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Abstra
t

The dynami
s of many 
al
uli 
an be most 
learly de�ned by a redu
tion semanti
s.

To work with a 
al
ulus, however, an understanding of operational 
ongruen
es is

fundamental; these 
an often be given tra
table de�nitions or 
hara
terisations using

a labelled transition semanti
s. This paper 
onsiders 
al
uli with arbitrary redu
tion

semanti
s of three simple 
lasses, �rstly ground term rewriting, then left-linear term

rewriting, and then a 
lass whi
h is essentially the a
tion 
al
uli la
king substantive

name binding. General de�nitions of labelled transitions are given in ea
h 
ase,

uniformly in the set of rewrite rules, and without requiring the pres
ription of

additional notions of observation. They give rise to bisimulation 
ongruen
es. As a

test of the theory it is shown that bisimulation for a fragment of CCS is re
overed.

The transitions generated for a fragment of the Ambient Cal
ulus of Cardelli and

Gordon, and for SKI 
ombinators, are also dis
ussed brie
y.
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1 Introdu
tion

The dynami
 behaviour of many 
al
uli 
an be de�ned most 
learly by a

redu
tion semanti
s, 
omprising a set of rewrite rules, a set of redu
tion 
on-

texts in whi
h they may be applied, and a stru
tural 
ongruen
e. These de�ne

the atomi
 internal redu
tion steps of terms. To work with a 
al
ulus, how-

ever, a 
ompositional understanding of the behaviour of arbitrary subterms,

as given by some operational 
ongruen
e relation, is usually required. The lit-

erature 
ontains investigations of su
h 
ongruen
es for a large number of par-

ti
ular 
al
uli. They are often given tra
table de�nitions or 
hara
terisations

via labelled transition relations, 
apturing the potential external intera
tions

between subterms and their environments. De�ning labelled transitions that

give rise to satisfa
tory operational 
ongruen
es generally requires some mix

of 
al
ulus-spe
i�
 ingenuity and routine work.

In this paper the problem is addressed for arbitrary 
al
uli of 
ertain simple

forms. We give general de�nitions of labelled transitions that depend only

on a redu
tion semanti
s, without requiring any additional observations to

be pres
ribed. We �rst 
onsider term rewriting, with ground or left-linear

rules, over an arbitrary signature but without a stru
tural 
ongruen
e. We

then 
onsider 
al
uli with arbitrary signatures 
ontaining symbols 0 and j,

a stru
tural 
ongruen
e 
onsisting of asso
iativity, 
ommutativity and unit,

left-linear rules, and non-trivial sets of redu
tion 
ontexts. This suÆ
es, for

example, to express CCS-style syn
hronisation. It is essentially the same as

the 
lass of A
tion Cal
uli in whi
h all 
ontrols have arity 0! 0 and take some

number of arguments of arity 0! 0. In ea
h 
ase we de�ne labelled transitions,

prove that bisimulation is a 
ongruen
e and give some 
omparison results.

Ba
kground: From redu
tions to labelled transitions to redu
tions...

De�nitions of the dynami
s (or small-step operational semanti
s) of lambda


al
uli and sequential programming languages have 
ommonly been given as

redu
tion relations. The �-
al
ulus has the rewrite rule (�x:M)N�!M [N=x℄

of � redu
tion, whi
h 
an be applied in any 
ontext. For programming lan-

guages, some 
ontrol of the order of evaluation is usually required. This has
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been done with abstra
t ma
hines, in whi
h the states, and redu
tions be-

tween them, are ad-ho
 mathemati
al obje
ts. More elegantly, one 
an give

de�nitions in the stru
tural operational semanti
s (SOS) style of Plotkin [33℄;

here the states are terms of the language (sometimes augmented by e.g. a

store), the redu
tions are given by a syntax-dire
ted indu
tive de�nition.

Expli
it reformulations using rewrite rules and redu
tion 
ontexts were �rst

given by Felleisen and Friedman [15℄. (We here negle
t semanti
s in the big-

step/evaluation/natural style.)

In 
ontrast, until re
ently, de�nitions of operational semanti
s for pro
ess 
al-


uli have been primarily given as labelled transition relations. The 
entral rea-

son for the di�eren
e is not mathemati
al, but that lambda and pro
ess terms

have had quite di�erent intended interpretations. The standard interpretation

of lambda terms and fun
tional programs is that they spe
ify 
omputations

whi
h may either not terminate, or terminate with some result that 
annot

redu
e further. Con
uen
e properties ensure that su
h result terms are unique

if they exist; they 
an impli
itly be examined, either up to equality or up to

a 
oarser notion. The theory of pro
esses, however, inherits from automata

theory the view that pro
ess terms may both redu
e internally and intera
t

with their environments; labelled transitions allow these intera
tions to be ex-

pressed. Redu
tions may 
reate or destroy potential intera
tions. Termination

of pro
esses is usually not a 
entral 
on
ept, and the stru
ture of terms, even

of terms that 
annot redu
e, is not 
onsidered examinable.

An additional, more te
hni
al, reason is that de�nitions of the redu
tions for

a pro
ess 
al
ulus require either auxiliary labelled transition relations or a

non-trivial stru
tural 
ongruen
e. For example, 
onsider the CCS fragment

below.

P ::= 0

�

�

� �:P

�

�

� ��:P

�

�

� P jP � 2 A

Its standard semanti
s has redu
tions P�!Q but also labelled transitions

P

�

�!Q and P

��

�!Q. These represent the potentials that P has for syn
hro-

nising on �. They 
an be de�ned by an SOS

Out

��:P

��

�!P

In

�:P

�

�!P

Com

P

��

�!P

0

Q

�

�!Q

0

P jQ�!P

0

jQ

0

Com

0

P

�

�!P

0

Q

��

�!Q

0

P jQ�!P

0

jQ

0

Par

P

�

�!Q

P jR

�

�!Q jR

Par

0

P

�

�!Q

R jP

�

�!R jQ

where

�

�! is either �!,

�

�! or

��

�!. It has been noted by Berry and Boudol

[7℄, following work of Banâtre and Le M�etayer [5℄ on the � language, that
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semanti
 de�nitions of pro
ess 
al
uli 
ould be simpli�ed by working modulo

an equivalen
e that allows the parts of a redex to be brought synta
ti
ally

adja
ent. Their presentation is in terms of Chemi
al Abstra
t Ma
hines; in a

slight variation we give a redu
tion semanti
s for the CCS fragment above. It


onsists of the rewrite rule ��:P j�:Q�!P jQ, the set of redu
tion 
ontexts

given by

C ::=

�

�

� C jP

�

�

� P jC

and the stru
tural 
ongruen
e � de�ned to be the least 
ongruen
e satisfying

P � P j 0, P jQ � Q jP and P j(Q jR) � (P jQ) jR. Modulo use of � on the

right, this gives exa
tly the same redu
tions as before. For this toy 
al
ulus

the two de�nitions are of similar 
omplexity. For the �-
al
ulus ([27℄, building

on [14℄), however, Milner has given a redu
tion semanti
s that is mu
h sim-

pler than the rather deli
ate SOS de�nitions of � labelled transition systems

[28℄. Following this, more re
ent name passing pro
ess 
al
uli have often been

de�ned by a redu
tion semanti
s in some form, e.g. the HO� [35℄, � [32℄, Join

[17℄, Blue [9℄, Spi [1℄, dpi [39℄, D� [34℄ and Ambient [10℄ Cal
uli.

Turning to operational 
ongruen
es, for 
on
uent 
al
uli the de�nition of an

appropriate operational 
ongruen
e is relatively straightforward, even in the

(usual) 
ase where the dynami
s are expressed as a redu
tion relation. For ex-

ample, for a simple eager fun
tional programming language, with a base type

Int of integers, terminated states of programs of type Int are 
learly observable

up to equality. These basi
 observations 
an be used to de�ne a Morris-style

operational 
ongruen
e. Several authors have 
onsidered tra
table 
hara
ter-

isations of these 
ongruen
es in terms of bisimulation { see e.g. [25,2,21℄ and

the referen
es therein, and [22℄ for related work on an obje
t 
al
ulus.

For non-
on
uent 
al
uli the situation is more problemati
 { pro
ess 
al
uli

having labelled transition semanti
s have been equipped with a plethora of

di�erent operational equivalen
es, whereas rather few styles of de�nition have

been proposed for those having redu
tion semanti
s. In the labelled transition


ase there are many more-or-less plausible notions of observation, di�ering

e.g. in their treatment of linear/bran
hing time, of internal redu
tions, of ter-

mination and divergen
e, et
. Some of the spa
e is illustrated in the surveys

of van Glabbeek [19,20℄. The diÆ
ulty here is to sele
t a notion that is ap-

propriate for a parti
ular appli
ation; one attempt is in [36℄. In the redu
tion


ase we have the 
onverse problem { a redu
tion relation does not of itself

seem to support any notion of observation that gives rise to a satisfa
tory

operational 
ongruen
e. This was expli
itly addressed for CCS and �-
al
uli

by Milner and Sangiorgi in [30,35℄, where barbed bisimulation equivalen
es

are de�ned in terms of redu
tions and observations of barbs. These are vesti-

gial labelled transitions, similar to the distinguished observable transitions in

the tests of De Ni
ola and Hennessy [12℄. The expressive power of their 
al-
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uli suÆ
es to re
over early labelled transition bisimulations as the indu
ed


ongruen
es. Related work of Honda and Yoshida [24℄ uses insensitivity as

the basi
 observable; that of Montanari and Sassone [31℄ takes the usual CCS

labelled transitions but by requiring 
ontext-
losure at every step of a bisim-

ulation gives the 
oarsest notion of weak bisimulation that is simultaneously

a 
ongruen
e. Rensink [40℄ studies bisimulation dire
tly on open terms.

...to labelled transitions Summarizing, de�nitions of operational 
ongru-

en
es, for 
al
uli having redu
tion semanti
s, have generally been based either

on observation of terminated states, in the 
on
uent 
ase, or on observation

of some barbs, where a natural de�nition of these exists. In either 
ase, 
har-

a
terisations of the 
ongruen
es in terms of labelled transitions, involving as

little quanti�
ation over 
ontexts as possible, are desirable. Moreover, some

reasonable 
al
uli may not have a natural de�nition of barb that indu
es an

appropriate 
ongruen
e.

In this paper we show that labelled transitions that give rise to bisimulation


ongruen
es 
an be de�ned purely from the redu
tion semanti
s of a 
al
u-

lus, without pres
ribing any additional observations. We 
onsider only simple


lasses of redu
tion semanti
s, not involving name or variable binding, but

hope that these will be a �rst step towards a generally appli
able theory. As a

test of the de�nitions we show that they re
over the usual bisimulation on the

CCS fragment above. We also dis
uss term rewriting and a fragment of the

Ambient 
al
ulus of Cardelli and Gordon. To dire
tly express the semanti
s of

more interesting 
al
uli requires a ri
her framework. One must deal with bind-

ing, with rewrite rules involving term or name substitutions, with a stru
tural


ongruen
e that allows s
ope mobility, and with more deli
ate sets of redu
-

tion 
ontexts. The A
tion Cal
uli of Milner [29℄ are a 
andidate framework

that allows several of the 
al
uli mentioned above to be de�ned 
leanly; this

work 
an be seen as a step towards understanding operational 
ongruen
es for

arbitrary a
tion 
al
uli. Bisimulation for a parti
ular a
tion 
al
ulus, repre-

senting a �-
al
ulus, has been studied by Mifsud [26℄. More generally (in work

that is yet to be published), Jensen has 
onsidered a form of graph rewriting

that idealizes a
tion 
al
uli and Leifer has studied 
lasses of A
tion Cal
uli

obeying 
ertain arity restri
tions. The approa
hes adopted in these and in the


urrent work are 
losely related.

Labelled transitions intuitively 
apture the possible intera
tions between a

term and a surrounding 
ontext. The 
entral idea of this work is to make this

intuition expli
it { the labels of transitions from a term s will be 
ontexts

that, when applied to s, 
reate an o

urren
e of a rewrite rule. In the next

three se
tions we develop the theory for ground term rewriting, then for left-

linear term rewriting, and then with the addition of an ACI (asso
iativity,


ommutativity and identity) stru
tural 
ongruen
e and redu
tion 
ontexts.

Se
tion 5 
ontains some 
on
luding remarks. Most proofs are banished to the
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appendi
es or omitted; details 
an be found in the te
hni
al report [37℄. An

extended abstra
t appeared in [38℄.

2 Ground term rewriting

In this se
tion we 
onsider one of the simplest possible 
lasses of redu
tion

semanti
s, that of ground term rewriting. The de�nitions and proofs are here

rather straightforward, but provide a guide to those in the following two se
-

tions.

Redu
tions We take essentially standard de�nitions of rewrite systems (see

e.g. [4℄ for an introdu
tion) but for 
onvenien
e in later se
tions work with


ontexts and 
ontext 
omposition rather than open terms and substitution.

We �x a signature 
onsisting of a (possibly in�nite) set � of fun
tion symbols,

ranged over by �, and an arity fun
tion j j from � to N . We say an n-hole


ontext over the signature, with holes

1

; : : : ;

n

, is linear if it has exa
tly one

o

urren
e of ea
h of the n holes. In this se
tion a; b; l; r; s; t range over terms,

A;B;C;D; F;H range over linear unary 
ontexts and E ranges over linear

binary 
ontexts. Context 
omposition and appli
ation of 
ontexts to (tuples

of) terms are written A

:

B and A

:

s, the identity 
ontext as and tupling

with +. We take a (possibly in�nite) set R of rewrite rules, ea
h 
onsisting of

a pair hl; ri of terms. The redu
tion relation between terms over � is then

s�!t

def

, 9hl; ri 2 R; C : s = C

:

l ^ C

:

r = t

Labelled Transitions The transitions of a term s will be labelled by linear

unary 
ontexts. Transitions s�!t labelled by the identity 
ontext are simply

redu
tions (analogous to � -transitions). Transitions s

F

�!t for F 6= indi
ate

that applying F to s 
reates an instan
e of a rewrite rule, with target instan
e

t. For example, given a signature with 
onstants � and Æ, a unary 
, and the

rule


(�)�!Æ

we will have labelled transitions

C

:


(�)�!C

:

Æ

for all C and also

�


( )

�!Æ
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s

l

t

s

s

r

F

F 6=F =

s

t

lC

rC

Fig. 1. Contextual Labelled Transitions s

F

�!t for Ground Term Rewriting.

but not

�

C

:


( )

�! C

:

Æ

for C 6= . The labels are fF j 9hl; ri 2 R; s : F

:

s = l g and the 
ontextual

labelled transition relations

F

�! are de�ned by the 
lauses below, illustrated

in Figure 1.

