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Abstra
t

We study syntax-free models for name-passing pro
esses.

For interleaving semanti
s, we identify the indexing stru
-

ture required of an early labelled transition system to sup-

port the usual �-
al
ulus operations, de�ning Indexed La-

belled Transition Systems. For non-interleaving 
ausal se-

manti
s we de�ne Indexed Labelled Asyn
hronous Transi-

tion Systems, smoothly generalizing both our interleaving

model and the standard Asyn
hronous Transition Systems

model for CCS-like 
al
uli. In ea
h 
ase we relate a deno-

tational semanti
s to an operational view, for bisimulation

and 
ausal bisimulation respe
tively. This is a �rst step to-

wards a uniform understanding of the semanti
s and oper-

ations of name-passing 
al
uli.

1. Introdu
tion

The study of 
on
urren
y has involved ri
h interplay be-

tween model-theoreti
 and synta
ti
 approa
hes. The �rst

takes a notion of behaviour � perhaps de�ned as some 
lass

of automata or labelled transition systems � as primary;

the se
ond fo
usses on some parti
ular signature of pro
ess

terms, perhaps giving it only an axiomati
 semanti
s. It

is now 
ommon to take an intermediate approa
h: to �x a

signature of pro
ess terms and equip it with an operational

semanti
s de�ning behaviour (e.g. transition relations) over

those terms. This has been followed for almost all work

on �-
al
uli, beginning with [MPW92℄, in whi
h an opera-

tional semanti
s de�nes transition relations with parti
ular

labels over �-terms. By 
ontrast, in this paper we study

purely model-theoreti
 notions of behaviour for �-
al
uli,

with de�nitions that do not involve pro
ess syntax, to sup-

port the uniform development of metatheory for a range of


al
uli and semanti
s. For interleaving semanti
s we intro-

�
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du
e Indexed Labelled Transition Systems with data spe
i-

fying how transitions 
hange under renaming � thus pi
k-

ing out the essential stru
ture of a � early transition rela-

tion that is required for de�ning the normal operations and

equivalen
es over �-terms. For non-interleaving 
ausal se-

manti
s, we de�ne Indexed Labelled Asyn
hronous Tran-

sition Systems, smoothly generalizing both our interleav-

ing model and the standard Asyn
hronous Transition Sys-

tems model for CCS-like 
al
uli [Bed88, Shi85, WN95℄. In

ea
h 
ase we give a denotational semanti
s of a �-
al
ulus;

we prove the operational early and 
ausal bisimulations

[San93, BS98℄ 
oin
ide with model-theoreti
 notions. In

the full version of this extended abstra
t [CS00℄, we also

investigate the properties of and relationship between 
ate-

gories of the two models, and give the omitted proofs. This

is a �rst step towards a uniform understanding of the seman-

ti
s and operations of name-passing 
al
uli.

Interleaving The standard notion of labelled transition

system (LTS) for 
al
uli without value-passing is straight-

forward. For example, given a setN of names (ranged over

by a; b; : : : ) the CCS fragment

P ::= 0

�

�

a:P

�

�

a:P

�

�

P j Q

�

�

(�
)P


an be given semanti
s in terms of LTSs

hS;�!; ii

where S is a set of states, �!� S � L � S is a transition

relation with labels L = f�; a; a; b; b; : : : g, and i 2 S is the

initial state. Introdu
ing value-passing, however, makes the

situation more 
omplex � parti
ularly with s
ope extrusion.

Consider the �-
al
ulus fragment below, in whi
h the `
' in

the input b
:P and restri
tion (�
)P bind in the pro
ess P .

P ::= 0

�

�

ad:P

�

�

b
:P

�

�

P j Q

�

�

(�
)P

De�ning the behaviour of b
:P involves substitution. For

example, the 
ommuni
ation of a free name

ad:P j a
:Q

�

�! P j f

d

=




gQ



is inferred in the `early' semanti
s of [MPW93, San93℄ with

the rules below.

OUT

ad:P

ad

�! P

IN

a
:Q

ad

�! f

d

=




gQ

COM

P

ad

�! P

0

Q

ad

�! Q

0

P j Q

�

�! P

0

j Q

0

Note that d might or might not be in the free names of Q.

Moreover, unlike in CCS, �-
al
ulus � -transitions 
an also

involve s
ope extrusion:

((�d)ad:P ) j a
:Q

�

�! (�d)(P j f

d

=




gQ) if d 62 fn(Q)

To de�ne the � -transitions of P j Q 
ompositionally, in

terms of the transitions of P and Q, the semanti
s must

distinguish between outputs of free and bound names, by

taking transitions with labels ad and a(d) respe
tively. The

� -transition above 
an be inferred with the rules:

OPEN

P

ad

�! P

0

d 6= a

(�d)P

a(d)

�! P

0

CLOSE

P

a(d)

�! P

0

Q

ad

�! Q

0

d 62 fn(Q)

P j Q

�

�! (�d)(P

0

j Q

0

)

The full semanti
s requires also the rules

RES

P

`

�! P

0

d 62 fn(`)

(�d)P

`

�! (�d)P

0

PAR

P

`

�! P

0

bn(`) \ fn(Q) = ;

P j Q

`

�! P

0

j Q

(in whi
h bn(a(d)) = fdg, and bn(`) = ; for labels of

other forms) for restri
ted transitions that do not involve

s
ope extrusion and for parallel.

These SOS rules involve subtle 
onditions on the free

names of pro
ess terms (relating them to names in labels),

in addition to name substitution on pro
ess terms. To give

a syntax-free notion of LTS that has enough stru
ture to

de�ne the operations we must therefore 
onsider states not

simply to be elements of an arbitrary set but of a set indexed

by �nite sets of names � the `free' names of the states �

and add data spe
ifying how states 
hange under renaming.

In Se
tion 3 we will de�ne an Indexed Labelled Transition

System (orN -LTS) to have data

hS :N !Set; �!; hI; iii

where S is a fun
tor from an indexing 
ategoryN of name-

sets and renamings into Set (the 
ategory of all sets and

fun
tions), giving the set of states above ea
h name-set; the

transition relation is over the 
oprodu
t

`

A2jNj

S(A); and

the initial state hI; ii is an element of that 
oprodu
t. Ax-

ioms must be imposed, enfor
ing:

1. the name-sets of the endpoints of a transition must be

related to ea
h other and to the label;

2. input transitions o

ur in families related by renaming

of the result states;

3. (a) transitions are preserved by inje
tive renaming,

both of the names of states and of new names in

labels;

(b) inputs of new names above a name-set give rise

to inputs of old names above larger name-sets;

and

4. the transitions of an inje
tive renaming of a state are

determined by the transitions of the state.

We give the pre
ise de�nition of N -LTS in Se
tion 3, fol-

lowing a des
ription of the �-
al
ulus we are using in Se
-

tion 2. Many variant de�nitions ofN -LTS are possible; we

dis
uss the alternatives in Se
tion 4. In Se
tion 5 we de�ne


onstru
tions over N -LTSs, giving a denotational seman-

ti
s, and relate bisimulation over N -LTSs with the bisimu-

lation de�ned using the operational semanti
s.

