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Abstract

We study syntax-free models for name-passing processes. For interleaving semantics, we
identify the indexing structure required of an early labelled transition system to support
the usual π-calculus operations, defining Indexed Labelled Transition Systems. For non-
interleaving causal semantics we define Indexed Labelled Asynchronous Transition Systems,
smoothly generalizing both our interleaving model and the standard Asynchronous Tran-
sition Systems model for CCS-like calculi. In each case we relate a denotational semantics
to an operational view, for bisimulation and causal bisimulation respectively. We establish
completeness properties of, and adjunctions between, categories of the two models. Alter-
native indexing structures and possible applications are also discussed. These are first steps
towards a uniform understanding of the semantics and operations of name-passing calculi.
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1 Introduction

The study of concurrency has involved rich interplay between model-theoretic and syntactic
approaches. The first takes a notion of behaviour – perhaps defined as some class of automata
or labelled transition systems – as primary; the second focuses on some particular signature of
process terms, perhaps giving it only an axiomatic semantics. It is now common to take an
intermediate approach: to fix a signature of process terms and equip it with an operational
semantics defining behaviour (e.g. transition relations) over those terms. This has been fol-
lowed for almost all work on π-calculi, beginning with [40], in which an operational semantics
defines transition relations with particular labels over π-terms. By contrast, in this paper we
study purely model-theoretic notions of behaviour for π-calculi, with definitions that do not
involve process syntax, to support the uniform development of metatheory for a range of calculi
and semantics. For interleaving semantics we introduce Indexed Labelled Transition Systems
with data specifying how transitions change under renaming – thus picking out the essential
structure of a π early transition relation that is required for defining the normal operations
and equivalences over π-terms. For non-interleaving causal semantics, we define Indexed La-
belled Asynchronous Transition Systems, smoothly generalizing both our interleaving model and
the standard Asynchronous Transition Systems model for CCS-like calculi [3, 55, 58]. In each
case we give a denotational semantics of a π-calculus; we prove that the operational early and
causal bisimulations [47, 6] coincide with model-theoretic notions. We also establish complete-
ness properties of and adjunctions between categories of the two models, as first steps towards
a uniform understanding of the semantics and operations of name-passing calculi. A number of
alternative structures and applications of the models can be envisaged, including applications
to model-checking and security reasoning; we briefly outline some possible directions.

Interleaving The standard notion of labelled transition system (LTS) for calculi without
value-passing is straightforward. For example, given a set N of channel names (ranged over by
a, b, . . . ) the CCS fragment

P ::= 0
∣∣ a.P ∣∣ a.P ∣∣ P | Q ∣∣ (νc)P

can be given semantics in terms of LTSs

〈S,−→, i〉

where S is a set of states, −→⊆ S×L×S is a transition relation with labels L = {τ, a, a, b, b, . . . },
and i ∈ S is the initial state. Introducing value-passing, however, makes the situation more
complex – particularly with scope extrusion. Consider the π-calculus fragment below, in which
the ‘c’ in the input bc.P and restriction (νc)P bind in the process P .

P ::= 0
∣∣ ad.P ∣∣ bc.P ∣∣ P | Q ∣∣ (νc)P

Defining the behaviour of bc.P involves substitution. For example, the communication of a free
name

ad.P | ac.Q τ−→ P | {d/c}Q

is inferred in the ‘early’ semantics of [41, 47] with the rules below.

Out

ad.P
ad−→ P

In

ac.Q
ad−→ {d/c}Q

Com
P

ad−→ P ′ Q
ad−→ Q′

P | Q τ−→ P ′ | Q′



Note that d might or might not be in the free names of Q. Moreover, unlike in CCS, π-calculus
τ -transitions can also involve scope extrusion:

((νd)ad.P ) | ac.Q τ−→ (νd)(P | {d/c}Q) if d 6∈ fn(Q)

To define the τ -transitions of P | Q compositionally, in terms of the transitions of P and Q,
the semantics must distinguish between outputs of free and bound names, by taking transitions
with labels ad and a(d) respectively. The τ -transition above can be inferred with the rules:

Open
P

ad−→ P ′ d 6= a

(νd)P
a(d)−→ P ′

Close
P

a(d)−→ P ′ Q
ad−→ Q′ d 6∈ fn(Q)

P | Q τ−→ (νd)(P ′ | Q′)

The full semantics requires also the rules

Res
P

`−→ P ′ d 6∈ fn(`)
(νd)P `−→ (νd)P ′

Par
P

`−→ P ′ bn(`) ∩ fn(Q) = ∅
P | Q `−→ P ′ | Q

(in which bn(a(d)) = {d}, and bn(`) = ∅ for labels of other forms) for restricted transitions that
do not involve scope extrusion and for parallel.

These SOS rules involve subtle conditions on the free names of process terms (relating them
to names in labels), in addition to name substitution on process terms. To give a syntax-free
notion of LTS that has enough structure to define the operations we must therefore consider
states not simply to be elements of an arbitrary set but of a set indexed by finite sets of names
– the ‘free’ names of the states – and add data specifying how states change under renaming.
In Section 3 we will define an Indexed Labelled Transition System (or N -LTS) to have data

〈S :N →Set, −→, 〈I, i〉〉

where S is a functor from an indexing category N of name-sets and renamings into Set (the
category of all sets and functions), giving the set of states above each name-set; the transition
relation is over the coproduct

∐
A∈|N| S(A); and the initial state 〈I, i〉 is an element of that

coproduct. Axioms must be imposed, enforcing:

1. the name-sets of the endpoints of a transition must be related to each other and to the
label;

2. input transitions occur in families related by renaming of the result states;

3. (a) transitions are preserved by injective renaming, both of the names of states and of
new names in labels;

(b) inputs of new names above a name-set give rise to inputs of old names above larger
name-sets; and

4. the transitions of an injective renaming of a state are determined by the transitions of the
state.
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We give the precise definition of N -LTS in Section 3, following a description of the π-calculus we
are using in Section 2. We also introduce categories N -LTSI (for each initial-name set I) of N -
LTSs and study their completeness properties. Many variant definitions of N -LTS are possible;
we discuss the alternatives in Section 7. In Section 4 we define constructions over N -LTSs,
giving a denotational semantics, and relate bisimulation over N -LTSs with the bisimulation
defined using the operational semantics.

Non-Interleaving models for process calculi have been much studied; they can support model-
checking techniques that mitigate the state-explosion problem, and strong proof techniques.
They are also required in cases where the desired properties of systems are most naturally stated
in terms of causality or locality. Here again there are model-theoretic and syntactic approaches –
the first is surveyed in [58]; the second is represented by various annotated operational semantics,
e.g. [16, 8, 15, 32, 58]. The two seem to have been carried out almost independently – to our
knowledge, the only works to make precise connections are [16, 8, 58]. Moreover, only the
syntactic approach has been developed to address name-passing, in the annotated operational
models of [6, 18]. There is also work that does not fit this categorisation, having both syntactic
and model-theoretic aspects, with Petri nets and graph rewriting [9, 42].

Our goal in the second half of this paper is to develop the model-theoretic approach, and to
make precise connections to the annotated operational notions. We develop a simple syntax-free
non-interleaving model for name-passing that generalises both our interleaving model and the
standard Asynchronous Transition Systems model for calculi without name-passing [3, 55, 58].
This is precisely related to causal bisimulation [6].

In CCS causal dependency arises from prefixing – in the behaviour of the process x.y.0 the
y output causally depends on the x output. In π-calculus, name-binding introduces new depen-
dencies, as thoroughly discussed in [18]. Transitions occurring in different parallel components
of a process term, naively regarded as independent, may be forced to occur in a fixed order. For
example, in the process (νy)(xy | yz) the transition yz can be observed only after xy – before
this occurs the new-bound channel is not known to the environment. The two transitions of
(νy)(xy | zy) are independent, however, despite the fact that the first to occur will be an output
of a new name and the second will not. Further, an input of a previously-extruded name, e.g.
(νy)(xy | xw.0)

xy−→ xy−→ 0, or output of a previously-input new name, e.g. xw.xw
xy−→ xy−→ 0

(where y is new) involves dependency. Moreover, one can choose whether or not to distinguish
between the prefix and name dependency, e.g. whether to identify (νy)(xy.yz) and (νy)(xy | yz).

In Section 5 we define a relation of name-dependency between two labels (wrt. a name-set),
and then an Indexed Labelled Asynchronous Transition System (or N -LATS) to have data

〈S :N →Set, −→, 〈I, i〉, E, I〉

where now transitions are annotated by elements of a set E of events and I ⊆ E × E is an
independence relation between events. We impose axioms requiring that one obtains an Indexed
LTS when considering each e ∈ E separately, and (roughly), that independent transitions can
be permuted. As one would expect, name dependency is involved in the relationship between
the transition and independence relations. We discuss how the constructions of Section 4 can
be extended to N -LATS, define history-preserving bisimulation and a name-dependency aware
variant (respectively distinguishing and identifying the example two processes above), and prove
correspondence results.

In Section 6 we continue the abstract study of the structures defined in the paper. We define
categoriesN -LATSI of Indexed LATS (each for initial name-set I) and study their completeness
properties as well as their relationship with the categories N -LTSI . These are first steps towards
an abstract understanding of the equivalences and constructions involved in the semantics of
π-like process languages.
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Further Motivation, Future Directions and Related Work Viewing models categori-
cally has proven useful in study of the interleaving/non-interleaving and linear-time/branching-
time distinctions [49]. Moreover, the categorical study of process calculi gives the possibility
of obtaining general congruence results: in [58] categorical models of CCS-like processes are
axiomatised and in [31] an abstract model-theoretic notion of bisimulation is introduced (via
open maps); in [13, 14] these two are combined to give abstract congruence results for strong
bisimulation over a wide range of models. It is our hope that the present work serves as a first
step towards similar results for π-calculus-like process languages. In particular, we would like a
categorical understanding of our operations for the two models, related by the results presented
in Section 6. One could then use these results to address the problem of giving causal semantics
to variants of the π-calculus, e.g. the box-π of [53, 54], for which an approximate notion of
causality is used to state security properties. Preliminary discussion of this, and of other future
directions, can be found in Section 8.

Among earlier models of π-processes, the name passing synchronisation trees of [27] and
presheaves of [12] are the closest to our N -LTS, though they employ a slightly different indexing
structure (cf. Section 7). In [12] the models are defined using domain theoretical techniques
similar to those employed in [56, 20], as the solutions to semantic equations. By contrast here
we take a more concrete approach, with several advantages. Firstly, it is easy to conceive of
minor modifications to our definitions to suit calculi such as the asynchronous π-calculus [7, 28].
In particular it should be quite straightforward to adapt the axioms of [50] to our models. It
should also be easy to address the πI-calculus [48], in which only new names are communicated
(though this can also be done domain-theoretically). Secondly, it supports a direct definition of
weak bisimulation, something the domain model lacks completely and the presheaf model can,
as far as we know, only achieve indirectly by means of a saturation construction [19].

It is also worth noticing that while the domain models are tailored for late bisimulation,
our focus here is on early semantics, both to obtain a simpler notion of transition system, and
because we have found the early style suits work on concurrent language semantics and on
secure encapsulation [51, 53, 54, 52]. Presheaf models exist for both early and late notions [10].
Moreover we should add that, in contrast to [56, 20] (which have full-abstraction results wrt.
strong bisimulation), we focus on intensional models, over which a number of equivalences can be
defined (though we give results only for bisimulation). The literature contains also testing-based
models [24, 4]. The precise relationships with these and other models defined in the literature,
e.g. [42, 9, 30] requires further work.

More speculatively, we believe our structures may form a useful basis for π-calculus inter-
leaving and partial-order model checking, via notions of finitely-generable N -LTS and N -LATS
– the former of which may have interesting relationships with the HD-automata of [43], and
wonder what the relationships are with the recent [22, 21, 26], where similar indexing structure
is used in a λ-calculus setting.

Finally, notice that in this paper we introduce transition systems with indexed sets of states,
but not indexed sets of transitions. This is because, as remarked above, when moving from
a name-set to a larger one, transitions labelled with inputs of new names in the former give
rise to input transitions of both new and old names in the latter – the correspondence between
transitions is not functional, even for injective renamings. It may be possible to use more
sophisticated indexing structures which allow transitions as well as states to be indexed; the
pay-off for the extra complication being e.g. the possibility of using the notion of internal
category to formally relate our Indexed Transition Systems with the standard ones.

This paper is a full and extended version of [11].
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Out

A ` xv.P xv−→ P
In

A ` xp.P xv−→ {v/p}P

Tau
A ` τ.P τ−→ P

Sum
A ` P `−→ P ′

A ` P +Q
`−→ P ′

Par
A ` P `−→ P ′

A ` P | Q `−→ P ′ | Q
Com

A ` P xv−→ P ′ A ` Q xv−→ Q′

A ` P | Q τ−→ (ν{v} \A)(P ′ | Q′)

Res
A, x ` P `−→ P ′ x 6∈ fn(`)
A ` (νx )P `−→ (νx )P ′

Open
A, x ` P yx−→ P ′ y 6= x

A ` (νx )P
yx−→ P ′

Match
A ` P `−→ P ′

A ` [x = x]P `−→ P ′
Mismatch

A ` P `−→ P ′ x 6= y

A ` [x 6= y]P `−→ P ′

In all rules with conclusion of the form A ` P `−→ Q there is an implicit side condition
fn(P ) ⊆ A. Symmetric versions of Par, Com and Sum are elided.

