
Models for Name-Passing Proesses: Interleaving and Causal

(Extended Abstrat)

Gian Lua Cattani

�

and Peter Sewell

y

Computer Laboratory, University of Cambridge, England

fLua.Cattani,Peter.Sewellg�l.am.a.uk

Abstrat

We study syntax-free models for name-passing proesses.

For interleaving semantis, we identify the indexing stru-

ture required of an early labelled transition system to sup-

port the usual �-alulus operations, de�ning Indexed La-

belled Transition Systems. For non-interleaving ausal se-

mantis we de�ne Indexed Labelled Asynhronous Transi-

tion Systems, smoothly generalizing both our interleaving

model and the standard Asynhronous Transition Systems

model for CCS-like aluli. In eah ase we relate a deno-

tational semantis to an operational view, for bisimulation

and ausal bisimulation respetively. This is a �rst step to-

wards a uniform understanding of the semantis and oper-

ations of name-passing aluli.

1. Introdution

The study of onurreny has involved rih interplay be-

tween model-theoreti and syntati approahes. The �rst

takes a notion of behaviour � perhaps de�ned as some lass

of automata or labelled transition systems � as primary;

the seond fousses on some partiular signature of proess

terms, perhaps giving it only an axiomati semantis. It

is now ommon to take an intermediate approah: to �x a

signature of proess terms and equip it with an operational

semantis de�ning behaviour (e.g. transition relations) over

those terms. This has been followed for almost all work

on �-aluli, beginning with [MPW92℄, in whih an opera-

tional semantis de�nes transition relations with partiular

labels over �-terms. By ontrast, in this paper we study

purely model-theoreti notions of behaviour for �-aluli,

with de�nitions that do not involve proess syntax, to sup-

port the uniform development of metatheory for a range of

aluli and semantis. For interleaving semantis we intro-
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due Indexed Labelled Transition Systems with data spei-

fying how transitions hange under renaming � thus pik-

ing out the essential struture of a � early transition rela-

tion that is required for de�ning the normal operations and

equivalenes over �-terms. For non-interleaving ausal se-

mantis, we de�ne Indexed Labelled Asynhronous Tran-

sition Systems, smoothly generalizing both our interleav-

ing model and the standard Asynhronous Transition Sys-

tems model for CCS-like aluli [Bed88, Shi85, WN95℄. In

eah ase we give a denotational semantis of a �-alulus;

we prove the operational early and ausal bisimulations

[San93, BS98℄ oinide with model-theoreti notions. In

the full version of this extended abstrat [CS00℄, we also

investigate the properties of and relationship between ate-

gories of the two models, and give the omitted proofs. This

is a �rst step towards a uniform understanding of the seman-

tis and operations of name-passing aluli.

Interleaving The standard notion of labelled transition

system (LTS) for aluli without value-passing is straight-

forward. For example, given a setN of names (ranged over

by a; b; : : : ) the CCS fragment

P ::= 0

�

�

a:P

�

�

a:P

�

�

P j Q

�

�

(�)P

an be given semantis in terms of LTSs

hS;�!; ii

where S is a set of states, �!� S � L � S is a transition

relation with labels L = f�; a; a; b; b; : : : g, and i 2 S is the

initial state. Introduing value-passing, however, makes the

situation more omplex � partiularly with sope extrusion.

Consider the �-alulus fragment below, in whih the `' in

the input b:P and restrition (�)P bind in the proess P .

P ::= 0

�

�

ad:P

�

�

b:P

�

�

P j Q

�

�

(�)P

De�ning the behaviour of b:P involves substitution. For

example, the ommuniation of a free name

ad:P j a:Q

�

�! P j f

d

=



gQ



is inferred in the `early' semantis of [MPW93, San93℄ with

the rules below.

OUT

ad:P

ad

�! P

IN

a:Q

ad

�! f

d

=



gQ

COM

P

ad

�! P

0

Q

ad

�! Q

0

P j Q

�

�! P

0

j Q

0

Note that d might or might not be in the free names of Q.

Moreover, unlike in CCS, �-alulus � -transitions an also

involve sope extrusion:

((�d)ad:P ) j a:Q

�

�! (�d)(P j f

d

=



gQ) if d 62 fn(Q)

To de�ne the � -transitions of P j Q ompositionally, in

terms of the transitions of P and Q, the semantis must

distinguish between outputs of free and bound names, by

taking transitions with labels ad and a(d) respetively. The

� -transition above an be inferred with the rules:

OPEN

P

ad

�! P

0

d 6= a

(�d)P

a(d)

�! P

0

CLOSE

P

a(d)

�! P

0

Q

ad

�! Q

0

d 62 fn(Q)

P j Q

�

�! (�d)(P

0

j Q

0

)

The full semantis requires also the rules

RES

P

`

�! P

0

d 62 fn(`)

(�d)P

`

�! (�d)P

0

PAR

P

`

�! P

0

bn(`) \ fn(Q) = ;

P j Q

`

�! P

0

j Q

(in whih bn(a(d)) = fdg, and bn(`) = ; for labels of

other forms) for restrited transitions that do not involve

sope extrusion and for parallel.

These SOS rules involve subtle onditions on the free

names of proess terms (relating them to names in labels),

in addition to name substitution on proess terms. To give

a syntax-free notion of LTS that has enough struture to

de�ne the operations we must therefore onsider states not

simply to be elements of an arbitrary set but of a set indexed

by �nite sets of names � the `free' names of the states �

and add data speifying how states hange under renaming.

In Setion 3 we will de�ne an Indexed Labelled Transition

System (orN -LTS) to have data

hS :N !Set; �!; hI; iii

where S is a funtor from an indexing ategoryN of name-

sets and renamings into Set (the ategory of all sets and

funtions), giving the set of states above eah name-set; the

transition relation is over the oprodut

`

A2jNj

S(A); and

the initial state hI; ii is an element of that oprodut. Ax-

ioms must be imposed, enforing:

1. the name-sets of the endpoints of a transition must be

related to eah other and to the label;

2. input transitions our in families related by renaming

of the result states;

3. (a) transitions are preserved by injetive renaming,

both of the names of states and of new names in

labels;

(b) inputs of new names above a name-set give rise

to inputs of old names above larger name-sets;

and

4. the transitions of an injetive renaming of a state are

determined by the transitions of the state.