Non-Interleaving models for pro
ess 
al
uli have been

mu
h studied; they 
an support model-
he
king te
hniques

that mitigate the state-explosion problem, and strong proof

te
hniques. They are also required in 
ases where the de-

sired properties of systems aremost naturally stated in terms

of 
ausality or lo
ality. Here again there are model-theoreti


and synta
ti
 approa
hes � the �rst is surveyed in [WN95℄;

the se
ond is represented by various annotated operational

semanti
s, e.g. [DDNM88a, BC88, DD89, Kie94, WN95℄.

The two seem to have been 
arried out almost indepen-

dently � to our knowledge, the only works to make pre-


ise 
onne
tions are [DDNM88a, BC88, WN95℄. More-

over, only the synta
ti
 approa
h has been developed to ad-

dress name-passing, in the annotated operational models of

[BS98, DP99℄. There is also work that does not �t this 
at-

egorisation, having both synta
ti
 and model-theoreti
 as-

pe
ts, with Petri nets and graph rewriting [BG95, MP95℄.

Our goal in the se
ond half of this paper is to develop the

model-theoreti
 approa
h, and to make pre
ise 
onne
tions

to the annotated operational notions. We develop a simple

syntax-free non-interleaving model for name-passing that

generalises both our interleaving model and the standard

Asyn
hronous Transition Systems model for 
al
uli with-

out name-passing [Bed88, Shi85, WN95℄. This is pre
isely

related to 
ausal bisimulation [BS98℄.

In CCS 
ausal dependen
y arises from pre�xing � in

the behaviour of the pro
ess x:y:0 the y output 
ausally

depends on the x output. In �-
al
ulus, name-binding

introdu
es new dependen
ies, as thoroughly dis
ussed

in [DP99℄. Transitions o

urring in different parallel 
om-

ponents of a pro
ess term, naively regarded as independent,

may be for
ed to o

ur in a �xed order. For example, in

the pro
ess (�y)(xy j yz) the transition yz 
an be observed

only after xy � before this o

urs the new-bound 
hannel

2



is not known to the environment. The two transitions of

(�y)(xy j zy) are independent, however, despite the fa
t

that the �rst to o

ur will be an output of a new name

and the se
ond will not. Further, an input of a previously-

extruded name, e.g. (�y)(xy j xw:0)

xy

�!

xy

�! 0, or output

of a previously-input new name, e.g. xw:xw

xy

�!

xy

�! 0

(where y is new) involves dependen
y. Moreover, one 
an


hoose whether or not to distinguish between the pre�x and

name dependen
y, e.g. whether to identify (�y)(xy:yz)

and (�y)(xy j yz).

In Se
tion 6 we de�ne a relation of name-dependen
y

between two labels (wrt. a name-set), and then an Indexed

Labelled Asyn
hronous Transition System (orN -LATS) to

have data

hS :N !Set; �!; hI; ii; E; Ii

where now transitions are annotated by elements of a set E

of events and I � E � E is an independen
e relation be-

tween events. We impose axioms requiring that one obtains

an Indexed LTS when 
onsidering ea
h e 2 E separately,

and (roughly), that independent transitions 
an be per-

muted. As one would expe
t, name dependen
y is involved

in the relationship between the transition and independen
e

relations. We dis
uss how the 
onstru
tions of Se
tion 5 
an

be extended to N -LATS, de�ne history-preserving bisimu-

lation and a name-dependen
y aware variant (respe
tively

distinguishing and identifying the example two pro
esses

above), and prove 
orresponden
e results.

In [CS00℄ an abstra
t study of the stru
tures de�ned in

this paper is initiated. CategoriesN -LTS

I

of Indexed LTS

and N -LATS

I

of Indexed LATS (ea
h for initial name-

set I) are de�ned. Their properties and mutual relationship

are studied, as the �rst step towards an abstra
t understand-

ing of the equivalen
es and 
onstru
tions involved in the

semanti
s of �-like pro
ess languages. Spa
e limitations

prevent us from presenting su
h results here.

Further Motivation, Future Dire
tions and Related

Work Viewing models 
ategori
ally has proven useful

in study of the interleaving/non-interleaving and linear-

time/bran
hing-time distin
tions [SNW96℄. Moreover, the


ategori
al study of pro
ess 
al
uli gives the possibility

of obtaining general 
ongruen
e results: in [WN95℄ 
ate-

gori
al models of CCS-like pro
esses are axiomatised and

in [JNW96℄ an abstra
t model-theoreti
 notion of bisimula-

tion is introdu
ed (via open maps); in [CW97, CW99℄ these

two are 
ombined to give abstra
t 
ongruen
e results for

strong bisimulation over a wide range of models. It is our

hope that the present work serves as a �rst step towards sim-

ilar results for �-
al
ulus-like pro
ess languages. In parti
-

ular, we would like a 
ategori
al understanding of our op-

erations for the two models, related by the results presented

in [CS00℄.

Among earlier models of �-pro
esses, the name pass-

ing syn
hronisation trees of [Hon99℄ and presheaves

of [CSW97℄ are the 
losest to our N -LTS, though they

employ a slightly different indexing stru
ture (
f. Se
-

tion 4). In [CSW97℄ the models are de�ned using domain

theoreti
al te
hniques similar to those employed in [Sta96,

FMS96℄, as the solutions to semanti
 equations. By 
on-

trast here we take a more 
on
rete approa
h, with several

advantages. Firstly, it is easy to 
on
eive of minor modi�-


ations to our de�nitions whi
h adapt them to 
losely re�e
t

paradigms su
h as the asyn
hronous �-
al
ulus [Bou92,

HT91℄. In parti
ular it should be quite straightforward

to adapt the axioms of [Sel97℄ to our models. It should

also be easy to address the �I-
al
ulus [San96a℄, in whi
h

only new names are 
ommuni
ated (though this 
an also

be done domain-theoreti
ally). Se
ondly, it supports a di-

re
t de�nition of weak bisimulation, something the domain

model la
ks and the presheaf model 
an, as far as we know,

only a
hieve indire
tly by means of a saturation 
onstru
-

tion [FCW99℄.

It is also worth noti
ing that while the domain mod-

els are tailored for late bisimulation, our fo
us here is on

early semanti
s, both to obtain a simpler notion of tran-

sition system, and be
ause we have found the early style

suits work on 
on
urrent language semanti
s and on se
ure

en
apsulation [Sew97, SV99a, SV99b, Sew00℄. Presheaf

models exist for both early and late notions [Cat99℄. More-

over we should add that, in 
onstrast to [Sta96, FMS96℄

(whi
h have full-abstra
tion results wrt. strong bisimula-

tion), we fo
us on intensional models, over whi
h a num-

ber of equivalen
es 
an be de�ned (though we give re-

sults only for bisimulation). The literature 
ontains also

testing-based models [Hen96, BDN95℄. The pre
ise rela-

tionships with these and other models de�ned in the litera-

ture e.g., [MP98, MP95, BG95, JJ95℄ requires further work.