Figure 1: π operational semantics

2 Background on the π-calculus

Many variant π-calculi have been studied in the literature since the original was introduced in
[40]. Here, to show the wide applicability of our models, we take a rich set of primitives including
summation, matching, mismatching and synchronous output. For notational simplicity, however,
we treat only a monadic untyped calculus without basic values, and also omit replication. These
could be easily added.

Syntax We take an infinite set N of names of channels, ranged over by a, b etc. The process
terms are then those defined by the grammar

P,Q ::= 0 nil
P | Q parallel composition
P +Q choice
τ.P internal action
ad.P output d on channel a
ac.P input from channel a
(νc)P new channel name creation
[a = b]P match
[a 6= b]P mismatch

Here the c in the input bc.P and restriction (νc)P bind in the process P ; we work up to alpha
renaming of bound names. We write fn(P ) for the set of free names of P , and {a/b}P for the
process term obtained from P by replacing all free occurrences of b by a.

Operational semantics We equip the calculus with a mild variant, explicitly-indexed, of
the early labelled transition semantics of [47, 41], in which transitions are given for processes
with respect to explicit supersets of their free name sets. This style simplifies the SOS rules,
allowing sideconditions in Par and Close (here coalesced with Com) to be removed, gives a
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simple notion of trace, and supports subtype systems; it has been useful for work on concurrent
language semantics and on secure encapsulation [51, 53, 54]. It is related to the original semantics
at the end of this section. The labelled transition relation has the form

A ` P `−→ Q

where A is a finite set of names and fn(P ) ⊆ A; it should be read as ‘in a state where the names
A may be known by process P and by its environment, the process P can do ` to become Q.
The labels Lab are {τ} ∪ {xy | x, y ∈ N } ∪ {xy | x, y ∈ N }. Note that we now have only one
form of output label – a transition A ` P xv−→ Q is an output of a new name iff v 6∈ A. The
transition relation is defined as the smallest relation satisfying the rules in Figure 1. The free
names of a label are fn(τ) = {}, fn(xv) = fn(xv) = {x, v}. We write A, x for A ∪ {x} where x is
assumed not to be in A. If A = ∅ then (νA)P denotes P .

Note that the set of free names of a process can grow along transitions, for example {a} `
(νd)ad.ad ad−→ ad, and that the rules depend in an essential way on alpha-conversion – the
process R = (νd)ad must be able to perform a bound output with label ad̂ for any d̂ 6= a;
derivations of such transitions require use of the alpha-equivalence R = (νd̂)ad̂. Note also that
the SOS rules do not involve any structural congruence.

Example Properties We illustrate the SOS with some example transitions and properties –
these will be special cases of the axioms imposed on N -LTS in Section 3.

1. If A ` P xz−→ Q then x ∈ A. We might have z new, i.e. z 6∈ A or not, i.e. z ∈ A. In either
case, Q has free names contained in A ∪ {x, z}. The same holds for input transitions.

2. A transition A ` P xz−→ Q must arise from an input prefix in P , which must therefore
be able to input any other name (new or old). Moreover, the resulting states can all be
obtained by substitution from the resulting state after a new name is input.

3. (a) If A ` P xz−→ Q and z ∈ A then for any injective substitution, say f :A→injB, there

is a transition B ` fP fxfz−→ fQ. For output of a new name, i.e. z 6∈ A, the value z

can also be renamed to any ẑ 6∈ B, giving B ` fP fxẑ−→ (f + [ẑ/z])Q. The same holds
for input transitions.

(b) A derivation of an input A ` P xz−→ Q of a new name z 6∈ A is preserved by extending
the name-set – so P above (A, z) has an input of an old name A, z ` P xz−→ Q.

4. Non-injective renaming can enable and (with mismatch) disable transitions, but the be-
haviour of an injective renaming of P is determined by that of P .

Operational Equivalences The normal notion of early bisimulation can be easily adapted to
the explicitly-indexed setting. Take bisimulation ∼̇ to be the largest family of relations indexed
by finite sets of names such that each ∼̇A is a symmetric relation over {P | fn(P ) ⊆ A } and for
all P ∼̇A Q,

• if A ` P `−→ P ′ then ∃Q′ . A ` Q `−→ Q′ ∧ P ′ ∼̇A∪fn(`) Q
′.

We do not develop other equivalences in this paper, but linear-time notions can also be
defined straightforwardly. For example, for partial traces write

A1 ` P1
`1−→ . . .

`n−→ Pn+1
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to mean ∃P2, . . . , Pn, A2, . . . , An . ∀i ∈ 1..n . Ai+1 = Ai ∪ fn(`i) ∧ Ai ` Pi
`i−→ Pi+1. If

fn(P ) ⊆ A then the partial A-traces of P are simply { `1 .. `n | ∃P ′ . A ` P
`1−→ . . .

`n−→ P ′ }.

Out

xv.P
xv−→ P

In
xp.P

xv−→ {v/p}P

Tau
τ.P

τ−→ P
Sum

P
µ−→ P ′

P +Q
µ−→ P ′

Par
P

µ−→ P ′ bn(µ) ∩ fn(Q) = ∅
P | Q µ−→ P ′ | Q

Com
P

xv−→ P ′ Q
xv−→ Q′

P | Q τ−→ P ′ | Q′

Close
P

x(v)−→ P ′ Q
xv−→ Q′ v 6∈ fn(Q)

P | Q τ−→ (νv)(P ′ | Q′)

Res
P

µ−→ P ′ x 6∈ n(µ)
(νx )P

µ−→ (νx )P ′
Open

P
yx−→ P ′ x 6= y

(νx )P
y(x)−→ P ′

Match
P

µ−→ P ′

[x = x]P
µ−→ P ′

Mismatch
P

µ−→ P ′ x 6= y

[x 6= y]P
µ−→ P ′

Symmetric versions of Par, Com, Close and Sum are elided.

Figure 2: π conventional early operational semantics

Conventional Early Semantics

We conclude this section by recalling the ‘conventional’ operational semantics, without explicit
indexing sets, in the original style of [47, 41], and showing that the two early bisimulation
relations coincide. The conventional labelled transition relation has the form

P
µ−→ Q

where the label µ is taken from

µ ::= xv
∣∣ x(v)

∣∣ xv
∣∣ τ

In the absence of an explicit index set outputs of old and new names must be distinguished in
the label – as xv and x(v) respectively. The transitions are defined in Figure 2, which uses the
following auxiliary functions for the free, ‘bound’ and all names of a label. Note that (despite
the bn( ) notation) the semantics does not involve alpha conversion of labels.

µ fn(µ) bn(µ) n(µ)
xv {x, v} {} {x, v}
x(v) {x} {v} {x, v}
xv {x, v} {} {x, v}
τ {} {} {}

Again following [47, 41], take conventional early bisimulation ˙∼con to be the largest symmetric
relation over terms such that each for all P ˙∼con Q,
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• if P
µ−→ P ′ and bn(µ) ∩ fn(P,Q) = ∅ then ∃Q′ . Q µ−→ Q′ ∧ P ′ ˙∼con Q

′.

Note that the conventional LTS includes pathological transitions such as xv.0+(νv)xv.P
x(v)−→ P ,

in which a name v both occurs free in the left hand side and is output as new. The condition
bn(µ)∩ fn(P,Q) = ∅ in the definition of bisimulation disregards such transitions, among others.

Lemma 2.1 If P
µ−→ Q then fn(Q) ⊆ fn(P ) ∪ n(µ).

Lemma 2.2 If P ∼̇AP ′ then P ∼̇fn(P,P ′)P
′.

Lemma 2.3 If A ⊇ fn(P ) then

1. A ` P xv−→ Q ∧ v ∈ A iff P
xv−→ Q

2. A ` P xv−→ Q ∧ v 6∈ A iff P
x(v)−→ Q ∧ v 6∈ A

3. A ` P xv−→ Q iff P
xv−→ Q

4. A ` P τ−→ Q iff P
τ−→ Q

Theorem 2.4 If A ⊇ fn(P,Q) then P ∼̇AQ iff P ˙∼conQ.

Proof: We check R = {P, P ′ | ∃A . A ⊇ fn(P, P ′) ∧ P ∼̇AP ′ } and RA = {P, P ′ | A ⊇
fn(P, P ′) ∧ P ˙∼conP

′ } are bisimulations of the two forms. The first is straightforward using
Lemmas 2.3 and 2.2. The second is straightforward using Lemmas 2.3 and 2.1.

�

3 N -LTS

In this section we introduce Indexed Labelled Transition Systems. To account for name substi-
tution of π-terms, we take an indexing structure of name-sets and renaming functions on the
set of states. We then axiomatize the key properties of the transition relation with respect to
this indexing structure. We have also considered other choices of indexing structure, as briefly
discussed in Section 7.

Definition 3.1 Take N to be the category with objects finite subsets of N and arrows functions
f :A→B between them.

As before, given the fixed name set N , we define the set of π-labels as follows:

Definition 3.2 Define Lab to be the set {τ} ∪ {xy | x, y ∈ N} ∪ {xy | x, y ∈ N}

Notation:

• If f :A→B and g :A′→B′ are two functions we write f + g for the obvious function
A ] A′→B ] B′. If f :A→B and g :A′→B we write [f, g] for the obvious copairing
function A ]A′→B.

• Given two names x and y, write [y/x] for the unique function {x} → {y}. If f :A→B is
a function with x 6∈ A and y ∈ B, by abuse of notation, we write [f, [y/x]] for the obvious
function A, x→B.

10



• If S : N → Set is a functor and if
∐
A∈|N| S(A) is the disjoint union of the sets S(A) for

objects A of N , write 〈A, s〉 for the element s ∈ S(A) as an element of the disjoint union
and S for the set

∐
A∈|N| S(A) itself.

• If −→⊆ S×Lab×S is a (transition) relation, we will write A ` s
`−→ t to mean that there

exists an s ∈ S(A), a set B and a t ∈ S(B) such that s = 〈A, s〉, t = 〈B, t〉 and s
`−→ t.

Sometimes we want to make explicit the existence of B and write A ` s
`−→ t a B to this

purpose. Also if f : A→ B is a function, write fs for 〈B,S(f)(s)〉.

• If S, S′ :N →Set are two functors, s = 〈A, s〉 ∈ S and α :S =⇒ S′ is a natural transfor-
mation, we write αs for 〈A,αAs〉 ∈ S′.

Definition 3.3 For any label ` ∈ Lab, define the channel names of `, chan(`) and the value
names of `, val(`)as follows:

chan(τ) = ∅ val(τ) = ∅
chan(xy) = {x} val(xy) = {y}
chan(xy) = {x} val(xy) = {y}

Definition 3.4 Define an Indexed Labelled Transition System (N -LTS) to be a structure

T = 〈S :N →Set, −→, i〉

where i = 〈I, i〉 ∈ S, −→⊆ S× Lab× S and the following conditions hold.

1. (Naming) A ` s
`−→ t a B =⇒ chan(`) ⊆ A ∧ B = A ∪ fn(`)

2. (a) (Input – new)A ` s
xy−→ t a A, y =⇒ ∀z ∈ A.A ` s

xz−→ [1A, [z/y]]t

(b) (Input – old)A ` s
xy−→ t a A =⇒ ∀z 6∈ A∃ tz. A ` s

xz−→ tz a A, z ∧ t = [1A, [y/z]]tz

3. (a) (Injective substitution)

For f :A→injB, A ` s
`−→ t ∧ g :(fn(`)\A)→bij B̂ ∧ B̂∩B = ∅ =⇒ fs

(f+g)`−→ (f+g)t

(b) (Shifting)
A ` s

xy−→ t a A, y =⇒ A, y ` ιs xy−→ t, where ι : A ↪→ A, y is the set inclusion
function

4. For f :A→injB, if fs
`′−→ t′ then one of the following two cases applies

(a) there exist `, t, g : fn(`)\A→bij B̂ such that B̂∩B = ∅ and `′ = (f+g)(`) and s
`−→ t

and t′ = (f + g)t

(b) there exist x ∈ A, y 6∈ A, z ∈ B \ ran(f) and t such that `′ = f(x)z and A ` s
xy−→

t a A, y and t′ = [f, [z/y]]t

Condition 1 ensures that communication with the environment occurs only along publicly known
channels and that the knowledge of such channels is correctly propagated from one state to
another when a transition occurs. Conditions 2 ensure that if a name can be received as input
along a specific channel, then any other name can be received as well. Condition 3a asserts that
transitions are preserved along injective renamings, while condition 3b shows how inputs of new
names generate inputs of “old” names when moving from a name set to a larger one. Finally,
condition 4 ensures that the transitions out of a state which has been injectively renamed are
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determined by those of the state itself (cf. the example properties of Section 2). Clause 4b
differs from that stated in [11] by requiring z 6∈ ran(f) – in the presence of the other axioms the
two are equivalent, but this version is more elegant and supports the definition of Ninj-LTS in
Section 7.