We give the preise de�nition of N -LTS in Setion 3, fol-

lowing a desription of the �-alulus we are using in Se-

tion 2. Many variant de�nitions ofN -LTS are possible; we

disuss the alternatives in Setion 4. In Setion 5 we de�ne

onstrutions over N -LTSs, giving a denotational seman-

tis, and relate bisimulation over N -LTSs with the bisimu-

lation de�ned using the operational semantis.

Non-Interleaving models for proess aluli have been

muh studied; they an support model-heking tehniques

that mitigate the state-explosion problem, and strong proof

tehniques. They are also required in ases where the de-

sired properties of systems aremost naturally stated in terms

of ausality or loality. Here again there are model-theoreti

and syntati approahes � the �rst is surveyed in [WN95℄;

the seond is represented by various annotated operational

semantis, e.g. [DDNM88a, BC88, DD89, Kie94, WN95℄.

The two seem to have been arried out almost indepen-

dently � to our knowledge, the only works to make pre-

ise onnetions are [DDNM88a, BC88, WN95℄. More-

over, only the syntati approah has been developed to ad-

dress name-passing, in the annotated operational models of

[BS98, DP99℄. There is also work that does not �t this at-

egorisation, having both syntati and model-theoreti as-

pets, with Petri nets and graph rewriting [BG95, MP95℄.

Our goal in the seond half of this paper is to develop the

model-theoreti approah, and to make preise onnetions

to the annotated operational notions. We develop a simple

syntax-free non-interleaving model for name-passing that

generalises both our interleaving model and the standard

Asynhronous Transition Systems model for aluli with-

out name-passing [Bed88, Shi85, WN95℄. This is preisely

related to ausal bisimulation [BS98℄.

In CCS ausal dependeny arises from pre�xing � in

the behaviour of the proess x:y:0 the y output ausally

depends on the x output. In �-alulus, name-binding

introdues new dependenies, as thoroughly disussed

in [DP99℄. Transitions ourring in different parallel om-

ponents of a proess term, naively regarded as independent,

may be fored to our in a �xed order. For example, in

the proess (�y)(xy j yz) the transition yz an be observed

only after xy � before this ours the new-bound hannel

2



is not known to the environment. The two transitions of

(�y)(xy j zy) are independent, however, despite the fat

that the �rst to our will be an output of a new name

and the seond will not. Further, an input of a previously-

extruded name, e.g. (�y)(xy j xw:0)

xy

�!

xy

�! 0, or output

of a previously-input new name, e.g. xw:xw

xy

�!

xy

�! 0

(where y is new) involves dependeny. Moreover, one an

hoose whether or not to distinguish between the pre�x and

name dependeny, e.g. whether to identify (�y)(xy:yz)

and (�y)(xy j yz).

In Setion 6 we de�ne a relation of name-dependeny

between two labels (wrt. a name-set), and then an Indexed

Labelled Asynhronous Transition System (orN -LATS) to

have data

hS :N !Set; �!; hI; ii; E; Ii

where now transitions are annotated by elements of a set E

of events and I � E � E is an independene relation be-

tween events. We impose axioms requiring that one obtains

an Indexed LTS when onsidering eah e 2 E separately,

and (roughly), that independent transitions an be per-

muted. As one would expet, name dependeny is involved

in the relationship between the transition and independene

relations. We disuss how the onstrutions of Setion 5 an

be extended to N -LATS, de�ne history-preserving bisimu-

lation and a name-dependeny aware variant (respetively

distinguishing and identifying the example two proesses

above), and prove orrespondene results.

In [CS00℄ an abstrat study of the strutures de�ned in

this paper is initiated. CategoriesN -LTS

I

of Indexed LTS

and N -LATS

I

of Indexed LATS (eah for initial name-

set I) are de�ned. Their properties and mutual relationship

are studied, as the �rst step towards an abstrat understand-

ing of the equivalenes and onstrutions involved in the

semantis of �-like proess languages. Spae limitations

prevent us from presenting suh results here.

Further Motivation, Future Diretions and Related

Work Viewing models ategorially has proven useful

in study of the interleaving/non-interleaving and linear-

time/branhing-time distintions [SNW96℄. Moreover, the

ategorial study of proess aluli gives the possibility

of obtaining general ongruene results: in [WN95℄ ate-

gorial models of CCS-like proesses are axiomatised and

in [JNW96℄ an abstrat model-theoreti notion of bisimula-

tion is introdued (via open maps); in [CW97, CW99℄ these

two are ombined to give abstrat ongruene results for

strong bisimulation over a wide range of models. It is our

hope that the present work serves as a �rst step towards sim-

ilar results for �-alulus-like proess languages. In parti-

ular, we would like a ategorial understanding of our op-

erations for the two models, related by the results presented

in [CS00℄.

Among earlier models of �-proesses, the name pass-

ing synhronisation trees of [Hon99℄ and presheaves

of [CSW97℄ are the losest to our N -LTS, though they

employ a slightly different indexing struture (f. Se-

tion 4). In [CSW97℄ the models are de�ned using domain

theoretial tehniques similar to those employed in [Sta96,

FMS96℄, as the solutions to semanti equations. By on-

trast here we take a more onrete approah, with several

advantages. Firstly, it is easy to oneive of minor modi�-

ations to our de�nitions whih adapt them to losely re�et

paradigms suh as the asynhronous �-alulus [Bou92,

HT91℄. In partiular it should be quite straightforward

to adapt the axioms of [Sel97℄ to our models. It should

also be easy to address the �I-alulus [San96a℄, in whih

only new names are ommuniated (though this an also

be done domain-theoretially). Seondly, it supports a di-

ret de�nition of weak bisimulation, something the domain

model laks and the presheaf model an, as far as we know,

only ahieve indiretly by means of a saturation onstru-

tion [FCW99℄.

It is also worth notiing that while the domain mod-

els are tailored for late bisimulation, our fous here is on

early semantis, both to obtain a simpler notion of tran-

sition system, and beause we have found the early style

suits work on onurrent language semantis and on seure

enapsulation [Sew97, SV99a, SV99b, Sew00℄. Presheaf

models exist for both early and late notions [Cat99℄. More-

over we should add that, in onstrast to [Sta96, FMS96℄

(whih have full-abstration results wrt. strong bisimula-

tion), we fous on intensional models, over whih a num-

ber of equivalenes an be de�ned (though we give re-

sults only for bisimulation). The literature ontains also

testing-based models [Hen96, BDN95℄. The preise rela-

tionships with these and other models de�ned in the litera-

ture e.g., [MP98, MP95, BG95, JJ95℄ requires further work.

In [CS00℄ we begin the study of three appliations.