� s�!t

def

, s�!t

� s

F

�!t

def

, 9hl; ri 2 R : F

:

s = l ^ r = t for F 6=

Bisimulation Congruen
e Let � be strong bisimulation with respe
t to

these transitions, i.e. the largest binary relation over terms su
h that for any

s � s

0

� s

F

�!t =) 9t

0

: s

0

F

�!t

0

^ t � t

0

� s

0

F

�!t

0

=) 9t : s

F

�!t ^ t � t

0

The 
ongruen
e proof for � is straightforward. It is given in some detail as a

guide to the more intri
ate 
orresponding proofs in the following two se
tions,

whi
h have the same stru
ture. Three lemmas (2{4) show how 
ontexts in

labels and in the sour
es of transitions interrelate; they are proved by 
ase

analysis using a disse
tion lemma whi
h is standard folklore.

Lemma 1 (Disse
tion) If A

:

a = B

:

b then one of the following 
ases holds.

(1) (b is in a) There exists D su
h that a = D

:

b and A

:

D = B.

(2) (a is properly in b) There exists D with D 6= su
h that D

:

a = b and

A = B

:

D.

(3) (a and b are disjoint) There exists E su
h that A = E

:

( + b) and

B = E

:

(a+ ).

Lemma 2 (Forwards-1) If A

:

s�!t then one of the following holds:

7



(1) There exists some H su
h that t = H

:

s and for any ŝ we have

A

:

ŝ�!H

:

ŝ.

(2) There exists some

^

t, A

1

and A

2

su
h that A = A

1

:

A

2

, s

A

2

�!

^

t and t =

A

1

:

^

t.

Proof By the de�nition of redu
tion

9hl; ri 2 R; C : A

:

s = C

:

l ^ C

:

r = t

Applying the disse
tion lemma (Lemma 1) to A

:

s = C

:

l gives the following


ases.

(1) (l is in s) There exists B su
h that s = B

:

l and A

:

B = C. Taking

^

t = B

:

r, A

1

= A and A

2

= the se
ond 
lause holds.

(2) (s is properly in l) There exists B with B 6= su
h that B

:

s = l and

A = C

:

B. Taking

^

t = r, A

1

= C and A

2

= B the se
ond 
lause holds.

(3) (s and l are disjoint) There exists E su
h that A = E

:

( + l) and C =

E

:

(s+ ). Taking H = E

:

( + r) the �rst 
lause holds.

2

Lemma 3 (Forwards-2) If A

:

s

F

�!t and F 6= then s

F

:

A

�!t.

Proof By the de�nition of labelled transitions 9hl; ri 2 R : F

:

A

:

s = l ^ r =

t. Clearly F

:

A is linear and F

:

A 6= so s

F

:

A

�!t. 2

Lemma 4 (Ba
kwards) If s

F

:

A

�!t then A

:

s

F

�!t.

Proof If F

:

A = then F = A = so the 
on
lusion is immediate, otherwise

by the de�nition of transitions 9hl; ri 2 R : F

:

A

:

s = l ^ r = t. One then has

A

:

s

F

�!t by the de�nition of transitions, by 
ases for F 6= and F = . 2

Proposition 5 � is a 
ongruen
e.

Proof We show

S

def

= fA

:

s; A

:

s

0

j s � s

0

^ A : 1! 1 linear g

is a bisimulation.

(1) Suppose A

:

s�!t.

By Lemma 2 one of the following holds:

(a) There exists some H su
h that t = H

:

s and for any ŝ we have

A

:

ŝ�!H

:

ŝ.

Instantiating, A

:

s

0

�!H

:

s

0

, and 
learly H

:

s S H

:

s

0

.

(b) There exists some

^

t, A

1

and A

2

su
h that A = A

1

:

A

2

, s

A

2

�!

^

t and

t = A

1

:
^

t.
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By s � s

0

there exists

^

t

0

su
h that s

0

A

2

�!

^

t

0

�

^

t.

By Lemma 4 A

2

:

s

0

�!

^

t

0

.

By the de�nition of redu
tion A

1

:

A

2

:

s

0

�!A

1

:

^

t

0

, and 
learly

A

1

:
^

t S A

1

:
^

t

0

.

(2) Suppose A

:

s

F

�!t for F 6= .

By Lemma 3 s

F

:

A

�!t.

By s � s

0

there exists t

0

su
h that s

0

F

:

A

�!t

0

� t.

By Lemma 4 A

:

s

0

F

�!t

0

, and 
learly t S t

0

.

2

Remark An alternative approa
h would be to take transitions

� s

F

�!

alt

t

def

, F

:

s�!t

for unary linear 
ontexts F . Note that these are de�ned using only the redu
-

tion relation, whereas the de�nition above involved the redu
tion rules. Let

�

alt

be strong bisimulation with respe
t to these transitions. One 
an show

that �

alt

is a 
ongruen
e and moreover is una�e
ted by 
utting down the label

set to that 
onsidered above. In general �

alt

is stri
tly 
oarser than �. For an

example of the non-in
lusion, if the signature 
onsists of 
onstants �; � and

a unary symbol 
 with redu
tion rules ��!�, ��!� and 
(�)�!�, then

� 6� � whereas � �

alt

�. The details 
an be found in Appendix A. This in-

sensitivity to the possible intera
tions of terms that have internal transitions

suggests that the analogue of �

alt

, in more expressive settings, is unlikely to


oin
ide with standard bisimulations for parti
ular 
al
uli. Indeed, one 
an

show that applying the alternative de�nition to the fragment of CCS

P ::= 0

�

�

� �

�

�

� ��

�

�

� P jP � 2 A

(with its usual redu
tion relation as de�ned in Se
tion 1) gives an equivalen
e

that identi�es � j �� with � j

�

� for �; � 2 A; these are not identi�ed in any

reasonable operational 
ongruen
e.

Remark In the proofs of Lemmas 2{4 the labelled transition exhibited for

the 
on
lusion involves the same rewrite rule as the transition in the premise.

One 
ould therefore take the �ner transitions

� s�!t

def

, s�!t

� s

F

�!

hl;ri

t

def

, hl; ri 2 R ^ F

:

s = l ^ r = t for F 6=

annotated by the rewrite rule involved, and still have a 
ongruen
e result. In

some 
ases this gives a �ner bisimulation relation (
.f. the arithmeti
 example

in Se
tion 3). There are intermediate de�nitions { in fa
t any partition of the

rule set R gives rise to a bisimulation that is a 
ongruen
e relation, taking

9



labelled transitions annotated by the equivalen
e 
lass of the rule involved.

3 Term rewriting with left-linear rules

In this se
tion the de�nitions are generalised to left-linear term rewriting, as a

se
ond step towards a framework expressive enough for simple pro
ess 
al
uli.

Notation In the next two se
tions we must 
onsider more 
omplex disse
tions

of 
ontexts and terms. It is 
onvenient to treat 
ontexts and terms uniformly,

working with n-tuples of m-hole 
ontexts for m;n � 0. Con
retely, we work

in the 
ategory C

�

that has the natural numbers as obje
ts and arrows

i 2 1::m

h

i

i

m

:m! 1

ha

1

i

m

:m! 1 � � � ha

n

i

m

:m! 1

ha

1

; : : : ; a

n

i

m

:m!n

ha

1

; : : : ; a

j�j

i

m

:m!j�j

h�(a

1

; : : : ; a

j�j

)i

m

:m! 1

The identity on m is id

m

def

= h

1

; : : : ;

m

i

m

, 
omposition is substitution, with

ha

1

; : : : ; a

n

i

m

:

hb

1

; : : : ; b

m

i

l

= ha

1

[b

1

=

1

; : : : ; b

m

=

m

℄; : : : ; a

n

[b

1

=

1

; : : : ; b

m

=

m

℄i

l

.

C

�

has stri
tly asso
iative binary produ
ts, written with +. If a :m! k and

b :m! l we write a � b for (a + b)

:

h

1

; : : : ;

m

;

1

; : : : ;

m

i

m

:m! k + l. Angle

bra
kets and domain subs
ripts will often be elided. We let a; b; e; q; r; s; t; u; v

range over 0!m arrows, i.e. m-tuples of terms, and A;B; : : : range over

m! 1 arrows, i.e. m-hole 
ontexts. Say an arrow is a permutation if it is of

the form h

�(1)

; : : : ;

�(m)

i

m

where � is a permutation of the set f1; : : : ; mg. A

family of arrows �

i

:m!m

i

for i 2 1::k where m

1

+ : : :+m

k

= m is a partition

if �

1

� : : : � �

m

is a permutation. We write perm

m;n

for the permutation

h

n+1

; : : : ;

n+m

;

1

; : : : ;

n

i

m+n

:n +m!m + n. Say an arrow ha

1

; : : : ; a

n

i

m

is

linear if it 
ontains exa
tly one o

urren
e of ea
h

1

; : : : ;

m

and aÆne if

it 
ontains at most one o

urren
e of ea
h. We sometimes abuse notation in

examples, writing ;

1

;

2

; : : : instead of

1

;

2

;

3

; : : : .

Remark Many slight variations of C

�

are possible. We have 
hosen to take

the obje
ts to be natural numbers, instead of �nite sets of variables, to give

a lighter notation for labels. The 
on
rete syntax is 
hosen so that arrows

from 0 to 1 are exa
tly the standard terms over �, modulo elision of the angle

bra
kets and subs
ript 0.

Redu
tions The usual notion of left-linear term rewriting is now expressible

as follows. We take a (possibly in�nite) setR of rewrite rules, ea
h 
onsisting of

a triple hn; L;Ri where n � 0, L :n! 1 is linear and R :n! 1. The redu
tion

relation over f s j s : 0! 1 g is then de�ned by

s�!t

def

, 9hm;L;Ri 2 R; C : 1! 1 linear; u : 0!m :

s = C

:

L

:

u ^ C

:

R

:

u = t

10



Labelled Transitions The labelled transitions of a term s : 0! 1 will again

be of two forms, s�!t, for internal redu
tions, and s

F

�!T where F 6= is a


ontext that, together with part of s, makes up the left hand side of a rewrite

rule. For example, given the rule

Æ(
( ))�!�( )

we will have labelled transitions


(s)

Æ( )

�!�(s)

for all terms s : 0! 1. Labelled transitions in whi
h the label 
ontributes the

whole of the left hand side of a rule would be redundant (they are not required

in the 
ongruen
e proof), so the de�nition will ex
lude e.g. s

Æ(
( ))

�! �(s). Now


onsider the rule

�(�; 
( ))�!�( )

As before there will be labelled transitions


(s)

�(�; )

�! �(s)

for all s. In addition, one 
an 
onstru
t instan
es of the rule by pla
ing the

term � in 
ontexts �( ; 
(t)), suggesting labelled transitions �

�( ;
(t))

�! �(t) for

any t. Instead, to keep the label sets small, and to 
apture the uniformity

in t, we allow both labels and targets of transitions to be parametri
 in un-

instantiated arguments of the rewrite rule. In this 
ase the de�nition will give

�

�( ;
(

1

))

�! �(

1

)

In general, then, the 
ontextual labelled transitions are of the form s

F

�!T , for

s : 0! 1, F : 1 + n! 1 and T :n! 1. The �rst argument of F is the hole in

whi
h s 
an be pla
ed to 
reate an instan
e of a rule L; the other n arguments

are parameters of L that are not thereby instantiated. The transitions are

de�ned as follows.

� s�!T

def

, s�!T .

� s

F

�!T , for F : 1 + n! 1 linear and not the identity, i� there exist

hm;L;Ri 2 R with m � n

� :m!m a permutation

L

1

:(m� n)! 1 linear and not the identity

u : 0!(m� n)

11



F

R

m� n

n

1

n

L

1

m� n

m� n

L

1

T

s

L

�

�1

m

�

u

u

Fig. 2. Contextual Labelled Transitions for Left-Linear Term Rewriting. Boxes with

m input wires (on their right) and n output wires (on their left) represent n-tuples

of m-hole 
ontexts. Wires are ordered from top to bottom.

su
h that

L = F

:

(L

1

+ id

n

)

:

�

s = L

1

:

u

T = R

:

�

�1

:

(u+ id

n

)

The de�nition is illustrated in Figure 2. The restri
tion to L

1

6= id

1

ex
ludes

transitions where the label 
ontributes the whole of L. The permutation � is

required so that the parameters of L 
an be divided into the instantiated and

uninstantiated. For example the rule

�(Æ(

1

); 
(

2

); �)�!�(

1

;

2

)

will give rise to transitions

Æ(s)

�( ;
(

1

);�)

�! �(s;

1

) �

�(Æ(

1

);
(

2

); )

�! �(

1

;

2

)


(s)

�(Æ(

1

); ;�)

�! �(

1

; s) �

�(Æ(

2

);
(

1

); )

�! �(

2

;

1

)

(The last is redundant; it 
ould be ex
luded by requiring � to be a monotone

partition of m into m� n and n. )

Bisimulation Congruen
e A binary relation S over terms f a j a : 0! 1 g

is lifted to a relation over fA j A :n! 1 g by A [S℄ A

0

def

, 8b : 0!n : A

:

b S

A

0

:

b. Say S is a bisimulation if for any s S s

0

� s

F

�!T =) 9T

0

: s

0

F

�!T

0

^ T [S℄ T

0

� s

0

F

�!T

0

=) 9T : s

F

�!T ^ T [S℄ T

0

12



and write � for the largest su
h. As before the 
ongruen
e proof requires a

simple disse
tion lemma and three lemmas relating 
ontexts in sour
es and

labels. Their proofs 
an be found in Appendix B.

Lemma 6 (Disse
tion) If A

:

a = B

:

b, for m � 0, A : 1! 1 and B :m! 1

linear, a : 0! 1 and b : 0!m then one of the following holds.

(1) (a is not in any 
omponent of b) There exist

m

1

and m

2

su
h that m

1

+m

2

= m

�

i

:m!m

i

for i 2 f1; 2g a partition

C : 1 +m

2

! 1 linear

D :m

1

! 1 linear and not the identity

su
h that

A = C

:

(id

1

+ �

2

:

b)

a = D

:

�

1

:

b

B = C

:

(D + id

m

2

)

:

(�

1

� �

2

)

i.e. there are m

1


omponents of b in a and m

2

in A.

(2) (a is in a 
omponent of b) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

E : 1! 1 linear

su
h that

A=B

:

(�

1

� �

2

)

�1

:

(E + �

2

:

b)

E

:

a= �

1

:

b

Lemma 7 (Forwards-1) If A

:

s�!t and A : 1! 1 linear then one of the

following holds.

(1) There exists some H : 1! 1 su
h that t = H

:

s and for all ŝ : 0! 1 we

have A

:

ŝ�!H

:

ŝ.