In [CS00℄ we begin the study of three appli
ations.

Firstly, we believe our stru
tures may form a useful basis for

�-
al
ulus interleaving and partial-order model 
he
king,

via notions of �nitely-generable N -LTS and N -LATS. We

de�ne the former pre
isely. Se
ondly,N -LTS (extended to

allow 
ommuni
ation of tuples and en
rypted values) may

provide a basis for proofs and model-
he
king of 
rypto-

graphi
 proto
ols. In parti
ular, it would support dire
t (i.e.

not via a pro
ess 
al
ulus syntax) de�nitions of behaviours,

as in [Pau98℄, while still allowing 
omposition of these be-

haviours. Thirdly, developingwork on se
ure en
apsulation

[SV99a, SV99b℄, quantifying over elements of the model,

rather than over synta
ti
 pro
esses, would allow stronger

se
urity properties to be stated. We state 
onje
tures relat-

ing the 
oloured �-
al
ulus semanti
s � an approximate but

simple notion of 
ausality used there to state se
urity prop-

erties � toN -LATS. We also wonder what the relationships

are with the re
ent [GP99, FPT99, Hof99℄, where similar

3



indexing stru
ture is used in a �-
al
ulus setting.

Finally, noti
e that in this paper we introdu
e transition

systems with indexed sets of states, but not indexed sets

of transitions. This is be
ause, as remarked above, when

moving from a name-set to a larger one, transitions labelled

with inputs of new names in the former give rise to input

transitions of both new and old names in the latter � the


orresponden
e between transitions is not fun
tional, even

for inje
tive renamings. We have begun to 
onsider, with

Hyland, more sophisti
ated indexing stru
tures whi
h al-

low transitions as well as states to be indexed; the pay-off

for the extra 
ompli
ation being e.g. the possibility of us-

ing the notion of internal 
ategory to formally relate our

Indexed Transition Systems with the standard ones.

2. Ba
kground on the �-Cal
ulus

Many variant �-
al
uli have been studied in the litera-

ture sin
e the original was introdu
ed in [MPW92℄. Here, to

show the wide appli
ability of our models, we take a ri
h set

of primitives in
luding summation, mat
hing, mismat
hing

and syn
hronous output. For notational simpli
ity, however,

we treat only a monadi
 untyped 
al
ulus without basi
 val-

ues; for la
k of spa
e also omitting repli
ation. These 
ould

be easily added.

Syntax We take an in�nite set N of names of 
hannels,

ranged over by a; b et
. The pro
ess terms are then those

de�ned by the grammar

P;Q ::= 0 j P j Q j P +Q j �:P j ad:P j a
:P j!P

j (�
)P j [a = b℄P j [a 6= b℄P :

Here the 
 in the input b
:P and restri
tion (�
)P bind in

the pro
ess P ; we work up to alpha renaming of bound

names. We write fn(P ) for the set of free names of P , and

fa=bgP for the pro
ess term obtained from P by repla
ing

all free o

urren
es of b by a.

Operational semanti
s We equip the 
al
ulus with a

mild presentational variant, expli
itly-indexed, of the early

labelled transition semanti
s of [San93, MPW93℄, in whi
h

transitions are given for pro
esses with respe
t to expli
it

supersets of their free name sets. This style simpli�es

the SOS rules, allowing side
onditions in PAR and CLOSE

(here 
oales
ed with COM) to be removed, gives a simple

notion of tra
e, and supports subtype systems; it has been

useful for work on 
on
urrent language semanti
s and on

se
ure en
apsulation [Sew97, SV99a, SV99b℄. The labelled

transition relation has the form

A ` P

`

�! Q

where A is a �nite set of names and fn(P ) � A; it should

be read as `in a state where the names A may be known

by pro
ess P and by its environment, the pro
ess P 
an

do ` to be
ome Q. The name-set asso
iated with Q is then

A[fn(`). The labels Lab are f�g[fxy j x; y 2 N g[fxy j

x; y 2 N g. Note that we now have only one form of output

label � a transitionA ` P

xv

�! Q is an output of a new name

iff v 62 A. The transition relation is de�ned as the smallest

relation satisfying the rules in Figure 1. The free names of

a label are fn(�) = fg, fn(xv) = fn(xv) = fx; vg. We

write A; x for A [ fxg where x is assumed not to be in A.

If A = ; then (�A)P denotes P .

Note that the set of free names of a pro
ess 
an grow

along transitions, for example fag ` (�d)ad:ad

ad

�! ad,

and that the rules depend in an essential way on alpha-


onversion � the pro
ess R = (�d)ad must be able to

perform a bound output with label a

^

d for any

^

d 6= a;

derivations of su
h transitions require use of the alpha-

equivalen
e R = (�

^

d)a

^

d. Note also that the SOS rules

do not involve any stru
tural 
ongruen
e.

Example Properties We illustrate the SOS with some ex-

ample transitions and properties � these will be spe
ial 
ases

of the axioms imposed onN -LTS in Se
tion 3.

1. If A ` P

xz

�! Q then x 2 A. We might have z new,

i.e. z 2 A or not, i.e. z 62 A. In either 
ase, Q has

free names 
ontained in A [ fx; zg. The same holds

for input transitions.

2. A transition A ` P

xz

�! Q must arise from an input

pre�x in P , whi
h must therefore be able to input any

other name (new or old). Moreover, the resulting states


an all be obtained by substitution from the resulting

state after a new name is input.

3. (a) IfA ` P

xz

�! Q and z 2 A then for any inje
tive

substitution, say f :A!

inj

B, there is a transition

B ` fP

fxfz

�! fQ. For output of a new name, i.e.

z 62 A, the value z 
an also be renamed to any

ẑ 62 B, giving B ` fP

fxẑ

�! (f + [ẑ=z℄)Q. The

same holds for input transitions.

(b) A derivation of an input A ` P

xz

�! Q of a new

name z 62 A is preserved by extending the name-

set � so P above (A; z) has an input of an old

name A; z ` P

xz

�! Q.

4. Non-inje
tive renaming 
an enable and (with mis-

mat
h) disable transitions, but the behaviour of an in-

je
tive renaming of P is determined by that of P .

4



OUT

A ` xv:P

xv

�! P

PAR

A ` P

`

�! P

0

A ` P j Q

`

�! P

0

j Q

RES

A; x ` P

`

�! P

0

x 62 fn(`)

A ` (�x )P

`

�! (�x )P

0

IN

A ` xp:P

xv

�! f

v

=

p

gP

COM

A ` P

xv

�! P

0

A ` Q

xv

�! Q

0

A ` P j Q

�

�! (�fvg n A)(P

0

j Q

0

)

OPEN

A; x ` P

yx

�! P

0

y 6= x

A ` (�x )P

yx

�! P

0

SUM

A ` P

`

�! P

0

A ` P +Q

`

�! P

0

MATCH

A ` P

`

�! P

0

A ` [x = x℄P

`

�! P

0

MISMATCH

A ` P

`

�! P

0

x 6= y

A ` [x 6= y℄P

`

�! P

0

In all rules with 
on
lusion of the formA ` P

`

�! Q there is an impli
it side 
ondition fn(P ) � A. The rule for �:P and symmetri


versions of PAR, COM and SUM are elided.

