
Type-Safe Distributed Programming for OCaml

John Billings Peter Sewell Mark Shinwell Rok Strniša
Computer Laboratory, University of Cambridge

http://www.cl.cam.ac.uk/users/pes20/hashcaml

Abstract
Existing ML-like languages guarantee type-safety, ensuring mem-
ory safety and protecting the invariants of abstract types, but only
within single executions of single programs. Distributed program-
ming is becoming ever more important, and should benefit even
more from such guarantees. In previous work on theoretical cal-
culi and the Acute prototype language we outlined techniques to
provide them for simple languages.

In this paper we put these ideas into practice, describing the
HashCaml extension to the OCaml bytecode compiler, which sup-
ports type-safe and abstraction-safe marshalling, together with re-
lated naming constructs. Our contribution is threefold: (1) We show
how to define globally meaningful runtime type names for key
OCaml type constructs that were not covered in our previous work,
dealing with the generativity issues involved: user-defined vari-
ant and record types, substructures, functors, arbitrary ascription,
separate compilation, and external C functions. (2) We support
marshalling within polymorphic functions by type-passing, requir-
ing us to build compositional runtime type names and revisit the
OCaml relaxed value restriction. We show that with typed mar-
shalling one must fall back to the SML97 value restriction. (3) We
show how the above can be implemented with reasonable perfor-
mance as an unintrusive modification to the existing OCaml lan-
guage, implementation, and standard libraries. An alpha release of
HashCaml, capable of bootstrapping itself, is available, along with
an example type-safe distributed communication library written in
the language.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages, Reliability, Security

Keywords HashCaml, Objective Caml, type-safe marshalling

1. Introduction
The development of functional programming languages such as
ML and Haskell demonstrates — and rests upon — the use of ex-
pressive type systems. These provide strong guarantees, ensuring
not just memory safety but also that high-level abstractions intro-
duced by the programmer are respected. Unfortunately such guar-
antees are only provided within single executions of single pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ML’06 September 16, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-483-9/06/0009. . . $5.00.

grams: when data is transferred between executions, either via the
network or via persistent storage, one loses the support of the stan-
dard type systems. Ironically, this is just at points where early de-
tection of errors would be most useful, as in the distributed or per-
sistent setting, with multiple versions of programs interacting, there
is great potential for confusion. Further, it is, in principle, an unnec-
essary loss, as for two programs to interact usefully there must be
some shared knowledge of the structure of any data that will be
exchanged. How, then, should we design typed programming lan-
guages to make best use of this shared knowledge, to detect errors
as early as possible, and thereby to support distributed program-
ming as well as ML and Haskell support local computation?

In previous work we have studied several aspects of this prob-
lem, developing theoretical calculi that construct globally meaning-
ful runtime type names freshly [31] and based on code hashes [22],
calculi of dynamic rebinding [4], and a prototype language, Acute,
to explore the design space further [33, 34].

In the current work we further develop these theoretical ideas
and put them firmly into practice. We have designed and imple-
mented an extended version of the OCaml 3.09.1 bytecode com-
piler, of Leroy et al. [24]. This HashCaml extension supports type-
safe marshalling, including marshalling values of abstract types,
marshalling within polymorphic functions, and various constructs
for distributed naming. Our contribution is threefold:
(1) We show how to define globally meaningful runtime type

names for key OCaml type constructs that were not covered
in our previous work, dealing with the generativity issues in-
volved: user-defined variant and record types, substructures,
functors, arbitrary ascription, separate compilation, and exter-
nal C functions (§4).

(2) We support marshalling within polymorphic functions by type-
passing, requiring us to build compositional runtime type names
and revisit the OCaml relaxed value restriction. We show that
with typed marshalling one must fall back to the SML97 value
restriction (§5).

(3) We show how the above can be implemented, with reason-
able performance, as an unintrusive modification to the existing
OCaml language, implementation, and standard libraries (§6).

We prefix these in §3 with an overview of the main problems and
a summary of the HashCaml features, and in §7 we detail an ex-
ample demonstrating how the new constructs support typed dis-
tributed programming: a library written in HashCaml that provides
polymorphic, typed, local and distributed, channel-based commu-
nication. We discuss related work in §8 and conclude in §9. A pre-
liminary alpha release of HashCaml is publicly available [6] and,
except where otherwise stated, the code in this paper is taken from
working examples in the distribution.