Firstly, we believe our strutures may form a useful basis for

�-alulus interleaving and partial-order model heking,

via notions of �nitely-generable N -LTS and N -LATS. We

de�ne the former preisely. Seondly,N -LTS (extended to

allow ommuniation of tuples and enrypted values) may

provide a basis for proofs and model-heking of rypto-

graphi protools. In partiular, it would support diret (i.e.

not via a proess alulus syntax) de�nitions of behaviours,

as in [Pau98℄, while still allowing omposition of these be-

haviours. Thirdly, developingwork on seure enapsulation

[SV99a, SV99b℄, quantifying over elements of the model,

rather than over syntati proesses, would allow stronger

seurity properties to be stated. We state onjetures relat-

ing the oloured �-alulus semantis � an approximate but

simple notion of ausality used there to state seurity prop-

erties � toN -LATS. We also wonder what the relationships

are with the reent [GP99, FPT99, Hof99℄, where similar

3



indexing struture is used in a �-alulus setting.

Finally, notie that in this paper we introdue transition

systems with indexed sets of states, but not indexed sets

of transitions. This is beause, as remarked above, when

moving from a name-set to a larger one, transitions labelled

with inputs of new names in the former give rise to input

transitions of both new and old names in the latter � the

orrespondene between transitions is not funtional, even

for injetive renamings. We have begun to onsider, with

Hyland, more sophistiated indexing strutures whih al-

low transitions as well as states to be indexed; the pay-off

for the extra ompliation being e.g. the possibility of us-

ing the notion of internal ategory to formally relate our

Indexed Transition Systems with the standard ones.

2. Bakground on the �-Calulus

Many variant �-aluli have been studied in the litera-

ture sine the original was introdued in [MPW92℄. Here, to

show the wide appliability of our models, we take a rih set

of primitives inluding summation, mathing, mismathing

and synhronous output. For notational simpliity, however,

we treat only a monadi untyped alulus without basi val-

ues; for lak of spae also omitting repliation. These ould

be easily added.

Syntax We take an in�nite set N of names of hannels,

ranged over by a; b et. The proess terms are then those

de�ned by the grammar

P;Q ::= 0 j P j Q j P +Q j �:P j ad:P j a:P j!P

j (�)P j [a = b℄P j [a 6= b℄P :

Here the  in the input b:P and restrition (�)P bind in

the proess P ; we work up to alpha renaming of bound

names. We write fn(P ) for the set of free names of P , and

fa=bgP for the proess term obtained from P by replaing

all free ourrenes of b by a.

Operational semantis We equip the alulus with a

mild presentational variant, expliitly-indexed, of the early

labelled transition semantis of [San93, MPW93℄, in whih

transitions are given for proesses with respet to expliit

supersets of their free name sets. This style simpli�es

the SOS rules, allowing sideonditions in PAR and CLOSE

(here oalesed with COM) to be removed, gives a simple

notion of trae, and supports subtype systems; it has been

useful for work on onurrent language semantis and on

seure enapsulation [Sew97, SV99a, SV99b℄. The labelled

transition relation has the form

A ` P

`

�! Q

where A is a �nite set of names and fn(P ) � A; it should

be read as `in a state where the names A may be known

by proess P and by its environment, the proess P an

do ` to beome Q. The name-set assoiated with Q is then

A[fn(`). The labels Lab are f�g[fxy j x; y 2 N g[fxy j

x; y 2 N g. Note that we now have only one form of output

label � a transitionA ` P

xv

�! Q is an output of a new name

iff v 62 A. The transition relation is de�ned as the smallest

relation satisfying the rules in Figure 1. The free names of

a label are fn(�) = fg, fn(xv) = fn(xv) = fx; vg. We

write A; x for A [ fxg where x is assumed not to be in A.

If A = ; then (�A)P denotes P .

Note that the set of free names of a proess an grow

along transitions, for example fag ` (�d)ad:ad

ad

�! ad,

and that the rules depend in an essential way on alpha-

onversion � the proess R = (�d)ad must be able to

perform a bound output with label a

^

d for any

^

d 6= a;

derivations of suh transitions require use of the alpha-

equivalene R = (�

^

d)a

^

d. Note also that the SOS rules

do not involve any strutural ongruene.

Example Properties We illustrate the SOS with some ex-

ample transitions and properties � these will be speial ases

of the axioms imposed onN -LTS in Setion 3.

1. If A ` P

xz

�! Q then x 2 A. We might have z new,

i.e. z 2 A or not, i.e. z 62 A. In either ase, Q has

free names ontained in A [ fx; zg. The same holds

for input transitions.

2. A transition A ` P

xz

�! Q must arise from an input

pre�x in P , whih must therefore be able to input any

other name (new or old). Moreover, the resulting states

an all be obtained by substitution from the resulting

state after a new name is input.

3. (a) IfA ` P

xz

�! Q and z 2 A then for any injetive

substitution, say f :A!

inj

B, there is a transition

B ` fP

fxfz

�! fQ. For output of a new name, i.e.

z 62 A, the value z an also be renamed to any

ẑ 62 B, giving B ` fP

fxẑ

�! (f + [ẑ=z℄)Q. The

same holds for input transitions.

(b) A derivation of an input A ` P

xz

�! Q of a new

name z 62 A is preserved by extending the name-

set � so P above (A; z) has an input of an old

name A; z ` P

xz

�! Q.

4. Non-injetive renaming an enable and (with mis-

math) disable transitions, but the behaviour of an in-

jetive renaming of P is determined by that of P .

4



OUT

A ` xv:P

xv

�! P

PAR

A ` P

`

�! P

0

A ` P j Q

`

�! P

0

j Q

RES

A; x ` P

`

�! P

0

x 62 fn(`)

A ` (�x )P

`

�! (�x )P

0

IN

A ` xp:P

xv

�! f

v

=

p

gP

COM

A ` P

xv

�! P

0

A ` Q

xv

�! Q

0

A ` P j Q

�

�! (�fvg n A)(P

0

j Q

0

)

OPEN

A; x ` P

yx

�! P

0

y 6= x

A ` (�x )P

yx

�! P

0

SUM

A ` P

`

�! P

0

A ` P +Q

`

�! P

0

MATCH

A ` P

`

�! P

0

A ` [x = x℄P

`

�! P

0

MISMATCH

A ` P

`

�! P

0

x 6= y

A ` [x 6= y℄P

`

�! P

0

In all rules with onlusion of the formA ` P

`

�! Q there is an impliit side ondition fn(P ) � A. The rule for �:P and symmetri

versions of PAR, COM and SUM are elided.