Figure 1. � operational semanti
s

Operational Equivalen
es The normal notion of early

bisimulation 
an be easily adapted to the expli
itly-indexed

setting. Take bisimulation _� to be the largest family of re-

lations indexed by �nite sets of names su
h that ea
h _�

A

is a symmetri
 relation over fP j fn(P ) � A g and for all

P _�

A

Q,

� if A ` P

`

�! P

0

then 9Q

0

: A ` Q

`

�! Q

0

^

P

0

_�

A[fn(`)

Q

0

.

We do not develop other equivalen
es in this paper, but

linear-time notions 
an also be de�ned straightforwardly.

For example, for partial tra
es write

A

1

` P

1

`

1

�! : : :

`

n

�! P

n+1

to mean 9P

2

; : : : ; P

n

; A

2

; : : : ; A

n

: 8i 2 1::n : A

i+1

=

A

i

[ fn(`

i

) ^ A

i

` P

i

`

i

�! P

i+1

. If fn(P ) � A then

the partial A-tra
es of P are simply f `

1

:: `

n

j 9P

0

: A `

P

`

1

�! : : :

`

n

�! P

0

g.

3. N -LTS

In this se
tion we introdu
e Indexed Labelled Transition

Systems. To a

ount for name substitution of �-terms, we

take an indexing stru
ture of name-sets and renaming fun
-

tions on the set of states. We then axiomatize the key prop-

erties of the transition relation with respe
t to this indexing

stru
ture. We have also 
onsidered other 
hoi
es of index-

ing stru
ture, as brie�y dis
ussed in the next se
tion.

De�nition 3.1 TakeN to be the 
ategory with obje
ts �nite

subsets ofN and arrows fun
tions f :A!B between them.

NOTATION: If f :A!B and g :A

0

!B

0

are two fun
tions

we write f + g for the obvious fun
tion A ℄ A

0

!B ℄ B

0

.

If f :A!B and g :A

0

!B we write [f; g℄ for the obvious


opairing fun
tionA℄A

0

!B. Given a fun
tion f :A!B

and two names x =2 A and y 2 B, write [f; [y=x℄℄ for the

obvious 
opairing fun
tionA; x!B.

If S : N ! Set is a fun
tor and if

`

A2jNj

S(A) is

the disjoint union of the sets S(A) for obje
ts A of N ,

write hA; si for the element s 2 S(A) as an element of

the disjoint union and S for the set

`

A2jNj

S(A) itself. If

�!� S � Lab � S is a (transition) relation, we will write

A ` s

`

�! t to mean that there exists an s 2 S(A), a set

B and a t 2 S(B) su
h that s = hA; si, t = hB; ti and

s

`

�! t. Sometimes we want to make expli
it the existen
e

of B and write A ` s

`

�! t a B to this purpose. Also if

f : A! B is a fun
tion, write fs for hB;S(f)(s)i.

De�nition 3.2 For any label ` 2 Lab, de�ne the 
hannel

names of `, 
han(`) and the value names of `, val(`)as fol-

lows:


han(�) = ; val(�) = ;


han(xy) = fxg val(xy) = fyg


han(xy) = fxg val(xy) = fyg

De�nition 3.3 De�ne an Indexed Labelled Transition Sys-

tem (N -LTS) to be a stru
ture

T = hS :N !Set; �!; hI; iii

where hI; ii 2 S, �!� S � Lab � S and the following


onditions hold.

1. (Naming) A ` s

`

�! t a B =) 
han(`) � A ^

B = A [ fn(`)

2. (a) (Input � new)A ` s

xy

�! t a A; y =) 8z 2

A:A ` s

xz

�! [1

A

; [z=y℄℄t

(b) (Input � old)A ` s

xy

�! t a A =) 8z 62

A9 t

z

: A ` s

xz

�! t

z

a A; z ^ t = [1

A

; [y=z℄℄t

z

3. (a) (Inje
tive substitution)

For f :A!

inj

B, A ` s

`

�! t ^ g :(fn(`) n

A)!

bij

^

B ^

^

B\B = ; =) fs

(f+g)`

�! (f+g)t
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(b) (Shifting)

A ` s

xy

�! t a A; y =) A; y ` �s

xy

�! t, where

� : A ,! A; y is the set in
lusion fun
tion

4. For f :A!

inj

B, if fs

`

0

�! t

0

then (at least) one of the

following two 
ases applies

(a) there exist `; t; g : fn(`)nA!

bij

^

B su
h that

^

B\

B = ; and `

0

= (f + g)(`) and s

`

�! t and

t

0

= (f + g)t

(b) there exist x 2 A; y 62 A; z 2 B and t su
h

that `

0

= f(x)z and A ` s

xy

�! t a A; y and

t

0

= [f; [z=y℄℄t

Condition 1 ensures that 
ommuni
ation with the environ-

ment o

urs only along publi
ly known 
hannels and that

the knowledge of su
h 
hannels is 
orre
tly propagated

from one state to another when a transition o

urs. Condi-

tions 2 ensure that if a name 
an be re
eived as input along

a spe
i�
 
hannel, then any other name 
an be re
eived as

well. Condition 3a asserts that transitions are preserved

along inje
tive renamings, while 
ondition 3b shows how

inputs of new names generate inputs of �old� names when

moving from a name set to a larger one. Finally, 
ondition

4 ensures that the transitions out of a state whi
h has been

inje
tively renamed are determined by those of the state it-

self.

In fa
t the de�nition 
ontains some redundan
y:

Proposition 3.4 Condition 3b `shifting' is implied by 
on-

ditions 2a `input-new' and 3a `inje
tive substitution'.

Despite this we keep 
ondition 3b, for two reasons. Firstly,

we regard the 
ondition as 
on
eptually important, thus we

did not want to omit it from the main de�nition. Se
ondly,


onditions 2a,2b, introdu
ed to ensure uniform behaviour

of input transitions, 
an be argued to be unne
essary from

the model-theoreti
 point of view (just as their analogues

are negle
ted in the redu
tion of value-passing CCS to pure

CCS [Mil89℄). When 2a,2b are omitted, 3b be
omes essen-

tial.

For illustrative purposes we list now a few simple 
on-

sequen
es of De�nition 3.3. Analogous properties of �-

terms are often established as lemmas, e.g. to prove


orresponden
e between labelled and redu
tion semanti
s

(see [SV99a, Sew00℄ for expli
itly-indexed developments).

Proposition 3.5 (Weakening) If A ` s

`

�! t and x 62

A [ fn(`) then �s

`

�! |t, where � :A ,! A; x and

| :A [ fn(`) ,! (A [ fn(`)); x.