The addition of type-safe marshalling is in one sense a modest
change to OCaml — the language syntax and static type system
are largely unchanged, as is the semantics of (almost all) existing
programs. The semantics of type-safe marshalling, however, cuts

across much of the language: all its types and values. We must
consider what the dynamic type equality is across all of the ex-
isting type system, and also between different program scopes; and
we need reasonable behaviour for marshalling arbitrary values of
the language. We are proposing what we consider to be reason-
able choices for OCaml, but many points are equally applicable to
SML or other languages with type abstraction. For future language
designs these questions should be considered from the outset: one
would like the static and dynamic type equalities to coincide ex-
actly, where they are compatible, but, (as we will show) the ex-
isting OCaml (or SML) static equality is not always suitable for
distributed programming.

2. Background
To make this paper self-contained, we briefly recapitulate the main
line of argument from our earlier work [34], referring the reader
there for a full discussion.
1. Marshalling There are many desirable communication and
persistent storage abstractions, with very different properties (syn-
chronisation, performance, reliability, secrecy, authentication, etc.).
Rather than build a fixed selection into a programming language,
we think it better to provide marshalling (or serialization) of ar-
bitrary values to byte strings; various communication and storage
abstractions can then be provided as libraries above this.
2. Type-Safe Marshalling For early detection of errors, mar-
shalling should be type-safe. In particular, unmarshalling should
fail if the type of the marshalled value is not what is expected (this
is a dynamic failure, but it should be at unmarshal-time rather than
during later computation). Accordingly, marshalled values must
contain a runtime type representation. For example, this should suc-
ceed (ignore the [] and 0 arguments):

let s = Marshal.to_string false []
let b = true && (Marshal.from_string s 0)

whereas the following code should raise an exception at the
unmarshal, when an equality test fails between the type represen-
tation in the marshalled value (int) and that of the expected type
(bool). (In OCaml the unmarshal succeeds, producing a value of
type bool which is not equal to true or to false.)

let s = Marshal.to_string 17 []
let b = true && (Marshal.from_string s 0)

Realistic examples would typically have the two lines of code in
two distinct programs. Note that the types should be inferred where
possible, as above.
3. Abstraction-Safe Marshalling and Globally Meaningful Type
Names For a language with simple types one could ensure type-
safety by choosing some runtime type representation that is iso-
morphic to the source-language abstract syntax of types. However,
idiomatic ML programming makes frequent use of programmer-
defined abstract types; the standard type system guarantees that
within a single execution any invariants of these types are pro-
tected. To maintain that same level of protection across a distributed
system our previous work proposed building globally meaningful
type names for abstract types in two ways, either freshly (pseudo-
random long bitstrings) or from hashes of the modules that de-
fine them. For example, in Acute one could define an abstract type
EvenCounter.t as below; the runtime type name for this type was
essentially h.t, where h was the hash of the module definition (in
fact of the abstract syntax of the structure and signature, up to al-
pha equivalence and type equality, and taking module dependencies
into account). This ensures that the invariant of EvenCounter.t,
that its values will always be non-negative even numbers, is pre-
served even when its values can be marshalled between programs.

module EvenCounter
: sig = struct

type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up = fun (x:int)->2+x

end end

These runtime type names were built so that common cases of inter-
operation between different programs, which are not identical but
do share the definitions of any types used for interaction, would just
work — without any need to exchange runtime type names during
development.
4. Parametric Polymorphism and Type Passing Idiomatic ML
programming also makes heavy use of parametric polymorphism,
and many of the anticipated uses of marshalling are within poly-
morphic functions — for example, within the implementation of
a function send : fd -> ’a -> unit that takes a TCP socket
file descriptor and a value to send, marshals the value, and sends it
over the TCP connection. Each execution of this marshal requires
a runtime type representation for the type at which send is instan-
tiated. In Acute, parametric polymorphism was via explicit type
abstractions and applications, so runtime type representations au-
tomatically flowed to the marshal and unmarshal points where they
were needed.