In fact the definition contains some redundancy:

Proposition 3.5 Condition 3b ‘shifting’ is implied by conditions 2a ‘input-new’ and 3a ‘injec-
tive substitution’.

Proof: Suppose that A ` s
xy−→ t a A, y, then by condition 3a, A, y ` ιs xz−→ (ι+[z/y])t a A, y, z,

for any z 6∈ A, y. Thus by condition 2a we deduce that A, y ` ιs xy−→ [1A,y, [y/z]](ι+[z/y])t a A, y.
But [1A,y, [y/z]](ι+ [z/y]) = [1A,yι, [y/z][z/y]] = [ι, 1{y}] = 1A,y and therefore A, y ` ιs xy−→ t.

�

Despite this we keep condition 3b, for two reasons. Firstly, we regard the condition as conceptu-
ally important, thus we did not want to omit it from the main definition. Secondly, conditions
2a and 2b, introduced to ensure uniform behaviour of input transitions, can be argued to be
unnecessary from the model-theoretic point of view (just as their analogues are neglected in the
reduction of value-passing CCS to pure CCS [39]). When 2a and 2b are omitted, 3b becomes
essential.

For illustrative purposes we list now a few simple consequences of Definition 3.4. Analogous
properties of π-terms are often established as lemmas, e.g. to prove correspondence between
labelled and reduction semantics (see [53, 52] for explicitly-indexed developments).

Proposition 3.6 (Weakening) If A ` s
`−→ t and x 6∈ A ∪ fn(`) then ιs

`−→ t, where
ι :A ↪→ A, x and  :A ∪ fn(`) ↪→ (A ∪ fn(`)), x.

Proof: Suppose that A ` s
`−→ t and x 6∈ A ∪ fn(`) for some states s and t. Observe, first of

all that by condition 3a A, x ` ιs `−→ (ι+ g)t, for any g : fn(`) \ A→bijB, with B ∩ (A, x) = ∅.
Choose then g to be 1fn(`)\A. Then  = ι+ g and so the required property is satisfied.

�

Proposition 3.7 (Strengthening) If A, x ` ιs `−→ t′, and x 6∈ fn(`), where ι :A ↪→ A, x, then
there exists t such that A ` s

`−→ t and t′ = t, where  :A ∪ fn(`) ↪→ (A ∪ fn(`)), x.

Proof: Suppose that A, x ` ιs `−→ t′ and x 6∈ fn(`) for some states s and t′. By condition 4,
there can be two possibilities. It might be that there exist ¯̀, t and g : fn(¯̀) \ A→bijB such

that B ∩ A, x = ∅, ` = (ι + g)(¯̀), s
¯̀
−→ t and t′ = (ι + g)t. Because of the properties above

and by condition 3a, s
`−→ (1A + g)t. Moreover  = (ι + g)(1A + g−1), thus (1A + g)t =

(ι+ g)(1A + g−1)(1A + g)t = (ι+ g)t = t′.

Otherwise, there exist x′ ∈ A, y 6∈ A, z ∈ A, x and t̄ such that ` = x′z, A ` s
x′y−→ t̄

and t′ = [ι, [z, y]]t̄. Now, since x 6∈ fn(`), then it must be that z ∈ A. So by condition 2a,

A ` s
x′z−→ [1A, [z/y]]̄t. Moreover  = ι and [ι, [z/y]] = ι[1A, [z/y]]. Thus, taking t = [1A, [z/y]]̄t,

gives us t = t′.

�

Proposition 3.8 (Converse of Shifting) If A, y ` ιs xy−→ t, where ι :A ↪→ A, y, then A `
s
xy−→ t.

12



Proof: Suppose A, y ` ιs xy−→ t, then either condition 4a or condition 4b must apply. Since
y is not in A, 4a does not apply. Thus, by condition 4b there exist ŷ 6∈ A and t̂, such that
A ` s

xŷ−→ t̂ and t = [ι, [y/ŷ]]̂t. By condition 3a, we then have that A ` s
xy−→ (1A + [y/ŷ])̂t. But

1A + [y/ŷ] = [ι, [y/ŷ]], hence A ` s
xy−→ t.

�

The terms of the π-calculus can be easily structured into an indexed sets of states, leading to
the interpretation of π-terms as N -LTSs all having the same set of states and transition relation,
but different initial state.

Definition 3.9 For every π-term P with free names in A and function f :A→B, write fP
for the π-term obtained by simultaneously substituting (avoiding capturing) f(x) for x in P , for
every x ∈ A.

Definition 3.10 Define π :N →Set to be the following functor:

π(A) = {P | P is a π-term and fn(P ) ⊆ A}
π(f)(P ) = fP .

Definition 3.11 For every π-term P with free names in I, define

([P ])I = 〈π, −→, 〈I, P 〉〉

where 〈A,Q〉 `−→ 〈B,R〉 if and only if A ` Q `−→ R according to the operational semantics of
Figure 1 and B = A ∪ fn(`).

It is simple to verify using the operational semantics that ([P ])I is a N -LTS.
In the next section we will provide a compositional semantics of π-terms as N -LTSs. Before

doing so, we conclude this section by structuring the class of N -LTSs into a category and prove
some of its main completeness and structural properties.

Definition 3.12 Define a morphism α :T1→T2 between N -LTSs, with initial state over the
same name-set I, to be a natural transformation α : S1 =⇒ S2 such that

1. αi1 = i2

2. s
`−→ s′ implies αs

`−→ αs′.

Define N -LTSI to be the category of N -LTSs with initial name-set I and these morphisms.

Theorem 3.13 For every name-set I, the category N -LTSI is complete and cocomplete.

Proof:
Completeness By a well-known result of category theory [36], it suffices to show that N -LTSI
has equalisers and small products.

Equalisers: If T1

α //

β
// T2 are two morphisms in N -LTSI , define T0 = 〈S0,−→0, i1〉 and γ :

T0 ↪→ T1 as follows:

• S0
γ // S1

α //

β
// S2 is the equaliser in SetN , defined as S0(A) = {s ∈ S1(A) | αA(s) =

βA(s)}, while γA is the inclusion function.
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• −→0 is the largest subset of S0×Lab×S0 which satisfies conditions 2b and 4 of Definition 3.4
and is such that

A ` s
`−→0 t a B =⇒ A ` γAs

`−→1 γBt a B.

It is a matter of easy verification to check that −→0 is well-defined, i.e. that such a largest
subset exists as the partial order of transition relations in S0×Lab×S0 satisfying conditions 2b
and 4 is a complete lattice. Moreover all the other conditions of Definition 3.4 are met as a
consequence of the fact that −→0 is essentially a subrelation of −→1. The universal property

follows from the fact that the diagram S0
γ // S1

α //

β
// S2 is an equaliser in SetN .

Products: Let (Tk)k∈K be a family of transition systems. Define their product

T = 〈S, −→, 〈I, 〈ik〉k∈K〉〉

and (πk :T →Tk)k∈K as follows:

• (πk :S→Sk)k∈K is the product in SetN of the Sk’s. That is, S(A) = {〈sk〉k∈K | sk ∈
Sk(A)}, with S(f) and πk defined in the obvious way.

• The transition relation is defined as A ` s
`−→ t iff for every k, A ` πks

`−→ πkt.

It is very easy to verify that (πk :T →Tk)k∈K satisfies the universal property of products.
The terminal object, i.e. the empty product is given by, 〈1,−→, 〈I, ?〉〉, where for every A,

1(A) = {?} and for every A and `, 〈A, ?〉 `−→ 〈A ∪ fn(`), ?〉.

Cocompleteness Similarly, it suffices to show that N -LTSI has coequalisers and small co-
products.

Coequalisers: If T1

α //

β
// T2 are two morphisms in N -LTSI , define T0 = 〈S0,−→0, i0〉 and

γ : T2 → T0 as follows:

• S1

α //

β
// S2

γ // S0 is a coequaliser in SetN .

• −→0 is defined as s
`−→0 t if there exists s̄ and t̄ such that γs̄ = s, γ t̄ = t and s̄

`−→2 t̄.

• i0
def= γi2.

Naturality of γ ensures that T0 is an N -LTS and by the definition of −→0, we immediately
also have that γ is a morphism in N -LTSI . The universal property follows from that of

S1

α //

β
// S2

γ // S0 .

Coproducts: The initial object is 0I = 〈N (I,−), ∅, 〈I, 1I〉〉, where N (I,−) is the representable

functor [37], N (I,−)(A) def= N (I,A) = {f | f : I→A}, N (I,−)(g)(f) def= N (I, g)(f) = gf , for
any g :A→B and f : I→A in N . Observe in fact that for any functor S :N →Set and element
i ∈ S(I), there exists a unique natural transformation 0S :N (I,−)→S such that 0S,I(1I) = i.

Suppose now that (Tk)k∈K is a family ofN -LTS’s. Define T = 〈S,−→, i〉 and (ink :Tk→T )k∈K
to be

• (ink :Sk→S)k∈K a colimit in SetN of the wide-span diagram of vertex 0I and edges
(0Sk)k∈K
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• i = inkik (notice that it does not matter which k is chosen) and s
`−→ t if there exists k, s̄

and t̄ such that ink s̄ = s, ink t̄ = t and s̄
`−→k t̄.

�

Every reindexing function f :A→B induces an obvious functor R(f) : N -LTSA→N -LTSB
that reindexes the initial state according to f .

Definition 3.14 Define the reindexing functor R :N →CAT as follows: for every name-set A,
R(A) = N -LTSA, while for every function f :A→B, R(f) is the functor

R(f)(〈S,−→, i〉) = 〈S,−→, f i〉
R(f)(α) = α .

This allows us to employ the Grothendieck construction [29] to produce a category N -LTS
cofibred over N . In more concrete terms we have the following:

Definition 3.15 Define N -LTS to be the following category:

Objects: N -LTSs

Arrows: 〈α, f〉 :〈S,−→, 〈A, i〉〉→〈S′,−→′, 〈B, i′〉〉 is an arrow if f :A→B is a function and
α :〈S,−→, 〈B,S(f)(i)〉〉→〈S′,−→′, 〈B, i′〉〉 is a morphism in N -LTSB (see Definition 3.12).

The composition is defined using the reindexing functor (that in this case have the only effect of
providing the right type for composing arrows), i.e.

〈β, g〉〈α, f〉 def= 〈βR(f)(α), gf〉 .

By construction the obvious projection functor N -LTS→N which sends a N -LTS to its initial
name-set and any arrow 〈α, f〉 to f is a cofibration [29]. The category N is equivalent to the
category of finite sets, which is known to have all finite colimits. By a well-known result of fibred
category theory [29] we can then immediately deduce that N -LTS has finite colimits as well.

4 Denotational semantics

We describe now operations on N -LTS that we will use in giving a compositional semantics to
the π-calculus. It will be straightforward to turn the operations below into functors, in fact
into ω-continuous functors. As we have shown, for every name-set I, the category N -LTSI
is cocomplete and therefore has colimits of ω-chains. Thus a semantics of recursively defined
processes, such as replicated ones, can be obtained using initial algebras in the usual way [58].

The most interesting operations are deadlock, which to obtain initiality has what may be
a slightly surprising definition, and restriction and parallel composition. For restriction an
equivalence relation, a semantic analogue of α-conversion, needs to be imposed on states –
just as in the operational semantics a transition of (νx )P may be derived from a transition of
(νx̂ ){x̂/x}P for any x̂ 6∈ (fn(P ) \ x). For parallel, in the operational semantics states reachable
by transitions from P | Q may involve restriction of P ′ | Q′ for P ′, Q′ reachable from P , Q. The
construction over the model involves a similar quotienting as for restriction. The equivalence
relation used in both cases is defined as follows.

Definition 4.1 If S :N →Set is a functor and A is a finite subset of N , take ↔A to be the
equivalence relation on (possibly subsets of) the set

∐
B⊇A S(B) defined by 〈B1, s1〉 ↔A 〈B2, s2〉

if there exists a bijection b :B1→bij B2, such that for every x ∈ A, b(x) = x and such that
S(b)(s1) = s2.
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Observe that elements of S(A) can only be related to themselves, i.e. their equivalence class is a
singleton. For this reason, when no confusion arises, we will write s for [〈A, s〉]↔A

. Notice also
that, because of naturality, any arrow α :T →T ′ in N -LTSI preserves ↔A, i.e.

〈B1, s1〉 ↔A 〈B2, s2〉 implies 〈B1, αB1(s1)〉 ↔A 〈B2, αB1(s2)〉 ,

for any pair of states of T . Thus for any set A, the function α↔A
:
∐
B⊇A S(B)→

∐
B⊇A S

′(B)

given by α↔A
([〈B, s〉]↔A

) def= [〈B,αB(s)〉]↔A
is well-defined.

In the constructions below we shall often extend a transition system with new initial state
over a chosen name set (say I), but now all of its reindexings must also be added. This can be
expressed using the representable functor N (I,−) which we met in the proof of Theorem 3.13
and that provides the state space of the initial object of N -LTSI . Notice that we write e.g.
S+N (I,−) for the coproduct of functors which is given by the pointwise disjoint union of sets.

