we

have that there exist

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m

�

i

:m!m

i

for i 2 f1; 2; 3g a partition

L

1

:m

1

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

e

1

: 0!m

3

e

2

: 0!m

3

suh that

z

s;L

:

u

� par

1+m

3

:

(L

1

:

�

1

:

u+ e

1

)

z

A;L

:

u

� par

1+m

3

:

(L

2

:

�

2

:

u+ e

2

)

L � par

2+m

3

:

(L

1

+ L

2

+ id

m

3

)

:

(�

1

� �

2

� �

3

)

�

3

:

u � ppar

m

3

:

(e

1

+ e

2

)

There are m

1

of the u in z

s;L

:

u

, m

2

of the u in z

A;L

:

u

and m

3

of the u

potentially overlapping z

s;L

:

u

and z

A;L

:

u

. The latter are split into e

1

, in

z

s;L

:

u

, and e

2

, in z

A;L

:

u

.

Note that as L

2

deep we have L

2

:

�

2

:

u � 0 () m

2

= 0 ^ L

2

� h0i

0

.

We now have two ases, one with L

:

u properly in s and one with a

non-trivial overlap.

(a) Case L

2

:

�

2

:

u � 0 ^ m

3

= 0. Here m

2

= m

3

= 0, L

2

� h0i

0

,

L � L

1

:

�

1

and z

A;L

:

u

� 0 so s � z

s;B

jL

:

u. Taking

n = 0

F = id

1

: 1! 1

T = (z

s;B

j )

:

R

:

u : 0! 1

C = A : 1! 1

v = hi

0

: 0! 0

we have lause 2 of the onlusion.

(b) Case L

2

:

�

2

:

u 6� 0 _ m

3

6= 0. Taking

n = m

3

+m

2

F = par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T = ( j z

s;B

)

:

R

:

(�

1

� �

3

� �

2

)

�1

:

(�

1

:

u+ ppar

m

3

:

(id

m

3

+ e

1

) + id

m

2

)

C = D

v = (e

2

+ �

2

:

u)
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we have lause 2 of the onlusion. There is a transition

s

par

2+m

3

:

(id

1

+id

m

3

+L

2

)

�! ( j z

s;B

)

:

R

:

(�

1

� �

3

� �

2

)

�1

:

(�

1

:

u +

ppar

m

3

:

(id

m

3

+ e

1

) + id

m

2

)

with witness

hm;L;Ri 2 R

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m

(�

1

� �

3

� �

2

) :m!m a permutation

par

2+m

3

:

(id

1

+ id

m

3

+ L

2

) : 1 + m

3

+ m

2

! 1 linear, shallow in

argument 1, and not id

1

z

s;B

: 0! 1

L

1

:m

1

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

(�

1

:

u) : 0!m

1

e

1

: 0!m

3

If m

3

= 0 then by assumption L

2

:

�

2

:

u 6� 0, hene L

2

6� h0i

0

so

F 6� id

1

. Further, z

s;L

:

u

� L

1

:

�

1

:

u so we have L

1

:

�

1

:

u 6� 0, hene

L

1

6� h0i

0

.

(3) (A is properly in B and L

:

u is deeply in s) There exists D : 1! 1 linear

and deep suh that

s�D

:

L

:

u

A

:

D�B

Taking

n = 0

F = id

1

: 1! 1

T = D

:

R

:

u : 0! 1

C = A : 1! 1

v = hi

0

: 0! 0

we have lause 2 of the onlusion.