3. Putting it into practice: HashCaml
The Acute language was an experimental prototype, not a produc-
tion system. The language was large enough to write nontrivial ex-
amples but omitted many standard features — most importantly, the
module system was rudimentary and there were no user-definable
datatypes. The implementation runtime was an interpreter over the
abstract syntax of the semantics, which made it easy to maintain in
tight correspondence with the Acute definition, but was very slow
(around three orders of magnitude slower than OCaml bytecode).
The library support was very limited.
Problems Our main goal in the current work is to integrate type-
safe and abstraction-safe marshalling into a production language,
OCaml. There are three main problems that must be addressed,
which we introduce below and solve in §4, §5 and §6.
Globally Meaningful Type Names Firstly, we must consider
what runtime type names to use for types that involve the OCaml
type features not covered in our previous work: user-defined variant
and record types, substructures, functors, arbitrary ascription, and
separate compilation. We have to balance a tension between:
(1) making dynamic type equality (induced by unmarshal-time

comparison of our runtime type names) correspond to the ex-
isting OCaml static type equality;

(2) making the dynamic type equality useful for distributed pro-
gramming; and

(3) doing this at a reasonable implementation cost (both runtime
performance and compiler complexity).

The key question here is the generativity of type definitions —
when should two similar type definitions give rise to compatible
types. This is a fundamental and much-discussed issue in the design
of static typing for datatypes and modules [20]; as we shall see,
the distributed setting introduces new questions and affects the best
choices.
Parametric Polymorphism and Type Passing Secondly, in con-
trast to the explicit polymorphism of Acute, in OCaml (as in ML
in general), polymorphism is implicit in the term language. There
is little type information available from the existing runtime struc-
tures in the implementation. We provide the runtime type infor-

mation needed at marshal and unmarshal points within polymor-
phic functions by a type-passing translation, inserting explicit type-
representation abstractions and applications during compilation.
For example, we compile

let f : ’a list -> int
= function xs -> ...

to something like

let f : typerep -> ’a list -> int
= function tvar_a xs -> ...

As we shall see, this gives rise to semantic questions related to
the compositionality of type representations, the treatment of non-
ground types, and the value restriction. For the latter, we show
that the addition of type-safe marshalling forces a switch from the
OCaml relaxed value restriction of Garrigue [15] to the SML97
value restriction [40].
Implementation Thirdly, we need an implementation design that
fits well with the existing OCaml implementation, providing rea-
sonable performance without requiring radical changes to the ex-
isting language, compiler or runtime. This is intertwined with the
previous problems: in places the user-visible semantics of our new
constructs arises from a pragmatic compromise between (1), (2),
and (3) above. Accordingly, in §4 and §5 we describe enough of our
implementation strategy to motivate these user-visible choices. In-
ternal implementation problems are addressed in §6, especially the
problem of designing an internal type representation that is compo-
sitional but also high-performance, without (say) recomputing ac-
tual type hashes at every use of generalized value identifiers. There
are also challenging implementation questions arising from pattern
matching, signature coercions, normalisation before hashing, and
the OCaml imperative generalization code.
HashCaml: Overview We solve these problems in the context of
HashCaml, an extension of the OCaml bytecode compiler. Native
code compilation and the interactive top level are not supported,
but the standard OCaml tools (ocamllex, etc.) work, with the
exception of camlp4, ocamldoc, and ocamldebug (to the best of
our knowledge there would be no serious problems for these). The
compiler can bootstrap itself. The implementation is intended to
cover all of the standard part of the language except marshalling
of polymorphic variants and objects, for which warnings will be
issued.

The changes with respect to OCaml are not very intrusive.
For the language itself, existing OCaml programs that do not use
marshalling should behave identically except that (1) we impose the
standard value restriction on type generalization, which is slightly
more restrictive than the restriction implemented in OCaml, and (2)
there is some performance cost. We return to both points in detail
later in the paper. Programs that use marshalling type-correctly
should typically just work. As for the implementation, the patch
consists of a set of fairly small changes to the vanilla OCaml source
tree, plus additional C and OCaml source files of around 5 000
lines.
HashCaml: Summary of New Language Constructs We
briefly summarise the new constructs here, explaining in the fol-
lowing sections how they are used. OCaml provides standard li-
brary functions for marshalling arbitrary values to byte strings, but
(as the documentation warns) this marshalling is not type-safe:
“Anything can happen at run-time if the object in the file does
not belong to the given type.” In HashCaml the behaviour of this
OCaml standard library module Marshal has been modified to
make marshalling type-safe and abstraction-safe: attempts to un-
marshal a value at the wrong type will cause a runtime exception.