(2) There exist k � 0, F : 1 + k! 1 linear, T : k! 1, D : 1! 1 linear and

v : 0! k, su
h that s

F

�!T , A = D

:

F

:

(id

1

+ v) and t = D

:

T

:

v.

Lemma 8 (Forwards-2) If A

:

s

F

�!T for A : 1! 1 linear, F : 1+n! 1 and

F 6= id

1

then one of the following holds.

(1) There exists H : 1+n! 1 su
h that T = H

:

(s+ id

n

) and for all ŝ : 0! 1

we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

(2) There exist p � 0, E : 1 + p! 1 linear,

^

T : p + n! 1 and v : 0! p, su
h

that s

F

:

(E+id

n

)

�!

^

T , T =

^

T

:

(v + id

n

) and A = E

:

(id

1

+ v).

13



Lemma 9 (Ba
kwards) If s

C

:

(E+id

n

)

�! T for E : 1 + p! 1 linear and C : 1 +

n! 1 linear then for all v : 0! p we have E

:

(s+ v)

C

�!T

:

(v + id

n

).

Theorem 10 � is a 
ongruen
e.

Proof We show S

�

, where

S

def

= fA

:

s; A

:

s

0

j s � s

0

^ A : 1! 1 linear g

is a bisimulation. First note that for any (possibly non-linear) A : 1! 1 and

s � s

0

we have A

:

s S

�

A

:

s

0

. To see this, take n � 0 and

^

A :n! 1 linear su
h

that A =

^

A

:

h

1

; : : : ;

1

i

1

. Let

A

1

def

=

^

A

:

h

1

; s; s; : : : ; si

1

A

2

def

=

^

A

:

hs

0

;

1

; s; : : : ; si

1

:::

A

n

def

=

^

A

:

hs

0

; s

0

; s

0

; : : : ;

1

i

1

Ea
h A

i

is linear, so A

i

:

s S A

i

:

s

0

. Moreover A

i

:

s

0

= A

i+1

:

s for i 2 1::n� 1

so A

:

s = A

1

:

s S

n

A

n

:

s

0

= A

:

s

0

.

We now show that if A : 1! 1 linear, s � s

0

and A

:

s

F

�!T then there exists

T

0

su
h that A

:

s

0

F

�!T

0

and T [S

�

℄ T

0

.

(1) Suppose A

:

s�!t.

By Lemma 7 one of the following holds:

(a) There exists some H : 1! 1 su
h that t = H

:

s and for all ŝ : 0! 1

we have A

:

ŝ�!H

:

ŝ.

Hen
e A

:

s

0

�!H

:

s

0

.

Clearly t = H

:

s S

�

H

:

s

0

.

(b) There exist k � 0, F : 1+k! 1 linear, T : k! 1, D : 1! 1 linear and

v : 0!k, su
h that s

F

�!T , A = D

:

F

:

(id

1

+ v) and t = D

:

T

:

v.

By s � s

0

there exists T

0

su
h that s

0

F

�!T

0

^ T [�℄ T

0

.

By Lemma 9 F

:

(s

0

+ v)�!T

0

:

v.

By the de�nition of redu
tion A

:

s

0

= D

:

F

:

(s

0

+ v)�!D

:

T

0

:

v.

Clearly t = D

:

T

:

v S

�

D

:

T

0

:

v.

(2) Suppose A

:

s

F

�!T for F : 1 + n! 1 linear and F 6= id

1

.

By Lemma 8 one of the following holds.

(a) There exists H : 1 + n! 1 su
h that T = H

:

(s + id

n

) and for all

ŝ : 0! 1 we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

Hen
e A

:

s

0

F

�!H

:

(s

0

+ id

n

)

Clearly T = H

:

(s+ id

n

) [S

�

℄ H

:

(s

0

+ id

n

).
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(b) There exist p � 0, E : 1 + p! 1 linear,

^

T : p + n! 1 and v : 0! p,

su
h that s

F

:

(E+id

n

)

�!

^

T , T =

^

T

:

(v + id

n

) and A = E

:

(id

1

+ v).

By s � s

0

there exists

^

T

0

su
h that s

0

F

:

(E+id

n

)

�!

^

T

0

^

^

T [�℄

^

T

0

.

By Lemma 9 A

:

s

0

= E

:

(s

0

+ v)

F

�!

^

T

0

:

(v + id

n

).

Clearly T =

^

T

:

(v + id

n

) [S

�

℄

^

T

0

:

(v + id

n

).

Now if

A

1

:

s

1

S A

1

:

s

0

2

= A

2

:

s

2

S : : : S A

n�1

:

s

0

n

for A

i

linear and s

i

� s

0

i+1

, for i 2 1::n� 1, and A

1

:

s

1

F

�!T

1

then by the

above there exists T

n

su
h that A

n�1

:

s

0

n

F

�!T

n

and T

1

[S

�

℄

n

T

n

, so T

1

[S

�

℄ T

n

.

2

Remark The de�nition of transitions above redu
es to that of Se
tion 2 if

all rules are ground. For open rules, instead of allowing parametri
 labels,

one 
ould simply 
lose up the rewrite rules under instantiation, by Cl(R) =

f h0; L

:

u; R

:

ui j hn; L;Ri 2 R ^ u : 0!n g, and apply the earlier de�nition.

In general this would give a stri
tly 
oarser 
ongruen
e. For an example of

the non-in
lusion, take a signature 
onsisting of a nullary � and a unary 
,

with R 
onsisting of the rules 
( )�!
( ) and 
(
(�))�!
(
(�)). We have

Cl(R) = f 


n

�; 


n

� j n � 1 g. The transitions are




n

� �!

R




n

� 


n

� �!

Cl(R)




n

�

�


(
( ))

�!

R


(
(�)) �




n

�!

Cl(R)




n

�


(�)


( )

�!

R


(
(�)) 


m

�




n

�!

Cl(R)




m+n

�

for m;n � 1, so 
(�) 6�

R


(
(�)) but 
(�) �

Cl(R)


(
(�)). The proof of the

following proposition 
an be found in Appendix B.

Proposition 11 If s �

R

s

0

then s �

Cl(R)

s

0

.

Comparison Bisimulation as de�ned here is a 
ongruen
e for arbitrary left-

linear term rewriting systems. Mu
h work on term rewriting deals with redu
-

tion relations that are 
on
uent and terminating. In that setting terms have

unique normal forms; the primary equivalen
e on terms is ', where s ' t if s

and t have the same normal form. This is easily proved to be a 
ongruen
e.

In general, it is in
omparable with �. To see one non-in
lusion, note that �

is sensitive to atomi
 redu
tion steps; for the other that � is not sensitive to

equality of terms { for example, with only nullary symbols �; �; 
, and rewrite

rule 
�!�, we have � � � and � ' 
, whereas � 6' � and � 6� 
. One might

address the se
ond non-in
lusion by �at, adding, for any value v, a unary test

operator H

v

and redu
tion rule H

v

(v)�!v. For the �rst, one might move to a

15



weak bisimulation, abstra
ting from redu
tion steps. The simplest alternative

is to take � to be the largest relation S su
h that if s S s

0

then

� s�!T =) 9T

0

: s

0

�!

�

T

0

^ T [S℄ T

0

� (s

F

�!T ^ F 6= ) =) 9T

0

: s

0

�!

�

F

�!T

0

^ T [S℄ T

0

and symmetri
 
lauses.

Say the set R of rewrite rules is right-aÆne if the right hand side of ea
h rule

is aÆne. The following 
ongruen
e result is proved in Appendix B; whether it

holds without the restri
tion on R is left open.

Theorem 12 If R is right-aÆne then � is a 
ongruen
e.

Example { Arithmeti


1

Write�

0

for the variant of � de�ned using labelled

transitions annotated by the rewrite rule involved, for transitions with non-

identity labels. As before, the 
ongruen
e proof for � 
an easily be adapted

to �

0

. For some rewrite systems �

0


oin
ides with '. Taking a signature �


omprising nullary zero and unary su

 and pred, and rewrite rules

(a) pred(su

(

1

)) �!

1

(b) pred(zero) �! zero

gives labelled transitions

su

(s)

pred( )

�!

(a)

s

zero

pred( )

�!

(b)

zero

together with the redu
tions �!. Here the normal forms are simply the nat-

urals su



n

(zero) for n � 0; the relations �

0

and ' 
oin
ide with ea
h other

and with the standard equality on natural numbers. Note that in the non-

annotated LTS every term has a weak transition �!

�

pred( )

�! so the bisimulation

� will not be suÆ
iently dis
riminating.

In general, however, �

0

and ' still di�er. For example, with unary 
, nullary

�, and rules 
(�)�!� and 
(
(�))�!�, we have � 6�

0


(�) but all terms

have normal form �. This may be a pathologi
al rule set; one would like to

have 
onditions ex
luding it under whi
h �

0

(or �) and ' 
oin
ide.

Example { SKI Combinators Taking a signature � 
omprising nullary

I;K; S and binary �, and rewrite rules

S �

1

�

2

�

3

�!

1

�

3

�(

2

�

3

)

K �

1

�

2

�! h

1

i

2

I �

1

�!

1

1

It should be noted that the example given in [37,38℄ 
ontained errors.
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gives labelled transitions

S

�

1

�

2

�

3

�!

1

�

3

�(

2

�

3

)

S � s

�

1

�

2

�! s �

2

�(

1

�

2

)

S � s � t

�

1

�! s �

1

�(t �

1

)

K

�

1

�

2

�! h

1

i

2

K � s

�

1

�! hsi

1

I

�

1

�!

1

together with some permutation instan
es of these and the redu
tions �!.

The signi�
an
e of � and � here is un
lear. Note that the rules are not right-

aÆne, so Theorem 12 does not guarantee that � is a 
ongruen
e { the question

is open. It is quite intensional, being sensitive to the number of arguments

that 
an be 
onsumed immediately by a term. For example, K �(K � s) 6�

S �(K �(K � s)).

4 Term rewriting with left-linear rules, parallel and blo
king

In this se
tion we extend the setting to one suÆ
iently expressive to de�ne

the redu
tion relations of simple pro
ess 
al
uli. We suppose the signature �

in
ludes binary and nullary symbols j and 0, for parallel and nil, and take a

stru
tural 
ongruen
e � generated by asso
iativity, 
ommutativity and iden-

tity axioms. Parallel will be written in�x. The redu
tion rules R are as before.

We now allow symbols to be blo
king, i.e. to inhibit redu
tion in their argu-

ments. For ea
h � 2 � we suppose given a set B(�) � f1; : : : ; j�jg de�ning the

argument positions where redu
tion may take pla
e. We require B(j) = f1; 2g.

The redu
tion 
ontexts C � fC j C : 1! 1 linear g are generated by

id

1

2 C

i 2 B(�) hai

1

2 C

h�(s

1

; : : : ; s

i�1

; a; s

i+1

; : : : ; s

j�j

)i

1

2 C

Formally, stru
tural 
ongruen
e is de�ned over all arrows of C

�

as follows. It

is a family of relations indexed by domain and 
odomain arities; the indexes

will usually be elided. The �rst 3 rules impose the ACI properties of j; the

others are 
ongruen
e rules.

hai

m

:m! 1

hai

m

�

m;1

ha j 0i

m

ha

i

i

m

:m! 1 i 2 f1; 2g

ha

1

j a

2

i

m

�

m;1

ha

2

j a

1

i

m

ha

i

i

m

:m! 1 i 2 f1; 2; 3g

ha

1

j(a

2

j a

3

)i

m

�

m;1

h(a

1

j a

2

) j a

3

i

m

i 2 1::m

h

i

i

m

�

m;1

h

i

i

m

ha

i

i

m

�

m;1

hb

i

i

m

i 2 f1::ng

ha

1

::a

n

i

m

�

m;n

hb

1

::b

n

i

m

f �

m;n

g

g �

m;n

f

f �

m;n

g g �

m;n

h

f �

m;n

h

ha

1

::a

j�j

i

m

�

m;j�j

hb

1

::b

j�j

i

m

h�(a

1

::a

j�j

)i

m

�

m;1

h�(b

1

::b

j�j

)i

m

Redu
tions The redu
tion relation over f s j s : 0! 1 g is de�ned by s�!t

i�

9hm;L;Ri 2 R; C 2 C; u : 0!m : s � C

:

L

:

u ^ C

:

R

:

u � t

17



This 
lass of 
al
uli is essentially the same as the 
lass of A
tion Cal
uli in

whi
h there is no substantive name binding, i.e. those in whi
h all 
ontrols K

have arity rules of the form

a

1

: 0! 0 � � � a

r

: 0! 0

K(a

1

; : : : ; a

r

) : 0! 0

(here the a

i

are a
tions, not arrows from C

�

). It in
ludes simple pro
ess 
al
uli.

For example, the fragment of CCS in Se
tion 1 
an be spe
i�ed by taking a

signature �

CCS


onsisting of unary �: and ��: for ea
h � 2 A, with 0 and j,

and rewrite rules

R

CCS

= f h2; �:

1

j ��:

2

;

1

j

2

i j � 2 Ag

B

CCS

(�:)=B

CCS

(��:) = fg

Notation For a 
ontext f :m!n and i 2 1::m say f is shallow in argument

i if all o

urren
es of

i

in f are not under any symbol ex
ept j. Say f is deep

in argument i if any o

urren
e of

i

in f is under some symbol not equal

to j. Say f is shallow (deep) if it is shallow (deep) in all i 2 1::m. Say f is

i-separated if there are no o

urren
es of any

j

in parallel with an o

urren
e

of

i

. Say f is i-
lean if

i

does not o

ur in parallel with any term, and f is


lean if it is i-
lean for all i 2 1::m, i.e. if it 
ontains no subterm

j

j a or a j

j

for any j.

Labelled Transitions The labelled transitions will be of the same form as

in the previous se
tion, with transitions s

F

�!T for s : 0! 1, F : 1 +n! 1 and

T :n! 1. A non-trivial label F may either 
ontribute a deep sub
ontext of

the left hand side of a rewrite rule (analogous to the non-identity labels of the

previous se
tion) or a parallel 
omponent, respe
tively with F deep or shallow

in its �rst argument. The 
ases must be treated di�erently. For example, the

rule

� j��!


will generate labelled transitions

s j�

j�

�!s j
 s j�

j�

�!s j 


for all s : 0! 1. As before, transitions that 
ontribute the whole of the left

hand side of a rule, su
h as s

j� j�

�! s j
, are redundant and will be ex
luded. It

is ne
essary to take labels to be sub
ontexts of left hand sides of rules up to

stru
tural 
ongruen
e, not merely up to equality. For example, given the rule

(� j�) j(
 j Æ)�!�

18



we need labelled transitions

� j 
 j r

j(� j Æ)

�! � j r

Finally, the existen
e of rules in whi
h arguments o

ur in parallel with non-

trivial terms means that we must deal with partially instantiated arguments.