Figure 1. � operational semantis

Operational Equivalenes The normal notion of early

bisimulation an be easily adapted to the expliitly-indexed

setting. Take bisimulation _� to be the largest family of re-

lations indexed by �nite sets of names suh that eah _�

A

is a symmetri relation over fP j fn(P ) � A g and for all

P _�

A

Q,

� if A ` P

`

�! P

0

then 9Q

0

: A ` Q

`

�! Q

0

^

P

0

_�

A[fn(`)

Q

0

.

We do not develop other equivalenes in this paper, but

linear-time notions an also be de�ned straightforwardly.

For example, for partial traes write

A

1

` P

1

`

1

�! : : :

`

n

�! P

n+1

to mean 9P

2

; : : : ; P

n

; A

2

; : : : ; A

n

: 8i 2 1::n : A

i+1

=

A

i

[ fn(`

i

) ^ A

i

` P

i

`

i

�! P

i+1

. If fn(P ) � A then

the partial A-traes of P are simply f `

1

:: `

n

j 9P

0

: A `

P

`

1

�! : : :

`

n

�! P

0

g.

3. N -LTS

In this setion we introdue Indexed Labelled Transition

Systems. To aount for name substitution of �-terms, we

take an indexing struture of name-sets and renaming fun-

tions on the set of states. We then axiomatize the key prop-

erties of the transition relation with respet to this indexing

struture. We have also onsidered other hoies of index-

ing struture, as brie�y disussed in the next setion.

De�nition 3.1 TakeN to be the ategory with objets �nite

subsets ofN and arrows funtions f :A!B between them.

NOTATION: If f :A!B and g :A

0

!B

0

are two funtions

we write f + g for the obvious funtion A ℄ A

0

!B ℄ B

0

.

If f :A!B and g :A

0

!B we write [f; g℄ for the obvious

opairing funtionA℄A

0

!B. Given a funtion f :A!B

and two names x =2 A and y 2 B, write [f; [y=x℄℄ for the

obvious opairing funtionA; x!B.

If S : N ! Set is a funtor and if

`

A2jNj

S(A) is

the disjoint union of the sets S(A) for objets A of N ,

write hA; si for the element s 2 S(A) as an element of

the disjoint union and S for the set

`

A2jNj

S(A) itself. If

�!� S � Lab � S is a (transition) relation, we will write

A ` s

`

�! t to mean that there exists an s 2 S(A), a set

B and a t 2 S(B) suh that s = hA; si, t = hB; ti and

s

`

�! t. Sometimes we want to make expliit the existene

of B and write A ` s

`

�! t a B to this purpose. Also if

f : A! B is a funtion, write fs for hB;S(f)(s)i.

De�nition 3.2 For any label ` 2 Lab, de�ne the hannel

names of `, han(`) and the value names of `, val(`)as fol-

lows:

han(�) = ; val(�) = ;

han(xy) = fxg val(xy) = fyg

han(xy) = fxg val(xy) = fyg

De�nition 3.3 De�ne an Indexed Labelled Transition Sys-

tem (N -LTS) to be a struture

T = hS :N !Set; �!; hI; iii

where hI; ii 2 S, �!� S � Lab � S and the following

onditions hold.

1. (Naming) A ` s

`

�! t a B =) han(`) � A ^

B = A [ fn(`)

2. (a) (Input � new)A ` s

xy

�! t a A; y =) 8z 2

A:A ` s

xz

�! [1

A

; [z=y℄℄t

(b) (Input � old)A ` s

xy

�! t a A =) 8z 62

A9 t

z

: A ` s

xz

�! t

z

a A; z ^ t = [1

A

; [y=z℄℄t

z

3. (a) (Injetive substitution)

For f :A!

inj

B, A ` s

`

�! t ^ g :(fn(`) n

A)!

bij

^

B ^

^

B\B = ; =) fs

(f+g)`

�! (f+g)t

5



(b) (Shifting)

A ` s

xy

�! t a A; y =) A; y ` �s

xy

�! t, where

� : A ,! A; y is the set inlusion funtion

4. For f :A!

inj

B, if fs

`

0

�! t

0

then (at least) one of the

following two ases applies

(a) there exist `; t; g : fn(`)nA!

bij

^

B suh that

^

B\

B = ; and `

0

= (f + g)(`) and s

`

�! t and

t

0

= (f + g)t

(b) there exist x 2 A; y 62 A; z 2 B and t suh

that `

0

= f(x)z and A ` s

xy

�! t a A; y and

t

0

= [f; [z=y℄℄t

Condition 1 ensures that ommuniation with the environ-

ment ours only along publily known hannels and that

the knowledge of suh hannels is orretly propagated

from one state to another when a transition ours. Condi-

tions 2 ensure that if a name an be reeived as input along

a spei� hannel, then any other name an be reeived as

well. Condition 3a asserts that transitions are preserved

along injetive renamings, while ondition 3b shows how

inputs of new names generate inputs of �old� names when

moving from a name set to a larger one. Finally, ondition

4 ensures that the transitions out of a state whih has been

injetively renamed are determined by those of the state it-

self.

In fat the de�nition ontains some redundany:

Proposition 3.4 Condition 3b `shifting' is implied by on-

ditions 2a `input-new' and 3a `injetive substitution'.

Despite this we keep ondition 3b, for two reasons. Firstly,

we regard the ondition as oneptually important, thus we

did not want to omit it from the main de�nition. Seondly,

onditions 2a,2b, introdued to ensure uniform behaviour

of input transitions, an be argued to be unneessary from

the model-theoreti point of view (just as their analogues

are negleted in the redution of value-passing CCS to pure

CCS [Mil89℄). When 2a,2b are omitted, 3b beomes essen-

tial.

For illustrative purposes we list now a few simple on-

sequenes of De�nition 3.3. Analogous properties of �-

terms are often established as lemmas, e.g. to prove

orrespondene between labelled and redution semantis

(see [SV99a, Sew00℄ for expliitly-indexed developments).

Proposition 3.5 (Weakening) If A ` s

`

�! t and x 62

A [ fn(`) then �s

`

�! |t, where � :A ,! A; x and

| :A [ fn(`) ,! (A [ fn(`)); x.

Proposition 3.6 (Strengthening) If A; x ` �s

`

�! t

0

, and

x 62 fn(`), where � :A ,! A; x, then there exists t suh

that A ` s

`

�! t and t

0

= |t, where | :A [ fn(`) ,!