The signature is unchanged, and the old unsafe behaviour is avail-
able via a module Oldmarshal.

Runtime type representations for abstract types are built vari-
ously from hashes of module definitions or from pseudo-random
numbers, at runtime or compile time. The former is the default;
the latter is available by annotating structure definitions fresh
or cfresh, or for an entire implementation file (corresponding
to a module of the same name) writing typemode cfresh or
typemode fresh as the first item in the source file.

There is a new built-in abstract type typerep of runtime type
representations, with constructs rep(t) to build the representation
of a type t and dyntype(e) to build the representation of the
runtime type of an expression.

There is a new family of types ’a name, represented as 256-bit
values. Expression-level names can be generated in several ways:
(1) freshly: just write fresh (of type ’a name);
(2) from a pair of a type representation and a string, writing

hashname(t, s), where t is a type and s is a string, to yield
a value of type t name;

(3) using the module hashes produced for calculating type rep-
resentations, for example fieldname M.f (of type t name
where M.f:t); and

(4) by applying name coercions namecoercion(path1,path2,e)
where path1 and path2 are type constructor paths (refer-
ring to type constructors of the same arity) and e has
type [ty1...tyn] path1 name, yielding a value of type
[ty1...tyn] path2 name.

There is also a special conditional for comparing names:

ifname e1 =e2 then e3 else e4

where e1 :t1 name, e2 :t2 name, e3 :t , e4 :t , and e3 is type-
checked in an environment where t1 and t2 are unified.

4. Globally Meaningful Type Names
In traditional static type systems for ML-like languages there is
a nontrivial notion of static type equality, and the literature con-
tains much discussion of generativity and sharing for abstract types.
Turning to their dynamic behaviour, these languages were designed
so that implementations could erase type information before execu-
tion, and work on ML-like module systems typically has either no
dynamic semantic definition or one over a type-erased language
(or one in which abstraction boundaries are erased). When we add
typed marshalling, however, we have to deal with two type equality
relations: the static one of the type system and the dynamic relation
checked at unmarshal time. One might seek to ensure simply that
the two coincide exactly, but, unfortunately, the situation is rather
more complex than this. Firstly, in the static type system one is only
concerned with comparison of two types that are simultaneously in
scope (perhaps indirectly via value identifiers) within a single pro-
gram, whereas with marshal/unmarshal, one can pull typed values
out of any scope, from different executions of different programs,
and compare them. Secondly, the existing OCaml static type equal-
ity seems to be somewhat finer than is desirable for distributed pro-
gramming.

In this section we go through the features of the OCaml static
type system (except polymorphic variants and objects) that were
not covered in our previous work, showing for each how we define
runtime type names that give a reasonable dynamic equality. The
HashCaml static type system is identical to that of OCaml, except
for the (straightforward) static typing of the new constructs and the
value restriction. The HashCaml dynamic type equality does not
coincide exactly with this, but in many simple cases, where two

types can be compared both statically and dynamically, the two
equalities will coincide.

Throughout we discuss the semantics by example. The existing
OCaml does not have a complete formal definition (type system
or operational semantics) and we have not produced one for Hash-
Caml. However, we are partly guided by our earlier formal work,
especially the full semantics defined for Acute [32].
Structures and Module Ascription In SML and OCaml ab-
stract types are introduced primarily by signature ascription. In the
example below, M1.t is abstract and not statically compatible with
M.t (which is statically compatible with int), so the definition of
id does not typecheck.

module M
= struct

type t = int
let x = 3

end
module M1 : sig type t val x:t end = M
let id : M.t -> M1.t = fun z->z

In HashCaml the same is also true dynamically — the unmarshal
below fails, but unmarshalling s at type M.t or int would succeed.