Consider the rule

�(�(

1

) j

3

;

2

)�!R

The term �(�) j � 
ould be pla
ed in any 
ontext �( j s; t) to 
reate an instan
e

of the left hand side, with � (from the term) instantiating

1

, t (from the


ontext) instantiating

2

, and � j s (from both) instantiating

3

. There will be

a labelled transition

�(�) j �

�( j

2

;

1

)

�! R

:

h�;

1

; � j

2

i

2

parametri
 in two pla
es but partially instantiating the se
ond by �.

The general de�nition of transitions is given in Figure 3. It uses addi-

tional notation { we write par

n

for h

1

j(: : : j

n

)i

n

:n! 1 and ppar

n

for

h

1

j

n+1

; : : : ;

n

j

n+n

i

n+n

:n + n!n. Some parts of the de�nition are illus-

trated in Figure 4, in whi
h re
tangles denote 
ontexts and terms, triangles

denote instan
es of par, and hat
hed triangles denote instan
es of ppar.

To a �rst approximation, the de�nition for F deep in 1 states that s

F

�!T

i� there is a rule L�!R, with L;R :m

1

+m

2

+m

3

! 1, su
h that L 
an be

fa
tored into L

2

(with m

2

arguments) en
losing L

1

(with m

1

arguments) in

parallel with m

3

arguments. The sour
e s is L

1

instantiated by u, in parallel

with e; the label F is roughly L

2

; the target T is R with m

1

arguments

instantiated by u and m

3

partially instantiated by e.

The de�nition for F shallow in 1 states that s

F

�!T i� there is a rule L�!R

su
h that L 
an be fa
tored into L

1

(with m

1

arguments) in parallel with

L

2

(with m

2

arguments) and with m

3

other arguments. The sour
e s is L

1

instantiated by u, in parallel with e and with an arbitrary term q; the label F

is roughly L

2

; the target T is R with m

1

arguments instantiated by u and m

3

partially instantiated by e, again all in parallel with q. It is worth noting that

the non-identity labelled transitions do not depend on the set of redu
tion


ontexts.

The intention is that the labelled transition relations provide just enough in-

formation so that the redu
tions of a term A

:

s are determined by the labelled

transitions of s and the stru
ture of A, whi
h is the main property required

for a 
ongruen
e proof. The key lemma (Lemma 27, in Appendix C.2) involves

a detailed analysis of possible o

urren
es of an instan
e L

:

u of the left hand

side L of a rewrite rule within a term A

:

s. Inspe
tion of the proof of this

19



Transitions s

F

�!T , for s : 0! 1, F : 1+n! 1 linear and T :n! 1, are de�ned

by:

� For F � id

1

: s

F

�!T i�

9hm;L;Ri 2 R; C 2 C; u : 0!m : s � C

:

L

:

u ^ C

:

R

:

u � T

� For F deep in argument 1: s

F

�!T i� there exist

hm;L;Ri 2 R

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m and n = m

3

+m

2

� :m!m a permutation

L

1

:m

1

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

u : 0!m

1

e : 0!m

3

su
h that

L � L

2

:

(par

1+m

3

:

(L

1

+ id

m

3

) + id

m

2

)

:

�

s � par

1+m

3

:

(L

1

:

u+ e)

T � R

:

�

�1

:

(u+ ppar

m

3

:

(id

m

3

+ e) + id

m

2

)

F � L

2

:

(par

1+m

3

+ id

m

2

)

m

3

= 1 =) L

1

6� h0i

0

� For F shallow in argument 1 and F 6� id

1

: s

F

�!T i� there exist

hm;L;Ri 2 R

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m and n = m

3

+m

2

� :m!m a permutation

q : 0! 1

L

1

:m

1

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

u : 0!m

1

e : 0!m

3

su
h that

L � par

2+m

3

:

(L

1

+ id

m

3

+ L

2

)

:

�

s � par

2+m

3

:

(q + L

1

:

u+ e)

T � par

2

:

(q +R

:

�

�1

:

(u+ ppar

m

3

:

(id

m

3

+ e) + id

m

2

))

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

m

3

= 0 =) L

1

6� h0i

0

Fig. 3. Contextual Labelled Transitions
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lemma may make it seem plausible that the labelled transitions provide no

extraneous information, but a pre
ise result would be desirable.

Bisimulation Congruen
e Bisimulation � is de�ned exa
tly as in the pre-

vious se
tion. As before, the 
ongruen
e proof requires disse
tion lemmas,

analogous to Lemmas 1 and 6, lemmas showing that if A

:

s has a transition

then s has a related transition, analogous to Lemmas 2,3 and 7,8, and partial


onverses to these, analogous to Lemmas 4 and 9. All ex
ept the statement

of the main disse
tion lemma are deferred to Appendix C.

Lemma 13 (Disse
tion) If m � 0,

A : 1! 1 B :m! 1

a : 0! 1 b : 0!m

with A and B linear, and A

:

a � B

:

b, then one of the following hold

(1) (a is not deeply in any 
omponent of b) There exist

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m

�

1

:m!m

1

; �

2

:m!m

2

and �

3

:m!m

3

a partition

C : 1 +m

2

! 1 linear and 1-separated

D :m

1

! 1 linear and deep

e

1

: 0!m

3

e

2

: 0!m

3

su
h that

A � C

:

(par

1+m

3

:

(id

1

+ e

2

) + �

2

:

b)

a � par

1+m

3

:

(D

:

�

1

:

b + e

1

)

B � C

:

(par

1+m

3

:

(D + id

m

3

) + id

m

2

)

:

(�

1

� �

3

� �

2

)

�

3

:

b � ppar

m

3

:

(e

1

+ e

2

)

There are m

1

of the b in a, m

2

of the b in A and m

3

of the b potentially

overlapping A and a. The latter are split into e

1

, in a, and e

2

, in A.

(2) (a is deeply in a 
omponent of b) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

E : 1! 1 linear and deep

su
h that

A�B

:

(�

1

� �

2

)

�1

:

(E + �

2

:

b)

E

:

a� �

1

:

b

The �rst 
lause of the lemma is illustrated in Figure 5. For example, 
onsider

A

:

a � B

:

b � �(�(�

1

) j �

1

j �

2

; �

2

), where

A = �( j �

2

; �

2

) B = �(�(

1

) j

3

;

2

)

a = �(�

1

) j �

1

b = h�

1

; �

2

; �

1

j �

2

i

0
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L

1

m

1

1

m

3

u

e

1

m

3

e

u

q

1

1

m

3

L

1

m

2

1

m

3

1

L

2

L

1

m

1

1

m

3

m

2

L

2

�

m

u

em

3

R

m

1

m

2

�

�1

m

2

L

2

L

s

F

T

�

m

L

1

1

m

3

1

L

2

u

e
m

3

R

m

1

m

2

q

m

1

m

2

m

1

�

�1

Deep Shallow

Fig. 4. Contextual Labelled Transitions Illustrated
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1

m

3

m

2

C

�

2

:

b

e

2

e

1

�

1

:

b

D

m

1

m

2

�

1

m

3

m

2

C

A a

B b

�

e

2

�

2

:

b

1

m

3

D �

1

:

b

e

1

m

3

m

1

m

1

�

�1

Fig. 5. Clause 1 of Disse
tion Lemma

Clause 1 of the lemma holds, with

C = �(

1

;

2

)

D = �(

1

)

e

1

= �

1

e

2

= �

2

�

1

:

b = �

1

�

2

:

b = �

2

m = 3

m

1

= 1

m

2

= 1

m

3

= 1

�

1

= h

1

i

3

�

2

= h

2

i

3

�

3

= h

3

i

3

This disse
tion should give rise to a transition

�(�

1

) j �

1

�( j

2

;

1

)

�! R

:

h�

1

;

2

;

1

j �

1

i

2

(taking A; a; B; b to be the D; s; L; u in 
ase i of Lemma 27).

Theorem 14 � is a 
ongruen
e.

Proof We show that (� S)

�

, where

S

def

= fA

:

s; A

:

s

0

j s � s

0

^ A : 1! 1 linear g

is a bisimulation. As before, note that for any A : 1! 1 and s � s

0

we have

A

:

s S

�

A

:

s

0

. We �rst show that if A : 1! 1 linear, s � s

0

and A

:

s

F

�!T then

there exists T

0

su
h that A

:

s

0

F

�!T

0

and T � [S

�

℄ T

0

.
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(1) Suppose A

:

s

I

�!t and I � id

1

. By Lemma 27 one of the following holds:

(a) There exists some H : 1! 1 su
h that t � H

:

s and

8ŝ : 0! 1 : A

:

ŝ�!H

:

ŝ.

Hen
e A

:

s

0

�!H

:

s

0

.

Clearly t � H

:

s S

�

H

:

s

0

.

(b) There exist n � 0, F :(1+n)! 1 linear, T :n! 1, C 2 C and v : 0!n

su
h that s

F

�!T , A � C

:

F

:

(id

1

+ v) and t � C

:

T

:

v.

By s � s

0

there exists T

0

su
h that s

0

F

�!T

0

^ T [�℄ T

0

.

By Lemma 30 F

:

(s

0

+ v)�!T

0

:

v.

By the de�nition of redu
tion A

:

s

0

� C

:

F

:

(s

0

+ v)�!C

:

T

0

:

v.

Clearly t � C

:

T

:

v S

�

C

:

T

0

:

v.

(2) Suppose A

:

s

F

�!T for A : 1! 1 linear and F : 1 + n! 1 linear and deep

in 1. By Lemma 28 one of the following holds.

(a) There exists H : 1 + n! 1 su
h that T � H

:

(s + id

n

) and for all

ŝ : 0! 1 we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

Hen
e A

:

s

0

F

�!H

:

(s

0

+ id

n

).

Clearly T � H

:

(s+ id

n

) [S

�

℄ H

:

(s

0

+ id

n

).

(b) There exist

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

su
h that n = m

3

+m

2

L

12

: 1 +m

12

! 1 linear, deep in 1 and 1-separated

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

13

+m

12

+m

3

+m

2

! 1

v

3

: 0!m

13

v

2

: 0!m

12

e : 0!m

3

su
h that

s

L

2

:

(par

1+m

3

+id

m

2

)

:

(L

12

+id

n

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

F � L

2

:

(par

1+m

3

+ id

m

2

)

T �

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e+ id

m

3

) + id

m

2

)

A � par

1+m

3

:

(L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

By s � s

0

there exists

^

T

0

su
h that

^

T [�℄

^

T

0

and

s

0

L

2

:

(par

1+m

3

+id

m

2

)

:

(L

12

+id

n

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

0

By Lemma 31 A

:

s

0

F

�!

^

T

0

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

).

Clearly T �

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

) [S

�

℄

^

T

0

:

(v

3

+

v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

).
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(
) There exist

m

12

� 0 and m

2

� 0 and m

3

� 0 su
h that n = m

3

+m

2

L

12

:m

12

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

3

+m

12

+m

2

! 1

v : 0!m

12

^

â : 0!m

3

su
h that

s

L

2

:

(par

2+m

3

+id

m

2

)

:

(id

1

+id

m

3

+L

12

+id

m

2

)

�!

^

T

F � L

2

:

(par

1+m

3

+ id

m

2

)

T �

^

T

:

(ppar

m

3

:

(id

m

3

+

^

â) + v + id

m

2

)

A � par

2+m

3

:

(id

1

+ L

12

:

v +

^

â)

By s � s

0

there exists

^

T

0

su
h that

^

T [�℄

^

T

0

and

s

0

L

2

:

(par

2+m

3

+id

m

2

)

:

(id

1

+id

m

3

+L

12

+id

m

2

)

�!

^

T

0

By Lemma 32 A

:

s

0

F

�!

^

T

0

:

(ppar

m

3

:

(id

m

3

+

^

â) + v + id

m

2

). Clearly

T �

^

T

:

(ppar

m

3

:

(id

m

3

+

^

â)+v+ id

m

2

) [S

�

℄

^

T

0

:

(ppar

m

3

:

(id

m

3

+

^

â)+

v + id

m

2

).

(3) Suppose A

:

s

F

�!T for A : 1! 1 linear and F : 1+n! 1 linear, shallow in

1 and F 6� id

1

.

By Lemma 29 one of the following holds.

(a) There exists H : 1 + n! 1 su
h that T � H

:

(s + id

n

) and for all

ŝ : 0! 1 we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

Hen
e A

:

s

0

F

�!H

:

(s

0

+ id

n

).

Clearly T � H

:

(s+ id

n

) [S

�

℄ H

:

(s

0

+ id

n

).

(b) There exist

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

su
h that n = m

3

+m

2

q : 0! 1

L

12

: 1 +m

12

! 1 linear, deep and 1-separated

L

2

:m

2

! 1 linear and deep

^

T :m

13

+m

12

+m

3

+m

2

! 1

v

3

: 0!m

13

v

2

: 0!m

12

e : 0!m

3
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su
h that

s

par

2+m

3

:

(L

12

+id

m

3

+L

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T � par

2

:

(q +

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e+ id

m

3

) + id

m

2

))

A � par

2+m

3

:

(q + L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

m

3

= 0 =) L

2

6� h0i

0

By s � s

0

there exists

^

T

0

su
h that

^

T [�℄

^

T

0

and

s

0

par

2+m

3

:

(L

12

+id

m

3

+L

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

0

By Lemma 33 A

:

s

0

F

�!par

2

:

(q +

^

T

0

:

(v

3

+ v

2

+ppar

m

3

:

(e+ id

m

3

) +

id

m

2

)). Clearly T � par

2

:

(q +

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) +

id

m

2

)) [S

�

℄ par

2

:

(q +

^

T

0

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

)).

(
) There exist

m

12

� 0 and m

2

� 0 and m

3

� 0 su
h that n = m

3

+m

2

a

0

: 0! 1

L

12

:m

12

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

^

T :m

3

+m

12

+m

2

! 1

v

2

: 0!m

12

a

000

: 0!m

3

su
h that

s

par

3+m

3

:

(id

1

+id

m

3

+L

12

+L

2

)

�!

^

T

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T � par

2

:

(a

0

+

^

T

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+ id

m

2

))

A � par

1+2+m

3

:

(id

1

+ a

0

+ L

12

:

v

2

+ a

000

)

m

3

= 0 =) L

2

6� h0i

0

By s � s

0

there exists

^

T

0

su
h that

^

T [�℄

^

T

0

and

s

0

par

3+m

3

:

(id

1

+id

m

3

+L

12

+L

2

)

�!

