From Rewrite Rules to Bisimulation
Congruences

Peter Sewell

Computer Laboratory, University of Cambridge,
New Museums Site, Pembroke Street, Cambridge, CB2 3QG.
Peter.Sewell@cl.cam.ac.uk

Abstract

The dynamics of many calculi can be most clearly defined by a reduction semantics.
To work with a calculus, however, an understanding of operational congruences is
fundamental; these can often be given tractable definitions or characterisations using
a labelled transition semantics. This paper considers calculi with arbitrary reduction
semantics of three simple classes, firstly ground term rewriting, then left-linear term
rewriting, and then a class which is essentially the action calculi lacking substantive
name binding. General definitions of labelled transitions are given in each case,
uniformly in the set of rewrite rules, and without requiring the prescription of
additional notions of observation. They give rise to bisimulation congruences. As a
test of the theory it is shown that bisimulation for a fragment of CCS is recovered.
The transitions generated for a fragment of the Ambient Calculus of Cardelli and
Gordon, and for SKI combinators, are also discussed briefly.

Key words: Operational Semantics, Process Calculi, Bisimulation, Operational
Congruences, Term Rewriting, Labelled Transition Systems.

Contents
1 Introduction 2
2 Ground term rewriting 6
3 Term rewriting with left-linear rules 10
4 Term rewriting with left-linear rules, parallel and blocking 17
) Conclusion 28
A Proofs for Section 2 31
B Proofs for Section 3 32

Preprint submitted to Elsevier Preprint 17 December 1999

C Proofs for Section 4 37

C.1 Dissection Lemmas 38
C.2 Forwards Lemmas 40
C.3 Backwards Lemmas 48
References 50

1 Introduction

The dynamic behaviour of many calculi can be defined most clearly by a
reduction semantics, comprising a set of rewrite rules, a set of reduction con-
texts in which they may be applied, and a structural congruence. These define
the atomic internal reduction steps of terms. To work with a calculus, how-
ever, a compositional understanding of the behaviour of arbitrary subterms,
as given by some operational congruence relation, is usually required. The lit-
erature contains investigations of such congruences for a large number of par-
ticular calculi. They are often given tractable definitions or characterisations
via labelled transition relations, capturing the potential external interactions
between subterms and their environments. Defining labelled transitions that
give rise to satisfactory operational congruences generally requires some mix
of calculus-specific ingenuity and routine work.

In this paper the problem is addressed for arbitrary calculi of certain simple
forms. We give general definitions of labelled transitions that depend only
on a reduction semantics, without requiring any additional observations to
be prescribed. We first consider term rewriting, with ground or left-linear
rules, over an arbitrary signature but without a structural congruence. We
then consider calculi with arbitrary signatures containing symbols 0 and |,
a structural congruence consisting of associativity, commutativity and unit,
left-linear rules, and non-trivial sets of reduction contexts. This suffices, for
example, to express CCS-style synchronisation. It is essentially the same as
the class of Action Calculi in which all controls have arity 0 — 0 and take some
number of arguments of arity 0 — 0. In each case we define labelled transitions,
prove that bisimulation is a congruence and give some comparison results.

Background: From reductions to labelled transitions to reductions...
Definitions of the dynamics (or small-step operational semantics) of lambda
calculi and sequential programming languages have commonly been given as
reduction relations. The A-calculus has the rewrite rule (Ax.M)N—M[N/x]
of 8 reduction, which can be applied in any context. For programming lan-
guages, some control of the order of evaluation is usually required. This has

been done with abstract machines, in which the states, and reductions be-
tween them, are ad-hoc mathematical objects. More elegantly, one can give
definitions in the structural operational semantics (SOS) style of Plotkin [33];
here the states are terms of the language (sometimes augmented by e.g. a
store), the reductions are given by a syntax-directed inductive definition.
Explicit reformulations using rewrite rules and reduction contexts were first
given by Felleisen and Friedman [15]. (We here neglect semantics in the big-
step/evaluation/natural style.)

In contrast, until recently, definitions of operational semantics for process cal-
culi have been primarily given as labelled transition relations. The central rea-
son for the difference is not mathematical, but that lambda and process terms
have had quite different intended interpretations. The standard interpretation
of lambda terms and functional programs is that they specify computations
which may either not terminate, or terminate with some result that cannot
reduce further. Confluence properties ensure that such result terms are unique
if they exist; they can implicitly be examined, either up to equality or up to
a coarser notion. The theory of processes, however, inherits from automata
theory the view that process terms may both reduce internally and interact
with their environments; labelled transitions allow these interactions to be ex-
pressed. Reductions may create or destroy potential interactions. Termination
of processes is usually not a central concept, and the structure of terms, even
of terms that cannot reduce, is not considered examinable.

An additional, more technical, reason is that definitions of the reductions for
a process calculus require either auxiliary labelled transition relations or a
non-trivial structural congruence. For example, consider the CCS fragment
below.

P:=0|aP|aP|P|P acA

Its standard semantics has reductions P—() but also labelled transitions
P-—25Q and P—=5(). These represent the potentials that P has for synchro-
nising on «. They can be defined by an SOS

OouT ——— IN———
a.P-pP a.P-%P
PP Q-5Q) , P25P Q-5
CoMTpIo=rTe YN TPl
W Iz
PAR% PAR,#—@
P|R5SQ|R R|PYSRIQ

where - is either —», —%5 or —%». It has been noted by Berry and Boudol
[7], following work of Banatre and Le Métayer [5] on the I' language, that

semantic definitions of process calculi could be simplified by working modulo
an equivalence that allows the parts of a redex to be brought syntactically
adjacent. Their presentation is in terms of Chemical Abstract Machines; in a
slight variation we give a reduction semantics for the CCS fragment above. It
consists of the rewrite rule a.P |a.Q— P | @, the set of reduction contexts
given by

C:=_|c|p|P|C

and the structural congruence = defined to be the least congruence satisfying
P=P|0,P|Q=Q|Pand P|(Q|R)=(P|Q)|R. Modulo use of = on the
right, this gives exactly the same reductions as before. For this toy calculus
the two definitions are of similar complexity. For the m-calculus ([27], building
on [14]), however, Milner has given a reduction semantics that is much sim-
pler than the rather delicate SOS definitions of 7 labelled transition systems
[28]. Following this, more recent name passing process calculi have often been
defined by a reduction semantics in some form, e.g. the HOx [35], p [32], Join
[17], Blue [9], Spi [1], dpi [39], D7 [34] and Ambient [10] Calculi.

Turning to operational congruences, for confluent calculi the definition of an
appropriate operational congruence is relatively straightforward, even in the
(usual) case where the dynamics are expressed as a reduction relation. For ex-
ample, for a simple eager functional programming language, with a base type
Int of integers, terminated states of programs of type Int are clearly observable
up to equality. These basic observations can be used to define a Morris-style
operational congruence. Several authors have considered tractable character-
isations of these congruences in terms of bisimulation — see e.g. [25,2,21] and
the references therein, and [22] for related work on an object calculus.

For non-confluent calculi the situation is more problematic — process calculi
having labelled transition semantics have been equipped with a plethora of
different operational equivalences, whereas rather few styles of definition have
been proposed for those having reduction semantics. In the labelled transition
case there are many more-or-less plausible notions of observation, differing
e.g. in their treatment of linear/branching time, of internal reductions, of ter-
mination and divergence, etc. Some of the space is illustrated in the surveys
of van Glabbeek [19,20]. The difficulty here is to select a notion that is ap-
propriate for a particular application; one attempt is in [36]. In the reduction
case we have the converse problem — a reduction relation does not of itself
seem to support any notion of observation that gives rise to a satisfactory
operational congruence. This was explicitly addressed for CCS and w-calculi
by Milner and Sangiorgi in [30,35], where barbed bisimulation equivalences
are defined in terms of reductions and observations of barbs. These are vesti-
gial labelled transitions, similar to the distinguished observable transitions in
the tests of De Nicola and Hennessy [12]. The expressive power of their cal-

culi suffices to recover early labelled transition bisimulations as the induced
congruences. Related work of Honda and Yoshida [24] uses insensitivity as
the basic observable; that of Montanari and Sassone [31] takes the usual CCS
labelled transitions but by requiring context-closure at every step of a bisim-
ulation gives the coarsest notion of weak bisimulation that is simultaneously
a congruence. Rensink [40] studies bisimulation directly on open terms.

...to labelled transitions Summarizing, definitions of operational congru-
ences, for calculi having reduction semantics, have generally been based either
on observation of terminated states, in the confluent case, or on observation
of some barbs, where a natural definition of these exists. In either case, char-
acterisations of the congruences in terms of labelled transitions, involving as
little quantification over contexts as possible, are desirable. Moreover, some
reasonable calculi may not have a natural definition of barb that induces an
appropriate congruence.

In this paper we show that labelled transitions that give rise to bisimulation
congruences can be defined purely from the reduction semantics of a calcu-
lus, without prescribing any additional observations. We consider only simple
classes of reduction semantics, not involving name or variable binding, but
hope that these will be a first step towards a generally applicable theory. As a
test of the definitions we show that they recover the usual bisimulation on the
CCS fragment above. We also discuss term rewriting and a fragment of the
Ambient calculus of Cardelli and Gordon. To directly express the semantics of
more interesting calculi requires a richer framework. One must deal with bind-
ing, with rewrite rules involving term or name substitutions, with a structural
congruence that allows scope mobility, and with more delicate sets of reduc-
tion contexts. The Action Calculi of Milner [29] are a candidate framework
that allows several of the calculi mentioned above to be defined cleanly; this
work can be seen as a step towards understanding operational congruences for
arbitrary action calculi. Bisimulation for a particular action calculus, repre-
senting a m-calculus, has been studied by Mifsud [26]. More generally (in work
that is yet to be published), Jensen has considered a form of graph rewriting
that idealizes action calculi and Leifer has studied classes of Action Calculi
obeying certain arity restrictions. The approaches adopted in these and in the
current work are closely related.

Labelled transitions intuitively capture the possible interactions between a
term and a surrounding context. The central idea of this work is to make this
intuition explicit — the labels of transitions from a term s will be contexts
that, when applied to s, create an occurrence of a rewrite rule. In the next
three sections we develop the theory for ground term rewriting, then for left-
linear term rewriting, and then with the addition of an ACI (associativity,
commutativity and identity) structural congruence and reduction contexts.
Section 5 contains some concluding remarks. Most proofs are banished to the

appendices or omitted; details can be found in the technical report [37]. An
extended abstract appeared in [38].

2 Ground term rewriting

In this section we consider one of the simplest possible classes of reduction
semantics, that of ground term rewriting. The definitions and proofs are here
rather straightforward, but provide a guide to those in the following two sec-
tions.

Reductions We take essentially standard definitions of rewrite systems (see
e.g. [4] for an introduction) but for convenience in later sections work with
contexts and context composition rather than open terms and substitution.
We fix a signature consisting of a (possibly infinite) set ¥ of function symbols,
ranged over by o, and an arity function || from ¥ to N. We say an n-hole
context over the signature, with holes _y,..., _,, is linear if it has exactly one
occurrence of each of the n holes. In this section a, b, [, r, s,t range over terms,
A,B,C,D, F, H range over linear unary contexts and E ranges over linear
binary contexts. Context composition and application of contexts to (tuples
of) terms are written A-B and A-s, the identity context as - and tupling
with +. We take a (possibly infinite) set R of rewrite rules, each consisting of
a pair ([, r) of terms. The reduction relation between terms over X is then

s—t Qi:egEl(l,r)ER,C. s=C-lnC-r=t

Labelled Transitions The transitions of a term s will be labelled by linear
unary contexts. Transitions s—t labelled by the identity context are simply
reductions (analogous to r-transitions). Transitions s——¢ for F # _ indicate
that applying F' to s creates an instance of a rewrite rule, with target instance
t. For example, given a signature with constants § and ¢, a unary ~, and the
rule

v(B)—0
we will have labelled transitions
C-~v(B)—C-§
for all C' and also
FRO%

[— F s

S — C l o — s

t —C r t ————r
F=_ F+#_

Fig. 1. Contextual Labelled Transitions s—5t for Ground Term Rewriting.
but not

e s

for C' # _. The labels are { F | (l,r) € R,s. F-s =1} and the contextual

labelled transition relations —— are defined by the clauses below, illustrated
in Figure 1.