Notation: If U and V are two sets and U ] V their disjoint union and no confusion arises, we
will write l :U→U ] V and r :V →U ] V for the obvious left and right injections. If s = 〈A, u〉,
write ls for 〈A, lu〉 and similarly for r. In what follows, unless otherwise stated we suppose that
T = 〈S :N →Set, −→, i〉 and Tk = 〈Sk :N →Set, −→k, ik〉 (for k = 1, 2) are N -LTSs, with
i = 〈I, i〉 and ik = 〈I, ik〉. Note that the initial name-sets I coincide.

Restriction If T = 〈S :N →Set, −→, 〈(I, x), i〉〉 define the restriction νx∈(I,x)(T ) to be

〈S′ :N →Set, −→′, 〈I, r[〈(I, x), i〉]↔I
〉〉 ,

where

• S′(A) = S(A) ] (
∐
y 6∈A S(A, y))/↔A

• −→′ is defined by the following three rules:

A ` s
`−→ t

A ` ls
`−→′ lt

A, z ` s
`−→ t

A ` r[s]↔A

`−→′ r[t]↔A∪fn(`)

z 6∈ fn(`)

A, z ` s
xz−→ t

A ` r[s]↔A

xz−→′ lt
x 6= z

If α :T1→T2 is an arrow in N -LTSI,x, define νx∈(I,x)(α) to be α + α↔− , where for every A,
α↔A

is restricted in this case to operate only on equivalence classes [〈B, s〉] where B = A, y for
some y 6∈ A.

Output and τ prefix If x, y ∈ I, define xy(T ) to be

〈S +N (I,−) :N →Set, −→′, 〈I, r1I〉〉 ,

where −→′ is defined by the following rules:

f : I→A

〈A, rf〉 f(x)f(y)−→′ l(f i)
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s
`−→ t

ls
`−→′ lt

Define τ(T ) similarly by labelling the transition in the first rule τ rather than f(x)f(y).
If α :T1→T2 is an arrow in N -LTSI , define xy(α) (and equally τ(α))

Input prefix If T = 〈S :N →Set, −→, 〈(I, y), i〉〉 is a transition system and y 6= x ∈ I, define
xy(T ) to be

〈S +N (I,−) :N →Set, −→′, 〈I, r1I〉〉 ,
where

f : I→A ι : A ↪→ A ∪ {z}

〈A, rf〉 f(x)z−→′ 〈A ∪ {z}, lS([ιf, [z/y]])(i)〉

s
`−→ t

ls
`−→′ lt

Deadlock at I For every set of names I, define the deadlock N -LTS with free names in I as
0I = 〈N (I,−), ∅, 〈I, 1I〉〉. Recall, from the proof Theorem 3.13 that 0I is the initial object of
the category N -LTSI .

Matching and Mismatching If x, y ∈ I, define [x = y](T ) to be

〈S +N (I,−) :N →Set, −→′, 〈I, r1I〉〉 ,

where −→′ is defined by the following rules:

f : I→A f i
`−→ s f(x) = f(y)

〈A, rf〉 `−→′ ls

s
`−→ t

ls
`−→′ lt

Define [x 6= y](T ) similarly by requiring f(x) 6= f(y) in the first rule.

Sum Define the sum,

T1 ⊕ T2 = 〈(S1 +N (I,−) + S2) :N →Set, −→0, 〈I,m1I〉〉

where −→0 is defined by the following rules:

f : I→A 〈A,Sk(f)(i1)〉 `−→1 s

〈A,mf〉 `−→0 ls
(and sym. for 2, r)

s
`−→1 t

ls
`−→0 lt

s
`−→2 t

rs
`−→0 rt

where we now use l,m, r rather than just l and r. If α :T1→T ′1 and β :T2→T ′2 are two arrows,
define α⊕ β = α+ 1N (I,−) + β.

Remark: If we assume the N -LTSs to be non-restarting, i.e. with no loops involving the
initial state or any of its reindexings, we can simply use the categorical coproduct to model
non-deterministic sum.
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Parallel composition

Notation: If S1 and S2 are two functors N →Set, and if ↔A is the equivalence relation on∐
B⊇A(S1×S2)(B) =

∐
B⊇A S1(B)×S2(B) defined as in Definition 4.1, and if s1 = 〈B, s1〉 and

s2 = 〈B, s2〉 write s1|As2 for the equivalence class [(B, s1, s2)]↔A
.

If T1 and T2 are two N -LTSs as before, define their parallel composition,

T1|T2 = 〈S0 :N →Set, −→0, i1|I i2〉

where

• S0(A) = (
∐
B⊇A(S1 × S2)(B))/↔A, while S0(f :A→A′)([(B, s1, s2)]↔A

) = [(B′, t1, t2)]↔A′ ,
where tk = S(f + g)(sk), for k = 1, 2 and g :B \A→bijB

′ \A′ is a bijection

• −→0 is defined by the following three rules (and symmetric versions of the first two):

A,A′ ` s1
`−→1 t1 ι :A,A′ ↪→ A ∪ fn(`), A′

A ` s1|As2
`−→0 t1|A∪fn(`)ιs2

A,A′ ` s1
xy−→1 t1 A,A′ ` s2

xy−→2 t2

A ` s1|As2
τ−→0 t1|At2

A, y ` s1|A,ys2
xy−→0 t1|A,yt2

A ` s1|As2
xy−→0 t1|A,yt2

It is routine to verify that the functor S0 is well defined, i.e. that the definition of S0(f) is
independent of the choice of representatives and of the choice of the functions g.

If α :T1→T ′1 and β :T2→T ′2 are two arrows, define (α|β)A([〈B, s1, s2〉]↔A
) = [〈B,αB(s1), βB(s2)〉]↔A

.
Compositional semantics to π-terms is given using the operations defined above in the usual

way. For a process term P , with free names in I, we write [[P ]]I for the corresponding N -LTS.
So in particular we have

• [[0]]I = 0I

• [[P | Q]]I = [[P ]]I | [[Q]]I

• [[P +Q]]I = [[P ]]I ⊕ [[Q]]I

• [[τ.P ]]I = τ([[P ]]I)

• [[xy.P ]]I = xy([[P ]]I)

• [[xy.P ]]I = xy([[P ]]I)

• [[νx.P ]]I = (νx )([[P ]]I,x)

• [[[x = y]P ]]I = [x = y]([[P ]]I)

• [[[x 6= y]P ]]I = [x 6= y]([[P ]]I)

Bisimilarity is defined in the usual way, but thanks to the indexing, we can also define directly
in the model the closure under name substitutions, which for the π-calculus characterises the
largest congruence included in bisimilarity.
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Definition 4.2 Define two N -LTSs T1 and T2 to be

• strongly bisimilar if the LTS 〈S1, −→1, i1〉 and 〈S2, −→2, i2〉 are bisimilar in the usual
sense of Milner [39].

• strongly equivalent if, for every f : I→A, the N -LTSs 〈S1, −→1, f i1〉 and 〈S2, −→2, f i2〉
are strongly bisimilar.

Weak bisimilarity and equivalence are defined similarly.

By taking full account of the indexing structure of the state space we naturally characterise
‘open bisimilarity’ [47].

Definition 4.3 If S1, S2 :N →Set are functors, define a relation between S1 and S2 to be a
subobject R ↪→ S1 × S2 of their product.

In other words (cf. [37]) a relation R is an indexed set of pairs (R(A))A∈|N| such that, for every
A,

R(A) ⊆ S1(A)× S2(A)

and for every f :A→B,

〈s1, s2〉 ∈ R(A) implies 〈S1(f)(s1), S2(f)(s2)〉 ∈ R(B) .

Any relation R ↪→ S1 × S2, induces a relation

R ⊆ S1 × S2 ,

defined as R
def= {〈s, t〉 | ∃A, s, t. 〈s, t〉 ∈ R(A) ∧ s = 〈A, s〉 ∧ t = 〈A, t〉}.

Definition 4.4 If T1 and T2 are two N -LTSs with indexed sets of states S1 and S2, respectively,
define a relation R ↪→ S1 × S2 to be an open bisimulation if the relation

R ⊆ S1 × S2

is a strong bisimulation for the transition systems 〈S1, −→1, i1〉 and 〈S2, −→2, i2〉.

Clearly open bisimilarity is the finest among all the equivalence relations defined above.
We conclude this section with the result which relates bisimulation in the model with bisim-

ulation in the operational semantics.

Theorem 4.5 Let P and Q be two π-terms with free names in I. Then P ∼̇IQ if and only if
[[P ]]I is bisimilar to [[Q]]I .

To prove this theorem we first need the following lemma.

Lemma 4.6 For every π-term P , with free names in I, ([P ])I is open bisimilar to [[P ]]I .

Proof: The proof goes by structural induction on P . We show how to inductively define open
bisimulations. It will be generally trivial to verify that the induced relations on the states of the
transition systems are bisimulations. Thus we omit the verification in all but a few less trivially
clear cases.

• P = 0 Define B(A) = {〈0, f〉 | f : I→A}. For any g :A→B, B(g)〈0, f〉 = 〈0, gf〉. Since
there are no transitions to match, this induces trivially a bisimulation.
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• P = xy.Q Suppose B ⊆ ([Q])I × [[Q]]I is an open bisimulation. Define

(xy.B)(A) = {〈R, ls〉 | 〈R, s〉 ∈ B(A)}+ {〈fxfy.fQ), rf〉 | f : I→A}

If g :A→B, (xy.B)(g)〈R, ls〉 = 〈gR, l[[Q]]I(g)(s)〉, while
(xy.B)(g)〈fxfy.fQ), rf〉 = 〈(gf)x(gf)y.(gf)Q), r(gf)〉.

• P = τ.Q and P = xy.Q These cases are dealt with similarly to the output case.

• P = [x = y]Q and P = [x 6= y]Q Suppose B ⊆ ([Q])I× [[Q]]I is an open bisimulation. Define

([x = y]B)(A) = {〈R, ls〉 | 〈R, s〉 ∈ B(A)}+ {〈R, rf〉 | f : I→A&R = ([fx = fy]fQ)}

The case of mismatching has R = ([fx 6= fy]fQ)} in the definition of the second set above.
The action on renaming functions is defined as in the case of the prefixes.

• P = (νx ).Q Suppose B ⊆ ([Q])I,x × [[Q]]I,x is an open bisimulation. Define

((νx ).B)(A) = {〈R, ls〉 | 〈R, s〉 ∈ B(A)}+
⋃

y∈N\A

{〈(νy).R, r[s]↔A
〉 | 〈R, s〉 ∈ B(A, y)}

• P = P1 | P2 Suppose that B ⊆ ([P1])I×[[P1]]I and C ⊆ ([P2])I×[[P2]]I are open bisimulations.
Define

(B | C)(A) = {〈ν~x(Q1 | Q2), s1 |A s2〉 | 〈Q1, s1〉 ∈ B(A, ~x)&〈Q2, s2〉 ∈ C(A, ~x)}

with the obvious action on renaming functions. Let us see in some detail why the relation
on states induced by B | C is a bisimulation. Suppose for instance that

〈ν~x(Q1 | Q2), s1 |A s2〉 ∈ (B | C)(A)

with, without loss of generality, 〈Q1, s1〉 ∈ B(A, ~x) and 〈Q2, s2〉 ∈ C(A, ~x), and that
A ` ν~x(Q1 | Q2) `−→ Q. Then one of the following three cases (or one of their symmetric
versions) must hold:

1. There exist ~y, Q1 and Q2 such that

– ν~x(Q1 | Q2) = ν~y(Q1 | Q2)
– fn(`) 6∈ ~y
– A, ~y ` Q1

`−→ Q′1
– Q = ν~y(Q′1 | Q2).

Then there exists a bijection b :A, ~x→bijA, ~y such that b(a) = a for every a ∈ A,
bQ1 = Q1 and bQ2 = Q2. Thus 〈Q1, S1(b)(s1)〉 ∈ B(A, ~y) and 〈Q2, S2(b)(s2)〉 ∈
C(A, ~y). So, by inductive hypothesis A, ~y ` bs1

`−→ t1 with 〈Q′1, t1〉 ∈ B(A∪ fn(`), ~y).
Hence

A ` s1 |A s2 = bs1 |A bs2
`−→ t1 |A∪fn(`) ιbs2 ,

with 〈Q, t1 |A∪fn(`) ιbs2〉 ∈ (B | C)(A ∪ fn(`)).

2. There exist ~y, Q1 and Q2 such that

– ν~x(Q1 | Q2) = ν~y(Q1 | Q2)
– ` = τ

20



– A, ~y ` Q1
wz−→ Q′1, A, ~y ` Q2

wz−→ Q′2
– Q = ν~y(Q′1 | Q′2), if z ∈ A, ~y
– Q = ν~yνz(Q′1 | Q′2), if z 6∈ A, ~y

We then have a bijection b with the same properties as above. Therefore it is the case
that there exists states t1 and t2 such that A, ~y ` bs1

wz−→ t1 and A, ~y ` bs2
wz−→ t2,

with 〈Q′1, t1〉 ∈ B({z} ∪ (A, ~y)) and 〈Q′2, t2〉 ∈ C({z} ∪ (A, ~y)). Thus

A ` s1 |A s2 = bs1 |A bs2
τ−→ t1 |A t2 ,

with 〈Q, t1 |A t2〉 ∈ (B | C)(A).