module M
= struct

type t = int
let x = 3

end
module M1 : sig type t val x:t end = M
let s = Marshal.to_string M.x []
let (z : M1.t) = Marshal.from_string s 0

The static type systems of Leroy [23] and Harper and Lillibridge
[19] provide this static type behaviour essentially by using the
source-code paths of abstract types (e.g. M1.t) as the compile-time
names of abstract types. In HashCaml, as in our earlier work, we
can provide corresponding dynamic type behaviour using a runtime
type name h.t for M1.t, where h is a hash of the module definition
(so runtime type name equality checking captures any invariants of
the abstract type). This is very similar to the Acute example of §2,
but in Acute a module definition and ascription were tied together,
whereas in OCaml and HashCaml they are separate constructs.
Abstract types with Effectful Definitions Some abstract types
have invariants which depend on IO or store effects, e.g. the n-
counter below from [33]. For these, hash generation of runtime
type names will not guarantee preservation of invariants; instead
the programmer can specify that a runtime type name should be
dynamically created, freshly at module initialisation time, with the
fresh annotation.

module NCounter
: sig = fresh struct

type t type t=int
val start:t let start = 0
val get:t->int let get = fun (x:int)->x
val up:t->t let up =

end let step = read_int () in
fun (x:int)->step+x

end

One can also specify cfresh for a compile-time-fresh name. We
leave this choice, of hash (the default), fresh, or cfresh naming, en-
tirely to the programmer. One might think that the language should
guarantee invariant preservation by performing some valuability
analysis, forbidding the hash and cfresh cases if module initialisa-
tion is effectful, but the Acute example libraries for Nomadic Pict
and Ambient-style communication showed that this is not desirable
— one may need type compatibility between different (distributed)
runtime instances of abstractions that each have local store.

The myname Implementation Strategy In the preceding exam-
ple the fresh annotation is, perhaps surprisingly, associated with
a structure rather than with a module declaration or signature as-
cription form. This is a pragmatic choice: in the OCaml implemen-
tation, structures are compiled essentially to records, and a new
ascription, e.g. module M : Sig = M’, has essentially no exis-
tence at runtime (except perhaps for coercion functions) — it does
not build a new record. There is therefore no convenient place to
keep runtime type data per-ascription, and so we keep it with the
original structure, simply adding a single new ‘myname’ field that
contains either the hash or fresh/cfresh name associated with the
structure. This field is invisible to user code. Wherever we need the
runtime type name of an abstract M.t, we generate lambda code
(an OCaml compiler intermediate representation) that essentially
builds the pair (M.myname, "t"), and whenever we need to build
a module hash that mentions M we generate lambda code that refers
to M.myname.
Ascription, again A visible consequence of this myname imple-
mentation is that, while in SML and OCaml multiple ascriptions
give rise to statically different types, in HashCaml multiple ascrip-
tions give dynamically compatible types. For example, the follow-
ing does not compile in OCaml

module M = struct type t = int let x = 3 end
module M1 : sig type t val x:t end = M
module M2 : sig type t val x:t end = M
let id : M1.t -> M2.t = fun x -> x

whereas in HashCaml the unmarshal below succeeds.
module M = struct type t = int let x = 3 end
module M1 : sig type t val x:t end = M
module M2 : sig type t val x:t end = M
let s = Marshal.to_string M1.x []
let (z : M2.t) = Marshal.from_string s 0

One could bring the static and dynamic type equality into sync
by either (i) changing the HashCaml compilation of ascriptions
to really generate new records, potentially with new names, or (ii)
change the static type system to be more liberal. As we wish to keep
the HashCaml implementation a small diff to that of OCaml, and
we suspect that uses of multiple ascription to intentionally generate
new abstractions are rare, we do neither, accepting the discrepancy.
Substructures and Subascriptions OCaml supports nested
structures, potentially with ascriptions at each level, as in the ex-
ample below.