(A [ fn(`)); x.

Proposition 3.7 (Converse of Shifting) If A; y ` �s

xy

�!

t, where � :A ,! A; y, then A ` s

xy

�! t.

Weakening and Strengthening are immediate onse-

quenes of onditions 3a and 4. The onverse of Shifting

requires 2b, strengthening and 3a.

4. Alternative indexing struture

There are several alternative indexing strutures � one

simpler, with only injetive renaming; one more elaborate,

with data for restrition; and variants of all with a hosen

new-name funtion. We disuss the trade-offs brie�y.

Sets and injetions Instead of indexing by the ategory

N one an index by N

inj

, the subategory of N with all

objets but only injetive funtions as arrows. This gives

a simpler struture, in whih the transitions of a reindexed

state fs are always determined by those of s. To make input

pre�x de�nable, however, the denotation of a proess with n

free namesmust be a funtion from n-tuples of names toN -

LTSs, not simply an N -LTS � to de�ne [[xy:P ℄℄ one would

need [[f

z

=

y

gP ℄℄ for all z. Moreover, we doubt whether an

analogue of the input axioms 2a,2b ould be stated.

Building restrition into the indexing It is arguable that,

as restrition is a fundamental �-alulus onept, one

should take models with more data than ourN -LTSs, spe-

ifying how the transitions of states hange when names

are restrited. This leads to more omplex axioms, though

learly also to a simpler de�nition of the restrition opera-

tor. In more detail, de�neN

�

to be the ategorywith objets

�nite subsets ofN and arrows pairs hf;R

f

i :A!B where

f :A*B is a partial funtion and R

f

� (A n dom(f)) �

(A n dom(f)) is an equivalene relation. If A ` s then

the re-indexing of s along hf;R

f

i should be thought of

as the state in whih names in A n dom(f) have been re-

strited, after being quotiented by R

f

, and other names

have been substituted as spei�ed by f . De�ne omposi-

tion of arrows by hg;R

g

i Æ hf;R

f

i = hg Æ f;R

gÆf

i where

R

gÆf

= R

f

[ f (a; a

0

) j f(a) R

g

f(a

0

) g.

Choosing new names In our de�nition, for a state s above

A, all names w 62 A are treated symmetrially � orre-

sponding to the operational fat that (if x 2 A) there is a

transition A ` (�z )xz

xw

�! 0 for any w 62 A. One an

instead take a hosen new � a funtion � :P

�n

(N )!N

suh that 8A : �A 62 A. This leads to an endofun-

tor Æ :N !N de�ned by Æ A = A [ f�Ag and Æ(f) =

f [ f�A 7! �Bg; the axioms an be restated in terms of

Æ. In this paper we have not taken a hosen new in or-

der to keep the tight orrespondene with the operational

semantis, and for notational simpliity. The hosen new

version of N

inj

is essentially the indexing struture used in

[Sta96, FMS96, Hen96, CSW97℄.
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5. Denotational semantis

We desribe now operations on N -LTS that we will

use in giving a ompositional semantis to the �-alulus.

In [CS00℄ we turn the lass ofN -LTS with initial name-set

I into a ategory, N -LTS

I

, in the obvious way. It is then

straightforward to turn the operations below into funtors,

in fat into !-ontinuous funtors. The ategory N -LTS

I

an be easily shown to have olimits of !-hains, in fat

to be oomplete (and omplete). Thus a semantis of re-

ursively de�ned proesses, suh as repliated ones, an be

obtained using least �xed points of !-hains in the usual

way. Laking enough spae to develop all of the above (or

a more onrete de�nition for repliation), we have deided

in this extended abstrat not to onsider reursive proesses

at all.

The most interesting operations are deadlok, whih to

obtain initiality has what may be a slightly surprising def-

inition, and restrition and parallel omposition. For re-

strition an equivalene relation, a semanti analogue of �-

onversion, needs to be imposed on states � just as in the

operational semantis a transition of (�x )P may be derived

from a transition of (�x̂ )f

x̂

=

x

gP for any x̂ 62 (fn(P ) n x).

For parallel, in the operational semantis states reahable by

transitions from P j Q may involve restrition of P

0

j Q

0

for P

0

, Q

0

reahable from P , Q. The onstrution over the

model involves a similar quotienting as for restrition. The

equivalene relation used in both ases is de�ned as follows.

De�nition 5.1 If S :N !Set is a funtor and A is a

�nite subset of N , take $

A

to be the equivalene re-

lation on (possibly subsets of) the set

`

B�A

S(B) de-

�ned by hB

1

; s

1

i $

A

hB

2

; s

2

i if there exists a bijetion

b :B

1

!

bij

B

2

, suh that for every x 2 A, b(x) = x and

suh that S(b)(s

1

) = s

2

.

The equivalene lasses of $

A

are analogous to alpha-

equivalene lasses of terms w.r.t. renaming of names not

in A. Observe that elements of S(A) an only be related to

themselves, i.e. their equivalene lass is a singleton. For

this reason, when no onfusion arises, we will write s for

[hA; si℄

$

A

.

In the onstrutions below we shall often extend a tran-

sition system with new initial state over a hosen name set

(say I), but now all of its reindexings must also be added.

This an be expressed using the representable funtor (see

e.g. [MLM92℄) N (I;�) whih sends eah name-set A to

the set of funtions (the morphisms in N ) from I to A.

Given a funtion g :A!B,N (I; g)(f : I!A) = gf . The

new initial state is the identity on I , 1

I

and eah of its rein-

dexings is given by the reindexing funtion itself. Notie

that we write e.g. S + N (I;�) for the oprodut of fun-

tors whih is given by the pointwise disjoint union of sets.

NOTATION: If U and V are two sets and no onfusion

arises, we will write l :U!U ℄ V and r :V !U ℄ V

for the obvious left and right injetions in their disjoint

union. If s = hA; ui, write ls for hA; lui and simi-

larly for r. In what follows, unless otherwise stated we

suppose that T = hS :N !Set; �!; hI; iii and T

k

=

hS

k

:N !Set; �!

k

; hI; i

k

ii (for k = 1; 2) are N -LTSs.

Note that the initial name-sets I oinide.

Restrition If T = hS :N !Set; �!; h(I; x); iii de-

�ne the restrition �

x2(I;x)

(T ) to be

hS

0

:N !Set; �!

0

; hI; r[h(I; x); ii℄

$

I

ii ;

where

� S

0

(A) = S(A) ℄ (

`

y 62A

S(A; y))=$

A

� �!