^

T

0

By Lemma 34 A

:

s

0

F

�!par

2

:

(a

0

+

^

T

0

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+

id

m

2

)). Clearly T � par

2

:

(a

0

+

^

T

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+

id

m

2

)) [S

�

℄ par

2

:

(a

0

+

^

T

0

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+ id

m

2

)).

Now if

r

1

� A

1

:

s

1

S A

1

:

s

0

2

� A

2

:

s

2

S : : : S A

n�1

:

s

0

n
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for A

i

linear and s

i

� s

0

i+1

, for i 2 1::n� 1, and r

1

F

�!T

1

then by the 
losure of

transitions under �, and the above, there exists T

n

su
h that A

n�1

:

s

0

n

F

�!T

n

and T

1

[(� S)

�

℄ T

n

.

2

Remark The de�nitions allow only rather 
rude spe
i�
ations of the set C of

redu
tion 
ontexts. They ensure that C has a number of 
losure properties,

whi
h are used in the proof of Lemma 27 (in Appendix C.2). Some redu
tion

semanti
s require more deli
ate sets of redu
tion 
ontexts. For example, for

a list 
ons 
onstru
tor one might want to allow redu
tion 
ontexts 
ons( ; e)

and 
ons(v; ), where e is arbitrary but v ranges only over some given set of

values. This would require a non-trivial generalisation of the theory.

Example { CCS syn
hronization For our CCS fragment the de�nition

gives

�:u j r

j ��:

1

�! u j

1

j r

��:u j r

j�:

1

�! u j

1

j r

together with stru
turally 
ongruent transitions, i.e. those generated by

s

0

� s s

F

�!T T � T

0

F � F

0

s

0

F

0

�!T

0

and the redu
tions.

Proposition 15 � 
oin
ides with bisimulation over the labelled transitions

of Se
tion 1.

Proof Write �

std

for the standard bisimulation over the labelled transitions of

Se
tion 1. To show�

std

is a bisimulation for the 
ontextual labelled transitions,

suppose P �

std

P

0

and P

j ��:

1

�!T . There must exist u and r su
h that P �

�:u j r and T � u j

1

j r, but then P

�

�! � u j r, so there exists Q

0

su
h that

P

0

�

�!Q

0

�

std

u j r. There must then exist u

0

and r

0

su
h that P

0

� �:u

0

j r

0

and

Q � u

0

j r

0

, hen
e P

0

j ��:

1

�!u

0

j

1

j r

0

. Using the fa
t that �

std

is a 
ongruen
e we

have 8s : u j s j r �

std

u

0

j s j r so T [�

std

℄ u

0

j

1

j r

0

.

For the 
onverse, suppose P � P

0

and P

�

�!Q. There must exist u and r su
h

that P � �:u j r and Q � u j r, but then P

j ��:

1

�!u j

1

j r, so there exists T

0

su
h

that P

0

j ��:

1

�!T

0

^ (u j

1

j r) [�℄ T

0

. There must then exist u

0

and r

0

su
h that

P

0

� �:u

0

j r

0

and T

0

� u

0

j

1

j r

0

, hen
e P

0

�

�!u

0

j r

0

. By the de�nition of [ ℄ we

have P

0

� u j 0 j r � u

0

j 0 j r

0

. 2
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The standard transitions 
oin
ide (modulo stru
tural 
ongruen
e) with the


ontextual labelled transitions with their parameter instantiated by 0. One

might look for general 
onditions on R under whi
h bisimulation over su
h

0-instantiated transitions is already a 
ongruen
e, and 
oin
ides with �.

Example { Ambient movement The CCS fragment is degenerate in sev-

eral respe
ts { in the left hand side of the rewrite rule there are no nested

non-parallel symbols and no parameters in parallel with any non-0 term, so

there are no deep transitions and no partial instantiations. As a less degen-

erate example we 
onsider a fragment of the Ambient Cal
ulus [10℄ without

binding. The theory gives rise to a labelled transition relation and bisimula-

tion 
ongruen
e that appear plausible, though we leave an exa
t 
omparison

with the bisimulation in [10℄ to future work. The signature �

Amb

has unary

m[ ℄ (written out�x), in m:, out m: and open m:, for all m 2 A. Of these only

the m[ ℄ allow redu
tion. The rewrite rules R

Amb

are

n[in m:

1

j

2

℄ jm[

3

℄ �! m[n[

1

j

2

℄ j

3

℄

m[n[out m:

1

j

2

℄ j

3

℄ �! n[

1

j

2

℄ jm[

3

℄

open m:

1

jm[

2

℄ �!

1

j

2

The de�nition gives the transitions below, together with stru
turally 
ongruent

transitions, permutation instan
es, and the redu
tions.

in m:s j r

n[ j

1

℄ jm[

2

℄

�! m[n[s j r j

1

℄ j

2

℄

n[in m:s j t℄ j r

jm[

1

℄

�! m[n[s j t℄ j

1

℄ j r

m[s℄ j r

n[in m:

1

j

2

℄ j

�! m[n[

1

j

2

℄ j s℄ j r

out m:s j r

m[n[ j

1

℄ j

2

℄

�! n[s j r j

1

℄ jm[

2

℄

n[out m:s j t℄ j r

m[ j

1

℄

�! n[s j t℄ jm[r j

1

℄

open n:s j r

jn[

1

℄

�! s j

1

j r

n[s℄ j r

open n:

1

j

�!

1

j s j r

5 Con
lusion

We have given general de�nitions of 
ontextual labelled transitions, and bisim-

ulation 
ongruen
e results, for three simple 
lasses of redu
tion semanti
s. It is

preliminary work { the de�nitions may inform work on parti
ular interesting


al
uli, but to dire
tly apply the results they must be generalized to more ex-

pressive 
lasses of redu
tion semanti
s. Several dire
tions are suggested below.
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There is, of 
ourse, no guarantee that for any parti
ular 
al
ulus the bisim-

ulation given by the general theory will be satisfa
tory. The CCS example

may be suggestively positive, but the fa
t that di�erent sets of redu
tion rules

(de�ning the same redu
tion relation) 
an give rise to di�erent bisimulation

relations implies that in some 
ases the bisimulation is bound not to be desir-

able. Examination of more serious examples is required. Moreover, any general

theory is liable to involve heavier notation than work on a single parti
ular


al
ulus, where one 
an �nely tune the notation and de�nitions { one might

well expe
t to have to hand-optimise the general labelled transitions produ
ed

for a parti
ular 
al
ulus in order to obtain a tra
table set.

Colouring The de�nition of labelled transitions in Se
tion 4 is rather intri
ate

{ for tra
table generalisations, to more expressive settings, one would like a

more 
on
ise 
hara
terisation. A promising approa
h seems to be to work

with 
oloured terms, in whi
h ea
h symbol ex
ept j and 0 is given a tag from

a set of 
olours. This gives a notion of o

urren
e of a symbol in a term

that is preserved by stru
tural 
ongruen
e and 
ontext appli
ation, and hen
e

provides a di�erent way of formalising the idea that the label of a transition

s

F

�!T must be part of a redex within F

:

s. For the 
ase of ground term

rewriting with parallel one 
an de�ne labelled transitions by

� s

F

�!t

def

, 9hl; ri 2 R; s; D : 1! 1 linear : F

red

:

s � D

blue

:

l

red

^ jsj � s ^

t � D

:

r

where bold s ranges over terms of the 
oloured signature, supers
ripts 
olour

all the symbols in the un
oloured term to whi
h they are applied, and j j

removes 
olour tags. This appears to give rise to satisfa
tory bisimulation


ongruen
es, with essentially the same labelled transitions as the de�nition of

Se
tion 4 restri
ted to the ground 
ase.

Summation The de�nitions and results of Se
tion 4 are for signatures with a

single ACI operator, whi
h allow the redu
tion semanti
s of the CCS fragment

P ::= 0

�

�

�:P

�

�

��:P

�

�

P jP � 2 A

to be expressed. To express the redu
tion semanti
s of the fragment with

summation

P ::= 0

�

�

�:P

�

�

��:P

�

�

P jP

�

�

P + P � 2 A

requires two ACI operators (with + blo
king); the redu
tion rules are then

(��:P +Q) j(�:P

0

+Q

0

)�!P jP

0

Extending the theory to a 
lass of signatures in
luding this would involve new

disse
tion results.
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Higher order rewriting Fun
tional programming languages 
an generally be

equipped with straightforward de�nitions of operational 
ongruen
e, involving

quanti�
ation over 
ontexts. As dis
ussed in the introdu
tion, in several 
ases

these have been given tra
table 
hara
terisations in terms of bisimulation. One

might generalise the term rewriting 
ase of Se
tion 3 to some notion of higher

order rewriting [42℄ equipped with non-trivial sets of redu
tion 
ontexts, to

investigate the extent to whi
h this 
an be done uniformly.

Name binding To express 
al
uli with mobile s
opes, su
h as the �-
al
ulus

and its des
endants, one requires a syntax with name binding, and a stru
tural


ongruen
e allowing s
ope extrusion. Generalising the de�nitions of Se
tion 4

to the 
lass of all non-higher-order a
tion 
al
uli would take in a number of

examples, some of whi
h 
urrently la
k satisfa
tory operational 
ongruen
es,

and should show how the indexed stru
ture of � labelled transitions arises

from the rewrite rules and stru
tural 
ongruen
e.

Ultimately one would like to treat 
on
urrent fun
tional languages. In parti
-

ular 
ases it has been shown that one 
an de�ne labelled transitions that give

rise to bisimulation 
ongruen
es, e.g. by Ferreira, Hennessy and Je�rey for

Core CML [16℄. To express the redu
tion semanti
s of su
h languages would

require both higher order rules and a ri
h stru
tural 
ongruen
e.

Observational 
ongruen
es We have fo
ussed on strong bisimulation,

whi
h is a very intensional equivalen
e. It would be interesting to know the

extent to whi
h 
ongruen
e proofs 
an be given uniformly for equivalen
es

that abstra
t from bran
hing time, internal redu
tions et
. More parti
ularly,

one would like to know whether Theorem 12 holds without the restri
tion to

right-aÆne rewrite rules. As usual, one would expe
t bisimulation to di�er

from any truly observational equivalen
e for a programming language. It is

arguable, however, that it will always be �ner { if the language primitives for

external input and output are designed to appear (from inside the language)

just as other internal intera
tions, then the 
ontextual labelled transitions

should 
arry enough information. On a related note, one 
an de�ne barbs

for an arbitrary 
al
ulus by s # () 9F 6� id

1

; T : s

F

�!T , so s # i� s has

some potential intera
tion with a 
ontext. Conditions under whi
h this barbed

bisimulation 
ongruen
e 
oin
ides with � 
ould provide a useful test of the

expressiveness of 
al
uli.

Stru
tural operational semanti
s This work has taken redu
tion seman-

ti
s as primary, showing how labelled transition relations 
an be de�ned from

a set of redu
tion rules. These de�nitions are not, however, indu
tive on term

stru
ture { we have not 
onstru
ted an SOS from a set of redu
tion rules. Sev-

eral authors taken labelled transitions as primary, 
onsidering 
al
uli equipped

with labelled transitions de�ned by an SOS in some well-behaved format; 
.f.

among others [3,6,8,13,18,23,41℄. The relationship between the two is un
lear
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{ one would like 
onditions on rewrite rules that ensure the labelled tran-

sitions of Se
tion 4 are de�nable by a fun
torial operational semanti
s [41℄.

Conversely, one would like 
onditions on an SOS ensuring that it is 
hara
-

terised by a redu
tion semanti
s. General 
ongruen
e results have also been

given for 
al
uli with semanti
s given by open-map-preserving fun
tors, e.g.

in [11℄. Again, the relationship with the present work requires study.
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A Proofs for Se
tion 2

For the in
lusion of � in �

alt

:

Proposition 16 If s � t then s �

alt

t.

Proof It is straightforward to show that f s; s

0

j s � s

0

g is a bisimulation

with respe
t to

F

�!

alt

. 2

For the example showing the non-in
lusion, the terms are 


n

(�) and 


n

(�) for

n � 0. The transitions are




n

(�)�! 


n

(�)




n

(�)�! 


n

(�)




n

(�)�! 


n�1

(�) if n � 1

�


( )

�!�

so � 6� � whereas the alternative transitions are




n

(�) �!

alt




n

(�)




n

(�) �!

alt




n

(�)




n

(�) �!

alt




n�1

(�) if n � 1




n

(�)


( )

�!

alt




1+n

(�)




n

(�)


( )

�!

alt




1+n

(�)




n

(�)


( )

�!

alt




n

(�)

(
onsidering only those from the 
ut-down label set) so � �

alt

�.
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B Proofs for Se
tion 3

Proof of Lemma 6 The proof is by indu
tion on the stru
ture of A and B.

2

Proof of Lemma 7 By the de�nition of labelled transitions

9hm;L;Ri 2 R; C : 1! 1 linear; u : 0!m : A

:

s = C

:

L

:

u ^ C

:

R

:

u = t

Applying Lemma 1 to A

:

s = C

:

(L

:

u) gives the following 
ases.

(1) (L

:

u is in s) There exists B : 1! 1 linear su
h that s = B

:

L

:

u and

A

:

B = C. Taking k = 0, F = id

1

, T = B

:

R

:

u, D = A and v = hi

0

the

se
ond 
lause holds.

(2) (s is properly in L

:

u) There exists B : 1! 1 linear with B 6= su
h that

B

:

s = L

:

u and A = C

:

B. Applying Lemma 6 to B

:

s = L

:

u one of

the following hold.

(a) (s is not in any 
omponent of u) There exist

m

1

and m

2

su
h that m

1

+m

2

= m

�

i

:m!m

i

for i 2 f1; 2g a partition

F : 1 +m

2

! 1 linear

G :m

1

! 1 linear and not the identity

su
h that

B = F

:

(id

1

+ �

2

:

u)

s = G

:

�

1

:

u

L = F

:

(G+ id

m

2

)

:

(�

1

� �

2

)

i.e. there are m

1


omponents of u in s and m

2

in B. Taking k = m

2

,

T = R

:

(�

1

� �

2

)

�1

:

(�

1

:

u+ id

m

2

), D = C and v = �

2

:

u the se
ond


lause holds. By B 6= id

1

we know F 6= id

1

. There is a transition

s

F

�!R

:

(�

1

� �

2

)

�1

:

(�

1

:

u+ id

m

2

)

with witness

hm;L;Ri 2 R

m

1

and m

2

su
h that m

1

+m

2

= m

(�

1

� �

2

) :m!m a permutation

G :m

1

! 1 linear and not the identity

F : 1 +m

2

! 1 linear and not the identity

�

1

:

u : 0!m

1
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(b) (s is in a 
omponent of u) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

F : 1! 1 linear

su
h that

B=L

:

(�

1

� �

2

)

�1

:

(F + �

2

:

u)

F

:

s=�

1

:

u

Taking H = C

:

R

:

(�

1

� �

2

)

�1

:

(F + �

2

:

u) the �rst 
lause holds.