- de
o 5t ;:f s—st
o st @ JUrVeR. Fos=lnr=t forF#._

Bisimulation Congruence Let ~ be strong bisimulation with respect to
these transitions, i.e. the largest binary relation over terms such that for any
s~ s

o st — . St At~
o st — . s It at~t

The congruence proof for ~ is straightforward. It is given in some detail as a
guide to the more intricate corresponding proofs in the following two sections,
which have the same structure. Three lemmas (2-4) show how contexts in
labels and in the sources of transitions interrelate; they are proved by case
analysis using a dissection lemma which is standard folklore.

Lemma 1 (Dissection) If A-a = B b then one of the following cases holds.

(1) (b is in a) There exists D such that a = D-b and A-D = B.

(2) (a is properly in b) There exists D with D # _ such that D-a = b and
A=B-D.

(3) (a and b are disjoint) There exists E such that A = E-(_+ b) and
B=FE-(a+_).

Lemma 2 (Forwards-1) If A-s—>t then one of the following holds:

(1) There exists some H such that t = H-s and for any § we have
A-5—H-5s.

(2) There exists some t, Ay and Ay such that A = A, - A,, s 227 and t =
A -t

Proof By the definition of reduction
A, ryeR,C. Acs=C-InC-r=t

Applying the dissection lemma (Lemma 1) to A-s = C-1 gives the following
cases.

(1) (I is in s) There exists B such that s = B-l and A-B = C. Taking
t=B-r, A, = A and A, = _ the second clause holds.

(2) (s is properly in [) There exists B with B # _ such that B-s = [and
A=C-B. Takingt=r, A; = C and A, = B the second clause holds.

(3) (s and [are disjoint) There exists E such that A = E-(_+1) and C =

E-(s+_). Taking H = E-(_+r) the first clause holds.

(|
Lemma 3 (Forwards-2) If A-s—t and F # _ then s™3t.
Proof By the definition of labelled transitions 3(l,ry e R. F-A-s=1larr =
t. Clearly F'- A is linear and F- A # _so sZ4t, O
Lemma 4 (Backwards) If s=3¢ then A-s—t.
Proof If F- A = _then FF = A = _so the conclusion is immediate, otherwise
by the definition of transitions 3(I,r) € R. F-A-s=1nAr =t. One then has
A5t by the definition of transitions, by cases for F' # _and F = _. O

Proposition 5 ~ is a congruence.
Proof We show

S Y (A5,A5|s~s rA:1-1 linear}
is a bisimulation.

(1) Suppose A -s——t.
By Lemma 2 one of the following holds:
(a) There exists some H such that ¢ = H-s and for any § we have
A-5—H-s.
Instantiating, A-s'—>H-s', and clearly H-s S H - s'.
(b) There exists some #, A; and A, such that A = A; - As, s227 and
t=A-t.

By s ~ s there exists ¢’ such that PN
By Lemma 4 A, - s'—1'.
By the definition of reduction A;-As-s'—A;-#, and clearly
At S A -1
(2) Suppose A-s—st for F # _.

By Lemma 3 sZ4¢,

By s ~ s’ there exists ¢ such that s T4y ot

By Lemma 4 A - st/ and clearly t S t'.

Remark An alternative approach would be to take transitions

o st HWpos st

for unary linear contexts F'. Note that these are defined using only the reduc-
tion relation, whereas the definition above involved the reduction rules. Let
~at be strong bisimulation with respect to these transitions. One can show
that ~,); is a congruence and moreover is unaffected by cutting down the label
set, to that considered above. In general ~, is strictly coarser than ~. For an
example of the non-inclusion, if the signature consists of constants «, f and
a unary symbol v with reduction rules a—«, f— 3 and ~(8)—f, then
a b B whereas o ~y; 3. The details can be found in Appendix A. This in-
sensitivity to the possible interactions of terms that have internal transitions
suggests that the analogue of ~,, in more expressive settings, is unlikely to
coincide with standard bisimulations for particular calculi. Indeed, one can
show that applying the alternative definition to the fragment of CCS

P:=0|a|a|P|P acA

(with its usual reduction relation as defined in Section 1) gives an equivalence
that identifies | @ with 3| for a, f € A; these are not identified in any
reasonable operational congruence.

Remark In the proofs of Lemmas 2-4 the labelled transition exhibited for
the conclusion involves the same rewrite rule as the transition in the premise.
One could therefore take the finer transitions

_ de
o 55— <:§és—>t
o syt Uy eRAF-s=lnr=t for F#_

annotated by the rewrite rule involved, and still have a congruence result. In
some cases this gives a finer bisimulation relation (c.f. the arithmetic example
in Section 3). There are intermediate definitions — in fact any partition of the
rule set R gives rise to a bisimulation that is a congruence relation, taking

labelled transitions annotated by the equivalence class of the rule involved.

3 Term rewriting with left-linear rules

In this section the definitions are generalised to left-linear term rewriting, as a
second step towards a framework expressive enough for simple process calculi.

Notation In the next two sections we must consider more complex dissections
of contexts and terms. It is convenient to treat contexts and terms uniformly,
working with n-tuples of m-hole contexts for m,n > 0. Concretely, we work
in the category Cy that has the natural numbers as objects and arrows

i€l.m (a1)m:m—1 - (ap)m:m—1 (a1, ..., Qe)m :m — |o]|
(Liym:m—1 (1, .. Qp)m M —MN (0(a1, .-y ap)))m:m—1
The identity on m is id,, el (1 -y -m)m, composition is substitution, with

(a1, .oy an)m (b, by = (a1][bi/=1, oy bm/mly - oy anlbi/ =1y« o O/)i
Cs, has strictly associative binary products, written with 4. If a:m — &k and
b:m—1 we write a ®b for (a+b)(4,...\ my 1,y -mym:m—k+ 1. Angle
brackets and domain subscripts will often be elided. We let a, b, e, q, 1, s,t, u, v
range over 0 —m arrows, i.e. m-tuples of terms, and A, B,... range over
m — 1 arrows, i.e. m-hole contexts. Say an arrow is a permutation if it is of
the form (_ii1), . . ., —1igm))m Where IT is a permutation of the set {1,...,m}. A
family of arrows m; : m — m; for i € 1..k where mq+...+my = m is a partition
if T @ ...® Ty is a permutation. We write perm,, , for the permutation
(cntly ooy ontms <1y« -+ 3 —n)min - +m—>m 4+ n. Say an arrow (aq, ..., ay)y, iS
linear if it contains exactly one occurrence of each _i,...,_, and affine if
it contains at most one occurrence of each. We sometimes abuse notation in
examples, writing _, _1, 9, ... instead of 1, 5, 3,....

Remark Many slight variations of Cyg are possible. We have chosen to take
the objects to be natural numbers, instead of finite sets of variables, to give
a lighter notation for labels. The concrete syntax is chosen so that arrows
from 0 to 1 are exactly the standard terms over X, modulo elision of the angle
brackets and subscript 0.

Reductions The usual notion of left-linear term rewriting is now expressible
as follows. We take a (possibly infinite) set R of rewrite rules, each consisting of
a triple (n, L, R) where n > 0, L:n— 1 is linear and R:n — 1. The reduction
relation over {s|s:0—1} is then defined by

s—t ¥ Am,L, Ry € R, C:1—1 linear, u:0—m.
s=C-L-unC-R-u=t

10

Labelled Transitions The labelled transitions of a term s:0— 1 will again
be of two forms, s—t, for internal reductions, and s—5T where F # _is a
context that, together with part of s, makes up the left hand side of a rewrite
rule. For example, given the rule

0(v())—e()

we will have labelled transitions

7(5)Xhe(s)

for all terms s:0— 1. Labelled transitions in which the label contributes the
whole of the left hand side of a rule would be redundant (they are not required

in the congruence proof), so the definition will exclude e.g. sém)e(s). Now
consider the rule

o(a,v()—e(-)
As before there will be labelled transitions
o(a,-)
v(s) —>e(s)

for all s. In addition, one can construct instances of the rule by placing the

term « in contexts o(_,y(t)), suggesting labelled transitions aa(ﬂ))e(t) for

any t. Instead, to keep the label sets small, and to capture the uniformity
in ¢, we allow both labels and targets of transitions to be parametric in un-
instantiated arguments of the rewrite rule. In this case the definition will give

ag(i%l))e(_l)

In general, then, the contextual labelled transitions are of the form SLT, for
s:0—=1, F:1+n—1and T:n— 1. The first argument of F' is the hole in
which s can be placed to create an instance of a rule L; the other n arguments
are parameters of L that are not thereby instantiated. The transitions are
defined as follows.

o s—T ¥ 5T
° si>T, for F':1+n —1 linear and not the identity, iff there exist

(m,L,R) € R withm >n

m:m — m a permutation

Ly :(m —n)—1 linear and not the identity
uw:0—(m —n)

11

1 m-n
Ly
L 4 F x M
n
m-—n
S Ll u
m-—n
u
T JR Ur !
n

Fig. 2. Contextual Labelled Transitions for Left-Linear Term Rewriting. Boxes with
m input wires (on their right) and n output wires (on their left) represent n-tuples
of m-hole contexts. Wires are ordered from top to bottom.

such that

s=L;-u
T=R-7"(u+id,)

The definition is illustrated in Figure 2. The restriction to L; # id; excludes
transitions where the label contributes the whole of L. The permutation 7 is
required so that the parameters of L can be divided into the instantiated and
uninstantiated. For example the rule

p(0(-1),7(2), B)—0c(1, 2)

will give rise to transitions

ﬁ - - ’L- p 6 - PRAGS =

(;(S) ((1)) o (S,_l) B ((1—>(2)) @) (_1,_2)
6— - 6_‘) - -

,y() P((l)z 5) (_1,) 5 P((2 7(1)) (_2,_1)

(The last is redundant; it could be excluded by requiring 7 to be a monotone
partition of m into m — n and n.)

Bisimulation Congruence A binary relation S over terms {a | a:0—1}

is lifted to a relation over { A | A:n—1}by A[S] A ¥ Vb:0—n. A0S
A’-b. Say S is a bisimulation if for any s S &'

o s T — IAT". - 5T AT [S] T
o ¢ T — IT. T AT (ST

12

and write ~ for the largest such. As before the congruence proof requires a
simple dissection lemma and three lemmas relating contexts in sources and
labels. Their proofs can be found in Appendix B.

Lemma 6 (Dissection) If A-a = B-b, form >0, A:1—1 and B:m—1
linear, a:0—1 and b:0—m then one of the following holds.

(1) (a is not in any component of b) There exist

my and moy such that m; +my = m
mi:m—m; fori € {1,2} a partition
C:14+mg—1 linear

D :my —1 linear and not the identity

such that

(D + ide) '(7'('1 @& 7T2)

i.e. there are my components of b in a and msy in A.
(2) (ais in a component of b) m > 1 and there exist

m:m—1 and my:m—(m — 1) a partition
E:1—1 linear

such that

A:B'(Tfl @77'2)71 (E+7T2b)
E-a=m-b

Lemma 7 (Forwards-1) If A-s——t and A:1—1 linear then one of the
following holds.