3. There exist ~y, Q1 and Q2 such that

– ν~x(Q1 | Q2) = ν~y(Q1 | Q2)
– ` = wz, with z ∈ ~y and w ∈ A
– A, ~y ` Q1

wz−→ Q′1
– Q = ν~y \ {z}(Q′1 | Q2)

Again we have a bijection b with the same properties as above and thus there exists
t1 such that A, ~y ` bs1

wz−→ t1 with 〈Q′1, t1〉 ∈ B(A, ~y \ {z}). Therefore we also have
that

A ` s1 |A s2 = bs1 |A bs2
wz−→ t1 |A,z ιbs2 .

The matching of transitions of [[P1 | P2]]I by transitions of ([P1 | P2])I is proven with a
similar analysis (cf. the rules that define the parallel composition of two N -LTSs).

�

Using the lemma above it is now easy to prove the Theorem 4.5:

Proof:[of Theorem 4.5] Suppose P and Q are two π-terms with free names in I. Then by
definition, P ∼̇IQ if and only if ([P ])I is bisimilar to ([Q])I . By Lemma 4.6, then [[P ]]I is bisimilar
to [[Q]]I . Conversely, if [[P ]]I is bisimilar to [[Q]]I , then, by Lemma 4.6, ([P ])I is bisimilar to ([Q])I
and thus P ∼̇IQ.

�

It is worth noticing that since open bisimilarity is the finest equivalence that we have defined,
Theorem 4.5 holds also if we change ∼̇I with any of the other strong or weak standard (early)
equivalences.

Replication From the point of view of a denotational semantics, a concrete description of a
replication operator can be bypassed using initial algebras, i.e. fixed points, to model recur-
sively defined and thus also replicated processes. The crucial point is establishing, by tedious
verification, the following:

Theorem 4.7 If T is a N -LTS with initial name set I, x a name not in I, y and z names in
I, then the functors:

• (T ⊕−) :N -LTSI→N -LTSI ,

• (T | −) :N -LTSI→N -LTSI ,

• νx∈(I,x)(−) :N -LTSI,x→N -LTSI ,
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• yz(−) :N -LTSI→N -LTSI ,

• τ(−) :N -LTSI→N -LTSI ,

• yx(−) :N -LTSI,x→N -LTSI ,

• [y = z](−) :N -LTSI→N -LTSI and

• [y 6= z](−) :N -LTSI→N -LTSI

preserve colimits of ω-chains.

The semantics can then be given as follows.

• [[!P ]]I =![[P ]]I , where for every N -LTS T with initial name set I, !T is defined to be
µ(T | −). This is the object part of an initial algebra

T | µ(T | −) '−→ µ(T | −)

for the endofunctor (T | −) :N -LTSI→N -LTSI . Notice that such an initial algebra
exists since N -LTSI has colimits of ω-chains and every operation involved in the semantics
preserves this kind of colimits (Theorem 4.7). Moreover it can be calculated in the usual
way as the colimit of the “standard” chain

0I→T | 0I→T | (T | 0I)→T | (T | (T | 0I))→· · · .

To generalise Theorem 4.5 to a calculus with replication, exhibiting a correspondence between
this construction and the standard operational semantics for replication

Rep
A ` P |!P `−→ P ′

A ` !P `−→ P ′

would require a lemma showing that if ([P ])I and [[P ]]I are bisimilar then so are their n-way
parallel compositions, and then a verification of a bisimulation relation. We do not develop the
details here.

5 N -LATS

In this section we define a class of causal models by smoothly lifting the notion of labelled
asynchronous1 transition system [3, 55, 58] (LATS for short) to our indexed setting. LATS are
a simple extension of standard LTS in which transitions have both standard labels and events,
upon which an independence relation is defined. Roughly speaking, concurrency is modelled by
requiring that transitions tagged with independent events might occur in any order. As discussed
in the introduction, in π-calculi dependencies between transitions may arise from their name
usage:

Definition 5.1 If A is a set of names and `1 and `2 are two labels, we say that `2 is A-dependent
on `1 if one of the following two cases applies:

1. val(`1) = chan(`2) 6⊆ A
1There is an unfortunate clash of terminology here: this usage of ‘asynchronous’ is unrelated to the usage

describing process calculi without output prefixing.
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2. val(`1) = val(`2) 6⊆ A, one of `1, `2 is an input action and the other is an output action.

Definition 5.2 Define an Indexed LATS (N -LATS) to be a structure

T = 〈S :N →Set, −→, i, E, I〉

where i = 〈I, i〉 ∈ S,

−→ ⊆ S× (Lab× E)× S ,

E is a set of events, I ⊆ E × E is an independence relation between events and the following
conditions hold.

1. For every event e ∈ E, the structure 〈S :N →Set, −→
e
, i〉 is a N -LTS, where −→

e
is the

set { 〈s, `, t〉 | 〈s, `, e, t〉 ∈−→}.

2. I is irreflexive and symmetric

3. If A ` s
`1−→
e1

t, and t
`2−→
e2

u, and e1Ie2, and moreover `2 is not A-dependent on `1, then there

exists a state t′ such that s
`2−→
e2

t′ and t′
`1−→
e1

u.

Often LATS are defined using more axioms (see [3, 58]). Here we have decided to keep the
axiomatisation as light as possible, as none of the extra axioms is directly relevant for the
definability of the semantic constructions that we consider. Moreover we allow the same event
to carry different labels. This is particularly useful in coping with the proliferation of transitions
induced by reindexing and by the input actions. It is not difficult to devise simple variations of
our definition which adhere more closely to the traditional case.

Building on the independence relation, transitions occurring in a run of a process can be given
a causal partial order describing which transitions are necessary conditions for the occurrence
of others. Roughly speaking one transition causes the following one if the corresponding events
are not independent of each other. As discussed in the introduction, one can choose whether or
not to consider name dependencies – for N -LATS there are two natural ways of defining partial
orders out of runs, one taking account only of the independence relation and another which also
takes name dependencies into account.

Notation: For every natural number n, write [n] for the set {k | 1 ≤ k ≤ n}. Observe that, in
particular, [0] = ∅.

Definition 5.3 For every run ρ

A0 ` s0
`1−→
e1

s1
`2−→
e2

s2 · · ·
`n−→
en

sn

of an N -LATS we define two labelled partial orders:

1. Define po(ρ)I = 〈[n],EρI , l
ρ〉, where

(a) n is the length of the run ρ.
(b) EρI is the transitive closure of �ρI which is defined as i �ρI j if i ≤ j and ¬(eiIej)
(c) lρ(k) = `k, for every k ∈ [n]

2. Define po(ρ)ID = 〈[n],EρID, l
ρ〉, where n and lρ are obtained as above, while EρID is the

transitive closure of �ρID which is defined as i �ρID j if i ≤ j and either not eiIej or `j is
Ai-dependent on `i, where si = (Ai, si).
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History preserving bisimulation [46, 23, 17] is a bisimulation between runs of processes which
accounts for causality by requiring related runs to originate isomorphic partial orders of transi-
tions:

Definition 5.4 If T is an N -LATS, define Run(T ) to be the set of runs of T . If ρ is a run
I ` i

`1−→
e1

s1
`2−→
e2

s2−→· · ·
`n−→
en

sn of T then define

1. end(ρ) def= sn

2. names(ρ) def= An, where sn = 〈An, s〉.

Notation: If ρ is a run of an N -LATS and names(ρ) ` end(ρ) `−→
e

s is a transition, we write

ρ
`−→
e

s for the run which extends ρ with that transition. If ρ and ρ′ are runs, we write ρ `−→
e
ρ′ if

ρ′ extends ρ with the transition names(ρ) ` end(ρ) `−→
e

end(ρ′).

Definition 5.5 Let T1 and T2 be two N -LATSs with initial name-set I. A relation B ⊆
Run(T1) × Run(T2) is an history preserving bisimulation (hpb) if it satisfies the following con-
ditions

1. (I ` i1, I ` i2) ∈ B

2. (ρ1, ρ2) ∈ B implies

(a) po(ρ1)I = po(ρ2)I

(b) if ρ1
`−→1
e1

ρ′1 then there exists a run ρ′2 of T2 and an event e2 ∈ E2 such that ρ2
`−→2
e2

ρ′2

and (ρ′1, ρ
′
2) ∈ B

(c) the symmetric condition to the above.

The relation B is a name-dependency aware hpb (ndahpb) if the condition 2(a) is changed into
po(ρ1)ID = po(ρ2)ID.

The constructions of Section 4 can be easily adapted to become constructions on N -LATS. We
shall now briefly indicate how they need to be extended to take account of the presence of events
and of the independence relation. In all cases where a label is carried from the premise to the
conclusion, the event is also carried (suitably injected).

Restriction The set of events and the independence relation does not change.

Prefixes A new event, not in the independence relation with any other is added and it decorates
all of the new transitions.

Deadlock The set of events is empty and so is the independence relation.

Matching and Mismatching Events and the independency relation are left untouched.

Sum The set of events is taken to be the disjoint union of the originals but no new independence
pairs are added.

Parallel composition If E1 and E2 are the two sets of events we define E0 to be the disjoint
union E1 ] (E1×E2)]E2. Writing this as (E1×{?})∪ (E1×E2)∪ ({?}×E2) for ? 6∈ E1 ∪E2,
the independence relation is defined by 〈e1, e2〉I0〈e′1e′2〉 if both e1Î1e

′
1 and e2Î2e

′
2, where Îk is

the union of Ik and 〈?, ?〉. The new τ -transitions are decorated by the pairs of enabling events.
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Process terms can then be given a denotational semantics and be related by (nda) history
preserving bisimilarity. In the remainder of this section we will mostly concentrate on the
relationship between our semantics and the causal bisimulation of [6]. In particular we present
correspondence results relating our hbp semantics to causal bisimulation, and further discuss
name-dependency.

In the paper [6], no notion of strong causal bisimulation is defined – the authors directly
defined causal bisimulation in the weak form, abstracting away from τ actions. To match with
our definitions we therefore need either to define weak history-preserving bisimulation or to
modify their setting in order to make τ actions visible. We will in fact do both, ending up with
two correspondence results, one for strong and one for weak bisimulation. We now briefly recall
the definition of causal bisimulation of loc. cit. which also requires defining a variant of the
π-calculus with explicit causality information. We refer to loc. cit. for a detailed discussions of
the relevance of their approach. Also, we show here what modifications are needed in order to
define, in their setting, strong causal bisimulation.

As in [6] we take a set K of causes, distinct from the names N , and extend the process syntax
with a construct K :: P where K ⊆fin K is the set of causes that have affected P . For simplicity
we also omit matching and mismatching (as in [6]), omit replication, and adopt the unstratified
grammar below (in contrast to [6]).

P ::= 0
∣∣ P | P ∣∣ τ.P ∣∣ xv.P ∣∣ xp.P ∣∣ P + P

∣∣ (νx )P
∣∣ K :: P

Notation: We write K(P ) for the set of causes occurring anywhere in P , and [k  K]P for P
with each cause-set K ′ containing k replaced by K ∪ (K ′ \ {k}). In the appendix we let P,Q
range over terms of the grammar that do not contain subterms K :: R and C,D range over
arbitrary terms.

The causal operational semantics is given in Figure 3 which defines a transition relation

A ` P `−→
K;k

Q

Here K is the set of prior causes of this transition and k is a new cause. The definition differs
slightly from that of [6] – it is explicitly indexed and it maintains causes for τ -transitions.

Strong causal bisimulation can now be defined in the usual way, by requiring transitions to
agree not only on the labels but on the causes too. In detail, take strong causal bisimulation
∼̇c to be the largest family of relations indexed by finite sets of names such that each ∼̇cA is a
symmetric relation over {P | fn(P ) ⊆ A } and for all P ∼̇cA Q,

• if A ` P `−→
K;k

P ′ then ∃Q′ . A ` Q `−→
K;k

Q′ ∧ P ′ ∼̇cA∪fn(`) Q
′.

This is the obvious adaptation of the definition in [6] to the explicitly-indexed strong case. We
can now state our first non-interleaving correspondence result:

Theorem 5.6 Let P and Q be two terms of the π-calculus with free names in I and let [[P ]]cI
and [[Q]]cI be their interpretations as N -LATS’s. Then [[P ]]cI is history preserving bisimilar to
[[Q]]cI if and only if P is strongly causal bisimilar to Q.