0

is de�ned by the following three rules:

A ` s

`

�! t

A ` ls

`

�!

0

lt

A; z ` s

`

�! t

A ` r[s℄

$

A

`

�!

0

r[t℄

$

A[fn(`)

z 62 fn(`)

A; z ` s

xz

�! t

A ` r[s℄

$

A

xz

�!

0

l[t℄

$

A;z

x 6= z

Output and � pre�x If x; y 2 I , de�ne xy(T ) to be

hS +N (I;�) :N !Set; �!

0

; hI; r1

I

ii ;

where�!

0

is de�ned by the following rules:

s

`

�! t

ls

`

�!

0

lt

f : I!A

hA; rfi

f(x)f(y)

�!

0

hA; lS(f)(i)i

De�ne �(T ) similarly by labelling the transition in the

�rst rule � rather than f(x)f(y).

Input pre�x If T = hS :N !Set; �!; h(I; y); iii is a

transition system and y 6= x 2 I , de�ne xy(T ) to be

hS +N (I;�) :N !Set; �!

0

; hI; r1

I

ii ;

where

f : I!A � : A ,! A [ fzg

hA; rfi

f(x)z

�!

0

hA [ fzg; lS([�f; [z=y℄℄)(i)i

s

`

�! t

ls

`

�!

0

lt
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Deadlok at I For every set of names I , de�ne the

deadloked N -LTS with free names in I as 0

I

=

hN (I;�); ;; hI; 1

I

ii. Notie that 0

I

is the initial objet of

the ategoryN -LTS

I

(see [CS00℄).

Mathing and Mismathing If x; y 2 I , then de�ne

[x = y℄(T ) to be

hS +N (I;�) :N !Set; �!

0

; hI; iii ;

where�!

0

is de�ned by the following rules:

f : I!A hA;S(f)ii

`

�! hB; si f(x) = f(y)

hA; rfi

`

�!

0

hB; lsi

s

`

�! t

ls

`

�!

0

lt

De�ne [x 6= y℄(T ) similarly by requiring f(x) 6= f(y) in

the �rst rule.

Sum De�ne the sum,

T

1

+T

2

= h(S

1

+N (I;�)+S

2

) :N !Set; �!

0

; hI;m1

I

ii

where�!

0

is de�ned by the following rules:

f : I!A hA;S

k

(f)(i

1

)i

`

�!

1

s

hA;mfi

`

�!

0

ls

(and sym. for 2; r)

s

`

�!

1

t

ls

`

�!

0

lt

s

`

�!

2

t

rs

`

�!

0

rt

where we now use l;m; r rather than just l and r.

If we assume the N -LTSs to be non-restarting, we an

give a more standard de�nition whih (pointwise) glues to-

gether the two (sets of) initial states; in this ase the sum is

the ategorial oprodut [CS00℄.

Parallel omposition

NOTATION: If S

1

and S

2

are two funtorsN !Set, and if

$

A

is the equivalene relation on

`

B�A

(S

1

� S

2

)(B) =

`

B�A

S

1

(B) � S

2

(B) de�ned as in De�nition 5.1, and if

s

1

= hB; s

1

i and s

2

= hB; s

2

i write s

1

j

A

s

2

for the equiva-

lene lass [(B; s

1

; s

2

)℄

$

A

.

If T

1

and T

2

are twoN -LTSs as before, de�ne their parallel

omposition,

T

1

jT

2

= hS

0

:N !Set; �!

0

; hI; hi

1

; i

2

iii

where

� S

0

(A) = (

`

B�A

(S

1

� S

2

)(B))=$

A

, while

S

0

(f :A!A

0

)([(B; s

1

; s

2

)℄

$

A

) = [(B

0

; t

1

; t

2

)℄

$

A

0

,

where t

k

= S(f + g)(s

k

), for k = 1; 2 and g :B n

A!

bij

B

0

nA

0

is a bijetion

� �!

0

is de�ned by the following three rules (and symmet-

ri versions of the �rst two):

A;A

0

` s

1

`

�!

1

t

1

� :A;A

0

,! A [ fn(`); A

0

A ` s

1

j

A

s

2

`

�!

0

t

1

j

A[fn(`)

�s

2

A;A

0

` s

1

xy

�!

1

t

1

A;A

0

` s

2

xy

�!

2

t

2

A ` s

1

j

A

s

2

�

�!

0

t

1

j

A

t

2

A; y ` s

1

j

A;y

s

2

xy

�!

0

t

1

j

A;y

t

2

A ` s

1

j

A

s

2

xy

�!

0

t

1

j

A;y

t

2

It is easy to verify that the funtor S

0

is well de�ned, i.e.

that the de�nition of S

0

(f) is independent of the hoie of

representatives and of the hoie of the funtions g.

Bisimilarity is de�ned in the usual way, but thanks to

the indexing, we an also de�ne diretly in the model the

losure under name substitutions, whih for the �-alulus

haraterises the largest ongruene inluded in bisimilar-

ity.

De�nition 5.2 De�ne two N -LTSs T

1

and T

2

to be

strongly bisimilar if the LTS hS

1

; �!

1

; hI; i

1

ii and

hS

2

; �!

2

; hI; i

2

ii are bisimilar in the usual sense of Mil-

ner [Mil89℄. Say that they are strongly equivalent if, for

every f : I!A the N -LTSs hS

1

; �!

1

; hA;S

1

(f)i

1

ii and

hS

2

; �!

2

; hA;S

2

(f)i

2

ii are strongly bisimilar.

Weak bisimilarity and equivalene are de�ned similarly.

Exploiting the indexing struture even more, notie that if

a bisimulation is further required to be a relation between

S

1

and S

2

in the ategorial sense, i.e. a subobjet of the

produtS

1

�S

2

, one obtains an open bisimulation [San96b℄.

Compositional semantis to �-terms is given using the

operations de�ned above in the obvious way. For a pro-

ess term P , with free names in I , we write [[P ℄℄

I

for the

orrespondingN -LTS. We onlude this setion by stating

the result whih relates bisimulation in the model with early

bisimulation in the operational semantis.

Theorem 5.3 Let P andQ be two �-terms with free names

in I . Then P _�

I

Q if and only if [[P ℄℄

I

is bisimilar to [[Q℄℄

I

.