(1) There ezists some H:1—1 such that t = H-s and for all $:0—1 we
have A-§—H - s.

(2) There exist k > 0, F:1+ k—1 linear, T:k—1, D:1—1 linear and
v:0—k, such that s——T, A=D-F-(id; +v) andt =D-T-v.

Lemma 8 (Forwards-2) If A-s—5T for A:1—1 linear, F:1+n—1 and
F #id, then one of the following holds.

(1) There exists H:14+n— 1 such that T = H-(s+1id,) and for all §:0—1
we have A-5-5H (5 +id,,).)

(2) There exist p > 0, E:1+p—1 linear, T:p+n—1 and v:0—p, such
that s EE5T T = 7. (v +id,) and A = E-(id; + v).

13

Lemma 9 (Backwards) If SC'(E—H>d")T for E:1+p—1 linear and C':1 +
n— 1 linear then for all v:0—p we have E (s + v)——T (v + id,,).

Theorem 10 ~ is a congruence.

Proof We show S*, where
s {A-s,A 5" | s~s nA:1—1 linear}

is a bisimulation. First note that for any (possibly non-linear) A:1—1 and
s~ s we have A-s 8" A-s'. To see this, take n > 0 and A:n — 1 linear such
that A=A '<_1, ey _1>1. Let

>
II&

n J A'<Slaslasla"'a—l>1
Each A; is linear, so A;-s S A;-s'. Moreover A;-s' = A;;1-sforiel.n—1
soA-s=A-sS"A,-s=A-5".

We now show that if A:1—1 linear, s ~ s and A- s—ST then there exists
T' such that A-s'— 5T and T [S*]T'.

(1) Suppose A -s—t.
By Lemma 7 one of the following holds:
(a) There exists some H:1—1 such that t = H-s and for all §:0—1
we have A-s—H - 5.
Hence A-s'—H - 5.
Clearly t=H-s S* H-5'.
(b) There exist k > 0, F:1+k—1 linear, T:k—1, D:1—1 linear and
v:0—k, such that s—»T, A=D-F-(id; +v) and t = D-T-v.
By s ~ s there exists T” such that s'——T" » T [~] T".
By Lemma 9 F-(s' 4+ v)—T" - v.
By the definition of reduction A-s' = D-F-(s' + v)—D-T'-v.
Clearly t=D-T-v 8* D-T'-v.
(2) Suppose A-s—T for F:1+n— 1 linear and F # id,.
By Lemma 8 one of the following holds.
(a) There exists H:1+ n—1 such that T = H-(s + id,) and for all

§:0—1 we have A-§—H (5 + id,).
Hence A-s'—5H-(s' + id,)
Clearly T = H -(s +id,,) [S*] H -(s' +id,,).

14

(b) There exist p > 0, E:1 + p—1 linear, T:p+n—1and v:0-p,
such that SF'(E—H>d")T, T=T-(v+id,) and A = E -(id; +).
By s ~ s’ there exists T" such that g ER A [~] T
By Lemma 9 A-s"= F(s' + q)iﬂ;' (v +1id,).
Clearly T =T -(v +id,) [S*] T" -(v + id,).

Now if
AI'SISAI'S;:AQ'SQS...SAH,I'S;

for A; linear and s; ~ sj,,, for 7 € 1.n — 1, and AI-SILTl then by the
above there exists 7, such that A, _; - S;LTn and T [S*|™ T,,, so Ty [S*] T,,.

O

Remark The definition of transitions above reduces to that of Section 2 if
all rules are ground. For open rules, instead of allowing parametric labels,
one could simply close up the rewrite rules under instantiation, by CI(R) =
{0, L-u,R-u) | (n,L,R) € R nu:0—n}, and apply the earlier definition.
In general this would give a strictly coarser congruence. For an example of
the non-inclusion, take a signature consisting of a nullary a and a unary -,
with R consisting of the rules v(_)—y(.) and y(y(a))—y(v(a)). We have
CI(R) = {7"a,y"a | n > 1}. The transitions are

Yo —r Yo Yo —cr) Vo
o 7—>(7(_))R Y(v(c)) a “Ser) o
(_) m n_ m-+n

v(@) T3z y(v(a)) Ve Sam) Y

for m,n > 1, so y(a) #= y(y(a)) but y(a) ~ciry v(v(r)). The proof of the
following proposition can be found in Appendix B.

Proposition 11 If s ~g s’ then s ~cyr) 5.

Comparison Bisimulation as defined here is a congruence for arbitrary left-
linear term rewriting systems. Much work on term rewriting deals with reduc-
tion relations that are confluent and terminating. In that setting terms have
unique normal forms; the primary equivalence on terms is ~, where s ~ t if s
and t have the same normal form. This is easily proved to be a congruence.
In general, it is incomparable with ~. To see one non-inclusion, note that ~
is sensitive to atomic reduction steps; for the other that ~ is not sensitive to
equality of terms — for example, with only nullary symbols «, 3, v, and rewrite
rule y— /3, we have a ~ 3 and ~ -, whereas o % [and 3 + . One might
address the second non-inclusion by fiat, adding, for any value v, a unary test
operator H, and reduction rule H,(v)—w. For the first, one might move to a

15

weak bisimulation, abstracting from reduction steps. The simplest alternative
is to take &~ to be the largest relation S such that if s S s’ then

o s—T — IT". —=*T' AT [S]T'
o (s"STAF+#) = 3T, =T AT [S] T

and symmetric clauses.

Say the set R of rewrite rules is right-affine if the right hand side of each rule
is affine. The following congruence result is proved in Appendix B; whether it
holds without the restriction on R is left open.

Theorem 12 If R is right-affine then ~ is a congruence.

Example — Arithmetic! Write &' for the variant of ~ defined using labelled
transitions annotated by the rewrite rule involved, for transitions with non-
identity labels. As before, the congruence proof for &~ can easily be adapted
to ~'. For some rewrite systems &' coincides with ~. Taking a signature X
comprising nullary zero and unary succ and pred, and rewrite rules

(a) pred(succ()) — 4
(b) pred(zero) — zero

gives labelled transitions

succ(s) pﬂl')(a) s
Z€ero pﬂd_)(b) Zero

together with the reductions —. Here the normal forms are simply the nat-
urals succ™(zero) for n > 0; the relations &' and ~ coincide with each other
and with the standard equality on natural numbers. Note that in the non-

L. d (- .. .
annotated LTS every term has a weak transition %*pﬂ) so the bisimulation
~ will not be sufficiently discriminating.

In general, however, &' and ~ still differ. For example, with unary -, nullary
a, and rules y(a)—« and y(y(a))—>«, we have a %' v(«) but all terms
have normal form «. This may be a pathological rule set; one would like to
have conditions excluding it under which &' (or ~) and =~ coincide.

Example — SKI Combinators Taking a signature ¥ comprising nullary
I, K, S and binary e, and rewrite rules

50_10_2._3 — _1._3.(_2._3)
Ke_ 0, — (1)
Te_ —

! Tt should be noted that the example given in [37,38] contained errors.

16

gives labelled transitions

S —’—ﬂ’% _10_3 .(_2 [J _3) K _.i>_2 <_1>2
Ses 37 se ,e(0) Kes =% (s),
Seset = se_je(te)) I =

together with some permutation instances of these and the reductions —.
The significance of ~ and = here is unclear. Note that the rules are not right-
affine, so Theorem 12 does not guarantee that & is a congruence — the question
is open. It is quite intensional, being sensitive to the number of arguments
that can be consumed immediately by a term. For example, K o(K os) %
Se(Ke(Kes)).

4 Term rewriting with left-linear rules, parallel and blocking

In this section we extend the setting to one sufficiently expressive to define
the reduction relations of simple process calculi. We suppose the signature X
includes binary and nullary symbols | and 0, for parallel and nil, and take a
structural congruence = generated by associativity, commutativity and iden-
tity axioms. Parallel will be written infix. The reduction rules R are as before.
We now allow symbols to be blocking, i.e. to inhibit reduction in their argu-
ments. For each o € ¥ we suppose given a set B(o) C {1,...,|o|} defining the
argument positions where reduction may take place. We require B(|) = {1, 2}.
The reduction contexts C C {C | C':1—1 linear } are generated by

i€ B(o) (a); €C

id, €C
! <U(517"'75i717a78’i+17"'75\0|)>1 €C

Formally, structural congruence is defined over all arrows of Cy, as follows. It
is a family of relations indexed by domain and codomain arities; the indexes
will usually be elided. The first 3 rules impose the ACI properties of |; the
others are congruence rules.

(a)m:m—1 (aj)m:m—1 1€ {1,2} (aj)m:m—1 1€ {1,2,3}
(@)m =m (@] 0)m (a1]a2)m =m,1 (a2]a1)m (a1 [(a2]as3))m =m,1 ((a1]a2) [az)m
1 €1..m <az>m =m,1 <bl>m 7 € {177,}

(—i>m =m,1 (—i)m ((ll..an>m =m,n (blbn>m
f =mmn g f =mnd 9 =mn h (al"a|0'\>m =m,|o] (blb\a\>m
e =T TRy e 7o ey

Reductions The reduction relation over {s | s:0—1} is defined by s—t
iff

Am,L,Ry e R,CeC,u:0—-m. s=C-L-urnC-R-u=t

17

This class of calculi is essentially the same as the class of Action Calculi in
which there is no substantive name binding, i.e. those in which all controls K
have arity rules of the form

a;:0—0 ---a,:0—0
K(ay,...,a,):0—=0

(here the a; are actions, not arrows from Cy,). It includes simple process calculi.
For example, the fragment of CCS in Section 1 can be specified by taking a
signature Yccg consisting of unary «. and a. for each o € A, with 0 and |,
and rewrite rules

RCCS = { <2, .1 | O_[._Q, -1 | _2> | Q€ A}
Bccs(a.) :BCCS(@-) = {}

Notation For a context f:m —n and i € 1..m say [is shallow in argument
i if all occurrences of _; in f are not under any symbol except |. Say f is deep
in argument i if any occurrence of _; in f is under some symbol not equal
to |. Say [is shallow (deep) if it is shallow (deep) in all i € 1..m. Say [is
i-separated if there are no occurrences of any _; in parallel with an occurrence
of ;. Say f is i-clean if _; does not occur in parallel with any term, and f is
clean if it is i-clean for all ¢ € 1..m, i.e. if it contains no subterm _; |a or a | _;
for any j.

Labelled Transitions The labelled transitions will be of the same form as
in the previous section, with transitions s—5T for s:0 — 1, F:14+n—1and
T:n—1. A non-trivial label F' may either contribute a deep subcontext of
the left hand side of a rewrite rule (analogous to the non-identity labels of the
previous section) or a parallel component, respectively with F' deep or shallow
in its first argument. The cases must be treated differently. For example, the
rule

alf—
will generate labelled transitions
-18 -l
sla—>s|y s|—s |y

for all s:0— 1. As before, transitions that contribute the whole of the left

hand side of a rule, such as S'Mfs | v, are redundant and will be excluded. It

is necessary to take labels to be subcontexts of left hand sides of rules up to
structural congruence, not merely up to equality. For example, given the rule

(] B) [(v[6)—e

18

we need labelled transitions

(86
aly|r P10, | r
Finally, the existence of rules in which arguments occur in parallel with non-
trivial terms means that we must deal with partially instantiated arguments.
Consider the rule

o(T(«1) |5, 2)—R

The term 7(4) | p could be placed in any context o(_| s, t) to create an instance
of the left hand side, with p (from the term) instantiating _;, ¢ (from the
context) instantiating _», and p|s (from both) instantiating _3. There will be
a labelled transition

o(] 21 -1)
() | p =R, 1, p|2)a

parametric in two places but partially instantiating the second by p.
The general definition of transitions is given in Figure 3. It uses addi-
tional notation — we write par, for (. |(...|-.))n:n—1 and ppar, for
(1] ns1y -y -n | -nen)nin 0 + n—n. Some parts of the definition are illus-
trated in Figure 4, in which rectangles denote contexts and terms, triangles
denote instances of par, and hatched triangles denote instances of ppar.