Proof:[Hint] The proof requires some constructions and lemmas. First of all one relates the
(causal) operational semantics of π-terms with transitions in asynchronous transition systems,
in terms of so-called run-bisimulations. These are relations between runs of processes and
runs of N -LATS’s satisfying the usual coinductive properties as well as a condition relating
corresponding partial order of causes and of events. The crucial step is then that of establishing
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Out

A ` xv.P xv−→
∅;k

k :: P
In

A ` xp.P xv−→
∅;k

k :: {v/p}P

Tau
A ` τ.P τ−→

∅;k
k :: P

Cau

A ` P `−→
K;k

P ′

A ` K ′ :: P `−→K∪K′;kK
′ :: P ′

Res

A, x ` P `−→
K;k

P ′ x 6∈ fn(`)

A ` (νx )P `−→
K;k

(νx )P ′
Open

A, x ` P yx−→
K;k

P ′ y 6= x

A ` (νx )P
yx−→
K;k

P ′

Sum

A ` P `−→
K;k

P ′

A ` P +Q
`−→
K;k

P ′
Par

A ` P `−→
K;k

P ′

A ` P | Q `−→
K;k

P ′ | Q

Com

A ` P1
xy−→K1;kP

′
1 A ` P2

xy−→K2;kP
′
2

A ` P1 | P2
τ−→K1∪K2:k(ν{y} −A)([k  (K2 ∪ k)]P ′1 | [k  (K1 ∪ k)]P ′2)

In all rules with conclusion of the form A ` P `−→
K;k

Q there are implicit sideconditions fn(P ) ⊆

A and k 6∈ K(P ). Symmetric versions of Par, Com, and Sum are elided.

Figure 3: π causal operational semantics

that every π-term P , with free names in I, is run-bisimilar to its corresponding N -LATS,
[[P ]]cI . This latter result paves the way for the proof of the Theorem. Details can be found in
Appendix A.

�

A weak version of history preserving bisimulation can be given in the spirit of [57].

Definition 5.7 Let ρ be a run in an asynchronous transition system, let n be the length of ρ,
and let nτ be the number of transitions in ρ which are not labelled τ . For every i ≤ nτ , define
ni ≤ n inductively as follows: n1 is the smallest number h such that the h-th transition of ρ has
label `h 6= τ ; nj+1 is the smallest number h such that the h-th transition of ρ has label `h 6= τ
and that moreover is strictly bigger than nj.

Starting with a run ρ of an N -LATS, by means of the above definition, we can define partial
orders of observable events in runs as follows:

Definition 5.8 Let ρ be a run of an N -LATS and let po(ρ)I and po(ρ)ID be the correspond-
ing partial orders as in Definition 5.3. Define po(ρ)wI and po(ρ)wID to be the partial orders
〈[nτ ],EwI , lρw〉 and 〈[nτ ],EwID, lρw〉, respectively, where lρw(i) = lρ(ni), i EwI j if ni EI nj and
iEwID j if ni EID nj.

Weak history preserving bisimulations are now defined as relations between runs as in Defi-
nition 5.5 but where, as usual, “strong” transitions ρ1

`−→1
e1

ρ′1 are simulated by “weak” ones

ρ2

ˆ̀
=⇒2
e2

ρ′2 (and symmetrically) and with condition 2(a) replaced by

po(ρ1)wI = po(ρ2)wI
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or by po(ρ1)wID = po(ρ2)wID, for the name-dependency aware case. One can use the main
lemma developed for the proof of Theorem 5.6, to prove the following result:

Theorem 5.9 Let P and Q be two terms of the π-calculus with free names in I and let [[P ]]cI
and [[Q]]cI be their interpretations as N -LATSs. Then [[P ]]cI is weak history preserving bisimilar
to [[Q]]cI if and only if P is causal bisimilar to Q in the sense of [6].

Proof:[Sketch] Weak causal bisimulations between π-terms, generate relations between runs of
the corresponding processes. These can be composed with the run-bisimulations of Lemma A.9
to give weak history preserving bisimulations. Vice versa given a weak history preserving bisim-
ulation between the denotations of two processes, one obtains a relation between runs of the
two processes by composing with the run-bisimulations of Lemma A.9. The relation on causal
π agents, which relates end points of related runs is a weak causal bisimulation.

�

In [6] it is argued that, because of the dependencies due to the binding of names, processes like
(νy)(xy.yz) and (νy)(xy|yz) should be indistinguishable by an external observer. Nonetheless
causal bisimulation distinguishes them, as it only tracks the dependencies due to the structure
of processes – in the example, one output is prefixing the other in the first process but not in
the second. The paper leaves open the possibility of a further refinement of the treatment of
causes in the operational semantics to identify the above two processes.

Their remark has been tackled in [30], where a domain model of π-terms based on Kahn
networks is presented. There the induced equivalence equates the two processes, but it seems to
us that the equivalence is anyway a traced-based rather than a bisimulation based one. In [18],
the authors use the combination of different partial orders to achieve the effect of equating the
two processes above. In this paper we instead refined the way the causal order of events in a
run is determined. This has led to the notion of name-dependency aware history preserving
bisimulation defined above. It is easy to verify that name-dependency aware history preserving
bisimilarity is a coarser relation than history preserving bisimilarity and that the former equates
the two example processes:

Proposition 5.10 If two asynchronous transition systems are history preserving bisimilar than
they are name-dependency aware history preserving bisimilar.

Proposition 5.11 The denotations of the process terms (νy)(xy.yz) and (νy)(xy|yz) are name-
dependency aware history preserving bisimilar but not history preserving bisimilar.

6 Relating N -LTSs and N -LATSs

We continue now the abstract study, initiated in the second part of Section 3, of the structures
defined in this paper. We begin by defining, for name-sets I, categories N -LATSI of N -LATSs.
We then establish some categorical properties of N -LATSI and, analogously to the case of
N -LTSs, define a category N -LATS which cofibres over N – the fibres being the categories
N -LATSI . Finally we conclude by showing the existence of adjunctions relating N -LTSI and
(a full subcategory of) N -LATSI , and how these can be glued together to provide a (fibred)
adjunction between N -LTS and (a full subcategory of) N -LATS.

Definition 6.1 Define a morphism T1→T2 between N -LATSs with initial name-set I to consist
of a pair 〈α, η〉 where

• α : S1 =⇒ S2 is a natural transformation
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• η :E1→E2 is a function

such that

1. αi1 = i2

2. s
`−→
e

s′ implies αs
`−→
ηe
αs′

3. eI1e
′ implies ηeI2ηe

′.

Define N -LATSI to be the category of N -LATSs with initial name-set I and these morphisms.

Because of restrictions imposed by the axioms which governs the independence relation between
events of a N -LATS, the category N -LATSI does not enjoy all the completeness and cocom-
pleteness properties of N -LTSI , still it has enough colimits to allow for a denotational semantics
of recursively defined processes.

Theorem 6.2 For every name set I, the category N -LATSI has small coproducts and colimits
of filtered diagrams.2 It also has limits of every non-empty diagram.

Proof: The constructions are extensions of those seen in the proof of Theorem 3.13 for N -LTSs.
We outline some.

• The initial object is 〈N (I,−), ∅, 〈I, 1I〉, ∅, ∅〉.

• The coproduct of a family (Tk = 〈Sk,−→k, 〈I, ik〉, Ek, Ik〉)k∈K of N -LATSs is given by
〈S,−→, 〈I, i〉, E, I〉, where S and the initial state 〈I, i〉 are obtained as in the analo-
gous construction in the proof of Theorem 3.13; E =

∐
k∈K Ek, while I =

∐
k∈K Ik.

If (inSk :Sk→S)k∈K and (inEk : Ek → E)k∈K are the cones of injections, then define s
`−→
e

t

if there exist k ∈ K, s̄, t̄ ∈ Sk and ē ∈ Ek, such that s̄
`−→̄
e
k

t̄ and such that inSk s̄ = s,

inSk t̄ = t and ∈Ek (ē) = e.

• If D is a filtered category and ∆ :D→N -LATSI is a functor, then a colimiting cone

(〈αD, ηD〉 : ∆(D)→T )D∈|D|

can be built as follows:

– (αD :SD→S)D∈|D| is the colimit of D ∆→ N -LATSI
pS→ SetN , where pS is the obvious

projection functor.

– Similarly (ηD :ED→E)D∈|D| is the colimit in Set of D ∆→ N -LATSI
pE→ Set.

– eIe′ if there exist d ∈ |D| and ē, ē′ ∈ ED such that ēID ē′ and ηD(ē) = e and
ηD(ē′) = e′.

– s
`−→
e

t if there exist d ∈ |D|, ē ∈ ED and s̄, t̄ ∈ SD such that s̄
`−→
e
D

t̄ and αD (̄s) = s

and αD (̄t) = t.

– 〈I, i〉 = 〈I, (αD)I(iD)〉, for some D (by filteredness, all the initial states are mapped
to the same state of S(I))

2A filtered diagram is a diagram obtained from a filtered category (see [36] for the definition of this notion).
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It is straightforward to verify that T is a N -LATS and that the cone is colimiting.

Turning to limits it suffices to show that N -LATSI has equalisers and small (but non-empty)
products. Again these are defined by simple extensions of the analogous constructions in
N -LTSI . We leave the reader to work out such details.

�

In particular we can see that N -LATSI does not have terminal object (the limit of the empty di-
agram) and in general it does not have coequalisers – to exist, these would require the possibility
of “autoconcurrent” events. It is worth remarking that the situation here is quite similar to that
of standard LTSs and Asynchronous Transition Systems or Event Structures [58]. Again it is easy
to see how every reindexing function f :A→B induces a functor R(f) :N -LATSA→N -LATSB
and thus that all the categories N -LATSI can be “glued” together with the Grothendieck con-
struction to provide a cofibration N -LATS→N .

An adjunction The category N -LTSI is a full subcategory of N -LATSI . Moreover the
embedding functor, LI , has a right inverse RI . The functor LI can be defined as follows:

On objects LI〈S,−→, i〉 = 〈S,−→′, i, E, I〉. The set of events E is the set of equivalence classes
of transitions of the equivalence relation _ generated by the following reflexive and transitive

relation: (A ` s
`−→ t a B) _◦ (A′ ` s′

`′−→ t′ a B′) if there exist f :A→injA
′ and g :B \A→B′

such that s′ = fs, t′ = [ιf, g]t and `′ = [ιf, g]`, where ι : A′ ↪→ B′ is the inclusion function.
The independence relation I is the empty relation. The transition relation is defined as follows:

A ` s
`

−→′
e

t a B if e = [A ` s
`−→ t a B]_.

On arrows LI(α) = 〈α, η〉, where η([A ` s
`−→ t a B]_) = [A ` αAs

`−→ αBt a B]_.

The functor RI is defined by simply forgetting the extra structure, i.e. the set of events and
the independence relation, which distinguishes N -LATSs from N -LTSs. From a categorical
perspective it would be nice if the pair of functors 〈LI , RI〉 was an adjoint pair. This might
help in providing a formal understanding of the relationship between the constructions used
for the semantics of π-terms in either categories. Unfortunately, as also noted in [58] for the
case of “standard” LATS and LTS, this is not the case: in an (Indexed) LATS, one can have
several transitions carrying the same label between two states. This is something clearly not
possible for an (Indexed) LTS. This mismatching leads to the impossibility of defining a natural
transformation LR =⇒ Id which can act as the counit of the adjunction. A solution out of
this problem is that of imposing an extra extensionality axiom on (Indexed) LATS. It is worth
noticing that this axiom also appeared in [25] where a similar formal relationship was sought
between LATS and Winskel and Nielsen’s Transition System with Independence (a transition
system analogue of Petri nets).

Theorem 6.3 The pair of functors 〈LI , RI〉 forms an adjoint pair, with LI left adjoint and RI
right adjoint, if we restrict to consider N -LATS such that for every events e, e′ ∈ E,

s
`−→
e

t and s
`′−→
e′

t implies ` 6= `′ .

Proof: From the definition of adjunction [36], to show that LI a RI , one has to provide natural
transformations η : Id⇒ RILI and ε :LIRI ⇒ Id such that

εLI (LIη) = IdLI and (RIε)ηRI = IdRI .
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As we said RI is right inverse to LI , thus η is naturally defined to be the identity natural
transformation. Now, if T = 〈S,−→, i, E, I〉 is a N -LATS, define εT :LIRIT →T to be εT =
〈1S , σ〉, where for every event [A ` s

`−→ t a B]_ of LIRIT , σ([A ` s
`−→ t a B]_) = e with e

the unique event of E, such that A ` s
`−→
e

t a B in T .

It should be clear the importance of the extensionality axiom in making εT well-defined.
It is now immediately clear that, if T is an N -LTS, then εLIT is the identity arrow and thus

εLIT (LIηT ) = 1LIT .
On the other hand, for every N -LATS T , RIεT is clearly the identity on RIT , thus it is also

the case that (RIεT )ηRIT = 1RIT .

�

Notice that for any π-term P with free names in I, the corresponding Indexed LATS [[P ]]cI
satisfies the condition of the Theorem above. Moreover, under the hypothesis of Theorem 6.3,
the adjoint functors LI a RI induce a (fibred) adjunction L a R :N -LATS→N -LTS.

7 Alternative indexing structure

In this paper we considered transition systems with an indexed sets of states. The indexing
structure (the category N ) that we have chosen is not the only possible one. Other possibilities
might reasonably be conceived. In this last section we examine those which have occurred to us
and we discuss trade-offs briefly.