(3) (s and L

:

u are disjoint) There exists E : 2! 1 linear su
h that A =

E

:

( + L

:

u) and C = E

:

(s + ). Taking H = E

:

( + R

:

u) the �rst


lause holds.

2

Proof of Lemma 8 By the de�nition of labelled transitions there exist

hm;L;Ri 2 R with m � n

� :m!m a permutation

L

1

:(m� n)! 1 linear and not the identity

u : 0!(m� n)

su
h that

L = F

:

(L

1

+ id

n

)

:

�

A

:

s = L

1

:

u

T = R

:

�

�1

:

(u+ id

n

)

Let m

1

= m � n and m

2

= n. Applying Lemma 6 to A

:

s = L

1

:

u one of the

following hold.

(1) (s is not in any 
omponent of u) There exist

m

1

1

and m

1

2

su
h that m

1

1

+m

1

2

= m

1

�

i

:m

1

!m

1

i

for i 2 f1; 2g a partition

E : 1 +m

1

2

! 1 linear

G :m

1

1

! 1 linear and not the identity

su
h that

A = E

:

(id

1

+ �

2

:

u)

s = G

:

�

1

:

u

L

1

= E

:

(G+ id

m

1

2

)

:

(�

1

� �

2

)

i.e. there are m

1

1


omponents of u in s and m

1

2

in A. Taking p = m

1

2

,

^

T = R

:

((�

1

� �

2

+ id

m

2

)

:

�)

�1

:

(�

1

:

u + id

m

12

+ id

m

2

) and v = �

2

:

u we
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have 
lause 2. There is a transition

G

:

�

1

:

u

F

:

(E+id

n

)

�! R

:

((�

1

� �

2

+ id

m

2

)

:

�)

�1

:

(�

1

:

u+ id

m

12

+ id

m

2

)

with witness

hm;L;Ri 2 R

m

11

and m

12

+m

2

su
h that m

11

+m

12

+m

2

= m

((�

1

� �

2

+ id

m

2

)

:

�) :m!m a permutation

G :m

11

! 1 linear and not the identity

F

:

(E + id

n

) : 1 +m

12

+m

2

! 1 linear and not the identity

�

1

:

u : 0!m

11

(2) (s is in a 
omponent of u) m

1

� 1 and there exist

�

1

:m

1

! 1 and �

2

:m

1

!(m

1

� 1) a partition

J : 1! 1 linear

su
h that

A=L

1

:

(�

1

� �

2

)

�1

:

(J + �

2

:

u)

J

:

s= �

1

:

u

Taking H = R

:

�

�1

:

((�

1

� �

2

)

�1

:

(J + �

2

:

u) + id

m

2

) we have 
lause 1.

There is a transition

A

:

ŝ

F

�!R

:

�

�1

:

((�

1

� �

2

)

�1

:

(J + �

2

:

u) + id

m

2

)

:

(ŝ + id

m

2

)

with witness

hm;L;Ri 2 R

m

1

and m

2

su
h that m

1

+m

2

= m

� :m!m a permutation

L

1

:m

1

! 1 linear and not the identity

F : 1 +m

2

! 1 linear and not the identity

(�

1

� �

2

)

�1

:

(J

:

ŝ + �

2

:

u) : 0!m

1

2

Proof of Lemma 9 There are three 
ases. Firstly, suppose p + n = 0 and

C

:

(E + id

n

) = id

1

. It must then be that C = id

1

and E = id

1

, so the


on
lusion is trivially true. Otherwise, by the de�nition of labelled transitions

there exist

hm;L;Ri 2 R with m � (p + n)

� :m!m a permutation

L

1

:(m� (p+ n))! 1 linear and not the identity

u : 0!(m� (p+ n))
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su
h that

L = C

:

(E + id

n

)

:

(L

1

+ id

(p+n)

)

:

�

s = L

1

:

u

T = R

:

�

�1

:

(u+ id

(p+n)

)

Consider arbitrary v : 0! p.

(1) Case C = id

1

. Here n = 0 so

E

:

(s+ v) = L

:

�

�1

:

(u+ v)

�!R

:

�

�1

2

:

(u+ v)

= T

:

v

(2) Case C 6= id

1

. There is a transition

E

:

(s+ v)

C

�!T

:

(v + id

n

)

with witness

hm;L;Ri 2 R

(m� n) and n su
h that (m� n) + n = m

� :m!m a permutation

E

:

(L

1

+ id

p

) :(m� n)! 1 linear and not the identity

C : 1 + n! 1 linear and not the identity

(u+ v) : 0!(m� n)

2

Proof of Proposition 11 We 
he
k �

R

is a bisimulation for the transitions

F

�!

Cl(R)

. Consider s �

R

s

0

.

(1) Suppose s�!

Cl(R)

t. Trivially s�!

R

t. By s �

R

s

0

there exists t

0

su
h that

s

0

�!

R

t

0

and t �

R

t

0

. Trivially s

0

�!

Cl(R)

t

0

.

(2) Suppose s

F

�!

Cl(R)

t and F 6= id

1

. By de�nition there exist hm;L;Ri 2 R

and v : 0!m su
h that F

:

s = L

:

v and R

:

v = t. Applying Lemma 6

one of the following hold.

(a) (s is not in any 
omponent of v) There exist

m

1

and m

2

su
h that m

1

+m

2

= m

�

i

:m!m

i

for i 2 f1; 2g a partition

C : 1 +m

2

! 1 linear

D :m

1

! 1 linear and not the identity

su
h that

F = C

:

(id

1

+ �

2

:

v)

s = D

:

�

1

:

v

L = C

:

(D + id

m

2

)

:

(�

1

� �

2

)
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i.e. there are m

1


omponents of v in s and m

2

in F . Here

s

C

�!

R

R

:

(�

1

� �

2

)

�1

:

(�

1

:

v + id

m

2

). By s �

R

s

0

there exists T

0

su
h

that s

0

C

�!

R

T

0

and R

:

(�

1

� �

2

)

�1

:

(�

1

:

v + id

m

2

) [�

R

℄ T

0

. By the

de�nition of transitions there exist

hm

0

; L

0

; R

0

i 2 R with m

0

� m

2

� :m

0

!m

0

a permutation

L

0

1

:(m

0

�m

2

)! 1 linear and not the identity

u

0

: 0!(m

0

�m

2

)

su
h that

L

0

= C

:

(L

0

1

+ id

m

2

)

:

�

s

0

= L

0

1

:

u

0

T

0

= R

0

:

�

�1

:

(u

0

+ id

m

2

)

and we have

F

:

s

0

=C

:

(s

0

+ �

2

:

v)

=C

:

(L

0

1

:

u

0

+ �

2

:

v)

=C

:

(L

0

1

+ id

m

2

)

:

�

:

�

�1

:

(u

0

+ �

2

:

v)

=L

0

:

�

�1

:

(u

0

+ �

2

:

v)

so s

0

F

�!

Cl(R)

R

0

:

�

�1

:

(u

0

+ �

2

:

v) = T

0

:

�

2

:

v. By the de�nition of [ ℄

we have t = R

:

v = R

:

(�

1

��

2

)

�1

:

(�

1

:

v+ id

m

2

)

:

�

2

:

v �

R

T

0

:

�

2

:

v.

(b) (s is in a 
omponent of v) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

E : 1! 1 linear

su
h that

F =L

:

(�

1

� �

2

)

�1

:

(E + �

2

:

v)

E

:

s=�

1

:

v

Here t = R

:

(�

1

� �

2

)

�1

:

(E + �

2

:

v)

:

s and s

0

F

�!

Cl(R)

R

:

(�

1

�

�

2

)

�1

:

(E+�

2

:

v)

:

s

0

. By Theorem 10 R

:

(�

1

��

2

)

�1

:

(E+�

2

:

v)

:

s �

R

R

:

(�

1

� �

2

)

�1

:

(E + �

2

:

v)

:

s

0

.

2

Proof of Theorem 12 First note that if the rewrite rules R are right-aÆne

then the 
on
lusions of Lemmas 7 and 8 
an be strengthened to require H

aÆne. We show that S [ f s; s j s : 0! 1 g, where

S

def

= fA

:

s; A

:

s

0

j s � s

0

^ A : 1! 1 linear g
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is a bisimulation of the form spe
i�ed. Consider A : 1! 1 linear and s � s

0

.

We show that if A

:

s�!t then there exists t

0

su
h that A

:

s

0

�!

�

t

0

and t S t

0

or t = t

0

. Moreover, if A

:

s

F

�!T for F 6= id

1

then there exists T

0

su
h that

A

:

s

0

�!

�

F

�!T

0

and T [S℄ T

0

or T [=℄ T

0

.

(1) Suppose A

:

s�!t. By Lemma 7 one of the following holds:

(a) There exists some H : 1! 1 su
h that t = H

:

s and for all

ŝ : 0! 1 we have A

:

ŝ�!H

:

ŝ. Moreover, H is aÆne. It follows that

A

:

s

0

�!H

:

s

0

. If H is linear then 
learly t = H

:

s S H

:

s

0

, otherwise

H does not use its argument so t = H

:

s = H

:

s

0

.

(b) There exist k � 0, F : 1+k! 1 linear, T : k! 1, D : 1! 1 linear and

v : 0!k, su
h that s

F

�!T , A = D

:

F

:

(id

1

+ v) and t = D

:

T

:

v.

(i) Case F = id

1

. By s � s

0

there exists T

0

su
h that s

0

�!

�

T

0

^ T �

T

0

. By the de�nition of redu
tion A

:

s

0

�!

�

A

:

T

0

and 
learly

t = A

:

T S A

:

T

0

.

(ii) Case F 6= id

1

. By s � s

0

there exist s

00

and T

0

su
h that

s

0

�!

�

s

00

F

�!T

0

^ T � T

0

. By Lemma 9 F

:

(s

00

+ v)�!T

0

:

v. By

the de�nition of redu
tion A

:

s

0

= D

:

F

:

(s

0

+ v)�!

�

D

:

F

:

(s

00

+

v)�!D

:

T

0

:

v, and 
learly t = D

:

T

:

v S D

:

T

0

:

v.

(2) Suppose A

:

s

F

�!T for F : 1+n! 1 linear and F 6= id

1

. By Lemma 8 one

of the following holds.

(a) There exists H : 1 + n! 1 su
h that T = H

:

(s + id

n

) and for all

ŝ : 0! 1 we have A

:

ŝ

F

�!H

:

(ŝ+id

n

). Moreover, H is aÆne. It follows

that A

:

s

0

F

�!H

:

(s

0

+ id

n

). If H is linear in its �rst argument then

T = H

:

(s + id

n

) [S℄ H

:

(s

0

+ id

n

), otherwise H does not use its

argument so T = H

:

(s+ id

n

) = H

:

(s

0

+ id

n

) so T [=℄ H

:

(s

0

+ id

n

).

(b) There exist p � 0, E : 1 + p! 1 linear,

^

T : p + n! 1 and v : 0! p,

su
h that s

F

:

(E+id

n

)

�!

^

T , T =

^

T

:

(v + id

n

) and A = E

:

(id

1

+ v). By

s � s

0

there exist s

00

and

^

T

0

su
h that s

0

�!

�

s

00

F

:

(E+id

n

)

�!

^

T

0

^

^

T [�℄

^

T

0

.

By the de�nition of redu
tions A

:

s

0

�!

�

A

:

s

00

. By Lemma 9 A

:

s

00

=

E

:

(s

00

+v)

F

�!

^

T

0

:

(v+ id

n

). Clearly T =

^

T

:

(v+ id

n

) [S℄

^

T

0

:

(v+ id

n

).

2

C Proofs for Se
tion 4

This appendix 
ontains the lemmas required for the main 
ongruen
e result of

Se
tion 4. It is divided into three subse
tions, of disse
tion, forwards, and ba
k-

wards lemmas respe
tively. Only Lemma 27 of xC.2, showing that if A

:

s�!t

then s has a suitable labelled transition, is proved in detail; other proofs 
an

be found in the te
hni
al report version.
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C.1 Disse
tion Lemmas

This subse
tion 
ontains the statements of lemmas required for the proof of

the main disse
tion lemma (Lemma 13), together with the statements of some

auxiliary simple disse
tion results used elsewhere.

Lemma 17 If B :m! 1 linear then there exist m

1

, m

3

, �

1

:m!m

1

and

�

3

:m!m

3

a partition, and B

0

:m

1

! 1 linear and deep, su
h that m =

m

1

+m

3

and B � par

1+m

3

:

(B

0

+ id

m

3

)

:

(�

1

� �

3

).

Lemma 18 If C : 1 +m! 1 linear then there exist m

1

, m

2

, �

1

:m!m

1

and

�

2

:m!m

2

a partition, and C

0

:(1+m

2

)! 1 linear and 1-separated, su
h that

m = m

1

+m

2

and C � C

0

:

(par

1+m

1

+ id

m

2

)

:

(id

1

+ �

1

� �

2

).

Lemma 19 If B :m! 1 is linear for m � 0 then there exist n 2 1::m, m̂

i

� 1

for i 2 1::n summing to m, �

i

:m! m̂

i

for i 2 1::n a partition, B

i

: m̂

i

! 1

for i 2 1::n linear and shallow, and B

0

:n! 1 linear and 
lean, su
h that

B � B

0

:

(B

1

+ : : :+B

n

)

:

(�

1

� : : :� �

n

).

Lemma 20 If m � 0, B :m! 1 is linear and 
lean, b : 0!m, and B

:

b � 
,

then there exist B

0

:m! 1 linear and b

0

: 0!m su
h that B � B

0

, b � b

0

and


 = B

0

:

b

0

.

Lemma 21 If m � 0,

A : 1! 1 B :m! 1

a : 0! 1 b : 0!m

with A and B linear, and A

:

a = B

:

b, then one of the 
lauses of the 
on
lusion

of Lemma 13 holds.

Proof By Lemmas 6, 18 and 17. 2

Proof of Lemma 13 The proof is by indu
tion on the derivations of stru
-

tural 
ongruen
e, showing that if A

:

a � B

:

b or B

:

b � A

:

a then one of the


lauses of the 
on
lusion holds. The degenerate 
ases m = 0, A = id

1

and

B = id

1

are dealt with separately. 2

Lemma 22 If

A : 1! 1 B : 1! 1

a : 0! 1 b : 0! 1

with A and B linear, and A

:

a � B

:

b, then one of the following holds.