To a first approximation, the definition for F' deep in 1 states that s T
iff there is a rule L— R, with L, R:my + my + m3 — 1, such that L can be
factored into Lo (with my arguments) enclosing Ly (with m; arguments) in
parallel with ms arguments. The source s is L; instantiated by u, in parallel
with e; the label F' is roughly Ls; the target T is R with m; arguments
instantiated by v and mgy partially instantiated by e.

The definition for F shallow in 1 states that s——T iff there is a rule L—R
such that L can be factored into L; (with m; arguments) in parallel with
Ly (with my arguments) and with mj other arguments. The source s is L;
instantiated by u, in parallel with e and with an arbitrary term ¢; the label F'
is roughly Ls; the target T"is R with m; arguments instantiated by v and mg
partially instantiated by e, again all in parallel with q. It is worth noting that
the non-identity labelled transitions do not depend on the set of reduction
contexts.

The intention is that the labelled transition relations provide just enough in-
formation so that the reductions of a term A - s are determined by the labelled
transitions of s and the structure of A, which is the main property required
for a congruence proof. The key lemma (Lemma 27, in Appendix C.2) involves
a detailed analysis of possible occurrences of an instance L - u of the left hand
side L of a rewrite rule within a term A-s. Inspection of the proof of this

19

Transitions si>T, fors:0—1, F:1+n — 1linearand T': n — 1, are defined
by:
e For F'=id;: s T iff

Am,L, Ry e R,Ce€Cu:0—-m. s=C-L-urC-R-u=T
e For F' deep in argument 1: s—5T iff there exist

(m,L,R) € R

m1, Mo and ms such that my; + my + m3 = m and n = mg + my
m:m —m a permutation

Li:my; —1 linear and deep

Ly:1+ mo—1 linear, deep in argument 1 and 1-separated
uw:0—my

e:0—ms

such that

L =L, -(par,,,, (L1 +idy,) +id,,,) -7
s=par, ., (L -u+te)
T=R-n"(u+ppar,, (idn, +e¢) +id,,)
F =L, (par ., +idy,)

mz =1 = L # (0)o

e For F' shallow in argument 1 and F' # id;: s—Z5T iff there exist

(m,L,R) € R

m1, Mo and mg such that my; + my + m3 = m and n = mg + my
m:m —m a permutation

q:0—1

Li:my; —1 linear and deep

Ls:msy— 1 linear and deep

u:0—my

e:0—ms

such that

L =vpar,, . (L +idy,, + L) -7

s =pary,,,. (¢+ L -u+e)

T =par,-(¢+R-7"-(u+ ppar,,, -(idm, +€) + id,))
F =vpar, . (id; +idy, + Lo)

mg =0 = L Z (0)

Fig. 3. Contextual Labelled Transitions

20

lemma may make it seem plausible that the labelled transitions provide no
extraneous information, but a precise result would be desirable.

Bisimulation Congruence Bisimulation ~ is defined exactly as in the pre-
vious section. As before, the congruence proof requires dissection lemmas,
analogous to Lemmas 1 and 6, lemmas showing that if A-s has a transition
then s has a related transition, analogous to Lemmas 2,3 and 7,8, and partial
converses to these, analogous to Lemmas 4 and 9. All except the statement
of the main dissection lemma are deferred to Appendix C.

Lemma 13 (Dissection) Ifm >0,

A:1—=1 B:m—1
a:0—1 b:0—m

with A and B linear, and A-a = B -b, then one of the following hold

(1) (a is not deeply in any component of b) There exist
my, Mo and mg such that my; +ms + m3z =m
T M — My, To:M—>My and m3:m —>mg a partition
C:1+my—1 linear and 1-separated
D :my —1 linear and deep
e1:0—mg
ey :0—ms
such that

A = C-(par,,,, -(id; + e) + 12 - b)

a=pary,, (D-m-b+e)

B = C-(pary,,, (D +idy,) + id,,,) -(m & 75 & m)
m3-b = ppar,,, (e + €2)

There are mq of the b in a, mo of the b in A and mz of the b potentially
overlapping A and a. The latter are split into e1, in a, and ey, in A.
(2) (a is deeply in a component of b) m > 1 and there exist

m:m—1 and my:m—(m — 1) a partition
E:1—1 linear and deep

such that

AEB'(Wl@ﬂ'Q)_l'(E-Fﬂ'Q'b)
E-a=m-b

The first clause of the lemma is illustrated in Figure 5. For example, consider
A-a=B-b= O-(T(/'Ll) |p1 |p27/'b2)7 where

A =o(-|p2 po) B =o0(1(4) |3, 2)
a=T7(u)|m b = (11, 2, pr | P2)o

21

Ly

Ly

4 Ly [\[3

ma

Deep

1 mq
Ly
ms T m
1 mao
Ly
1
q
1 mq
L1 u
ms3
e
1
ms3
1 mo
Ly
q
mi
u
=] 3 e
)

Shallow

Fig. 4. Contextual Labelled Transitions Illustrated

A a
;' ______________ 1 !
| ! I
| | 1 m1 :
: 1 : D 7T1'b |
| : ms :
: mg3 I €1 I
,_O €5 : :
: mso | !
I o b | :
. Ao .
- --T-T-T- - - - === T____________';
: : mq |
1 | Ut b :
A | '
: D T +ﬂ_—1 ms €1 :
| ms3 | |
|_C 1 €9 :
: msa : msa !
1 | 7T2'b :
1 : |
B b

Fig. 5. Clause 1 of Dissection Lemma

Clause 1 of the lemma holds, with

C= U(—l;—2) m = ™ = (—1)3
D = 7'(_1) my = 1 o = <_2>3
ey = pi me =1 T3 = (.3)3
€2 = po m3 =1

mob =

o b = iy

This dissection should give rise to a transition

U(— ‘ -2,-

)
7(11) [p1 = R (1, 2, 1] p1)2

(taking A, a, B,b to be the D, s, L, u in case i of Lemma 27).
Theorem 14 ~ is a congruence.
Proof We show that (= S)*, where

s {A-s,A 5" | s~s nA:1—1 linear}

is a bisimulation. As before, note that for any A:1—1 and s ~ s’ we have
A-s8* A-s'. We first show that if A:1—1 linear, s ~ s and A - s—T then
there exists T" such that A-s'— T and T = [S*]T".

23

(1) Suppose A - s—st and T = id,. By Lemma, 27 one of the following holds:
(a) There exists some H:1—1 such that ¢ = H-s and
V§:0—>1. A-s—H-5.
Hence A-s'—H - 5.
Clearly t=H-s 8* H-5'.
(b) There exist n > 0, F':(1+n) — 1linear, T:n—1,C € Candv:0—n
such that s—»T, A=C-F-(id; +v) and t = C-T - v.
By s ~ s' there exists T' such that s'——=7T" » T [~] T
By Lemma 30 F-(s' +v)—T"-v.
By the definition of reduction A-s' = C- F-(s' + v)—C-T" - v.
Clearly t=C-T-vS8*C-T"-v.
(2) Suppose A - s—T for A:1— 1 linear and F:1+n— 1 linear and deep
in 1. By Lemma 28 one of the following holds.
(a) There exists H:1+ n—1 such that T = H-(s + id,) and for all

§:0—1 we have A-§—H-(5+ id,,).
Hence A-s'—H-(s' +id,,).
Clearly T = H-(s +1id,,) [S*] H-(s' +id,).
(b) There exist

mq3 > 0 and mqy > 0 and me > 0 and m3 > 0
such that n = ms + my
Lis:1+ mqy — 1 linear, deep in 1 and 1-separated
Ly:1+ my—1 linear, deep in argument 1 and 1-separated
T:m13+m12+m3+m2—>1
v3:0—mq3
V90— myg
e:0—ms

such that
8L2 -(par1+m3 +idm2) -(L12+id_n)>-(par1+m13 +idm12+m3+m2)T
F =Ly -(par, ,,, +idn,)
T =T -(v3s +vy +ppar,, (e +idy,) +id,,,)
A=pary,,. (L-(par,,, (id; +v3) + v2) +¢)

By s ~ s there exists 7" such that 7' [~] 7" and

,L2 .(parH_m3 +idm,) ((L12+idy) -(par1+m13 +idm12+m3+m2) -,
s — T

By Lemma 31 A-s'— 7" -(v3 + v, + ppar,,, -(e + id,,,) + idy,,).

Clearly T = T -(v3 + v + ppar,,, -(e + idpy,) + idy,) [S*] T"-(vs +
vy + ppar,,, -(e +id,,,) +id,,,).

24

(c) There exist

mye > 0 and me > 0 and m3 > 0 such that n = m3 + me
L5 :my9 — 1 linear and deep

Ly:1+ mo—1 linear, deep in argument 1 and 1-separated
tMg + Mg + mo — 1

0> myo

:0—>mg

S S b

such that

Lo -(par2+m3 +idm2) -(idl +idm3 +L1a +idm2) ~
5 — T

P = Ly-(par, ., + idn,)
T =T -(ppar,,, -(idy,, + a) + v +idy,)
A=vpar,,,, (id;+ Li-v+a)

By s ~ s there exists 7" such that T [~] 7" and

Sl

Lo -(par2+m3 +idm2) ~(id1 —I—idm3 +L1o +idm2)T’

By Lemma 32 A-s'—T" -(ppar,,, -(id,,, + a) + v +id,,,). Clearly
T=T -(ppar,,, -(id,,, +a)+v+id,,,) [S*] T -(ppar,,, -(idm, +a)+
v+ id,,,).
(3) Suppose A - s—5T for A:1—1linear and F: 14+ n— 1 linear, shallow in
1 and F # id,.
By Lemma 29 one of the following holds.
(a) There exists H:1+ n—1 such that T = H-(s + id,) and for all

§:0—1 we have A-§—H (5 + id,,).
Hence A- S’LH'(S, +1id,).
Clearly T = H-(s +1id,,) [S*] H-(s' +id,).
(b) There exist

mqs > 0 and myo > 0 and me > 0 and m3 >0
such that n = mgs + myo

qg:0—1

Liy:1+ myo—1 linear, deep and 1-separated

Ly :my—1 linear and deep

T:m13+m12+m3+m2—>1

v3:0—my3

V90— myo

e:0—mgs

25

Now if

such that

Pary;,, (L12+idmg +L2£&I‘1+m13+idml2+m3+m2)j:,,
F =vpar, . (id; +id, + L)
T = par, -(q + T -(v3 + vo + ppar,,, (e + idp,) +idy,))
A= par2+m3 (q + L12 '(par1+m13 (idl + U3) + 02) + 6)
m3:0 — L27_é<0>0

By s ~ s there exists 7" such that T [~] 7" and

PaT2 g (Di2Fidmg Jr/:2&;”"1“'11:«; +idm12+m3+7n2)i—,/
By Lemma 33 A - s'—spar, (q+T" (v + v + ppar,,, -(e +id,,,) +
id,,,)). Clearly T = par,-(¢ + T'-(v3 + v, + ppar,,, -(e + id,,,) +

ide)) [8*] par, '(q + T, '(U?’ + U2 + ppar,,, -(6 + idm3) + 1dm2))
There exist

myo > 0 and my > 0 and ms > 0 such that n = mg + mo
a:0—1

Lq5:my9 — 1 linear and deep

Ly:ms—1 linear and deep

T:m3+m12+m2—>1

V910 — Mg

a” :0—ms

such that
parg . (idi+idmg+Lia+L2) o
s — T

F =vpar, . (id; +idy, + Lo)

T = par,-(a/ + T -(ppar,,, -(id,, + a") + vs 4 idy,))
A=par y,,, (id +a' + Lz - vy +a")

m3=0 — L2¢<0>0

By s ~ s there exists 7" such that 7' [~] 7" and

,Pars; . ‘(id1+idy g +Li2+L2) -
S —

By Lemma 34 A-s'——spar,-(d + f’ -(ppar,,, -(idm, + a") + vy +
id,;,)). Clearly T = ParQ-(a’ + T -(ppar,,, -(idy,, + ") + vo +
id,,,)) [S*] par, -(a' +T" -(ppar,,, -(id,,, + a") + vs + id,y,)).