Proposition 3.6 (Strengthening) If A; x ` �s

`

�! t

0

, and

x 62 fn(`), where � :A ,! A; x, then there exists t su
h

that A ` s

`

�! t and t

0

= |t, where | :A [ fn(`) ,!

(A [ fn(`)); x.

Proposition 3.7 (Converse of Shifting) If A; y ` �s

xy

�!

t, where � :A ,! A; y, then A ` s

xy

�! t.

Weakening and Strengthening are immediate 
onse-

quen
es of 
onditions 3a and 4. The 
onverse of Shifting

requires 2b, strengthening and 3a.

4. Alternative indexing stru
ture

There are several alternative indexing stru
tures � one

simpler, with only inje
tive renaming; one more elaborate,

with data for restri
tion; and variants of all with a 
hosen

new-name fun
tion. We dis
uss the trade-offs brie�y.

Sets and inje
tions Instead of indexing by the 
ategory

N one 
an index by N

inj

, the sub
ategory of N with all

obje
ts but only inje
tive fun
tions as arrows. This gives

a simpler stru
ture, in whi
h the transitions of a reindexed

state fs are always determined by those of s. To make input

pre�x de�nable, however, the denotation of a pro
ess with n

free namesmust be a fun
tion from n-tuples of names toN -

LTSs, not simply an N -LTS � to de�ne [[xy:P ℄℄ one would

need [[f

z

=

y

gP ℄℄ for all z. Moreover, we doubt whether an

analogue of the input axioms 2a,2b 
ould be stated.

Building restri
tion into the indexing It is arguable that,

as restri
tion is a fundamental �-
al
ulus 
on
ept, one

should take models with more data than ourN -LTSs, spe
-

ifying how the transitions of states 
hange when names

are restri
ted. This leads to more 
omplex axioms, though


learly also to a simpler de�nition of the restri
tion opera-

tor. In more detail, de�neN

�

to be the 
ategorywith obje
ts

�nite subsets ofN and arrows pairs hf;R

f

i :A!B where

f :A*B is a partial fun
tion and R

f

� (A n dom(f)) �

(A n dom(f)) is an equivalen
e relation. If A ` s then

the re-indexing of s along hf;R

f

i should be thought of

as the state in whi
h names in A n dom(f) have been re-

stri
ted, after being quotiented by R

f

, and other names

have been substituted as spe
i�ed by f . De�ne 
omposi-

tion of arrows by hg;R

g

i Æ hf;R

f

i = hg Æ f;R

gÆf

i where

R

gÆf

= R

f

[ f (a; a

0

) j f(a) R

g

f(a

0

) g.

Choosing new names In our de�nition, for a state s above

A, all names w 62 A are treated symmetri
ally � 
orre-

sponding to the operational fa
t that (if x 2 A) there is a

transition A ` (�z )xz

xw

�! 0 for any w 62 A. One 
an

instead take a 
hosen new � a fun
tion � :P

�n

(N )!N

su
h that 8A : �A 62 A. This leads to an endofun
-

tor Æ :N !N de�ned by Æ A = A [ f�Ag and Æ(f) =

f [ f�A 7! �Bg; the axioms 
an be restated in terms of

Æ. In this paper we have not taken a 
hosen new in or-

der to keep the tight 
orresponden
e with the operational

semanti
s, and for notational simpli
ity. The 
hosen new

version of N

inj

is essentially the indexing stru
ture used in

[Sta96, FMS96, Hen96, CSW97℄.
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5. Denotational semanti
s

We des
ribe now operations on N -LTS that we will

use in giving a 
ompositional semanti
s to the �-
al
ulus.

In [CS00℄ we turn the 
lass ofN -LTS with initial name-set

I into a 
ategory, N -LTS

I

, in the obvious way. It is then

straightforward to turn the operations below into fun
tors,

in fa
t into !-
ontinuous fun
tors. The 
ategory N -LTS

I


an be easily shown to have 
olimits of !-
hains, in fa
t

to be 
o
omplete (and 
omplete). Thus a semanti
s of re-


ursively de�ned pro
esses, su
h as repli
ated ones, 
an be

obtained using least �xed points of !-
hains in the usual

way. La
king enough spa
e to develop all of the above (or

a more 
on
rete de�nition for repli
ation), we have de
ided

in this extended abstra
t not to 
onsider re
ursive pro
esses

at all.

The most interesting operations are deadlo
k, whi
h to

obtain initiality has what may be a slightly surprising def-

inition, and restri
tion and parallel 
omposition. For re-

stri
tion an equivalen
e relation, a semanti
 analogue of �-


onversion, needs to be imposed on states � just as in the

operational semanti
s a transition of (�x )P may be derived

from a transition of (�x̂ )f

x̂

=

x

gP for any x̂ 62 (fn(P ) n x).

For parallel, in the operational semanti
s states rea
hable by

transitions from P j Q may involve restri
tion of P

0

j Q

0

for P

0

, Q

0

rea
hable from P , Q. The 
onstru
tion over the

model involves a similar quotienting as for restri
tion. The

equivalen
e relation used in both 
ases is de�ned as follows.

De�nition 5.1 If S :N !Set is a fun
tor and A is a

�nite subset of N , take $

A

to be the equivalen
e re-

lation on (possibly subsets of) the set

`

B�A

S(B) de-

�ned by hB

1

; s

1

i $

A

hB

2

; s

2

i if there exists a bije
tion

b :B

1

!

bij

B

2

, su
h that for every x 2 A, b(x) = x and

su
h that S(b)(s

1

) = s

2

.

The equivalen
e 
lasses of $

A

are analogous to alpha-

equivalen
e 
lasses of terms w.r.t. renaming of names not

in A. Observe that elements of S(A) 
an only be related to

themselves, i.e. their equivalen
e 
lass is a singleton. For

this reason, when no 
onfusion arises, we will write s for

[hA; si℄

$

A

.

In the 
onstru
tions below we shall often extend a tran-

sition system with new initial state over a 
hosen name set

(say I), but now all of its reindexings must also be added.

This 
an be expressed using the representable fun
tor (see

e.g. [MLM92℄) N (I;�) whi
h sends ea
h name-set A to

the set of fun
tions (the morphisms in N ) from I to A.

Given a fun
tion g :A!B,N (I; g)(f : I!A) = gf . The

new initial state is the identity on I , 1

I

and ea
h of its rein-

dexings is given by the reindexing fun
tion itself. Noti
e

that we write e.g. S + N (I;�) for the 
oprodu
t of fun
-

tors whi
h is given by the pointwise disjoint union of sets.

NOTATION: If U and V are two sets and no 
onfusion

arises, we will write l :U!U ℄ V and r :V !U ℄ V

for the obvious left and right inje
tions in their disjoint

union. If s = hA; ui, write ls for hA; lui and simi-

larly for r. In what follows, unless otherwise stated we

suppose that T = hS :N !Set; �!; hI; iii and T

k

=

hS

k

:N !Set; �!

k

; hI; i

k

ii (for k = 1; 2) are N -LTSs.

Note that the initial name-sets I 
oin
ide.