let s1=ref "" ;; let s2=ref "" ;; let s3=ref "" ;;
module M1
: sig

module M2
: sig type t val x:t end

end
= struct

module M2 : sig type t val x:t val f:t->t end
= struct

type t = int
let x = 2
let f = fun z->z+2
let _ = (s3 := Marshal.to_string (3:t) [])

end
let _=(s2:=Marshal.to_string(M2.f M2.x:M2.t) [])

end;;
let _ = (s1:=Marshal.to_string (M1.M2.x : M1.M2.t) [])

Here the struct defining M2 lies under two ascriptions. Statically,
there really are three different types here: inside the body of M2’s
struct one can do anything with an int (so there is no invariant);
inside the body of M1’s struct one can treat M2.t only abstractly,
but with both x and f operations (which ensure the ‘even’ invari-

ant); outside the definition of M1 one can treat M1.M2.t only ab-
stractly and only with operation x (so the invariant that all values
of M1.M2.t are equal to 2 is guaranteed).

To the best of our knowledge this expressivity is not widely
used to deliberately protect strengthened invariants, but the general
pattern arises often. In particular, an OCaml compilation unit in
file foo.ml implicitly defines a module Foo ascripted to foo.mli
(if that exists); the body of foo.ml itself often contains ascripted
module definitions.

Note that, outside the definition of M1, conventional
module type systems (and the OCaml implementation)
do not record the existence of the inner ascription: one
just has a type environment assigning M1 the signa-
ture sig module M2:sig type t val x:t end end.

Statically, the three types t, M2.t and M1.M2.t exist in distinct
scopes and the question of comparing them does not arise. With
marshalling, however, one can pull values out of their scope (as
shown) and (not shown) pull them back in with unmarshalling and
perform dynamic type equality tests, so the runtime types used for
the three marshals are critical. In HashCaml these type representa-
tions are (hashes of) int, h2.t and h1.M2.t respectively, where
h2 and h1 are the values of the myname fields of M2 and M1. All
three are distinct, so marshalling and unmarshalling across the ab-
straction boundaries will fail.

This seems to be the most useful semantics, but it could also
be desirable to be able to marshal a concrete value (within an
abstraction boundary) at an abstract type that it would have outside,
e.g. marshalling 3 above within M2 at type M2.t or M1.M2.t. How
best to specify such behaviour in the source program is unclear,
though, as (i) there may be many possible dynamic types to choose
from, and (ii) the relevant paths are not in scope at the marshal
point.
Substructures and Prefix Hashing For equality testing of run-
time type names to guarantee anything about the invariants of ab-
stract types, when building module hashes (that these type names
are constructed from) we have to take account of their dependen-
cies. With substructures there are several forms of dependency: (1)
references to external modules via their paths; (2) references to
identifiers declared in the prefix of a superstructure; and (3) the de-
pendency of a structure on its substructures. Case (1) is dealt with
uniformly by referring to the myname fields of those modules, as in
the previous paragraph. For (3) every module also depends on the
mynames of its submodules; so in the example below M.myname de-
pends on N.myname and O.myname, in addition to the hash of its
normalized structure and the mynames of its external dependencies
(i.e. List.myname).
module M
= struct

let iterate = List.iter
let x = 7
module N = struct let y = x end
module O = struct let w = 4 end

end

For (2) we have a design choice. One could make the hash of a mod-
ule take account of all of the superstructure prefix, so N.myname
would involve hashing the definitions of iterate and x, and
O.myname would involve hashing the definitions of iterate, x,
and N. This would be pleasingly regular but awkward in practice:
recall that OCaml .ml files essentially define structures, so any
definition of an abstract type in a structure at the top level of an
.ml file, e.g. an application of the standard library Set.Make func-
tor, would always depend on all of the preceding definitions in
the file. We therefore include prefix definitions in a substructure
hash only if there is some dependency. In more detail, if a mod-

ule refers to its prefix, the module’s myname depends on the hash
of the normalized structure of the prefix, and on the external de-
pendencies of the prefix. For example N.myname also depends on
hash(normalize(prefix(N))), since it refers to its prefix (M.x),
and on List.myname. On the other hand, O is independent of its
prefix and makes no external references, so its myname would be
the same in every context.
Normalization w.r.t. Type Abbreviations The static type sys-
tem operates up to type abbreviations, so within the scope of
type t=int the types t and int can be used interchangeably. Our
implementation should do the same, building both runtime type
representations and module hashes. We believe this to be straight-
forward, but at the time of writing our implementation does not.
Functors OCaml functors are applicative. For example, in the
scope of the definitions

module F (X:sig end) : sig type t end
= struct type t=int end

module U = struct end
module M = F(U)
module M’= F(U);;