7’1EAl'SlgAl'SIQEAQ'SQS...SAnfl'S;Z

26

for A; linear and s; ~ s, fori € 1.n — 1, and r, LTI then by the closure of

transitions under =, and the above, there exists 7,, such that A,_; - S;Li)Tn
and T [(= 8)*] T,.

|

Remark The definitions allow only rather crude specifications of the set C of
reduction contexts. They ensure that C has a number of closure properties,
which are used in the proof of Lemma 27 (in Appendix C.2). Some reduction
semantics require more delicate sets of reduction contexts. For example, for
a list cons constructor one might want to allow reduction contexts cons(_, e)
and cons(v,_), where e is arbitrary but v ranges only over some given set of
values. This would require a non-trivial generalisation of the theory.

Example — CCS synchronization For our CCS fragment the definition
gives

_‘d._l
au|r — ulq|r

_ a1
au|r — ulq|r
together with structurally congruent transitions, i.e. those generated by

f=s s2sT T=T F=F

FI
s =T’

and the reductions.

Proposition 15 ~ coincides with bisimulation over the labelled transitions
of Section 1.

Proof Write ~gq for the standard bisimulation over the labelled transitions of

Section 1. To show ~4 is a bisimulation for the contextual labelled transitions,
- ‘ Q._1

suppose P ~gq P' and P——T. There must exist u and r such that P =
au|rand T = u|_y |r, but then P-%5 = u|r, so there exists Q' such that
P'-%5@Q" ~gq u |r. There must then exist u' and r’ such that P’ = a.u’ | 7' and

Q = u'|r', hence Pty | -1 | r’. Using the fact that ~gq is a congruence we
have Vs. w|s|r ~gq u'|s|rso T [~gal v | |7

For the converse, suppose P ~ P' and P—(). There must exist v and r such

that P = c.u|r and Q = u | r, but then plosy, | -1 |7, so there exists T" such

that P57 A (w|_1|r) [~] T". There must then exist «' and ' such that
P'=a.x' |7 and T = u' | | 7', hence P'~%su'|r'. By the definition of [] we
have P' = u|0|r ~u'|0]r. O

27

The standard transitions coincide (modulo structural congruence) with the
contextual labelled transitions with their parameter instantiated by 0. One
might look for general conditions on R under which bisimulation over such
O-instantiated transitions is already a congruence, and coincides with ~.

Example — Ambient movement The CCS fragment is degenerate in sev-
eral respects — in the left hand side of the rewrite rule there are no nested
non-parallel symbols and no parameters in parallel with any non-0 term, so
there are no deep transitions and no partial instantiations. As a less degen-
erate example we consider a fragment of the Ambient Calculus [10] without
binding. The theory gives rise to a labelled transition relation and bisimula-
tion congruence that appear plausible, though we leave an exact comparison
with the bisimulation in [10] to future work. The signature ¥, has unary
m]] (written outfix), in m., out m. and open m., for all m € A. Of these only
the m[| allow reduction. The rewrite rules R, are

nlin m.; | o] [m[-s] — mln[| 2] | 5]
m[nfout m.y | o] | 5] — n[-1 | 2] | m[]
open m._; |ml] — 1| 2

The definition gives the transitions below, together with structurally congruent
transitions, permutation instances, and the reductions.

in m.s|r "R s e L])

fin mes|f]r 25 s

mls)| ™" R il |)]|

out m.s|r (N nls|r| 4] |mls]

nfout m.s | [+ " nls | | mlr| L]
open n.s|r el | 4 |r
n[s]|r open |- g s

5 Conclusion

We have given general definitions of contextual labelled transitions, and bisim-
ulation congruence results, for three simple classes of reduction semantics. It is
preliminary work — the definitions may inform work on particular interesting
calculi, but to directly apply the results they must be generalized to more ex-
pressive classes of reduction semantics. Several directions are suggested below.

28

There is, of course, no guarantee that for any particular calculus the bisim-
ulation given by the general theory will be satisfactory. The CCS example
may be suggestively positive, but the fact that different sets of reduction rules
(defining the same reduction relation) can give rise to different bisimulation
relations implies that in some cases the bisimulation is bound not to be desir-
able. Examination of more serious examples is required. Moreover, any general
theory is liable to involve heavier notation than work on a single particular
calculus, where one can finely tune the notation and definitions — one might
well expect to have to hand-optimise the general labelled transitions produced
for a particular calculus in order to obtain a tractable set.

Colouring The definition of labelled transitions in Section 4 is rather intricate
— for tractable generalisations, to more expressive settings, one would like a
more concise characterisation. A promising approach seems to be to work
with coloured terms, in which each symbol except | and 0 is given a tag from
a set of colours. This gives a notion of occurrence of a symbol in a term
that is preserved by structural congruence and context application, and hence
provides a different way of formalising the idea that the label of a transition

s—5T must be part of a redex within F'-s. For the case of ground term
rewriting with parallel one can define labelled transitions by

o st ¥ Al,r) € R,8,D:1—1 linear. Fred.g = pblue.jred 1 g = 5 5
t=D-r

where bold s ranges over terms of the coloured signature, superscripts colour
all the symbols in the uncoloured term to which they are applied, and ||
removes colour tags. This appears to give rise to satisfactory bisimulation
congruences, with essentially the same labelled transitions as the definition of
Section 4 restricted to the ground case.

Summation The definitions and results of Section 4 are for signatures with a
single ACI operator, which allow the reduction semantics of the CCS fragment

P:=0|aP|aP|P|P acA

to be expressed. To express the reduction semantics of the fragment with
summation

Pu:=0|a.P|aP|P|P|P+P acA
requires two ACI operators (with + blocking); the reduction rules are then
(a.P+Q)|(.P'+Q)—P| P

Extending the theory to a class of signatures including this would involve new
dissection results.

29

Higher order rewriting Functional programming languages can generally be
equipped with straightforward definitions of operational congruence, involving
quantification over contexts. As discussed in the introduction, in several cases
these have been given tractable characterisations in terms of bisimulation. One
might generalise the term rewriting case of Section 3 to some notion of higher
order rewriting [42] equipped with non-trivial sets of reduction contexts, to
investigate the extent to which this can be done uniformly.

Name binding To express calculi with mobile scopes, such as the m-calculus
and its descendants, one requires a syntax with name binding, and a structural
congruence allowing scope extrusion. Generalising the definitions of Section 4
to the class of all non-higher-order action calculi would take in a number of
examples, some of which currently lack satisfactory operational congruences,
and should show how the indexed structure of 7 labelled transitions arises
from the rewrite rules and structural congruence.

Ultimately one would like to treat concurrent functional languages. In partic-
ular cases it has been shown that one can define labelled transitions that give
rise to bisimulation congruences, e.g. by Ferreira, Hennessy and Jeffrey for
Core CML [16]. To express the reduction semantics of such languages would
require both higher order rules and a rich structural congruence.

Observational congruences We have focussed on strong bisimulation,
which is a very intensional equivalence. It would be interesting to know the
extent to which congruence proofs can be given uniformly for equivalences
that abstract from branching time, internal reductions etc. More particularly,
one would like to know whether Theorem 12 holds without the restriction to
right-affine rewrite rules. As usual, one would expect bisimulation to differ
from any truly observational equivalence for a programming language. It is
arguable, however, that it will always be finer — if the language primitives for
external input and output are designed to appear (from inside the language)
just as other internal interactions, then the contextual labelled transitions
should carry enough information. On a related note, one can define barbs

for an arbitrary calculus by s| <= dF # id;,T. SLT, so s/ iff s has
some potential interaction with a context. Conditions under which this barbed
bisimulation congruence coincides with ~ could provide a useful test of the
expressiveness of calculi.

Structural operational semantics This work has taken reduction seman-
tics as primary, showing how labelled transition relations can be defined from
a set of reduction rules. These definitions are not, however, inductive on term
structure — we have not constructed an SOS from a set of reduction rules. Sev-
eral authors taken labelled transitions as primary, considering calculi equipped
with labelled transitions defined by an SOS in some well-behaved format; c.f.
among others [3,6,8,13,18,23,41]. The relationship between the two is unclear

30

— one would like conditions on rewrite rules that ensure the labelled tran-
sitions of Section 4 are definable by a functorial operational semantics [41].
Conversely, one would like conditions on an SOS ensuring that it is charac-
terised by a reduction semantics. General congruence results have also been
given for calculi with semantics given by open-map-preserving functors, e.g.
in [11]. Again, the relationship with the present work requires study.

Acknowledgements The author would like to thank Robin Milner, Philippa

Gardner, Ole Jensen, Sgren Lassen, Jamey Leifer, Jean-Jacques Lévy, and the

anonymous referees, for many interesting discussions and comments, and to
acknowledge support from EPSRC grants GR/K 38403 and GR/L 62290 and
a Royal Society University Research Fellowship.

A Proofs for Section 2

For the inclusion of ~ in ~y;:
Proposition 16 If s ~t then s ~y; t.

Proof It is straightforward to show that {s,s' | s ~ s} is a bisimulation
: F
with respect to — . O

For the example showing the non-inclusion, the terms are v"(«) and v"(3) for
n > 0. The transitions are

so a v 3 whereas the alternative transitions are

77(0) —a 7(a) () Do 417 ()
1(8) —ae 7(5) 7(8) D 217(8)
Y (B) —an Y"H(B) ifn > 1 () ﬁ)alt Y™(B)

(considering only those from the cut-down label set) so o~y 5.

31

B Proofs for Section 3

Proof of Lemma 6 The proof is by induction on the structure of A and B.
(I

Proof of Lemma 7 By the definition of labelled transitions
A(m,L, Ry € R,C:1—1linear,u:0—-m. A-s=C-L-urnC-R-u=t
Applying Lemma 1 to A-s = C-(L-u) gives the following cases.

(1) (L-u is in s) There exists B:1— 1 linear such that s = B-L-u and
A-B=C. Taking k=0, F =id;, T=B-R-u, D = A and v = ()¢ the
second clause holds.

(2) (sis properly in L-u) There exists B:1— 1 linear with B # _ such that
B-s=L-uand A =C-B. Applying Lemma 6 to B-s = L-u one of
the following hold.