(4) (B is properly in A and s is deeply in L

:

u) There exists D : 1! 1 linear

and deep suh that

D

:

s�L

:

u

A�B

:

D

Applying Lemma 13 to D

:

s � L

:

u we have one of the following

(a) (s is not deeply in any omponent of u) There exist

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m

�

1

:m!m

1

; �

2

:m!m

2

and �

3

:m!m

3

a partition

L

2

: 1 +m

2

! 1 linear and 1-separated

L

1

:m

1

! 1 linear and deep

e

1

: 0!m

3

e

2

: 0!m

3
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suh that

D � L

2

:

(par

1+m

3

:

(id

1

+ e

2

) + �

2

:

u)

s � par

1+m

3

:

(L

1

:

�

1

:

u+ e

1

)

L � L

2

:

(par

1+m

3

:

(L

1

+ id

m

3

) + id

m

2

)

:

(�

1

� �

3

� �

2

)

�

3

:

u � ppar

m

3

:

(e

1

+ e

2

)

There are m

1

of the u in s, m

2

of the u in D and m

3

of the u

potentially overlapping D and s. The latter are split into e

1

, in s,

and e

2

, in D.

(i) Case m

3

= 1 =) L

1

6� h0i

0

. Sine D is deep we know that L

2

is deep in argument 1. Taking

n = m

3

+m

2

F = L

2

:

(par

1+m

3

+ id

m

2

)

T = R

:

(�

1

� �

3

� �

2

)

�1

:

(�

1

:

u+ ppar

m

3

:

(id

m

3

+ e

1

) + id

m

2

)

C = B

v = (e

2

+ �

2

:

u)

we have lause 2 of the onlusion. There is a transition

s

L

2

:

(par

1+m

3

+id

m

2

)

�! R

:

(�

1

��

3

��

2

)

�1

:

(�

1

:

u+ppar

m

3

:

(id

m

3

+

e

1

) + id

m

2

)

with witness

hm;L;Ri 2 R

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m

(�

1

� �

3

� �

2

) :m!m a permutation

L

2

:

(par

1+m

3

+ id

m

2

) : 1 + m

3

+ m

2

! 1 linear, deep in

argument 1

L

1

:m

1

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

�

1

:

u : 0!m

1

e

1

: 0!m

3

(ii) Case m

3

= 1 ^ L

1

� h0i

0

. Putting

H = B

:

R

:

(�

1

� �

3

� �

2

)

�1

:

(par

2

:

(id

1

+ e

2

) + �

2

:

u)

we have lause 1 of the onlusion.

(b) (s is deeply in a omponent of u) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

E : 1! 1 linear and deep

suh that

D�L

:

(�

1

� �

2

)

�1

:

(E + �

2

:

u)

E

:

s� �

1

:

u
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Putting H = B

:

R

:

(�

1

� �

2

)

�1

:

(E + �

2

:

u) we have lause 1 of the

onlusion.

2

Lemma 28 If A

:

s

F

�!T for A : 1! 1 linear and F : 1+n! 1 linear and deep

in 1 then one of the following holds.

(1) There exists H : 1+n! 1 suh that T � H

:

(s+ id

n

) and for all ŝ : 0! 1

we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

(2) There exist

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

suh that n = m

3

+m

2

L

12

: 1 +m

12

! 1 linear, deep in 1 and 1-separated

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

13

+m

12

+m

3

+m

2

! 1

v

3

: 0!m

13

v

2

: 0!m

12

e : 0!m

3

suh that

s

L

2

:

(par

1+m

3

+id

m

2

)

:

(L

12

+id

n

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

F � L

2

:

(par

1+m

3

+ id

m

2

)

T �

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e+ id

m

3

) + id

m

2

)

A � par

1+m

3

:

(L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

(3) There exist

m

12

� 0 and m

2

� 0 and m

3

� 0 suh that n = m

3

+m

2

L

12

:m

12

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

3

+m

12

+m

2

! 1

v : 0!m

12

^

â : 0!m

3

suh that

s

L

2

:

(par

2+m

3

+id

m

2

)

:

(id

1

+id

m

3

+L

12

+id

m

2

)

�!