Restri
tion If T = hS :N !Set; �!; h(I; x); iii de-

�ne the restri
tion �

x2(I;x)

(T ) to be

hS

0

:N !Set; �!

0

; hI; r[h(I; x); ii℄

$

I

ii ;

where

� S

0

(A) = S(A) ℄ (

`

y 62A

S(A; y))=$

A

� �!

0

is de�ned by the following three rules:

A ` s

`

�! t

A ` ls

`

�!

0

lt

A; z ` s

`

�! t

A ` r[s℄

$

A

`

�!

0

r[t℄

$

A[fn(`)

z 62 fn(`)

A; z ` s

xz

�! t

A ` r[s℄

$

A

xz

�!

0

l[t℄

$

A;z

x 6= z

Output and � pre�x If x; y 2 I , de�ne xy(T ) to be

hS +N (I;�) :N !Set; �!

0

; hI; r1

I

ii ;

where�!

0

is de�ned by the following rules:

s

`

�! t

ls

`

�!

0

lt

f : I!A

hA; rfi

f(x)f(y)

�!

0

hA; lS(f)(i)i

De�ne �(T ) similarly by labelling the transition in the

�rst rule � rather than f(x)f(y).

Input pre�x If T = hS :N !Set; �!; h(I; y); iii is a

transition system and y 6= x 2 I , de�ne xy(T ) to be

hS +N (I;�) :N !Set; �!

0

; hI; r1

I

ii ;

where

f : I!A � : A ,! A [ fzg

hA; rfi

f(x)z

�!

0

hA [ fzg; lS([�f; [z=y℄℄)(i)i

s

`

�! t

ls

`

�!

0

lt
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Deadlo
k at I For every set of names I , de�ne the

deadlo
ked N -LTS with free names in I as 0

I

=

hN (I;�); ;; hI; 1

I

ii. Noti
e that 0

I

is the initial obje
t of

the 
ategoryN -LTS

I

(see [CS00℄).

Mat
hing and Mismat
hing If x; y 2 I , then de�ne

[x = y℄(T ) to be

hS +N (I;�) :N !Set; �!

0

; hI; iii ;

where�!

0

is de�ned by the following rules:

f : I!A hA;S(f)ii

`

�! hB; si f(x) = f(y)

hA; rfi

`

�!

0

hB; lsi

s

`

�! t

ls

`

�!

0

lt

De�ne [x 6= y℄(T ) similarly by requiring f(x) 6= f(y) in

the �rst rule.

Sum De�ne the sum,

T

1

+T

2

= h(S

1

+N (I;�)+S

2

) :N !Set; �!

0

; hI;m1

I

ii

where�!

0

is de�ned by the following rules:

f : I!A hA;S

k

(f)(i

1

)i

`

�!

1

s

hA;mfi

`

�!

0

ls

(and sym. for 2; r)

s

`

�!

1

t

ls

`

�!

0

lt

s

`

�!

2

t

rs

`

�!

0

rt

where we now use l;m; r rather than just l and r.

If we assume the N -LTSs to be non-restarting, we 
an

give a more standard de�nition whi
h (pointwise) glues to-

gether the two (sets of) initial states; in this 
ase the sum is

the 
ategori
al 
oprodu
t [CS00℄.

Parallel 
omposition

NOTATION: If S

1

and S

2

are two fun
torsN !Set, and if

$

A

is the equivalen
e relation on

`

B�A

(S

1

� S

2

)(B) =

`

B�A

S

1

(B) � S

2

(B) de�ned as in De�nition 5.1, and if

s

1

= hB; s

1

i and s

2

= hB; s

2

i write s

1

j

A

s

2

for the equiva-

len
e 
lass [(B; s

1

; s

2

)℄

$

A

.

If T

1

and T

2

are twoN -LTSs as before, de�ne their parallel


omposition,

T

1

jT

2

= hS

0

:N !Set; �!

0

; hI; hi

1

; i

2

iii

where

� S

0

(A) = (

`

B�A

(S

1

� S

2

)(B))=$

A

, while

S

0

(f :A!A

0

)([(B; s

1

; s

2

)℄

$

A

) = [(B

0

; t

1

; t

2

)℄

$

A

0

,

where t

k

= S(f + g)(s

k

), for k = 1; 2 and g :B n

A!

bij

B

0

nA

0

is a bije
tion

� �!

0

is de�ned by the following three rules (and symmet-

ri
 versions of the �rst two):

A;A

0

` s

1

`

�!

1

t

1

� :A;A

0

,! A [ fn(`); A

0

A ` s

1

j

A

s

2

`

�!

0

t

1

j

A[fn(`)

�s

2

A;A

0

` s

1

xy

�!

1

t

1

A;A

0

` s

2

xy

�!

2

t

2

A ` s

1

j

A

s

2

�

�!

0

t

1

j

A

t

2

A; y ` s

1

j

A;y

s

2

xy

�!

0

t

1

j

A;y

t

2

A ` s

1

j

A

s

2

xy

�!

0

t

1

j

A;y

t

2

It is easy to verify that the fun
tor S

0

is well de�ned, i.e.

that the de�nition of S

0

(f) is independent of the 
hoi
e of

representatives and of the 
hoi
e of the fun
tions g.

Bisimilarity is de�ned in the usual way, but thanks to

the indexing, we 
an also de�ne dire
tly in the model the


losure under name substitutions, whi
h for the �-
al
ulus


hara
terises the largest 
ongruen
e in
luded in bisimilar-

ity.

De�nition 5.2 De�ne two N -LTSs T

1

and T

2

to be

strongly bisimilar if the LTS hS

1

; �!

1

; hI; i

1

ii and

hS

2

; �!

2

; hI; i

2

ii are bisimilar in the usual sense of Mil-

ner [Mil89℄. Say that they are strongly equivalent if, for

every f : I!A the N -LTSs hS

1

; �!

1

; hA;S

1

(f)i

1

ii and

hS

2

; �!

2

; hA;S

2

(f)i

2

ii are strongly bisimilar.

Weak bisimilarity and equivalen
e are de�ned similarly.

Exploiting the indexing stru
ture even more, noti
e that if

a bisimulation is further required to be a relation between

S

1

and S

2

in the 
ategori
al sense, i.e. a subobje
t of the

produ
tS

1

�S

2

, one obtains an open bisimulation [San96b℄.

Compositional semanti
s to �-terms is given using the

operations de�ned above in the obvious way. For a pro-


ess term P , with free names in I , we write [[P ℄℄

I

for the


orrespondingN -LTS. We 
on
lude this se
tion by stating

the result whi
h relates bisimulation in the model with early

bisimulation in the operational semanti
s.

Theorem 5.3 Let P andQ be two �-terms with free names

in I . Then P _�

I

Q if and only if [[P ℄℄

I

is bisimilar to [[Q℄℄

I

.