(a) (sis not in any component of u) There exist

my and mgy such that m; + me = m
mi:m—m, for i € {1,2} a partition
F:1+my—1 linear

G :my — 1 linear and not the identity

such that

B = F-(id1+7r2-u)
s=G-m-u
L = F(G+idm2)(7r1®7r2)

i.e. there are m; components of u in s and ms in B. Taking k = m,
T=R-(m ®m) ' (m -u+idy,), D=C and v = 7y - u the second
clause holds. By B # id; we know F' # id;. There is a transition

s—5R (m @)" (- w4 idyy,)

with witness

(m,L,R) € R

my and my such that m; + my = m

(m1 @ m3) : m — m a permutation

G :my — 1 linear and not the identity
F:14 mgy—1 linear and not the identity
m-u:0—my

32

(b) (s is in a component of u) m > 1 and there exist

m:m—1 and my:m —(m — 1) a partition
F:1—1 linear

such that

B:L'(T(l EB7T2)71'(F+7T2'U)
F-s=m-u

Taking H = C- R-(m & mp)~' -(F + mg - u) the first clause holds.
(3) (s and L-u are disjoint) There exists F:2—1 linear such that A =
E-(_+ L-u)and C = E-(s+ _). Taking H = E-(_+ R-u) the first
clause holds.

Proof of Lemma 8 By the definition of labelled transitions there exist

(m,L,Ry € R with m >n

m:m — m a permutation

Ly :(m —n)—1 linear and not the identity
u:0—(m—n)

such that

A-s=L-u
T=R-n'(u+id,)

Let m; = m — n and my = n. Applying Lemma 6 to A-s = L;-u one of the
following hold.

(1) (s is not in any component of u) There exist

my, and mqy such that my; +my = my
6;:my —mq, for i € {1,2} a partition
E:14+myy—1 linear

G :my; — 1 linear and not the identity

such that

s=G-0,-u
L1 = E(G-ﬁ-idmlz)(el@eg)

i.e. there are m; components of v in s and m, in A. Taking p = my,
T=R-((0, D0, +id,,) 7)"" (01 -u+ id,,,, + id,,,) and v = Oy - u we

33

have clause 2. There is a transition

G0 -u ER (0, @0, +idy,) m) 7 (0) - u + iy, + idy,)

with witness

(m,L,R) € R

mi1 and mis + Mo such that mi] + Mo +Mo =M

(61 ® 0y +id,,) - ™) : m — m a permutation

G :mq; — 1 linear and not the identity

F-(E+1id,):1+ mjs + my—1 linear and not the identity
0 -u:0—mp

(2) (s isin a component of u) m; > 1 and there exist

6 :mq — 1 and 0y :my —(my — 1) a partition
J:1—1 linear

such that

A:Ll'(gl @92)_1(J+92U)
Js=0,-u

Taking H = R-7~"-((0, ® 02)™" -(J + 05 -u) + id,,,) we have clause 1.
There is a transition

A5TR- T (0 @ 0)7 (T + 0y - u) +idy,) (3 + idy,)

with witness

(m,L,R) € R

my and msy such that m; + my = m

m:m —m a permutation

Ly :mq —1 linear and not the identity
F:14 my—1 linear and not the identity
(0, ®Os)~" (T84 05-u):0—my

|

Proof of Lemma 9 There are three cases. Firstly, suppose p+n = 0 and
C-(F +id,) = id;. It must then be that C' = id; and E = id;, so the
conclusion is trivially true. Otherwise, by the definition of labelled transitions
there exist

(m,L,Ry € R with m > (p+n)

m:m —m a permutation

Li:(m — (p+n))—1 linear and not the identity
u:0—=(m—(p+n))

34

such that

L=C-(E+idy,) (L +idgy) -7
s=L;-u
T=R-7! -(u—i— id(p+n))

Consider arbitrary v:0— p.
(1) Case C' =id;. Here n = 0 so

E-(s+v) = L-m '-(u+v)
—R-myt(u+v)
=T-v

(2) Case C # id;. There is a transition
E-(5+v)-5T (v +id,,)

with witness

(m,L,R) € R

(m —n) and n such that (m —n) +n=m

m:m —m a permutation

E-(Ly +1idy) :(m — n) — 1 linear and not the identity
C:14 n—1 linear and not the identity
(u+v):0—=(m—n)

O

Proof of Proposition 11 We check ~5 is a bisimulation for the transitions

F .
—cir)- Consider s ~g s'.

(1) Suppose s—>cyr)t. Trivially s—xt. By s ~z s’ there exists ¢’ such that
s'—gt" and t ~g t'. Trivially s'—cyr)t'.

(2) Suppose Sihjl(n)t and F # id;. By definition there exist (m, L, R) € R
and v:0—m such that F-s = L-v and R-v = t. Applying Lemma 6
one of the following hold.

(a) (sis not in any component of v) There exist

my and my such that m; + me = m
mi:m—m,; for i € {1,2} a partition
C:1+ mg—1 linear

D :my; —1 linear and not the identity

such that

F C'(id1+71'2'1))
s=D-m v

L =C-(D+idy,) (m ©m)

35

i.e. there are m; components of v in s and my in F. Here
s-3» R (m1 @ o)~ (1 - v +id,y,). By s ~z s’ there exists 7" such

that s'~SxT' and R-(m @& m) L -(m -v + idm,) [~z] T'. By the
definition of transitions there exist

(m', L', Ry € R with m' > my

¢:m' —m' a permutation

L} :(m' — my) — 1 linear and not the identity
u' 0 —=(m' —my)

such that

L' = C’-(L'1 + ide) o)
s' =L} -
T'=R-¢'-(v+idy,)

and we have

F.-d'=C-(s+m-v)
=C-(L}-u +m-v)
=C (L) +id,,)-¢- ¢~ -(u' + T3 -v)
=L ¢ (v + 7y -0)

SO s’iml(R)R’ ¢ -(u' + mp-v) = T' - my - v. By the definition of |]
wehavet = R-v=R-(m &)~ -(m-v+idy,) T -v~g TN Ty v.
(b) (s is in a component of v) m > 1 and there exist

m:m—1 and my:m —(m — 1) a partition
E:1—1 linear

such that

F:L‘(ﬂ'l @Wg)il-(E-Fﬂ'Q"U)
E.-s=m - v

Here t = R-(m @ m) ' (E + my-v)-s and s'iml(R)R-(m <)
m) ' (E+4m-v)-s". By Theorem 10 R (11 ®m) ' (E+m-v) - s ~p
R-(m @& m) t(E+m-v)-s.

O

Proof of Theorem 12 First note that if the rewrite rules R are right-affine
then the conclusions of Lemmas 7 and 8 can be strengthened to require H
affine. We show that SU {s,s|s:0—1}, where

s {A-s,A ¢ |s~s" rnA:1—1 linear}

36

is a bisimulation of the form specified. Consider A:1—1 linear and s =~ ¢'.

!

We show that if A-s——t th%n there exists ¢’ such that A-s'——*t" and t S ¢/
or t = t'. Moreover, if A-s—T for F # id; then there exists 7" such that

A-s'—

T and T [S] T or T [=] T".

(1) Suppose A-s——t. By Lemma 7 one of the following holds:

(a)

(b)

There exists some H:1—1 such that ¢t = H-s and for all
5:0—1 we have A-§—>H - 5. Moreover, H is affine. It follows that
A-s'—H-s'.If H is linear then clearly t = H-s S H-s', otherwise
H does not use its argument sot = H-s= H-s'.

There exist £ > 0, F':14+k —1 linear, T:k— 1, D:1—1 linear and
v:0—k, such that s—>T, A = D-F-(id; +v) and t =D -T-v.

(i) Case F =1id;. By s &~ s’ there exists T" such that §'—"T" A T =~
T'. By the definition of reduction A-s'——"A-T" and clearly
t=A-TSA-T.

(ii) Case F # id;. By s = ' there exist s” and 7" such that
§'—=*s" I3 A T ~ T'. By Lemma 9 F-(s" + v)—=T"-v. By
the definition of reduction A-s' = D-F-(s' +v)—"D- F-(s" +
v)—D-T"-v,and clearly t =D -T-v S D-T'-v.

(2) Suppose A - s—5T for F:1+n— 1 linear and F # id;. By Lemma 8 one
of the following holds.

(a)

There exists H:1 + n—1 such that T = H-(s + id,) and for all
§:0—1 we have A - §i>H-(§+idn). Moreover, H is affine. It follows

that A - S,LH-(S, +id,,). If H is linear in its first argument then
T = H-(s+1id,) [S] H-(s' + id,), otherwise H does not use its
argument so T'= H-(s +1id,) = H-(s' +id,) so T [=] H-(s' +id,).
There exist p > 0, E:1 + p—1 linear, T:p-i— n—1 and v:0—p,

such that s* 57 T = T.(v +id,) and A = E-(id, + v). By

i . Ly F(Etidn) e, e .
s ~ s’ there exist s” and 7" such that s'—"5s" (j>)T’ AT [=] T

By the definition of reductions A-s'—*A-s". By Lemma 9 A-s" =
E-(s"+v) 5T (v+id,). Clearly T = T -(v+id,) [S] T"-(v +id,,).

|

C Proofs for Section 4

This appendix contains the lemmas required for the main congruence result of
Section 4. It is divided into three subsections, of dissection, forwards, and back-
wards lemmas respectively. Only Lemma 27 of §C.2, showing that if A-s—t
then s has a suitable labelled transition, is proved in detail; other proofs can
be found in the technical report version.

37

C.1 Dissection Lemmas

This subsection contains the statements of lemmas required for the proof of
the main dissection lemma (Lemma 13), together with the statements of some
auxiliary simple dissection results used elsewhere.

Lemma 17 If B:m —1 linear then there exist my, ms, m :m—my and
m3:m—>ms a partition, and B':mqy—1 linear and deep, such that m =
my +mg and B = par, . (B +idp,) (11 & 73).

Lemma 18 If C: 14+ m — 1 linear then there exist my, mo, ™ :m —my and
To 1 — My a partition, and C':(1+msy) — 1 linear and 1-separated, such that
m=mq +my and C = C'-(par,,, +idy,)-(idi + m & 7).

Lemma 19 If B:m — 1 is linear for m > 0 then there existn € 1..m, m; > 1
for © € 1.n summing to m, 0;:m—m,; for ¢ € 1.n a partition, B;:m; —1
for i € 1.n linear and shallow, and B':n—1 linear and clean, such that
B=B-(Bi+...+B,)-(0:®...®6,).

Lemma 20 If m > 0, B:m —1 is linear and clean, b:0—m, and B-b = c,
then there exist B':m — 1 linear and b’ :0 —m such that B = B', b=1" and
c=B"-V.

Lemma 21 If m > 0,

A:1—=1 B:m—1
a:0—1 b:0—m

with A and B linear, and A-a = B -b, then one of the clauses of the conclusion
of Lemma 13 holds.

Proof By Lemmas 6, 18 and 17. O

Proof of Lemma 13 The proof is by induction on the derivations of struc-
tural congruence, showing that if A-a = B-b or B-b = A-a then one of the
clauses of the conclusion holds. The degenerate cases m = 0, A = id; and
B = id; are dealt with separately. O

Lemma 22 If

A:1—=1 B:1—=1
a:0—1 b:0—1

with A and B linear, and A-a = B -b, then one of the following holds.

(1) (a andb are disjoint) There exists E:2— 1 linear such that A = E -(_+b)
and B=E-(a+-).

38

(2) (a and b overlap) There exist C:1— 1 linear and zayp, zap and zap such
that

A=C-(zap|-) a
B=C-(zpl|-) b

Za,B | Zab
ZA.b | Za,b

and moreover z,p Z 0
(3) (A is properly in B and b is deeply in a) There exists D :1—1 linear and
deep such that a =D -b and A-D = B.

(4) (B is properly in A and a is deeply in b) There exists D:1—1 linear and
deep such that D-a=b and A= B-D.