^

T

F � L

2

:

(par

1+m

3

+ id

m

2

)

T �

^

T

:

(ppar

m

3

:

(id

m

3

+

^

â) + v + id

m

2

)

A � par

2+m

3

:

(id

1

+ L

12

:

v +

^

â)
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Proof By the de�nition of transitions there exist

hm;L;Ri 2 R

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m and n = m

3

+m

2

� :m!m a permutation

L

1

:m

1

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

u : 0!m

1

e : 0!m

3

suh that

L � L

2

:

(par

1+m

3

:

(L

1

+ id

m

3

) + id

m

2

)

:

�

A

:

s � par

1+m

3

:

(L

1

:

u+ e)

T � R

:

�

�1

:

(u+ ppar

m

3

:

(id

m

3

+ e) + id

m

2

)

F � L

2

:

(par

1+m

3

+ id

m

2

)

m

3

= 1 =) L

1

6� h0i

0

The proof involves a number of ases, summarized below.

1 A deep.

a s is not in e.

i s is not deeply in any omponent of u.

A s and L have a non-trivial overlap. Clause 2 holds.

B s is in u. Clause 1 holds.

ii s is deeply in a omponent of u. Clause 1 holds.

b s is in one omponent of e. Clause 1 holds.

2 A shallow.

a s and L have a non-trivial overlap. Clause 3 holds.

b s is in e. Clause 1 holds.

2

Lemma 29 If A

:

s

F

�!T for A : 1! 1 linear and F : 1+n! 1 linear, shallow

in 1 and F 6� id

1

then one of the following holds.

(1) There exists H : 1+n! 1 suh that T � H

:

(s+ id

n

) and for all ŝ : 0! 1

we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).
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(2) There exist

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

suh that n = m

3

+m

2

q : 0! 1

L

12

: 1 +m

12

! 1 linear, deep and 1-separated

L

2

:m

2

! 1 linear and deep

^

T :m

13

+m

12

+m

3

+m

2

! 1

v

3

: 0!m

13

v

2

: 0!m

12

e : 0!m

3

suh that

s

par

2+m

3

:

(L

12

+id

m

3

+L

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T � par

2

:

(q +

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

))

A � par

2+m

3

:

(q + L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

m

3

= 0 =) L

2

6� h0i

0

(3) There exist

m

12

� 0 and m

2

� 0 and m

3

� 0 suh that n = m

3

+m

2

a

0

: 0! 1

L

12

:m

12

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

^

T :m

3

+m

12

+m

2

! 1

v

2

: 0!m

12

a

000

: 0!m

3

suh that

s

par

3+m

3

:

(id

1

+id

m

3

+L

12

+L

2

)

�!

^

T

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T � par

2

:

(a

0

+

^

T

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+ id

m

2

))

A � par

1+2+m

3

:

(id

1

+ a

0

+ L

12

:

v

2

+ a

000

)

m

3

= 0 =) L

2

6� h0i

0
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Proof By the de�nition of transitions there exist

hm;L;Ri 2 R

m

1

; m

2

and m

3

suh that m

1

+m

2

+m

3

= m and n = m

3

+m

2

� :m!m a permutation

q : 0! 1

L

1

:m

1

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

u : 0!m

1

e : 0!m

3

suh that

L � par

2+m

3

:

(L

1

+ id

m

3

+ L

2

)

:

�

A

:

s � par

2+m

3

:

(q + L

1

:

u+ e)

T � par

2

:

(q +R

:

�

�1

:

(u+ ppar

m

3

:

(id

m

3

+ e) + id

m

2

))

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

m

3

= 0 =) L

1

6� h0i

0

By F 6� id

1

we also have m

3

= 0 =) L

2

6� h0i

0

. The proof involves a number

of ases, summarized below.

1 A deep.

a s is in q. Clause 1 holds.

b s is in L

1

:

u.

i s is not deeply in any omponent of u.

A s and L have a non-trivial overlap. Clause 2 holds.

B s is in u. Clause 1 holds.

ii s is deeply in a omponent of u. Clause 1 holds.

 s is in e. Clause 1 holds.