Proof:[Sketh℄ First of all observe that the operational se-

mantis naturally indues for every proess term P , with

free names in I , anN -LTS

([P ℄)

I

= h�;�!; hI; P ii ;
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where �(A) = fQ j Q is a �-term and fn(Q) � Ag, �(f)

simply relabels proesses aording to f , and there is a tran-

sition hA;P i

`

�! hB;Qi ifA ` P

`

�! Q (aording to the

operational semantis) and B = A [ fn(`). One an then

prove by strutural indution that ([P ℄)

I

is open bisimilar

(f. the remark after De�nition 5.2) to [[P ℄℄

I

. The theorem

is now an easy onsequene of this last statement.

6. N -LATS

In this setion we de�ne a lass of ausal models by

smoothly lifting the notion of labelled asynhronous

1

tran-

sition system [Bed88, Shi85, WN95℄ (LATS for short) to

our indexed setting. LATS are a simple extension of stan-

dard LTS in whih transitions have both standard labels and

events, upon whih an independene relation is de�ned.

Roughly speaking, onurreny is modelled by requiring

that transitions tagged with independent events might o-

ur in any order. As disussed in the introdution, in �-

aluli dependenies between transitions may arise from

their name usage:

De�nition 6.1 If A is a set of names and `

1

and `

2

are two

labels, we say that `

2

is A-dependent on `

1

if one of the

following two ases applies:

1. val(`

1

) = han(`

2

) 6� A

2. val(`

1

) = val(`

2

) 6� A, one of `

1

; `

2

is an input ation

and the other is an output ation.

De�nition 6.2 De�ne an Indexed LATS (N -LATS) to be a

struture

T = hS :N !Set; �!; hI; ii; E; Ii

where hI; ii 2 S,

�! � S� (Lab�E)� S ;

E is a set of events, I � E�E is an independene relation

between events and the following onditions hold.

1. For every event e 2 E, the struture

hS :N !Set; �!

e

; hI; iii is a transition system

aording to De�nition 3.3, where �!

e

is the set

f hs; `; ti j hs; `; e; ti 2�!g.

2. I is irre�exive and symmetri

3. If A ` s

`

1

�!

e

1

t, and t

`

2

�!

e

2

u, and e

1

Ie

2

, and moreover `

2

is not A-dependent on `

1

, then there exists a state t

0

suh that s

`

2

�!

e

2

t

0

and t

0

`

1

�!

e

1

u.

1

There is an unfortunate lash of terminology here: this usage of `asyn-

hronous' is unrelated to the usage desribing proess aluli without out-

put pre�xing.

Often LATS are de�ned using more axioms (see [Bed88,

WN95℄). Here we have deided to keep the axiomatisation

as light as possible, as none of the extra axioms is diretly

relevant for the de�nability of the semanti onstrutions

that we onsider. Moreover we allow the same event to

arry different labels. This is partiularly useful in oping

with the proliferation of transitions indued by reindexing

and by the input ations. It is not dif�ult to devise sim-

ple variations of our de�nition whih adhere more losely

to the traditional ase.

Building on the independene relation, transitions our-

ring in a run of a proess an be given a ausal partial or-

der desribing whih transitions are neessary onditions

for the ourrene of others. Roughly speaking one tran-

sition auses the following one if the orresponding events

are not independent of eah other. As disussed in the in-

trodution, one an hoose whether or not to onsider name

dependenies � for N -LATS there are two natural ways of

de�ning partial orders out of runs, one taking aount only

of the independene relation and another whih also takes

name dependenies into aount.

NOTATION: For every natural number n, write [n℄ for the

set fk j 1 � k � ng. Observe that, in partiular, [0℄ = ;.

De�nition 6.3 For every run r

A

0

` s

0

`

1

�!

e

1

s

1

`

2

�!

e

2

s

2

� � �

`

n

�!

e

n

s

n

of anN -LATS we de�ne two labelled partial orders:

1. De�ne po(r)

I

= h[n℄;E

r

I

; l

r

i, where

(a) n is the length of the run r.

(b) E

r

I

is the transitive losure of �

r

I

whih is de-

�ned as i �

r

I

j if i � j and :(e

i

Ie

j

)

() l

r

(k) = `

k

, for every k 2 [n℄

2. De�ne po(r)

ID

= h[n℄;E

r

ID

; l

r

i, where n and l

r

are

obtained as above, while E

r

ID

is the transitive losure

of �

r

ID

whih is de�ned as i �

r

ID

j if i � j and

either :(e

i

Ie

j

) or `

j

is A

i

-dependent on `

i

, where

s

i

= (A

i

; s

i

).

History preserving bisimulation [RT88, GG89, DDNM88b℄

is a bisimulation between runs of proesses whih aounts

for ausality by requiring related runs to originate isomor-

phi partial orders of transitions:

De�nition 6.4 Let T

1

and T

2

be two N -LATSs with initial

name-set I and let Run(T

i

) (for i = 1; 2) be the orre-

sponding sets of runs. A relation B � Run(T

1

)�Run(T

2

)

is an history preserving bisimulation (hpb) if it satis�es the

following onditions

1. hI ` hI; i

1

i; I ` hI; i

2

ii 2 B

9



2. hr

1

; r

2

i 2 B implies

(a) po(r

1

)

I

= po(r

2

)

I

(b) if r

0

1

extends r

1

with a transition s

n

`

n+1

�!

1

e

n+1

s

n+1

then there exists a run r

0

2

whih extends r

2

with a

transition
�
s

n

`

n+1

�!

2

�e

n+1

�
s

n+1

suh that hr

0

1

; r

0

2

i 2 B

() the symmetri ondition to the above.

The relationB is a name-dependeny aware hpb (ndahpb) if

the ondition 2(a) is hanged into po(r

1

)

ID

= po(r

2

)

ID

.

The onstrutions of Setion 5 an be easily adapted to be-

ome onstrutions on N -LATS. We shall now brie�y in-

diate how they need to be extended to take aount of the

presene of events and of the independene relation. In all

rules where a label is arried from the premise to the on-

lusion, the event is also arried (suitably injeted).

Restrition The set of events and the independene relation

does not hange.

Pre�xesA new event, not in the independene relation with

any other is added and it deorates all of the new transitions.

Deadlok The set of events is empty and so is the indepen-

dene relation.

Mathing and Mismathing Events and the independeny

relation are left untouhed.

Sum The set of events is taken to be the disjoint union of

the originals but no new independene pairs are added.