Lemma 23 If m > 0,

a;:0—1 C:m—1
as:0—1 d:0—m

with C linear, and ay |ay = C-d, then there exist

my, Mo and mg such that my + my + m3 =m
mi:m—m; fori € {1,2,3} a partition
Ci:mq— 1 linear and deep

Cs:mo — 1 linear and deep

e1:0—>mg

er:0—mg3

such that

ap = pary ., (Ci-m-d+e;)

G = par; .. (Cy-mo-d+ey)

C = par,,,, (Ci + Cy +idy,,) (11 © 7 @ 73)
73 -d = ppar,,, -(e; +)

There are my of the d in ay, ma of the d in as and ms of the d potentially
overlapping aq and ay. The latter are split into ey, in ay, and ey, in as.

Lemma 24 If m > 0,

a;:0—1 C:m—1
as:0—1 d:0—m

with C linear and deep, and ay | ay = C'-d, then there exist
my and mey such that m; +my = m
mi:m—m; fori € {1,2} a partition

Ci:mqy — 1 linear and deep
Cy:mo — 1 linear and deep

39

such that

ap = Cl'ﬂ'l'd
Ao = 02'7T2'd
C = parQ-(Cl—FCQ)-(mEBﬂQ)

There are my of the d in a1 and my of the d in a-.
Lemma 25 If m > 1,

A:1—=1 b:0—m
s:0—1

with A linear and deep, and A-s = par,, -b, then there exist

m:m—1 and mo:m—(m — 1) a partition
A:1—=1 linear and deep
a:0—(m-—1)

such that

ST
Il
ke}
QO
]
s

&~ t
Q>

Il
El
I
N

Lemma 26 Ifm > 1,

A:1—=1 b:0—m
s:0—1

with A linear and shallow, and A-s = par,, - b, then there exist

0—m
:0—m

> Q>

such that

N

Vo)
11l

par,_,, -(id; +a)
par, -§
b

Va3
S—

ppar,, (G +

C.2 Forwards Lemmas

The three lemmas in this subsection show that if A-s has some labelled tran-
sition, where A:1—1 is linear, then either the transition is independent of s
or s has a related labelled transition. We have chosen to consider arbitrary A
— one could instead restrict to atomic A, in which the hole is under exactly
one symbol. It is not clear whether this would allow significant simplifications.

40

Lemma 27 If A-s—Lst for A:1—1 linear and I = id; then one of the
following holds.

(1) There erxists some H:1—1 such that t H-s and
Vs:0—>1. A-5—H-s.

(2) There exist

n>0
F:(1+n)—1 linear
T:n—1

cecC

v:0—n

such that s—»T, A=C-F-(id, +v) and t = C-T-v.
Proof By the definition of labelled transitions
Am,L,RYy e R,BeC,u:0—-m. A-s=B-L-unB-R-u=t
The proof involves a number of cases, summarized below.

1 s and L-u are disjoint. Clause 1 holds.
2 s and L-u may overlap.
a the overlap is trivial. Clause 1 holds.
b the overlap is non-trivial. Clause 2 holds with F' shallow in 1 and not id;.
3 L-u is deeply in s. Clause 2 holds with F' = id;.
4 sis deeply in L - u.
a s is not deeply in any component of u.
i s non-trivially overlaps L. Clause 2 holds with F' deep in 1.
ii s does not overlap L. Clause 1 holds.
b s is deeply in a component of u. Clause 1 holds.

We now consider the cases in detail. Each case involves verification of the
existence of a labelled transition and of other equational conditions. The exis-
tential witness for a labelled transition is generally given explicitly; the state-
ments of the required equational conditions are often elided (but can be found
in the technical report version). Applying Lemma 22 to A-s = B-(L-u) we
have

(1) (s and L-u are disjoint) There exists E:2—1 linear such that
A=FE-(_+L-u) B=FE-(s+.)

Putting H = E-(_+ R-u) we have clause 1 of the conclusion.
(2) (sand L-uoverlap) There exist D:1— 1 linear and za .y, 25, and zg .,
such that

41

AED-(ZA’L.L,|_)

B=D(zpg]-)

S=Zsp | ZsL-u
L-u=zap.ul|2sL u

and moreover zs., Z 0 Applying Lemma 23 to 25.4 | 2aL.0 = L-u we
have that there exist

m1, Mo and mg such that mq; + my +m3 =m
mi:m—m,; for i € {1,2,3} a partition

L :my —1 linear and deep

Ly :ms — 1 linear and deep

e1:0—mg3

er:0—>ms

such that

ZsL.u = Ppar; . (Ly-m-u+eq)
ZAL-u = Par . (Lo u+ey)

L =pary . (L1 + Lo+ idy,) -(m & Ty & m3)
T3-u = ppar,,, -(e; + €3)

There are my of the u in 2, .,, mo of the u in za ., and ms of the u
potentially overlapping 2., and za.,. The latter are split into e;, in
ZsL.u, and ez, in 2a L . y.

Note that as Ly deep we have Ly -7y -u =0 <= my =01 Ly = (0)o.
We now have two cases, one with L-u properly in s and one with a
non-trivial overlap.

(a) Case Ly-mo-u = 0 A m3g = 0. Here my = mg = 0, Ly = (0)o,
L=L,-m and 2p1., =050 s = 2| L-u. Taking

n =70

F =id, 11
T = (zp|) R-u:0—1
C=A 1—1
v =)o :0—0

we have clause 2 of the conclusion.
(b) Case Ly-my-u % 0 v mg # 0. Taking

n = mg + Mo
F = par, . -(id; +id;,, + Ly)
T = (—|ZS,B) 'R'(7T1 D w3 D 7T2)_1
(71 -u + ppar,,, -(id,, +e1) + id,,)

we have clause 2 of the conclusion. There is a transition

s s (il;rldmﬁb)(_ |2s8) R-(m & w3 & m) '(m-u +
ppar,,, -(id,,, +e;) +id,,,)
with witness

(m,L,R) € R

m1, Mo and mg such that m; + my +m3 =m

(m1 @ w3 @ my) : m — m a permutation

par, . -(id; +id,, + Ly):1 4+ m3 + my — 1 linear, shallow in
argument 1, and not id;

23:0—1

Li:m; —1 linear and deep

Ly :msy — 1 linear and deep

(1 u):0—my

e1:0—>mg3
If mg = 0 then by assumption Ls-ms-u Z# 0, hence Ly Z (0)¢ so
F #id,. Further, 251 ., = Ly -7 - u so we have Ly -7, -u # 0, hence
Ly # (0)o.

(3) (Ais properly in B and L -u is deeply in s) There exists D:1—1 linear
and deep such that

Taking

s=D-L-u
A-D=B
n=2>0
F:id1 1—1
T=D-R-u:0—>1
Cc=A 1—1
v =)o :0—0

we have clause 2 of the conclusion.
(4) (B is properly in A and s is deeply in L -u) There exists D:1—1 linear
and deep such that

D-s=L-u
A=B-D

Applying Lemma 13 to D -s = L -u we have one of the following

(a)

(s is not deeply in any component of u) There exist
m1, Mo and mg such that m; + mg +m3 =m
T :Mm—my, Te:m—my and m3:m — m3 a partition
Ly:1+ mo—1 linear and 1-separated
L :my —1 linear and deep
e1:0—>mg3
er:0—ms

43

such that

D = Ly -(par,,,, -(id; 4+ e3) + 73 - u)
s=pary ., (L -m-u+e)
L = Ly-(par,,,, (L1 +idy,) + id,,,) -(m1 @ 73 & m3)
T3 -u = ppar,,, -(e; + e)

There are m; of the u in s, my of the u in D and ms3 of the u
potentially overlapping D and s. The latter are split into e, in s,
and ey, in D.
(i) Case m3 =1 = L; # (0). Since D is deep we know that L,
is deep in argument 1. Taking

ms + Mo
'(71'1 D T3 D 7T2)_1 '(71'1 U+ lf)lf)n':ll'n,L3 '(idm3 —+ 61) + ide)

= Q8T
Il

R
B
(e

2+7r2-u)

we have clause 2 of the conclusion. There is a transition

Ly -(par,,,.,+idm,) .
g 0 mg T R-(m &7y ®my)~" (w1 - u+ ppar,,, -(idy,, +

61) + lde)
with witness
(m,L,R) € R
my, Mo and mg such that my +mqg +m3 =m
(m1 @ w3 @ ma) : m — m a permutation
Ly-(par,,,, + idy,):1 + m3 + my—1 linear, deep in
argument, 1
Lqi:my —1 linear and deep
Ly:1+ mo—1 linear, deep in argument 1 and 1-separated
m-u:0—my
er:0—>mg

(ii) Case m3 =1 A L; = (0)¢. Putting
H=DB-R-(m ®m®m) " (pary-(id; + e3) + m - u)

we have clause 1 of the conclusion.
(b) (s is deeply in a component of u) m > 1 and there exist

m:m—1 and 7y :m —(m — 1) a partition
E:1—1 linear and deep

such that

D=L-(m ®m) "' (E+my-u)
E-s=m-u

44

Putting H = B-R-(m & m3) ' -(E + m - u) we have clause 1 of the
conclusion.

O

Lemma 28 If A- 55T for A:1—1 linear and F :14+n—1 linear and deep
in 1 then one of the following holds.

(1) There exists H:1+n—1 such that T = H-(s+id,,) and for all §:0—1
we have A-3—H (5 + id,).
(2) There ezist

my3 > 0 and miz > 0 and mgy > 0 and ms >0
such that n = ms + meo
Lis: 1+ mqs— 1 linear, deep in 1 and 1-separated
Ly:1+ mo— 1 linear, deep in argument 1 and 1-separated
T:m13+m12+m3+m2—>1
v3:0—my3
V90— myo
e:0—ms

such that
SL2 -(par1+m3 +idm2) '(L12+id—n)>'(Pal'1+m13 +idm12+m3+m2)j;’
F =L -(par,,, +id,,,)
T =T-(v3 + vy + ppar,,, (e +idy,) + idy,)
A=pary . (L (par,,,, (id; +vs) + v2) +¢€)

(3) There ezist

mio > 0 and my > 0 and ms > 0 such that n = ms + my
Lis:mq9 — 1 linear and deep

Lo:1 4+ mo—1 linear, deep in argument 1 and 1-separated
T:m3+m12+m2—>1

v:0—=>mqa

a:0— mg

such that

Lo ~(par2+m3 +idm2) ~(id1 —I—idm3 —I—L12—|—idm2) ~
S — T

F = L,-(par,,,, +id,,)
T =T -(ppar,,, -(idy, + a) +v +id,,,)
A= par2+m3 (id1 + L12 -V + d)

45

Proof By the definition of transitions there exist

(m,L,R) € R

my, my and ms such that my + mo + m3 = m and n = mg + my
m:m —m a permutation

Li:m; — 1 linear and deep

Ly:1+ my—1 linear, deep in argument 1 and 1-separated

u:0—>my
e:0—ms
such that

L =L, -(par ., (L1 +idy,) +id,,) -7
A-s=par ., (Li-u+e)
T=R-n! (U + ppar,,, (idms + 6) + idmz)
F = Ly-(par,,,,, +id,,)
mg =1 = L; #Z (0)g

The proof involves a number of cases, summarized below.

1 A deep.
a sis not in e.
i sis not deeply in any component of w.
A s and L have a non-trivial overlap. Clause 2 holds.
B s is in u. Clause 1 holds.
ii s is deeply in a component of u. Clause 1 holds.
b s is in one component of e. Clause 1 holds.
2 A shallow.
a s and L have a non-trivial overlap. Clause 3 holds.
b sisin e. Clause 1 holds.

O

Lemma 29 If A- s—5T for A:1—1 linear and F :1+n —1 linear, shallow
in 1 and F # id; then one of the following holds.

(1) There exists H:1+n—1 such that T = H-(s+id,,) and for all §:0—1
we have A-3——H (5 + id,).