Proof:[Sket
h℄ First of all observe that the operational se-

manti
s naturally indu
es for every pro
ess term P , with

free names in I , anN -LTS

([P ℄)

I

= h�;�!; hI; P ii ;
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where �(A) = fQ j Q is a �-term and fn(Q) � Ag, �(f)

simply relabels pro
esses a

ording to f , and there is a tran-

sition hA;P i

`

�! hB;Qi ifA ` P

`

�! Q (a

ording to the

operational semanti
s) and B = A [ fn(`). One 
an then

prove by stru
tural indu
tion that ([P ℄)

I

is open bisimilar

(
f. the remark after De�nition 5.2) to [[P ℄℄

I

. The theorem

is now an easy 
onsequen
e of this last statement.

6. N -LATS

In this se
tion we de�ne a 
lass of 
ausal models by

smoothly lifting the notion of labelled asyn
hronous

1

tran-

sition system [Bed88, Shi85, WN95℄ (LATS for short) to

our indexed setting. LATS are a simple extension of stan-

dard LTS in whi
h transitions have both standard labels and

events, upon whi
h an independen
e relation is de�ned.

Roughly speaking, 
on
urren
y is modelled by requiring

that transitions tagged with independent events might o
-


ur in any order. As dis
ussed in the introdu
tion, in �-


al
uli dependen
ies between transitions may arise from

their name usage:

De�nition 6.1 If A is a set of names and `

1

and `

2

are two

labels, we say that `

2

is A-dependent on `

1

if one of the

following two 
ases applies:

1. val(`

1

) = 
han(`

2

) 6� A

2. val(`

1

) = val(`

2

) 6� A, one of `

1

; `

2

is an input a
tion

and the other is an output a
tion.

De�nition 6.2 De�ne an Indexed LATS (N -LATS) to be a

stru
ture

T = hS :N !Set; �!; hI; ii; E; Ii

where hI; ii 2 S,

�! � S� (Lab�E)� S ;

E is a set of events, I � E�E is an independen
e relation

between events and the following 
onditions hold.

1. For every event e 2 E, the stru
ture

hS :N !Set; �!

e

; hI; iii is a transition system

a

ording to De�nition 3.3, where �!

e

is the set

f hs; `; ti j hs; `; e; ti 2�!g.

2. I is irre�exive and symmetri


3. If A ` s

`

1

�!

e

1

t, and t

`

2

�!

e

2

u, and e

1

Ie

2

, and moreover `

2

is not A-dependent on `

1

, then there exists a state t

0

su
h that s

`

2

�!

e

2

t

0

and t

0

`

1

�!

e

1

u.

1

There is an unfortunate 
lash of terminology here: this usage of `asyn-


hronous' is unrelated to the usage des
ribing pro
ess 
al
uli without out-

put pre�xing.

Often LATS are de�ned using more axioms (see [Bed88,

WN95℄). Here we have de
ided to keep the axiomatisation

as light as possible, as none of the extra axioms is dire
tly

relevant for the de�nability of the semanti
 
onstru
tions

that we 
onsider. Moreover we allow the same event to


arry different labels. This is parti
ularly useful in 
oping

with the proliferation of transitions indu
ed by reindexing

and by the input a
tions. It is not dif�
ult to devise sim-

ple variations of our de�nition whi
h adhere more 
losely

to the traditional 
ase.

Building on the independen
e relation, transitions o

ur-

ring in a run of a pro
ess 
an be given a 
ausal partial or-

der des
ribing whi
h transitions are ne
essary 
onditions

for the o

urren
e of others. Roughly speaking one tran-

sition 
auses the following one if the 
orresponding events

are not independent of ea
h other. As dis
ussed in the in-

trodu
tion, one 
an 
hoose whether or not to 
onsider name

dependen
ies � for N -LATS there are two natural ways of

de�ning partial orders out of runs, one taking a

ount only

of the independen
e relation and another whi
h also takes

name dependen
ies into a

ount.

NOTATION: For every natural number n, write [n℄ for the

set fk j 1 � k � ng. Observe that, in parti
ular, [0℄ = ;.

De�nition 6.3 For every run r

A

0

` s

0

`

1

�!

e

1

s

1

`

2

�!

e

2

s

2

� � �

`

n

�!

e

n

s

n

of anN -LATS we de�ne two labelled partial orders:

1. De�ne po(r)

I

= h[n℄;E

r

I

; l

r

i, where

(a) n is the length of the run r.

(b) E

r

I

is the transitive 
losure of �

r

I

whi
h is de-

�ned as i �

r

I

j if i � j and :(e

i

Ie

j

)

(
) l

r

(k) = `

k

, for every k 2 [n℄

2. De�ne po(r)

ID

= h[n℄;E

r

ID

; l

r

i, where n and l

r

are

obtained as above, while E

r

ID

is the transitive 
losure

of �

r

ID

whi
h is de�ned as i �

r

ID

j if i � j and

either :(e

i

Ie

j

) or `

j

is A

i

-dependent on `

i

, where

s

i

= (A

i

; s

i

).

History preserving bisimulation [RT88, GG89, DDNM88b℄

is a bisimulation between runs of pro
esses whi
h a

ounts

for 
ausality by requiring related runs to originate isomor-

phi
 partial orders of transitions:

De�nition 6.4 Let T

1

and T

2

be two N -LATSs with initial

name-set I and let Run(T

i

) (for i = 1; 2) be the 
orre-

sponding sets of runs. A relation B � Run(T

1

)�Run(T

2

)

is an history preserving bisimulation (hpb) if it satis�es the

following 
onditions

1. hI ` hI; i

1

i; I ` hI; i

2

ii 2 B

9



2. hr

1

; r

2

i 2 B implies

(a) po(r

1

)

I

= po(r

2

)

I

(b) if r

0

1

extends r

1

with a transition s

n

`

n+1

�!

1

e

n+1

s

n+1

then there exists a run r

0

2

whi
h extends r

2

with a

transition
�
s

n

`

n+1

�!

2

�e

n+1

�
s

n+1

su
h that hr

0

1

; r

0

2

i 2 B

(
) the symmetri
 
ondition to the above.

The relationB is a name-dependen
y aware hpb (ndahpb) if

the 
ondition 2(a) is 
hanged into po(r

1

)

ID

= po(r

2

)

ID

.

The 
onstru
tions of Se
tion 5 
an be easily adapted to be-


ome 
onstru
tions on N -LATS. We shall now brie�y in-

di
ate how they need to be extended to take a

ount of the

presen
e of events and of the independen
e relation. In all

rules where a label is 
arried from the premise to the 
on-


lusion, the event is also 
arried (suitably inje
ted).

Restri
tion The set of events and the independen
e relation

does not 
hange.

Pre�xesA new event, not in the independen
e relation with

any other is added and it de
orates all of the new transitions.

Deadlo
k The set of events is empty and so is the indepen-

den
e relation.

Mat
hing and Mismat
hing Events and the independen
y

relation are left untou
hed.

Sum The set of events is taken to be the disjoint union of

the originals but no new independen
e pairs are added.