2 A shallow.

a s and L have a non-trivial overlap. Clause 3 holds.

b s is in q. Clause 1 holds.

2

C.3 Bakwards Lemmas

The �ve lemmas in this subsetion are approximate onverses to those in

Setion C.2. The �rst shows that if s

F

�!T then F

:

(s + v) has a redution to

T

:

v. The other four show that if s

F

:

G

�!T then s, in a ontext onstruted from

G, has a transition with label F . This is done for F and G deep and shallow

in their �rst arguments.
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Lemma 30 If s

F

�!T for F : 1 + n! 1 then for all v : 0!n we have F

:

(s +

v)�!T

:

v.

Proof Straightforward ase analysis on the three possible forms of F . 2

Lemma 31 If s

^

L

2

:

(par

1+m

3

+id

m

2

)

:

(L

12

+id

m

3

+m

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T , where

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

^

L

2

: 1 +m

2

! 1 linear, deep in 1 and 1-separated

L

12

: 1 +m

12

! 1 linear, deep and 1-separated

^

T :m

13

+m

12

+m

3

+m

2

! 1

then for all v

3

: 0!m

13

, v

2

: 0!m

12

, and e : 0!m

3

we have

par

1+m

3

:

(L

12

:

(par

1+m

13

:

(s+ v

3

) + v

2

) + e)

^

L

2

:

(par

1+m

3

+id

m

2

)

�!

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

)

Proof By the de�nition of deep labelled transitions, using the fat that L

12

is deep in 1 and 1-separated to justify some anellation steps. 2

Lemma 32 If s

L

2

:

(par

2+m

3

+id

m

2

)

:

(id

1

+id

m

3

+L

12

+id

m

2

)

�!

^

T , where

m

12

� 0 and m

2

� 0 and m

3

� 0

L

12

:m

12

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

3

+m

12

+m

2

! 1

then for all v : 0!m

12

and

^

â : 0!m

3

we have

par

2+m

3

:

(id

1

+ L

12

:

v +

^

â)

:

s

L

2

:

(par

1+m

3

+id

m

2

)

�!

^

T

:

(ppar

m

3

:

(id

m

3

+

^

â) + v + id

m

2

)

Proof By the de�nition of deep labelled transitions, using the fat that L

2

is

deep in 1 and 1-separated, and L

12

is deep, to justify some anellation steps.

2

Lemma 33 If s

par

2+m

3

:

(L

12

+id

m

3

+L

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T , where

m

12

� 0 and m

13

� 0 and m

2

� 0 and m

3

� 0

L

12

: 1 +m

12

! 1 linear, deep and 1-separated

L

2

:m

2

! 1 linear and deep

^

T :m

13

+m

12

+m

3

+m

2

! 1

m

3

= 0 =) L

2

6� h0i

0
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then for all q : 0! 1, v

3

: 0!m

13

, v

2

: 0!m

12

, and e : 0!m

3

we have

par

2+m

3

:

(q + L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

:

s

par

2+m

3

:

(id

1

+id

m

3

+L

2

)

�! par

2

:

(q +

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

))

Proof By the de�nitions of deep and shallow labelled transitions, using the

fat that L

12

is deep in argument 1 and is 1-separated to justify some anel-

lation steps. 2

Lemma 34 If s

par

3+m

3

:

(id

1

+id

m

3

+L

12

+L

2

)

�!

^

T , where

m

12

� 0 and m

2

� 0 and m

3

� 0

L

12

:m

12

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

^

T :m

3

+m

12

+m

2

! 1

m

3

= 0 =) L

2

6� h0i

0

then for all a

0

: 0! 1, v

2

: 0!m

12

, and a

000

: 0!m

3

we have

par

1+2+m

3

:

(s+ a

0

+ L

12
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L
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2

are deep to justify some anellation steps. 2
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