46

(2) There ezist

my3 > 0 and mia > 0 and mg > 0 and ms >0
such that n = ms + mo

q:0—1

Lis:1 4+ mqo— 1 linear, deep and 1-separated

Lo:my—1 linear and deep

T:m13+m12+m3+m2—>1

v3:0—my3

Vg0 — myo

e:0—ms

such that

par2+m3 (L12+idm3+L2) '(par1+m13+idm12+m3+m2) ~

T

F = par,_,,, -(id; +idy, + Lo)

T = par, (¢ + T-(vg + v, + ppar,,, -(e +id,,,) +id,,,))
A =par,y . (¢+ Lip-(par, ., -(id; +v3) + v2) +€)
mg =0 = Ly # (0)o

(3) There exist

myg > 0 and me > 0 and ms > 0 such that n = ms + ms
a:0—1

Lis:my9 — 1 linear and deep

Ly:msy—1 linear and deep

T:m3+m12+m2—>1

V90— myo

a”:0—ms

such that

parg . -(idi1+idmg+Lia+L2) ~
— T

F =vpar,,,,. -(id; +idy,, + L)

T = par, -(a’ + T -(ppar,,, -(id,,, +a"") + vy + id.,))
A=vpar, g, (id +a + Ly v +a")

mg =0 = Ly # (0)o

47

Proof By the definition of transitions there exist

(m,L,R) € R

my, my and ms such that my + mo + m3 = m and n = mg + my
m:m —m a permutation

q:0—1

Li:m; — 1 linear and deep

Lo :msy— 1 linear and deep

u:0—my

e:0—mg

such that

L =vpar, . (L +idy, + L) 7
A-s=pary, . (¢+Li-u+e)

T =par,-(¢+R-7"-(u+ ppar,, -(idm, +€) +idy,))
F =vpar,,,,, (id; +id,, + L)

my =0 = L Z (0)o

By F # id; we also have m3 =0 = Ly # (0)¢. The proof involves a number
of cases, summarized below.

1 A deep.
a sisin ¢. Clause 1 holds.
b sisin Ly - u.
i s is not deeply in any component of u.
A s and L have a non-trivial overlap. Clause 2 holds.
B s is in u. Clause 1 holds.
ii s is deeply in a component of u. Clause 1 holds.
c s isin e. Clause 1 holds.
2 A shallow.
a s and L have a non-trivial overlap. Clause 3 holds.
b sisin ¢. Clause 1 holds.

C.3 Backwards Lemmas

The five lemmas in this subsection are approximate converses to those in
Section C.2. The first shows that if s—7 then F-(s +v) has a reduction to

T-v. The other four show that if s %7 then s, in a context constructed from
(G, has a transition with label F'. This is done for F' and G deep and shallow
in their first arguments.

48

Lemma 30 [fsi>T for F:14+n—1 then for all v:0—n we have F-(s +
v)—T-v.

Proof Straightforward case analysis on the three possible forms of F'. O

2 '(par1+m3 +idm2) '(L12 +idm3+m2) '(par1+m13 +idm12 +m3+m2) -~

L
Lemma 31 If s T, where

mqz > 0 and mqy > 0 and my > 0 and mg > 0
Lo:1+my—1 linear, deep in 1 and 1-separated
Lis:1+ mqy— 1 linear, deep and 1-separated
T:m13+m12+m3+m2—>1

then for all v3:0—mq3, v2:0—mya, and e:0—m3 we have

par, . (L2 -(par, ., , (s +v3) + v2) +e)
Ly -(pary,,,.+idm,) . .
? PR g T T -(vs + vy + ppar,,, -(e + idy,,) + id,,,)

Proof By the definition of deep labelled transitions, using the fact that L,
is deep in 1 and 1-separated to justify some cancellation steps. O

2 «(Paryy ,, +idm,) -(id1 +idpmy + Lio+idm,) o
—

L
Lemma 32 If s T, where

mye > 0 and my > 0 and ms > 0

L1y :mys — 1 linear and deep

Lo:1+mo—1 linear, deep in argument 1 and 1-separated
T:m3+m12+m2—>1

then for all v:0—myy and a:0 — ma we have

par2+m3 (id1 -+ L12 -V + C:l) + S
Ly -(par;,,.+idm,) ~ . A .
2P L T -(ppar,,, -(idy, + a) + v + id,,,)

Proof By the definition of deep labelled transitions, using the fact that L is
deep in 1 and 1-separated, and Lq, is deep, to justify some cancellation steps.
|

parsy ., (L12+idmg +La2) -(par1+m13 Hidm g +mgt+mg) o

Lemma 33 If s T, where

myg > 0 and my3 > 0 and my > 0 and ms > 0
Lis: 1+ mqo— 1 linear, deep and 1-separated
Ly:my—1 linear and deep
T:m13+m12+m3+m2—>1

my =0 = Loy # (0)o

49

then for all ¢q:0—1, v3:0—my3, v2:0—>myo, and e¢:0—m3 we have

par, . (q + L12 '(par1+m13 (idl + U3) + 02) + 6) S

pary, .. (idi+idm,+L2) ~ . .
g LM par, -(q + T -(vs + va + ppar,,, -(e + idp,) + idy,))

Proof By the definitions of deep and shallow labelled transitions, using the
fact that L5 is deep in argument 1 and is 1-separated to justify some cancel-
lation steps. O

parg, ., -(id1+idm3+L12+L2) ~
Lemma 34 If s = T, where

myg > 0 and me > 0 and ms > 0
Liy:mys — 1 linear and deep
Ly:msy—1 linear and deep
T:mg+ mpx+me—1
m3 =0 — L27_é<0>0
then for all a':0—1, vy:0—mye, and @’ :0—ms3 we have
par; o m, (s +a' + Liz- vy +a")
par, -(a’ + T -(ppar,,, -(id,, + a") + vs 4 idy,))

pary . (idy+idmg+L2)
—

Proof By the definition of shallow labelled transitions, using the fact that
Li> and L, are deep to justify some cancellation steps. O

References

[1] Martin Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. In Proceedings of the Fourth ACM Conference on Computer
and Communications Security, Ziurich, pages 36-47. ACM Press, April 1997.

[2] S. Abramsky and L. Ong. Full abstraction in the lazy lambda calculus.
Information and Computation, 105:159-267, 1993.

[3] Luca Aceto, Bard Bloom, and Frits Vaandrager. Turning SOS rules into
equations. Information and Computation, 111(1):1-52, 15 May 1994.

[4] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, New York, 1998.

[5] Jean-Pierre Banatre and Daniel Le Métayer. A new computational model and
its discipline of programming. Technical Report 566, INRIA, 1986.

[6] Karen L. Bernstein. A congruence theorem for structured operational semantics
of higher-order languages. In Proceedings of LICS 98, 1998.

20

[7] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical
Computer Science, 96:217-248, 1992.

[8] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal of
the ACM, 42(1):232-268, January 1995.

[9] Gérard Boudol. The m-calculus in direct style. In Proceedings of the 24th POPL,
pages 228-241, 15-17 January 1997.

[10] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proc. of Foundations
of Software Science and Computation Structures (FoSSaCS), ETAPS’98, LNCS
1378, pages 140-155, March 1998.

[11] Gian Luca Cattani, A. John Power, and Glynn Winskel. A categorical
axiomatics for bisimulation. In Proceedings of CONCUR ’98: Concurrency
Theory (Nice). LNCS 1466, September 1998.

[12] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83-133, 1984.

[13] R. de Simone. Higher-level synchronising devices in MELIJE-SCCS. Theoretical
Computer Science, 37:245-267, 1985.

[14] U. Engberg and M. Nielsen. A calculus of communicating systems with label-
passing. Technical Report DAIMI PB-208, Comp. Sc. Department, Univ. of
Aarhus, Denmark, 1986.

[15] M. Felleisen and D. P. Friedman. Control operators, the SECD-machine and the
A-calculus. In Formal Description of Programming Concepts I11, pages 193-217.
North Holland, 1986.

[16] William Ferreira, Matthew Hennessy, and Alan Jeffrey. A theory of weak
bisimulation for core CML. In Proc. ACM SIGPLAN Int. Conf. Functional
Programming. ACM Press, 1996.

[17] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-
calculus. In Proceedings of the 23rd POPL, pages 372-385. ACM press, January
1996.

[18] Fabio Gadducci and Ugo Montanari. The tile model. In Gordon Plotkin, Colin
Stirling, and Mads Tofte, editors, Proof, Language and Interaction: Essays in
Honour of Robin Milner. MIT Press, 1999. To appear.

[19] R. J. van Glabbeek. The linear time — branching time spectrum. In Proceedings
of CONCUR 90, LNCS 458, pages 278-297, 1990.

[20] R. J. van Glabbeek. The linear time — branching time spectrum II; the semantics
of sequential systems with silent moves. In Proceedings of CONCUR’93, LNCS
715, pages 6681, 1993.

[21] Andrew D. Gordon. Bisimilarity as a theory of functional programming.
mini-course. Number NS-95-3 in the BRICS Notes Series, Computer Science
Department, Aarhus, 1995.

o1

[22] Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a first-order calculus
of objects with subtyping. In Proceedings of the 23rd POPL, pages 386-395,
1996.

[23] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100(2):202-260,
1992.

[24] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics.
Theoretical Computer Science, 152(2):437-486, 1995.

[25] Douglas J. Howe. Equality in lazy computation systems. In Proceedings of
LICS ’89, pages 193-203, 19809.

[26] Alex Mifsud. Control Structures. PhD thesis, University of Edinburgh, 1996.

[27] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts T +
IT. Information and Computation, 100(1):1-77, 1992.

[28] Robin Milner. Functions as processes. Journal of Mathematical Structures in
Computer Science, 2(2):119-141, 1992.

[29] Robin Milner. Calculi for interaction. Acta Informatica, 33:707-737, 1996.

[30] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Proceedings of
19th ICALP. LNCS 623, pages 685-695, 1992.

[31] Ugo Montanari and Vladimiro Sassone. Dynamic congruence vs. progressing
bisimulation for CCS. Fundamenta Informaticae, XVI:171-199, 1992.

[32] J. Niehren and M. Mueller. Constraints for free in concurrent computation.
In Proceedings of the Asian Computer Science Conference, LNCS 1023, pages
171-186, 1995.

[33] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
Aarhus, Denmark, 1981.

[34] James Riely and Matthew Hennessy. A typed language for distributed mobile
processes. In Proceedings of the 25th POPL, January 1998.

[35] Davide Sangiorgi. Ezpressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis, University of Edinburgh, 1993.

[36] Peter Sewell. On implementations and semantics of a concurrent programming
language. In Proceedings of CONCUR ’97. LNCS 12/3, pages 391-405, 1997.

[37] Peter Sewell. From rewrite rules to bisimulation congruences. Technical
Report 444, University of Cambridge, June 1998. Available from
http://www.cl.cam.ac.uk/users/pes20/.

[38] Peter Sewell. From rewrite rules to bisimulation congruences. In Proceedings
of CONCUR ’98: Concurrency Theory (Nice). LNCS 1466, pages 269-284,
September 1998.

02

[39] Peter Sewell. Global/local subtyping and capability inference for a distributed
m-calculus. In Proceedings of ICALP ’98, LNCS 1443, pages 695706, 1998.

[40] A. Rensink. Bisimilarity of open terms. In Ezpressiveness in Concurrency,
1997. Full report version: Hildesheimer Informatik-Bericht 5/97, University of
Hildesheim, May 1997.

[41] D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In
Proc. 12" LICS Conf., pages 280-291. IEEE, Computer Society Press, 1997.

[42] Femke van Raamsdonk. Confluence and Normalisation for Higher-Order
Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, 1996.

53