Parallel omposition If E

1

and E

2

are the two sets of

events we de�neE

0

to be the disjoint unionE

1

℄(E

1

�E

2

)℄

E

2

. Writing this as (E

1

�f?g) [ (E

1

�E

2

) [ (f?g �E

2

)

for ? 62 E

1

[ E

2

, the independene relation is de�ned by

he

1

; e

2

iI

0

he

0

1

e

0

2

i if both e

1

^

I

1

e

0

1

and e

2

^

I

2

e

0

2

, where

^

I

k

is the

union of I

k

and h?; ?i. The new � -transitions are deorated

by the pairs of enabling events.

Proess terms an then be given a denotational semantis

and then related by (nda) history preserving bisimilarity. In

the remainder of this setion we will mostly onentrate

on the relationship between our semantis and the ausal

bisimulation of [BS98℄. In partiular we present orrespon-

dene results relating our hbp semantis to ausal bisimula-

tion, and further disuss name-dependeny.

In the paper [BS98℄, no notion of strong bisimulation is

de�ned. The authors in fat de�ned diretly ausal bisim-

ulation in the weak, i.e. abstrating away from � ations,

form. To math with our de�nitions we therefore need ei-

ther to de�ne weak history-preserving bisimulation or to

modify their setting in order to make � ations, and not their

effet only, visible. We will in fat do both, ending up with

two orrespondene results, one for strong and one for weak

bisimulation. Due to spae onstraints we annot report the

de�nition of ausal bisimulation here and therefore refer to

lo. it. for de�nitions and disussions of the relevane of

their approah. We simply mention here, using their nota-

tion, what modi�ations are needed in order to de�ne strong

ausal bisimulation.

De�nition 6.5 An operational semantis for strong ausal

bisimulation is obtained by modifying the de�nition

of [BS98, table 3, page 365℄ in the rules whih derive silent

ations in the following way:

T-PRE, T-SUM, T-PAR, T-RES, T-CAU, T-REP: These are

all subsumed in the homologous rules, OUT, SUM, PAR,

RES, CAU, REP, respetively, whih were originally de�ned

for non-� ations.

COM: This is hanged as follows (reall that we are dealing

with the monadi �-alulus):

A

1

(�z)xy

�!

K

1

:k

A

0

1

A

2

xy

�!

K

2

:k

A

0

2

A

1

j A

2

�

�!

K

1

[K

2

:k

(�z )(A

0

1

[k  (K

2

; k)℄ j A

0

2

[k  (K

1

; k)℄)

with onditions z 62 fn(A

2

) and k 62 K(A

1

; A

2

).

2

Strong ausal bisimulation an now be de�ned in the usual

way, by requiring transitions to agree not only on the la-

bels but on the auses too. We an now state our �rst non-

interleaving orrespondene result:

Theorem 6.6 Let P and Q be two terms of the �-alulus

with free names in I and let [[P ℄℄



I

and [[Q℄℄



I

be their inter-

pretations as N -LATS's. Then [[P ℄℄



I

is history preserving

bisimilar to [[Q℄℄



I

if and only if P is strongly ausal bisimi-

lar to Q.

A weak version of history preserving bisimulation an be

given in the spirit of [Vog95℄.

De�nition 6.7 Let r be a run in an asynhronous transition

system, let n be the length of r and let n

�

be the number of

transitions in r whih are not labelled � . For every i � n

�

,

de�ne n

i

� n indutively as follows: n

1

is the smallest

number h suh that the h-th transition of r has label `

h

6= � ;

n

j+1

is the smallest number h suh that the h-th transition

of r has label `

h

6= � and that moreover is stritly bigger

than n

j

.

Starting with a run r of anN -LATS, by means of the above

de�nition, we an de�ne partial orders of observable events

in runs as follows:

2

In [BS98℄ the notation (�z)xy is employed for possibly-bound out-

puts.
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De�nition 6.8 Let r be a run of anN -LATS and let po(r)

I

and po(r)

ID

be the orresponding partial orders as in Def-

inition 6.3. De�ne po(r)

wI

and po(r)

wID

to be the partial

orders h[n

�

℄;E

wI

; l

r

w

i and h[n

�

℄;E

wID

; l

r

w

i, respetively,

where l

r

w

(i) = l

r

(n

i

), iE

wI

j if n

i

E

I

n

j

and iE

wID

j if

n

i

E

ID

n

j

.

Weak history preserving bisimulations are now de�ned

as relations between runs as in De�nition 6.4 but where,

as usual, �strong� transitions s

1

`

�!

1

e

1

t

1

are simulated by

�weak� ones s

2

^

`

=)

2

e

2

t

2

(and symmetrially) and with on-

dition 2(a) replaed by po(r)

wI

= po(r

0

)

wI

or by

po(r)

wID

= po(r

0

)

wID

, for the name-dependeny aware

ase. We an then prove the following result:

Theorem 6.9 Let P and Q be two terms of the �-alulus

with free names in I and let [[P ℄℄



I

and [[Q℄℄



I

be their inter-

pretations asN -LATSs. Then [[P ℄℄



I

is weak history preserv-

ing bisimilar to [[Q℄℄



I

if and only if P is ausal bisimilar to

Q in the sense of [BS98℄.

In [BS98℄ it is argued that, beause of the dependenies due

to the binding of names, proesses like (�y)(xy:yz) and

(�y)(xyjyz) should be indistinguishable by an external ob-

server. Nonetheless ausal bisimulation distinguishes them,

as it only traks the dependenies due to the struture of

proesses � in the example, one output is pre�xing the other

in the �rst proess but not in the seond. The paper leaves

open the possibility of a further re�nement of the treatment

of auses in the operational semantis to identify the above

two proesses.

Their remark has been takled in [JJ95℄, where a do-

main model of �-terms based on Kahn networks is pre-

sented. There the indued equivalene equates the two

proesses, but it seems to us that the equivalene is any-

way a traed-based rather than a bisimulation based one.

In [DP99℄, the authors use the ombination of different par-

tial orders to ahieve the effet of equating the two pro-

esses above. In this paper we instead re�ned the way the

ausal order of events in a run is determined. This has led

to the notion of name-dependeny aware history preserv-

ing bisimulation de�ned above. It is easy to verify that

name-dependeny aware history preserving bisimilarity is

a oarser relation than history preserving bisimilarity and

that the former equates the two example proesses:

Proposition 6.10 If two asynhronous transition systems

are history preserving bisimilar than they are name-

dependeny aware history preserving bisimilar.

Proposition 6.11 The denotations of the proess terms

(�y)(xy:yz) and (�y)(xyjyz) are name-dependeny

aware history preserving bisimilar but not history preserv-

ing bisimilar.
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