(1) (a and b are disjoint) There exists E : 2! 1 linear su
h that A � E

:

( +b)

and B � E

:

(a+ ).
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(2) (a and b overlap) There exist C : 1! 1 linear and z

A;b

, z

a;B

and z

a;b

su
h

that

A � C

:

(z

A;b

j ) a � z

a;B

j z

a;b

B � C

:

(z

a;B

j ) b � z

A;b

j z

a;b

and moreover z

a;b

6� 0

(3) (A is properly in B and b is deeply in a) There exists D : 1! 1 linear and

deep su
h that a � D

:

b and A

:

D � B.

(4) (B is properly in A and a is deeply in b) There exists D : 1! 1 linear and

deep su
h that D

:

a � b and A � B

:

D.

Lemma 23 If m � 0,

a

1

: 0! 1 C :m! 1

a

2

: 0! 1 d : 0!m

with C linear, and a

1

j a

2

� C

:

d, then there exist

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m

�

i

:m!m

i

for i 2 f1; 2; 3g a partition

C

1

:m

1

! 1 linear and deep

C

2

:m

2

! 1 linear and deep

e

1

: 0!m

3

e

2

: 0!m

3

su
h that

a

1

� par

1+m

3

:

(C

1

:

�

1

:

d+ e

1

)

a

2

� par

1+m

3

:

(C

2

:

�

2

:

d+ e

2

)

C � par

2+m

3

:

(C

1

+ C

2

+ id

m

3

)

:

(�

1

� �

2

� �

3

)

�

3

:

d � ppar

m

3

:

(e

1

+ e

2

)

There are m

1

of the d in a

1

, m

2

of the d in a

2

and m

3

of the d potentially

overlapping a

1

and a

2

. The latter are split into e

1

, in a

1

, and e

2

, in a

2

.

Lemma 24 If m � 0,

a

1

: 0! 1 C :m! 1

a

2

: 0! 1 d : 0!m

with C linear and deep, and a

1

j a

2

� C

:

d, then there exist

m

1

and m

2

su
h that m

1

+m

2

= m

�

i

:m!m

i

for i 2 f1; 2g a partition

C

1

:m

1

! 1 linear and deep

C

2

:m

2

! 1 linear and deep
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su
h that

a

1

� C

1

:

�

1

:

d

a

2

� C

2

:

�

2

:

d

C � par

2

:

(C

1

+ C

2

)

:

(�

1

� �

2

)

There are m

1

of the d in a

1

and m

2

of the d in a

2

.

Lemma 25 If m � 1,

A : 1! 1 b : 0!m

s : 0! 1

with A linear and deep, and A

:

s � par

m

:

b, then there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

^

A : 1! 1 linear and deep

â : 0!(m� 1)

su
h that

A � par

m

:

(

^

A + â)

^

A

:

s+ â � (�

1

� �

2

)

:

b

Lemma 26 If m � 1,

A : 1! 1 b : 0!m

s : 0! 1

with A linear and shallow, and A

:

s � par

m

:

b, then there exist

â : 0!m

ŝ : 0!m

su
h that

A � par

1+m

:

(id

1

+ â)

s � par

m

:

ŝ

ppar

m

:

(â + ŝ) � b

C.2 Forwards Lemmas

The three lemmas in this subse
tion show that if A

:

s has some labelled tran-

sition, where A : 1! 1 is linear, then either the transition is independent of s

or s has a related labelled transition. We have 
hosen to 
onsider arbitrary A

{ one 
ould instead restri
t to atomi
 A, in whi
h the hole is under exa
tly

one symbol. It is not 
lear whether this would allow signi�
ant simpli�
ations.
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Lemma 27 If A

:

s

I

�!t for A : 1! 1 linear and I � id

1

then one of the

following holds.

(1) There exists some H : 1! 1 su
h that t � H

:

s and

8ŝ : 0! 1 : A

:

ŝ�!H

:

ŝ.

(2) There exist

n � 0

F :(1 + n)! 1 linear

T :n! 1

C 2 C

v : 0!n

su
h that s

F

�!T , A � C

:

F

:

(id

1

+ v) and t � C

:

T

:

v.

Proof By the de�nition of labelled transitions

9hm;L;Ri 2 R; B 2 C; u : 0!m : A

:

s � B

:

L

:

u ^ B

:

R

:

u � t

The proof involves a number of 
ases, summarized below.

1 s and L

:

u are disjoint. Clause 1 holds.

2 s and L

:

u may overlap.

a the overlap is trivial. Clause 1 holds.

b the overlap is non-trivial. Clause 2 holds with F shallow in 1 and not id

1

.

3 L

:

u is deeply in s. Clause 2 holds with F = id

1

.

4 s is deeply in L

:

u.

a s is not deeply in any 
omponent of u.

i s non-trivially overlaps L. Clause 2 holds with F deep in 1.

ii s does not overlap L. Clause 1 holds.

b s is deeply in a 
omponent of u. Clause 1 holds.

We now 
onsider the 
ases in detail. Ea
h 
ase involves veri�
ation of the

existen
e of a labelled transition and of other equational 
onditions. The exis-

tential witness for a labelled transition is generally given expli
itly; the state-

ments of the required equational 
onditions are often elided (but 
an be found

in the te
hni
al report version). Applying Lemma 22 to A

:

s � B

:

(L

:

u) we

have

(1) (s and L

:

u are disjoint) There exists E : 2! 1 linear su
h that

A � E

:

( + L

:

u) B � E

:

(s+ )

Putting H = E

:

( +R

:

u) we have 
lause 1 of the 
on
lusion.

(2) (s and L

:

u overlap) There exist D : 1! 1 linear and z

A;L

:

u

, z

s;B

and z

s;L

:

u

su
h that
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A�D

:

(z

A;L

:

u

j )

B�D

:

(z

s;B

j )

s� z

s;B

j z

s;L

:

u

L

:

u� z

A;L

:

u

j z

s;L

:

u

and moreover z

s;L

:

u

6� 0 Applying Lemma 23 to z

s;L

:

u

j z

A;L

:

u

� L

:

u we

have that there exist

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m

�

i

:m!m

i

for i 2 f1; 2; 3g a partition

L

1

:m

1

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

e

1

: 0!m

3

e

2

: 0!m

3

su
h that

z

s;L

:

u

� par

1+m

3

:

(L

1

:

�

1

:

u+ e

1

)

z

A;L

:

u

� par

1+m

3

:

(L

2

:

�

2

:

u+ e

2

)

L � par

2+m

3

:

(L

1

+ L

2

+ id

m

3

)

:

(�

1

� �

2

� �

3

)

�

3

:

u � ppar

m

3

:

(e

1

+ e

2

)

There are m

1

of the u in z

s;L

:

u

, m

2

of the u in z

A;L

:

u

and m

3

of the u

potentially overlapping z

s;L

:

u

and z

A;L

:

u

. The latter are split into e

1

, in

z

s;L

:

u

, and e

2

, in z

A;L

:

u

.

Note that as L

2

deep we have L

2

:

�

2

:

u � 0 () m

2

= 0 ^ L

2

� h0i

0

.

We now have two 
ases, one with L

:

u properly in s and one with a

non-trivial overlap.

(a) Case L

2

:

�

2

:

u � 0 ^ m

3

= 0. Here m

2

= m

3

= 0, L

2

� h0i

0

,

L � L

1

:

�

1

and z

A;L

:

u

� 0 so s � z

s;B

jL

:

u. Taking

n = 0

F = id

1

: 1! 1

T = (z

s;B

j )

:

R

:

u : 0! 1

C = A : 1! 1

v = hi

0

: 0! 0

we have 
lause 2 of the 
on
lusion.

(b) Case L

2

:

�

2

:

u 6� 0 _ m

3

6= 0. Taking

n = m

3

+m

2

F = par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T = ( j z

s;B

)

:

R

:

(�

1

� �

3

� �

2

)

�1

:

(�

1

:

u+ ppar

m

3

:

(id

m

3

+ e

1

) + id

m

2

)

C = D

v = (e

2

+ �

2

:

u)
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we have 
lause 2 of the 
on
lusion. There is a transition

s

par

2+m

3

:

(id

1

+id

m

3

+L

2

)

�! ( j z

s;B

)

:

R

:

(�

1

� �

3

� �

2

)

�1

:

(�

1

:

u +

ppar

m

3

:

(id

m

3

+ e

1

) + id

m

2

)

with witness

hm;L;Ri 2 R

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m

(�

1

� �

3

� �

2

) :m!m a permutation

par

2+m

3

:

(id

1

+ id

m

3

+ L

2

) : 1 + m

3

+ m

2

! 1 linear, shallow in

argument 1, and not id

1

z

s;B

: 0! 1

L

1

:m

1

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

(�

1

:

u) : 0!m

1

e

1

: 0!m

3

If m

3

= 0 then by assumption L

2

:

�

2

:

u 6� 0, hen
e L

2

6� h0i

0

so

F 6� id

1

. Further, z

s;L

:

u

� L

1

:

�

1

:

u so we have L

1

:

�

1

:

u 6� 0, hen
e

L

1

6� h0i

0

.

(3) (A is properly in B and L

:

u is deeply in s) There exists D : 1! 1 linear

and deep su
h that

s�D

:

L

:

u

A

:

D�B

Taking

n = 0

F = id

1

: 1! 1

T = D

:

R

:

u : 0! 1

C = A : 1! 1

v = hi

0

: 0! 0

we have 
lause 2 of the 
on
lusion.

(4) (B is properly in A and s is deeply in L

:

u) There exists D : 1! 1 linear

and deep su
h that

D

:

s�L

:

u

A�B

:

D

Applying Lemma 13 to D

:

s � L

:

u we have one of the following

(a) (s is not deeply in any 
omponent of u) There exist

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m

�

1

:m!m

1

; �

2

:m!m

2

and �

3

:m!m

3

a partition

L

2

: 1 +m

2

! 1 linear and 1-separated

L

1

:m

1

! 1 linear and deep

e

1

: 0!m

3

e

2

: 0!m

3
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su
h that

D � L

2

:

(par

1+m

3

:

(id

1

+ e

2

) + �

2

:

u)

s � par

1+m

3

:

(L

1

:

�

1

:

u+ e

1

)

L � L

2

:

(par

1+m

3

:

(L

1

+ id

m

3

) + id

m

2

)

:

(�

1

� �

3

� �

2

)

�

3

:

u � ppar

m

3

:

(e

1

+ e

2

)

There are m

1

of the u in s, m

2

of the u in D and m

3

of the u

potentially overlapping D and s. The latter are split into e

1

, in s,

and e

2

, in D.

(i) Case m

3

= 1 =) L

1

6� h0i

0

. Sin
e D is deep we know that L

2

is deep in argument 1. Taking

n = m

3

+m

2

F = L

2

:

(par

1+m

3

+ id

m

2

)

T = R

:

(�

1

� �

3

� �

2

)

�1

:

(�

1

:

u+ ppar

m

3

:

(id

m

3

+ e

1

) + id

m

2

)

C = B

v = (e

2

+ �

2

:

u)

we have 
lause 2 of the 
on
lusion. There is a transition

s

L

2

:

(par

1+m

3

+id

m

2

)

�! R

:

(�

1

��

3

��

2

)

�1

:

(�

1

:

u+ppar

m

3

:

(id

m

3

+

e

1

) + id

m

2

)

with witness

hm;L;Ri 2 R

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m

(�

1

� �

3

� �

2

) :m!m a permutation

L

2

:

(par

1+m

3

+ id

m

2

) : 1 + m

3

+ m

2

! 1 linear, deep in

argument 1

L

1

:m

1

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

�

1

:

u : 0!m

1

e

1

: 0!m

3

(ii) Case m

3

= 1 ^ L

1

� h0i

0

. Putting

H = B

:

R

:

(�

1

� �

3

� �

2

)

�1

:

(par

2

:

(id

1

+ e

2

) + �

2

:

u)

we have 
lause 1 of the 
on
lusion.

(b) (s is deeply in a 
omponent of u) m � 1 and there exist

�

1

:m! 1 and �

2

:m!(m� 1) a partition

E : 1! 1 linear and deep

su
h that

D�L

:

(�

1

� �

2

)

�1

:

(E + �

2

:

u)

E

:

s� �

1

:

u
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Putting H = B

:

R

:

(�

1

� �

2

)

�1

:

(E + �

2

:

u) we have 
lause 1 of the


on
lusion.

2

Lemma 28 If A

:

s

F

�!T for A : 1! 1 linear and F : 1+n! 1 linear and deep

in 1 then one of the following holds.

(1) There exists H : 1+n! 1 su
h that T � H

:

(s+ id

n

) and for all ŝ : 0! 1

we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).

(2) There exist

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

su
h that n = m

3

+m

2

L

12

: 1 +m

12

! 1 linear, deep in 1 and 1-separated

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

13

+m

12

+m

3

+m

2

! 1

v

3

: 0!m

13

v

2

: 0!m

12

e : 0!m

3

su
h that

s

L

2

:

(par

1+m

3

+id

m

2

)

:

(L

12

+id

n

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

F � L

2

:

(par

1+m

3

+ id

m

2

)

T �

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e+ id

m

3

) + id

m

2

)

A � par

1+m

3

:

(L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

(3) There exist

m

12

� 0 and m

2

� 0 and m

3

� 0 su
h that n = m

3

+m

2

L

12

:m

12

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

3

+m

12

+m

2

! 1

v : 0!m

12

^

â : 0!m

3

su
h that

s

L

2

:

(par

2+m

3

+id

m

2

)

:

(id

1

+id

m

3

+L

12

+id

m

2

)

�!

^

T

F � L

2

:

(par

1+m

3

+ id

m

2

)

T �

^

T

:

(ppar

m

3

:

(id

m

3

+

^

â) + v + id

m

2

)

A � par

2+m

3

:

(id

1

+ L

12

:

v +

^

â)

45



Proof By the de�nition of transitions there exist

hm;L;Ri 2 R

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m and n = m

3

+m

2

� :m!m a permutation

L

1

:m

1

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

u : 0!m

1

e : 0!m

3

su
h that

L � L

2

:

(par

1+m

3

:

(L

1

+ id

m

3

) + id

m

2

)

:

�

A

:

s � par

1+m

3

:

(L

1

:

u+ e)

T � R

:

�

�1

:

(u+ ppar

m

3

:

(id

m

3

+ e) + id

m

2

)

F � L

2

:

(par

1+m

3

+ id

m

2

)

m

3

= 1 =) L

1

6� h0i

0

The proof involves a number of 
ases, summarized below.

1 A deep.

a s is not in e.

i s is not deeply in any 
omponent of u.

A s and L have a non-trivial overlap. Clause 2 holds.

B s is in u. Clause 1 holds.

ii s is deeply in a 
omponent of u. Clause 1 holds.

b s is in one 
omponent of e. Clause 1 holds.