((fun x->x) : M.t -> F(U).t);;
((fun x->x) : M.t -> M’.t);;

we have static type equalities M.t = M’.t = F(U).t. In Hash-
Caml we echo this in the construction of hashes and hence in the
dynamic type equality: by default the result structure of a functor
application has a hash-built myname that depends on the myname
fields of the argument structures. The static type system’s path
F(U).t thus matches the dynamic type equality — M and M’ re-
fer to two different runtime structures, but their myname fields have
the same value, built out of the hash of U and the hash of the body
of F, and so the runtime types for M.t and M’.t will be equal.
Common cases, e.g. marshalling a value of a set or hashtable ab-
stract type produced by applying an OCaml standard library func-
tor, should therefore just work. The lack of normalisation w.r.t. type
abbreviations can be problematic here, however, as variations in the
behaviour OCaml type inference can lead to visible differences.

In the current implementation each usage of an application path
(such as F(U).t) gives rise to another evaluation of the functor
body. This has a performance cost, but more seriously means that
functor bodies that involve effects, or are annotated fresh, will
give erroneous behaviour. Further work is needed here.
Abstract Type Operators Abstract type operators are applica-
tive in both static and dynamic semantics, as one would expect. For
example, in

module M
= struct

type ’a t = int * ’a
let f x = (3,x)

end
module M1 : sig type ’a t val f:’a -> ’a t end = M
let s = Marshal.to_string (M1.f true) []
let (z : bool M1.t) = Marshal.from_string s 0

the runtime type name for (the type operator application) bool
M1.t is essentially ((M1.myname,"t"),[bool]).
Variant types In OCaml identical variant type definitions in
different modules are not statically compatible, so the code below
does not typecheck.

module M1
= struct

type t = C of int
end

module M2

= struct
type t = C of int

end
let f : M1.t -> M2.t = fun x->x

There are many plausible choices for how the dynamic type names
of such types could be built. In increasing coarseness of dynamic
type equality: (i) freshly at runtime, (ii) from a hash of the type
definition and its path, (iii) from a hash just of the type definition,
(iv) from a hash of a normalised definition, ignoring the order of
clauses, (v) from a hash of the structure of the definition, ignoring
the names of constructors, or (vi) any of the above, chosen per-
type by the programmer. In any of the hash cases such a hash must
properly take any dependencies on other types into account.

For HashCaml we adopt (iii), so the unmarshal below succeeds.
module M1
= struct

type t = C of int
end

module M2
= struct

type t = C of int
end

let s = Marshal.to_string (M1.C 3) []
let x = match (Marshal.from_string s 0) with M2.C(y)->y

Option (i), while fine for a single run of a single program, would
prevent almost any interesting communication; option (v) would
fail to catch many accidental errors; and option (vi) seems unduly
complex. The choice amongst the others is debatable. We suspect
that (ii) would be annoying in the distributed setting as it would
require too much similarity between the module structure of two
communicating programs. Here again, then, the desired dynamic
type equality seems to be coarser than the OCaml static type equal-
ity, and in principle one might slightly change the latter to bring
them into sync.

Order-normalisation, option (iv), would mean that the following
unmarshal succeeds; we would like to implement this in future
releases.

module M1
= struct

type t1 = C1 of int | D1 of t2
and t2 = C2 of bool | D2 of t1

end
module M2
= struct

type t2 = D2 of t1 | C2 of bool
and t1 = D1 of t2 | C1 of int

end
let s = Marshal.to_string (M1.C1 3) []
let x = match (Marshal.from_string s 0)

with M2.C1(y) -> y | M2.D1 _ -> 3

Records Record types behave analogously: in OCaml they are
statically generative, but we build their runtime type names from
hashes of their definitions, at present not order-normalised, and not
including their path.