Parallel 
omposition If E

1

and E

2

are the two sets of

events we de�neE

0

to be the disjoint unionE

1

℄(E

1

�E

2

)℄

E

2

. Writing this as (E

1

�f?g) [ (E

1

�E

2

) [ (f?g �E

2

)

for ? 62 E

1

[ E

2

, the independen
e relation is de�ned by

he

1

; e

2

iI

0

he

0

1

e

0

2

i if both e

1

^

I

1

e

0

1

and e

2

^

I

2

e

0

2

, where

^

I

k

is the

union of I

k

and h?; ?i. The new � -transitions are de
orated

by the pairs of enabling events.

Pro
ess terms 
an then be given a denotational semanti
s

and then related by (nda) history preserving bisimilarity. In

the remainder of this se
tion we will mostly 
on
entrate

on the relationship between our semanti
s and the 
ausal

bisimulation of [BS98℄. In parti
ular we present 
orrespon-

den
e results relating our hbp semanti
s to 
ausal bisimula-

tion, and further dis
uss name-dependen
y.

In the paper [BS98℄, no notion of strong bisimulation is

de�ned. The authors in fa
t de�ned dire
tly 
ausal bisim-

ulation in the weak, i.e. abstra
ting away from � a
tions,

form. To mat
h with our de�nitions we therefore need ei-

ther to de�ne weak history-preserving bisimulation or to

modify their setting in order to make � a
tions, and not their

effe
t only, visible. We will in fa
t do both, ending up with

two 
orresponden
e results, one for strong and one for weak

bisimulation. Due to spa
e 
onstraints we 
annot report the

de�nition of 
ausal bisimulation here and therefore refer to

lo
. 
it. for de�nitions and dis
ussions of the relevan
e of

their approa
h. We simply mention here, using their nota-

tion, what modi�
ations are needed in order to de�ne strong


ausal bisimulation.

De�nition 6.5 An operational semanti
s for strong 
ausal

bisimulation is obtained by modifying the de�nition

of [BS98, table 3, page 365℄ in the rules whi
h derive silent

a
tions in the following way:

T-PRE, T-SUM, T-PAR, T-RES, T-CAU, T-REP: These are

all subsumed in the homologous rules, OUT, SUM, PAR,

RES, CAU, REP, respe
tively, whi
h were originally de�ned

for non-� a
tions.

COM: This is 
hanged as follows (re
all that we are dealing

with the monadi
 �-
al
ulus):

A

1

(�z)xy

�!

K

1

:k

A

0

1

A

2

xy

�!

K

2

:k

A

0

2

A

1

j A

2

�

�!

K

1

[K

2

:k

(�z )(A

0

1

[k  (K

2

; k)℄ j A

0

2

[k  (K

1

; k)℄)

with 
onditions z 62 fn(A

2

) and k 62 K(A

1

; A

2

).

2

Strong 
ausal bisimulation 
an now be de�ned in the usual

way, by requiring transitions to agree not only on the la-

bels but on the 
auses too. We 
an now state our �rst non-

interleaving 
orresponden
e result:

Theorem 6.6 Let P and Q be two terms of the �-
al
ulus

with free names in I and let [[P ℄℄




I

and [[Q℄℄




I

be their inter-

pretations as N -LATS's. Then [[P ℄℄




I

is history preserving

bisimilar to [[Q℄℄




I

if and only if P is strongly 
ausal bisimi-

lar to Q.

A weak version of history preserving bisimulation 
an be

given in the spirit of [Vog95℄.

De�nition 6.7 Let r be a run in an asyn
hronous transition

system, let n be the length of r and let n

�

be the number of

transitions in r whi
h are not labelled � . For every i � n

�

,

de�ne n

i

� n indu
tively as follows: n

1

is the smallest

number h su
h that the h-th transition of r has label `

h

6= � ;

n

j+1

is the smallest number h su
h that the h-th transition

of r has label `

h

6= � and that moreover is stri
tly bigger

than n

j

.

Starting with a run r of anN -LATS, by means of the above

de�nition, we 
an de�ne partial orders of observable events

in runs as follows:

2

In [BS98℄ the notation (�z)xy is employed for possibly-bound out-

puts.
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De�nition 6.8 Let r be a run of anN -LATS and let po(r)

I

and po(r)

ID

be the 
orresponding partial orders as in Def-

inition 6.3. De�ne po(r)

wI

and po(r)

wID

to be the partial

orders h[n

�

℄;E

wI

; l

r

w

i and h[n

�

℄;E

wID

; l

r

w

i, respe
tively,

where l

r

w

(i) = l

r

(n

i

), iE

wI

j if n

i

E

I

n

j

and iE

wID

j if

n

i

E

ID

n

j

.

Weak history preserving bisimulations are now de�ned

as relations between runs as in De�nition 6.4 but where,

as usual, �strong� transitions s

1

`

�!

1

e

1

t

1

are simulated by

�weak� ones s

2

^

`

=)

2

e

2

t

2

(and symmetri
ally) and with 
on-

dition 2(a) repla
ed by po(r)

wI

= po(r

0

)

wI

or by

po(r)

wID

= po(r

0

)

wID

, for the name-dependen
y aware


ase. We 
an then prove the following result:

Theorem 6.9 Let P and Q be two terms of the �-
al
ulus

with free names in I and let [[P ℄℄




I

and [[Q℄℄




I

be their inter-

pretations asN -LATSs. Then [[P ℄℄




I

is weak history preserv-

ing bisimilar to [[Q℄℄




I

if and only if P is 
ausal bisimilar to

Q in the sense of [BS98℄.

In [BS98℄ it is argued that, be
ause of the dependen
ies due

to the binding of names, pro
esses like (�y)(xy:yz) and

(�y)(xyjyz) should be indistinguishable by an external ob-

server. Nonetheless 
ausal bisimulation distinguishes them,

as it only tra
ks the dependen
ies due to the stru
ture of

pro
esses � in the example, one output is pre�xing the other

in the �rst pro
ess but not in the se
ond. The paper leaves

open the possibility of a further re�nement of the treatment

of 
auses in the operational semanti
s to identify the above

two pro
esses.

Their remark has been ta
kled in [JJ95℄, where a do-

main model of �-terms based on Kahn networks is pre-

sented. There the indu
ed equivalen
e equates the two

pro
esses, but it seems to us that the equivalen
e is any-

way a tra
ed-based rather than a bisimulation based one.

In [DP99℄, the authors use the 
ombination of different par-

tial orders to a
hieve the effe
t of equating the two pro-


esses above. In this paper we instead re�ned the way the


ausal order of events in a run is determined. This has led

to the notion of name-dependen
y aware history preserv-

ing bisimulation de�ned above. It is easy to verify that

name-dependen
y aware history preserving bisimilarity is

a 
oarser relation than history preserving bisimilarity and

that the former equates the two example pro
esses:

Proposition 6.10 If two asyn
hronous transition systems

are history preserving bisimilar than they are name-

dependen
y aware history preserving bisimilar.

Proposition 6.11 The denotations of the pro
ess terms

(�y)(xy:yz) and (�y)(xyjyz) are name-dependen
y

aware history preserving bisimilar but not history preserv-

ing bisimilar.
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