Sets and injections Instead of indexing by the category N one can index by Ninj, the
subcategory of N with all objects but only injective functions as arrows. This gives a simpler
structure, in which the transitions of a reindexed state fs are always determined by those of s.
Specifically, define an Ninj-LTS to be a structure T = 〈S :Ninj→Set, −→, i〉 where i ∈ S and
−→⊆ S × Lab × S, satisfying axioms 1, 3a, 3b, 4 of Section 3. To make input prefix definable,
however, the denotation of a process with n free names must be a function from n-tuples of
names to Ninj-LTSs, not simply an N -LTS – to define [[xy.P ]] one would need (at least) [[{z/y}P ]]
for all z ∈ fn(P ), w. Moreover, we doubt whether an analogue of the input axioms 2a,2b could
be stated. Alternatively, one might consider the half-way house of an Ninj+-LTS – an Ninj-
LTS with additional data (and appropriate axioms) specifying how the initial state (but no
other state) is affected by non-injective renamings. This is less mathematically natural, but has
enough structure to support definitions of input prefixing, and of the bisimulation congruence
∼ obtained by closing ∼̇ under arbitrary renamings.

Building restriction into the indexing It is arguable that, as restriction is a fundamental
π-calculus concept, one should take models with more data than our N -LTSs, specifying how
the transitions of states change when names are restricted. This leads to more complex axioms,
though clearly also to a simpler definition of the restriction operator. In more detail, define
Nν to be the category with objects finite subsets of N and arrows pairs 〈f,Rf 〉 :A→B where
f :A⇀B is a partial function and Rf ⊆ (A \dom(f))× (A \dom(f)) is an equivalence relation.
If A ` s then the re-indexing of s along 〈f,Rf 〉 should be thought of as the state in which names
in A \ dom(f) have been restricted, after being quotiented by Rf , and other names have been
substituted as specified by f . Define composition of arrows by 〈g,Rg〉 ◦ 〈f,Rf 〉 = 〈g ◦ f,Rg◦f 〉
where Rg◦f = Rf ∪ { (a, a′) | f(a) Rg f(a′) }. Preliminary investigation suggests that with
this structure it may be possible to relate parallel composition to the categorical product, as in
[58]. Moreover, from the categorical point of view, the explicit restriction reindexings, makes
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the resulting cofibrations N -LTS→Nν and N -LATS→Nν bifibrations, i.e. fibrations as well
as cofibrations.

Choosing new names In our definition, for a state s above A, all names w 6∈ A are treated
symmetrically – corresponding to the operational fact that (if x ∈ A) there is a transition A `
(νz )xz xw−→ 0 for any w 6∈ A. One can instead take a chosen new – a function ν :Pfin(N )→N
such that ∀A . νA 6∈ A. This leads to an endofunctor δ :N →N defined by δ A = A∪{νA} and
δ(f) = f ∪ {νA 7→ νB}; the axioms can be restated in terms of δ. In this paper we have not
taken a chosen new in order to keep the tight correspondence with the operational semantics,
and for notational simplicity. The obvious advantage of taking such an approach would be that
of drastically restricting the degree of branching of the transition systems. The drawback is
in the extra complications occurring in the axiomatisation having to do with the renaming of
newly generated and communicated channels.

The chosen-new version of Ninj is essentially the indexing structure used in [56, 20, 24, 12].

8 Future work and applications

We conclude by hinting at several possible applications and extensions.

Syntax-free Metatheory

Firstly, N -LTSs provide a setting in which some of the π-calculus early metatheory can be
developed in a syntax-free style, independently of the exact choice of calculus. In particular, one
could show congruence results for operational equivalences with respect to the N -LTS operations
defined in Section 4, perhaps developing the open-map approach of [31, 13, 14], and could prove
characterisation results relating operational equivalences with classes of formulae of suitable
modal logics.

Model Checking

We believe our structures may form a useful basis for π-calculus interleaving and partial-order
model checking, via notions of finitely presentable N -LTS andN -LATS. The π labelled transition
relation is (for non-trivial processes) infinite-branching, but when checking (eg) bisimulation of
processes it is often intuitively clear that only a finite number of transitions are ‘important’.
Several authors have worked on finitary characterisations using a refined symbolic operational
semantics [35, 45, 5]. It may be fruitful to consider the alternative approach of model-checking
algorithms that work directly over finite presentations, thereby again decoupling the algorithm
design from the exact choice of calculus. Depending on what equivalence (or modal properties)
one wishes to check, it may be appropriate to work not with N -LTSs but with the Ninj-LTSs or
Ninj+-LTSs of Section 7. For illustration we sketch a notion of finite presentation of an Ninj-LTS.
We expect there to be interesting relationships with the HD-automata of [43], which provide a
notion of minimal realization.

Definition 8.1 A finite presentation T0 of an Ninj-LTS consists of data 〈S0, −→0, i〉, where

1. S0 is function from |Ninj| to finite sets which is empty almost everywhere. We then define
a functor S :Ninj→Set by

S(B)
def
= { 〈s, f〉 | ∃A . s ∈ S0(A) ∧ f :A→injB }

S(g)(〈s, f〉) def
= 〈s, g ◦ f〉 for g :B→inj C and 〈s, f〉 ∈ S(B)
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As before we write S for the set
∐
A∈|N| S(A), and also write S0 for

∐
A∈|N| S0(A).

2. −→0⊆ S0 × Lab× S is a finite relation.

3. i ∈ S.

satisfying the axiom

1. (Naming) 〈A, s〉 `−→0 〈B, 〈t, f〉〉 =⇒ chan(`) ⊆ A ∧ B = A ∪ fn(`) (here s ∈ S0(A),
t ∈ S0(C), and f :C→injB).

A more sophisticated notion would include also a finite number of equalities between elements of
S. One could now relate the finitely-presentable Ninj-LTSs to those denotable by finite-control
process terms, and consider model-checking algorithms over the finite presentations.

Adding Values

In this paper we addressed only monadic π-calculus, for notational simplicity. Extension to
calculi with polyadic or tuple communication is straightforward. Some applications – notably
those involving cryptography – require a further extension to allow communication of values of
datatypes that are specified with equations or rewrite rules. This should also be straightforward
(though one may wish to exclude equations that discard variables, to obtain an unambiguous
notion of the new names in a value). An operational development with equational datatypes
has been given by Abadi and Fournet [1].

Synchronisation Algebras

More speculatively, one can ask whether synchronisation algebras [58] can be generalised to
cover a useful variety of name-passing calculi, thereby supporting uniform definitions of N -LTS
and N -LATS. A good test-case here is the synchronisations of the box-π calculus [53, 54], which
has an early LTS that is interestingly different from that of the π-calculus. One might also begin
a study of early rule formats.

Security Protocols

An analogue of N -LTS, extended to allow communication of tuples and encrypted values, may
provide a useful basis for proofs and model-checking of cryptographic protocols. There are two
points here. Firstly, many security properties are stated using a quantification over all possible
‘attacker’ processes. Quantifying over all elements of the model, not merely over syntactically-
denotable elements, therefore gives stronger security properties that are less dependent on the
precise expressiveness of the calculus used.

Secondly, the model allows alternative styles of definition of system behaviours. For exam-
ple, in the work of Paulson (see e.g. [44]) systems are described by disjunctions of predicates
specifying when a given trace can be extended by a particular label. One can characterise the
well-formed such predicates (loosely, those that are preserved by new-name substitutions), that
define Ninj-LTSs (with state-sets simply the set of all traces). These can then be composed by
parallel and restriction operators. One may thereby obtain a tight connection between this work
and process-calculus modeling of protocols, e.g. [2].
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Out

A ` C :xv xv−→C 0
In

A ` xp.P xv−→C C •{v/p}P

Par
A ` P `−→C P

′

A ` P | Q `−→C P
′ | Q

Comm
A ` P xv−→C P

′ A ` Q xv−→C Q
′

A ` P | Q τ−→∅ ν({v} \A)(P ′ | Q′)

Res
A, x ` P `−→C P

′ x 6∈ fn(`)
A ` νxP `−→C νxP

′
Open

A, x ` P yx−→C P
′

A ` νxP yx−→C P
′

In all rules with conclusion of the form A ` P `−→C Q there is an implicit side condition
fn(P ) ⊆ A. Symmetric versions of (Par) and (Comm) are elided.

Figure 4: Coloured π operational semantics

Relating to Coloured Semantics

Lastly, we observe that the model-theoretic view would enhance work on secure encapsulation
[53, 54]. As above, quantifying over elements of the model, rather than over syntactic processes,
would allow stronger security properties to be stated. Further, that work introduced an ad-
hoc coloured operational semantics, to provide a tractable approximate notion of causality for
the box-π calculus used there. We state conjectures relating the (π fragment of the) coloured
semantics to N -LATS, as a step towards understanding exactly what approximation is involved.

The coloured semantics takes a fixed set col of colours (or initial causes, or principals – we
use the terms interchangeably) disjoint from N . Let C,D,K range over subsets of col. We define
a coloured box-π calculus by annotating all outputs with sets of colours:

P,Q ::= 0
∣∣ P | Q ∣∣ C :xv

∣∣ xp.P
∣∣ νxP

If P is a coloured term we write |P | for the term of the original syntax obtained by erasing all
annotations. Conversely, for a term P of the original syntax C ◦P denotes the term with every
particle coloured by C. In the coloured output C :xv think of C as recording the causal history
of the output particle – C is the set (possibly empty) of principals p ∈ C that have affected the
particle in the past. In an initial state all outputs might typically be coloured by singleton sets
giving their actual principals. The coloured labelled transition relation has the form

A ` P `−→C Q

where A is a finite set of names, fn(P ) ⊆ A, and ` is a label as before; it should be read as ‘in a
state where the names A may be known to P and its environment, process P can do `, coloured
C, to become Q’. Here C records causal history, giving all the principals which have directly or
indirectly contributed to this action. The relation is defined as the smallest relation satisfying
the rules in Figure 4.

Consider a coloured trace t and a run r

A0 ` ∅ ◦P
`1−→C1 R1

`2−→C2 R2 . . .
`n−→Cn Rn, A0 ` s0

`1−→
e1

s1
`2−→
e2

s2 · · ·
`n−→
en

sn

Given a run r and an arbitrary equivalence relation ' on the set { ei | ∃x, v . `i = xv } and
col the equivalence classes, define a coloured trace r/ ' (without the process parts) with labels
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`1 . . . `n, with inputs `j coloured [ej ]', outputs `j coloured by
⋃
{ [ei]' | i an input and iErI j }

and taus coloured ∅. We conjecture that given r and an arbitrary equivalence relation ' there
is a coloured trace r/ ', and that given t there exists a run r and an equivalence relation '
such that t = r/ '.
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A Proof of Theorem 5.6

In this appendix we provide all the necessary auxiliary results for and the proof of Theorem 5.6
whose text, we recall, is the following:

Let P and Q be two terms of the π-calculus with free names in I and let [[P ]]cI and
[[Q]]cI be their interpretations as N -LATS’s. Then [[P ]]cI is history preserving bisimilar
to [[Q]]cI if and only if P is strongly causal bisimilar to Q.

Notation: Throughout this appendix we write P,Q for generic π-terms, regarded as causal
π-terms and C (possibly indexed) for generic causal π-terms.

We then begin with some auxiliary definitions and lemmas.

Definition A.1 If P is a π-term with free names in I, define Run(P )I to be the set of runs of
P with initial name set I. Given a causal run r = I ` P `1−→K1;k1

C1
`2−→K2;k2

C2−→· · ·
`n−→Kn;kn

Cn define

1. end(r) def= Cn

2. label(r) def= {`j | 1 ≤ j ≤ n}

3. names(r) def= I ∪
⋃

`∈label(r)

fn(`)

4. po(r)I to be the following labelled partial order: ([n],≤c, l), where l(i) = `i and i ≤c j if
ki ∈ Kj ∪ {kj}.

5. for any set of causes K ⊆ K(Cn), the cause-closure of K with respect to r, K def= K ∪
⋃
kj∈K

Kj

To prove that the relation ≤c is a partial order it suffices to prove the following theorem:

Theorem A.2 Given a causal-π run, I ` P `1−→K1;k1
C1

`2−→K2;k2
C2−→· · ·

`n−→Kn;kn
Cn, for every i < n, if

ki ∈ Kn, then Ki ⊆ Kn.

The proof requires a new definition and a lemma.

Definition A.3 For every causal-π term, C and cause k, define k ↓ C to be the set of sets of
causes inductively defined as follows:

k ↓ 0 = ∅ k ↓ µ.C = k ↓ C
k ↓ (νx )C = k ↓ C k ↓ (C1 + C2) = (k ↓ C1) ∪ (k ↓ C2)

k ↓ (C1 | C2) = (k ↓ C1) ∪ (k ↓ C2) k ↓ K :: C =
{
{K ∪K ′ | K ′ ∈ k ↓ C} if k 6∈ K
{K ∪K ′ | K ′ ∈ k ↓ C} ∪ {K} otherwise,

where µ is any output, input or τ prefix.