2 A shallow.

a s and L have a non-trivial overlap. Clause 3 holds.

b s is in e. Clause 1 holds.

2

Lemma 29 If A

:

s

F

�!T for A : 1! 1 linear and F : 1+n! 1 linear, shallow

in 1 and F 6� id

1

then one of the following holds.

(1) There exists H : 1+n! 1 su
h that T � H

:

(s+ id

n

) and for all ŝ : 0! 1

we have A

:

ŝ

F

�!H

:

(ŝ+ id

n

).
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(2) There exist

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

su
h that n = m

3

+m

2

q : 0! 1

L

12

: 1 +m

12

! 1 linear, deep and 1-separated

L

2

:m

2

! 1 linear and deep

^

T :m

13

+m

12

+m

3

+m

2

! 1

v

3

: 0!m

13

v

2

: 0!m

12

e : 0!m

3

su
h that

s

par

2+m

3

:

(L

12

+id

m

3

+L

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T � par

2

:

(q +

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

))

A � par

2+m

3

:

(q + L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

m

3

= 0 =) L

2

6� h0i

0

(3) There exist

m

12

� 0 and m

2

� 0 and m

3

� 0 su
h that n = m

3

+m

2

a

0

: 0! 1

L

12

:m

12

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

^

T :m

3

+m

12

+m

2

! 1

v

2

: 0!m

12

a

000

: 0!m

3

su
h that

s

par

3+m

3

:

(id

1

+id

m

3

+L

12

+L

2

)

�!

^

T

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

T � par

2

:

(a

0

+

^

T

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+ id

m

2

))

A � par

1+2+m

3

:

(id

1

+ a

0

+ L

12

:

v

2

+ a

000

)

m

3

= 0 =) L

2

6� h0i

0
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Proof By the de�nition of transitions there exist

hm;L;Ri 2 R

m

1

; m

2

and m

3

su
h that m

1

+m

2

+m

3

= m and n = m

3

+m

2

� :m!m a permutation

q : 0! 1

L

1

:m

1

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

u : 0!m

1

e : 0!m

3

su
h that

L � par

2+m

3

:

(L

1

+ id

m

3

+ L

2

)

:

�

A

:

s � par

2+m

3

:

(q + L

1

:

u+ e)

T � par

2

:

(q +R

:

�

�1

:

(u+ ppar

m

3

:

(id

m

3

+ e) + id

m

2

))

F � par

2+m

3

:

(id

1

+ id

m

3

+ L

2

)

m

3

= 0 =) L

1

6� h0i

0

By F 6� id

1

we also have m

3

= 0 =) L

2

6� h0i

0

. The proof involves a number

of 
ases, summarized below.

1 A deep.

a s is in q. Clause 1 holds.

b s is in L

1

:

u.

i s is not deeply in any 
omponent of u.

A s and L have a non-trivial overlap. Clause 2 holds.

B s is in u. Clause 1 holds.

ii s is deeply in a 
omponent of u. Clause 1 holds.


 s is in e. Clause 1 holds.

2 A shallow.

a s and L have a non-trivial overlap. Clause 3 holds.

b s is in q. Clause 1 holds.

2

C.3 Ba
kwards Lemmas

The �ve lemmas in this subse
tion are approximate 
onverses to those in

Se
tion C.2. The �rst shows that if s

F

�!T then F

:

(s + v) has a redu
tion to

T

:

v. The other four show that if s

F

:

G

�!T then s, in a 
ontext 
onstru
ted from

G, has a transition with label F . This is done for F and G deep and shallow

in their �rst arguments.
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Lemma 30 If s

F

�!T for F : 1 + n! 1 then for all v : 0!n we have F

:

(s +

v)�!T

:

v.

Proof Straightforward 
ase analysis on the three possible forms of F . 2

Lemma 31 If s

^

L

2

:

(par

1+m

3

+id

m

2

)

:

(L

12

+id

m

3

+m

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T , where

m

13

� 0 and m

12

� 0 and m

2

� 0 and m

3

� 0

^

L

2

: 1 +m

2

! 1 linear, deep in 1 and 1-separated

L

12

: 1 +m

12

! 1 linear, deep and 1-separated

^

T :m

13

+m

12

+m

3

+m

2

! 1

then for all v

3

: 0!m

13

, v

2

: 0!m

12

, and e : 0!m

3

we have

par

1+m

3

:

(L

12

:

(par

1+m

13

:

(s+ v

3

) + v

2

) + e)

^

L

2

:

(par

1+m

3

+id

m

2

)

�!

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

)

Proof By the de�nition of deep labelled transitions, using the fa
t that L

12

is deep in 1 and 1-separated to justify some 
an
ellation steps. 2

Lemma 32 If s

L

2

:

(par

2+m

3

+id

m

2

)

:

(id

1

+id

m

3

+L

12

+id

m

2

)

�!

^

T , where

m

12

� 0 and m

2

� 0 and m

3

� 0

L

12

:m

12

! 1 linear and deep

L

2

: 1 +m

2

! 1 linear, deep in argument 1 and 1-separated

^

T :m

3

+m

12

+m

2

! 1

then for all v : 0!m

12

and

^

â : 0!m

3

we have

par

2+m

3

:

(id

1

+ L

12

:

v +

^

â)

:

s

L

2

:

(par

1+m

3

+id

m

2

)

�!

^

T

:

(ppar

m

3

:

(id

m

3

+

^

â) + v + id

m

2

)

Proof By the de�nition of deep labelled transitions, using the fa
t that L

2

is

deep in 1 and 1-separated, and L

12

is deep, to justify some 
an
ellation steps.

2

Lemma 33 If s

par

2+m

3

:

(L

12

+id

m

3

+L

2

)

:

(par

1+m

13

+id

m

12

+m

3

+m

2

)

�!

^

T , where

m

12

� 0 and m

13

� 0 and m

2

� 0 and m

3

� 0

L

12

: 1 +m

12

! 1 linear, deep and 1-separated

L

2

:m

2

! 1 linear and deep

^

T :m

13

+m

12

+m

3

+m

2

! 1

m

3

= 0 =) L

2

6� h0i

0
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then for all q : 0! 1, v

3

: 0!m

13

, v

2

: 0!m

12

, and e : 0!m

3

we have

par

2+m

3

:

(q + L

12

:

(par

1+m

13

:

(id

1

+ v

3

) + v

2

) + e)

:

s

par

2+m

3

:

(id

1

+id

m

3

+L

2

)

�! par

2

:

(q +

^

T

:

(v

3

+ v

2

+ ppar

m

3

:

(e + id

m

3

) + id

m

2

))

Proof By the de�nitions of deep and shallow labelled transitions, using the

fa
t that L

12

is deep in argument 1 and is 1-separated to justify some 
an
el-

lation steps. 2

Lemma 34 If s

par

3+m

3

:

(id

1

+id

m

3

+L

12

+L

2

)

�!

^

T , where

m

12

� 0 and m

2

� 0 and m

3

� 0

L

12

:m

12

! 1 linear and deep

L

2

:m

2

! 1 linear and deep

^

T :m

3

+m

12

+m

2

! 1

m

3

= 0 =) L

2

6� h0i

0

then for all a

0

: 0! 1, v

2

: 0!m

12

, and a

000

: 0!m

3

we have

par

1+2+m

3

:

(s+ a

0

+ L

12

:

v

2

+ a

000

)

par

2+m

3

:

(id

1

+id

m

3

+L

2

)

�! par

2

:

(a

0

+

^

T

:

(ppar

m

3

:

(id

m

3

+ a

000

) + v

2

+ id

m

2

))

Proof By the de�nition of shallow labelled transitions, using the fa
t that

L

12

and L

2

are deep to justify some 
an
ellation steps. 2
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[5℄ Jean-Pierre Banâtre and Daniel Le M�etayer. A new 
omputational model and

its dis
ipline of programming. Te
hni
al Report 566, INRIA, 1986.

[6℄ Karen L. Bernstein. A 
ongruen
e theorem for stru
tured operational semanti
s

of higher-order languages. In Pro
eedings of LICS 98, 1998.

50



[7℄ G�erard Berry and G�erard Boudol. The 
hemi
al abstra
t ma
hine. Theoreti
al

Computer S
ien
e, 96:217{248, 1992.

[8℄ B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation 
an't be tra
ed. Journal of

the ACM, 42(1):232{268, January 1995.

[9℄ G�erard Boudol. The �-
al
ulus in dire
t style. In Pro
eedings of the 24th POPL,

pages 228{241, 15{17 January 1997.

[10℄ Lu
a Cardelli and Andrew D. Gordon. Mobile ambients. In Pro
. of Foundations

of Software S
ien
e and Computation Stru
tures (FoSSaCS), ETAPS'98, LNCS

1378, pages 140{155, Mar
h 1998.

[11℄ Gian Lu
a Cattani, A. John Power, and Glynn Winskel. A 
ategori
al

axiomati
s for bisimulation. In Pro
eedings of CONCUR '98: Con
urren
y

Theory (Ni
e). LNCS 1466, September 1998.

[12℄ R. De Ni
ola and M. C. B. Hennessy. Testing equivalen
es for pro
esses.

Theoreti
al Computer S
ien
e, 34:83{133, 1984.

[13℄ R. de Simone. Higher-level syn
hronising devi
es in meije{SCCS. Theoreti
al

Computer S
ien
e, 37:245{267, 1985.

[14℄ U. Engberg and M. Nielsen. A 
al
ulus of 
ommuni
ating systems with label-

passing. Te
hni
al Report DAIMI PB-208, Comp. S
. Department, Univ. of

Aarhus, Denmark, 1986.

[15℄ M. Felleisen and D. P. Friedman. Control operators, the SECD-ma
hine and the

�-
al
ulus. In Formal Des
ription of Programming Con
epts III, pages 193{217.

North Holland, 1986.

[16℄ William Ferreira, Matthew Hennessy, and Alan Je�rey. A theory of weak

bisimulation for 
ore CML. In Pro
. ACM SIGPLAN Int. Conf. Fun
tional

Programming. ACM Press, 1996.

[17℄ C�edri
 Fournet and Georges Gonthier. The re
exive CHAM and the join-


al
ulus. In Pro
eedings of the 23rd POPL, pages 372{385. ACM press, January

1996.

[18℄ Fabio Gaddu

i and Ugo Montanari. The tile model. In Gordon Plotkin, Colin

Stirling, and Mads Tofte, editors, Proof, Language and Intera
tion: Essays in

Honour of Robin Milner. MIT Press, 1999. To appear.

[19℄ R. J. van Glabbeek. The linear time { bran
hing time spe
trum. In Pro
eedings

of CONCUR '90, LNCS 458, pages 278{297, 1990.

[20℄ R. J. van Glabbeek. The linear time { bran
hing time spe
trum II; the semanti
s

of sequential systems with silent moves. In Pro
eedings of CONCUR'93, LNCS

715, pages 66{81, 1993.

[21℄ Andrew D. Gordon. Bisimilarity as a theory of fun
tional programming.

mini-
ourse. Number NS-95-3 in the BRICS Notes Series, Computer S
ien
e

Department, Aarhus, 1995.

51



[22℄ Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a �rst-order 
al
ulus

of obje
ts with subtyping. In Pro
eedings of the 23rd POPL, pages 386{395,

1996.

[23℄ J.F. Groote and F.W. Vaandrager. Stru
tured operational semanti
s and

bisimulation as a 
ongruen
e. Information and Computation, 100(2):202{260,

1992.

[24℄ Kohei Honda and Nobuko Yoshida. On redu
tion-based pro
ess semanti
s.

Theoreti
al Computer S
ien
e, 152(2):437{486, 1995.

[25℄ Douglas J. Howe. Equality in lazy 
omputation systems. In Pro
eedings of

LICS '89, pages 193{203, 1989.

[26℄ Alex Mifsud. Control Stru
tures. PhD thesis, University of Edinburgh, 1996.

[27℄ R. Milner, J. Parrow, and D. Walker. A 
al
ulus of mobile pro
esses, Parts I +

II. Information and Computation, 100(1):1{77, 1992.

[28℄ Robin Milner. Fun
tions as pro
esses. Journal of Mathemati
al Stru
tures in

Computer S
ien
e, 2(2):119{141, 1992.

[29℄ Robin Milner. Cal
uli for intera
tion. A
ta Informati
a, 33:707{737, 1996.

[30℄ Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Pro
eedings of

19th ICALP. LNCS 623, pages 685{695, 1992.

[31℄ Ugo Montanari and Vladimiro Sassone. Dynami
 
ongruen
e vs. progressing

bisimulation for CCS. Fundamenta Informati
ae, XVI:171{199, 1992.

[32℄ J. Niehren and M. Mueller. Constraints for free in 
on
urrent 
omputation.

In Pro
eedings of the Asian Computer S
ien
e Conferen
e, LNCS 1023, pages

171{186, 1995.

[33℄ Gordon D. Plotkin. A stru
tural approa
h to operational semanti
s. Te
hni
al

Report DAIMI FN-19, Computer S
ien
e Department, Aarhus University,

Aarhus, Denmark, 1981.

[34℄ James Riely and Matthew Hennessy. A typed language for distributed mobile

pro
esses. In Pro
eedings of the 25th POPL, January 1998.

[35℄ Davide Sangiorgi. Expressing Mobility in Pro
ess Algebras: First-Order and

Higher-Order Paradigms. PhD thesis, University of Edinburgh, 1993.

[36℄ Peter Sewell. On implementations and semanti
s of a 
on
urrent programming

language. In Pro
eedings of CONCUR '97. LNCS 1243, pages 391{405, 1997.

[37℄ Peter Sewell. From rewrite rules to bisimulation 
ongruen
es. Te
hni
al

Report 444, University of Cambridge, June 1998. Available from

http://www.
l.
am.a
.uk/users/pes20/.

[38℄ Peter Sewell. From rewrite rules to bisimulation 
ongruen
es. In Pro
eedings

of CONCUR '98: Con
urren
y Theory (Ni
e). LNCS 1466, pages 269{284,

September 1998.

52



[39℄ Peter Sewell. Global/lo
al subtyping and 
apability inferen
e for a distributed

�-
al
ulus. In Pro
eedings of ICALP '98, LNCS 1443, pages 695{706, 1998.

[40℄ A. Rensink. Bisimilarity of open terms. In Expressiveness in Con
urren
y,

1997. Full report version: Hildesheimer Informatik-Beri
ht 5/97, University of

Hildesheim, May 1997.

[41℄ D. Turi and G.D. Plotkin. Towards a mathemati
al operational semanti
s. In

Pro
. 12

th

LICS Conf., pages 280{291. IEEE, Computer So
iety Press, 1997.

[42℄ Femke van Raamsdonk. Con
uen
e and Normalisation for Higher-Order

Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, 1996.

53