The set k ↓ C aims at syntactically identify the sets of causes which precede (occurrences of) k
in the partial order. A few useful properties can be proved to hold:

Lemma A.4 If, for every set X and Y , we write [x Y ]X, for the set (X \ {x})∪Y if x ∈ X
and X if x 6∈ X, then k ↓ [k  K]C = {[k  K]X | X ∈ k ↓ C}, for any causal π-term C,
cause k and cause set K with k ∈ K.
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Proof: The proof is a straightforward structural induction.

�

Lemma A.5 For any causal π-transition A ` C `−→
K;k

C ′ the following facts hold:

1. k ↓ C ′ = {K ∪ {k}}

2. for all k̂ ∈ K, there exists K̂ ∈ k̂ ↓ C such that K̂ ⊆ K

3. for all k̂ 6= k and for all all K ′ ∈ k̂ ↓ C ′, there exists K̂ ∈ k̂ ↓ C such that K̂ ⊆ K ′

Proof: The proof is an easy rule induction. Point (1) requires point (A.4) to resolve the case
of the rule COM.

�

Equipped with the Lemma A.5 it is now easy to prove the Theorem A.2.

Proof:[of Theorem A.2] The proof is by induction on the length of the run. The base case, i.e.
the length is 0, is obviously trivial. For the inductive step, suppose ki ∈ Kn (with n > 0), then
by Lemma A.5(2) there exists K̂ ∈ ki ↓ Cn−1 such that K̂ ⊆ Kn. By induction on (n − 1 − i)
it is now easy to show that Ki ⊆ K̂ and thus that Ki ⊆ Kn. In fact, if n − 1 − i = 0 then

K̂ = Ki ∪ {ki}, by Lemma A.5(1), otherwise, by Lemma A.5(3), there exists ̂̂K ∈ ki ↓ Cn−2

such that ̂̂K ⊆ K̂ and by inductive hypothesis Ki ⊆
̂̂
K.

�

We define now the notion of run-bisimulation, relating the behaviour of causal π-processes
and N -LATSs.

Notation: If r is a causal run and names(r) ` end(r) `−→
K;k

C ′ is a transition, we write r `−→
K;k

C ′ for

the run which extends r with that transition. If r and r′ are runs, we write r `−→
K;k

r′ if r′ extends

r with the transition names(r) ` end(r) `−→
K;k

end(r′).

Definition A.6 A relation R ⊆ Run(P )×Run(T ) between causal runs of a π-term P with free
names in I and runs of an N -LATS T with initial name-set I is a run-bisimulation if

1. (I ` P, I ` i) ∈ R

2. (r, ρ) ∈ R implies po(r)I = po(ρ)I

3. (r, ρ) ∈ R and r `−→
K;k

r′ implies that there exists an e ∈ E such that ρ `−→
e
ρ′ and (r′, ρ′) ∈ R

4. (r, ρ) ∈ R and ρ `−→
e
ρ′, implies that there exist K and k such that r `−→

K;k
r′ and (r′, ρ′) ∈ R .

Causal bisimulations in π, gives rise to relations between runs of processes:
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Definition A.7 If B is a causal bisimulation, such that PBQ, define

Run(B) ⊆ Run(P )× Run(Q)

to be the following relation between causal runs of P and Q respectively:
if r = I ` P `1−→K1;k1

C1
`2−→K2;k2

C2−→· · ·
`n−→Kn;kn

Cn and s = I ` Q `1−→K1;k1
D1

`2−→K2;k2
D2−→· · ·

`n−→Kn;kn
Dn are

causal runs (notice the coincidence of initial name-set, labels and causes), then rRun(B) s if for
all i ≤ n it is the case that CiBDi.

Run-bisimulations and causal bisimulations originate history-preserving bisimulations between
N -LATSs, while run-bisimulations and history preserving bisimulations originate causal bisim-
ulations.

Lemma A.8 Let R ⊆ Run(P )×Run(T ) and S ⊆ Run(Q)×Run(U) be two run-bisimulations.
Then the following two facts hold:

1. If B is a causal bisimulation relating P and Q, then S ◦ Run(B) ◦ R◦, where R◦ is the
relation opposite of R, is an history-preserving bisimulation.

2. If B ⊆ Run(T )×Run(U) is an history preserving bisimulation, then the symmetric closure
of the relation

{(C,D) | ∃r, r′. r (S◦ ◦ B ◦ R) r′ ∧ end(r) = C ∧ end(r′) = D}

is a causal bisimulation, which obviously relates P and Q.

Proof: Straightforward.

�

In order to prove Theorem 5.6, we then show that for every process term P , with free names in I,
there is a run-bisimulation between Run(P )I and Run([[P ]]cI). Combining this with Lemma A.8
will then give us a proof of the Theorem.

Lemma A.9 Let P be a π-term with free names in I, then there exists a run-bisimulation
RP ⊆ Run(P )I × Run([[P ]]cI).

Proof:The proof is by induction on the size of P , where the size of the process is defined as
its number of process constructors. The base case is trivially provided by the unique process of
size one, namely the nil process. One then shows how to build run bisimulations for compound
process terms out of run bisimulation of processes of smaller size.

Most cases are straightforward, we consider here only the two delicate ones, i.e. when a term
of size greater than 1 is either a restriction or a parallel composition of terms.

Restriction Suppose P = (νx )Q and assume, by inductive hypothesis, the existence for each
x̂ ∈ N \ I of a run-bisimulation R{x̂/x}Q ⊆ Run({x̂/x}Q)I,x̂ × Run([[{x̂/x}Q]]cI,x̂). Let also
[[{x̂/x}Q]]cI,x̂ be the tuple 〈Sx̂, −→x̂, ix̂, Ex̂, Ix̂〉. Define R to be the smallest set of 4-tuples

〈r, ρ, r̂, ρ̂〉 ∈
⋃

x̂∈N\I

(Run({x̂/x}Q)I,x̂ × Run([[{x̂/x}Q]]cI,x̂))× Run(P )I × Run([[P ]]cI)

such that:

• 〈(I, x̂) ` {x̂/x}Q, (I, x̂) ` ix̂, I ` P, I ` r[ix̂]↔I
〉 ∈ R, for each x̂ ∈ N \ I
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• if 〈r, ρ, r̂, ρ̂〉 ∈ R then the following two conditions are satisfied for every label `, cause set
K, cause k, event e, causal-π agent C and state s:

1. if 〈r `−→
K;k

C, ρ
`−→x̂
e

s〉 ∈ R{x̂/x}Q, and if for every `′ ∈ label(r) ∪ {`}, x̂ 6∈ fn(`′) then

〈r `−→
K;k

C, ρ
`−→x̂
e

s , r̂
`−→
K;k

(νx̂ )C, ρ̂ `−→
e

r[s]↔A
〉 ∈ R ,

where A = names(r) ∪ fn(`).

2. if 〈r `−→
K;k

C, ρ
`−→x̂
e

s〉 ∈ R{x̂/x}Q, and if there exists `′ ∈ label(r)∪{`} such that `′ = yx̂,

for some y ∈ N then

〈r `−→
K;k

C, ρ
`−→x̂
e

s, r̂
`−→
K;k

C, ρ̂
`−→
e

ls〉 ∈ R

Define now RP def= {〈r̂, ρ̂〉 | ∃ r, ρ. 〈r, ρ, r̂, ρ̂〉 ∈ R}. It is not difficult to verify that RP is a
run-bisimulation.

Parallel composition Suppose P = P1 | P2 and that RP1 and RP2 are run-bisimulations.
Define R to be the smallest set of 7-tuples 〈Z, r1, ρ1, r2, ρ2, r, ρ〉 in

Pfin(N )× Run(P1)I × Run([[P1]]cI)× Run(P2)I × Run([[P2]]cI)× Run(P )I × Run([[P ]]cI)

such that

• 〈∅, I ` P1, I ` i1, I ` P2, I ` i2, I ` P, I ` i1 |I i2〉 ∈ R

• if 〈Z, r1, ρ1, r2, ρ2, r, ρ〉 ∈ R then the following five conditions and their obvious symmetric
counterparts hold for any (possibly subscripted) label `, cause set K, cause k, event e,
causal-π agent C, state s and names x, y ∈ N :

1. if 〈r1
`−→
K;k

C, ρ1
`−→
e

s〉 ∈ RP1 and k 6∈ K(end(r)) and chan(`) ∩ Z = ∅ and val(`) ∩ (Z ∪

names(r2) \ names(r1)) = ∅ then

〈Z, r1
`−→
K;k

C, ρ
`−→
e

s, r2, ρ2, r
`−→
K;k

(νZ )(C | end(r2)), ρ `−→〈e,∗〉(1s |A 2end(ρ2))〉 ∈ R ,

where names(r1) ∪ val(`)
1
↪→ names(r1) ∪ val(`) ∪ names(r2)

2←↩ names(r2) and A =
names(r) ∪ val(`).

2. if 〈r1
xy−→
K;k

C, ρ
xy−→
e

s〉 ∈ RP1 and k 6∈ K(end(r)) and x 6∈ Z and y ∈ (names(r2) \

names(r1)) then

〈Z, r1
xy−→
K;k

C, ρ
xy−→
e

s, r2, ρ2, r
xy−→
K;k

(νZ )(C | end(r2)), ρ
xy−→〈e,∗〉(1s |A 2end(ρ2))〉 ∈ R ,

where names(r1) ∪ {y}
1
↪→ names(r1) ∪ names(r2)

2←↩ names(r2) and A = names(r).

38



3. if 〈r1
xy−→
K;k

C, ρ1
xy−→
e

s〉 ∈ RP1 and k 6∈ K(end(r)) and x 6∈ Z and y ∈ Z then

〈Z \ {y}, r1
xy−→
K;k

C, ρ
xy−→
e

s, r2, ρ2, r
xy−→
K;k

(ν(Z \ {y}))(C | end(r2)), ρ
xy−→〈e,∗〉(1s |A 2end(ρ2))〉 ∈ R ,

where names(r1)
1
↪→ names(r1) ∪ names(r2)

2←↩ names(r2) and A = (names(r), y).

4. if 〈r1
xy−→K1;kC1, ρ1

xy−→
e1

s1〉 ∈ RP1 and 〈r2
xy−→K2;kC2, ρ2

xy−→
e2

s2〉 ∈ RP2 and y 6∈ names(r1) ∪
names(r2) then

〈(Z, y), r1
xy−→K1;kC1, ρ1

xy−→
e1

s1, r2
xy−→K2;kC2, ρ2

xy−→
e2

s2, r
τ−→

K1∪K2;k
(ν(Z , y))(C1 | C2), ρ

τ−→〈e1,e2〉(1s1 |A 2s2)〉 ∈ R ,

where A = names(r) and

names(s1) = names(r1)∪{y}
1
↪→ names(r1)∪{y}∪names(r2)

2←↩ names(r2)∪{y} = names(s2) .

5. if 〈r1
xy−→K1;kC1, ρ1

xy−→
e1

s1〉 ∈ RP1 and 〈r2
xy−→K2;kC2, ρ2

xy−→
e2

s2〉 ∈ RP2 and y ∈ (names(r1) \
names(r2)) ∪ Z then

〈Z, r1
xy−→K1;kC1, ρ1

xy−→
e1

s1, r2
xy−→K2;kC2, ρ2

xy−→
e2

s2, r
τ−→

K1∪K2;k
(νZ )(C1 | C2), ρ

τ−→〈e1,e2〉(1s1 |A 2s2)〉 ∈ R ,

where A = names(r) and

names(s1) = names(r1)
1
↪→ names(r1) ∪ names(r2)

2←↩ names(r2) = names(s2) .

Define now
RP = {〈r, ρ〉 | ∃ 〈Z, r1, ρ1, r2, ρ2, r, ρ〉 ∈ R} .

The five conditions (and their symmetric counterparts) cover all possible cases of how transitions
in the components of a (restricted) parallel composition induce transition in the (restricted)
parallel composition process itself. Condition 1 considers all possible kind of transitions in one
of the components. The restriction on val(`) is to ensure that no names from the set Z are
communicated as outputs and that the outputs or inputs of new names, with respect to one
component only are also outputs or inputs of a new name in the compound process. Condition
2 and 3 supplement Condition 1: Condition 2 by considering what happens in the cases of the
input of a name which is new with respect to one component but not the other; Condition 3 by
handling the case of the output of a name in Z. Condition 4 and 5 analyse the possibility of an
internal communication between the two components which might lead to the extrusion of the
scope of some restricted name.

It is slightly more laborious, compared to the case of restriction, to verify that RP is a
run bisimulation as the equality between the partial orders induced by related runs is not
transparently clear but need to be proved by induction on the length of the (related) runs. We
leave to the reader to work out the necessary details.

�

We are finally ready to put all this together and prove Theorem 5.6:

Proof:[of Theorem 5.6] Let P and Q be two π-terms with free names in I. By Lemma A.9, there
exist run-bisimulations RP ⊆ Run(P )I × Run([[P ]]cI) and RQ ⊆ Run(Q)I × Run([[Q]]cI). Thus
is P is causal bisimilar to Q, by Lemma A.8 (1), Run([[P ]]cI) is history preserving bisimilar to
Run([[Q]]cI). Vice versa if Run([[P ]]cI) is history preserving bisimilar to Run([[Q]]cI), by Lemma A.8
(2), P is causal bisimilar to Q.

�
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