Record fields in OCaml can have locally-universally-quantified
type variables (as we saw used in §7), and therefore may need type
passing. At the time of writing our implementation treats simple
cases of this correctly but needs further work.
Separate Compilation The myname-based implementation
means that separate compilation just works, without any need for
extra computation at link time, again keeping the changes to the
OCaml implementation small. Various optimisations would be
possible with more link-time work. As compilation units are files
rather than explicit structs we need a different syntax for letting

the programmer specify whether the myname field should be hash,
cfresh or fresh generated: we allow a typemode cfresh or
typemode fresh to appear as the first item in a .ml file (the

hash case is the default, as for explicit structs).
Standard Library The OCaml standard library is available in
HashCaml without any special treatment: definitions of abstract
types are produced by hashing as described above.
C functions The use of external functions raises two issues.
Firstly, in building hashes of modules that refer to C functions we
include the function name at usage points and any extern decla-
rations. We do not include hashes of the associated C source files.
Secondly, type passing: for a C function used at a HashCaml type
that is higher-order and polymorphic, one may need to manually
pass type representation arguments back and forth. One such had
to be adapted in the standard library.

5. Polymorphism and Type Passing
As outlined in §3, in order to support marshalling and unmar-
shalling within polymorphic functions we must ensure that enough
type information is available at runtime, at all marshal and un-
marshal points. We do so with an explicit type-passing translation:
roughly, at each polymorphic generalisation point we insert an ad-
ditional lambda for each generalised type variable, and at each use
of an identifier with a nontrivial type scheme we insert applications.

This has a performance cost, which we return to in §6 and §9,
but also semantic implications, which we explain here.
Marshalled Type Representations Our runtime type represen-
tations in marshalled values are unstructured, simply 256-bit num-
bers. The marshalled type representation of an abstract type M.t is
based on either a hash of the definition of M (and its dependencies)
or a fresh name. Marshalled representations of concrete types are
essentially hashes of their structure.

The only operation we need at runtime on these type represen-
tations is an equality test, at unmarshal time, so no additional struc-
ture is required.1 Using hashing to build the marshalled represen-
tations of concrete types is not forced but it does simplify things,
keeping the representations of small and constant size.

With marshalled type representations generated freshly and by
hashing, the type safety guarantees provided by the language are
predicated on the probability of collision being small and the hash
function being good. We believe our use of SHA-256 hashes and
pseudo-random 256-bit numbers suffices to make the probability
of accidental collision negligible, e.g. compared to the probability
of cosmic-ray-induced errors.
Compositionality of Runtime Type Representations The inter-
nal runtime representation of types used within a program must
support different operations to that used in marshalled values: we
must be able to (a) compute a marshalled type representation from
an internal one, but also (b) construct internal representations of
composite types from other internal representations. For example,
the pair_and_marshal below involves a marshal at type ’a * ’a
where ’a is instantiated to int. The construction of the internal
representation for this type must be compositional in the type struc-
ture, otherwise the unmarshal, at type int*int, would fail. We
show how this is achieved in §6.

let pair_and_marshal : ’a -> string
= function x -> Marshal.to_string (x,x) []

let s = pair_and_marshal 17
let n = let (x1,x2)=(Marshal.from_string s 0) in x1+x2

1 If unmarshalling involved checking specialisation of type schemes or
subtype relationships, or to support intensional type analysis on the type
representations in marshalled values, more structure would be needed.

Non-Ground Runtime Types HashCaml supports marshalling
within polymorphic functions, but not marshalling at type schemes,
because the latter (a) would require structured type representations,
but also (b) would be out of step with the rest of OCaml, in which,
as in SML, functions cannot be abstracted on parameters with
proper type schemes. Hence the following fails in HashCaml, as
the inferred type of the argument to Marshal.to_string is not
ground.

let x = []
let s = Marshal.to_string x []

On the other hand the following succeeds, as type inference does
infer a monotype for x

let f x =
let s = Marshal.to_string x [] in
x + 1 in

f 0

and the following, with an explicit type annotation, also succeeds.
let x=function y -> y
let s=Marshal.to_string (x:int->int) [Marshal.Closures]

In general it is hard to statically detect (un)marshals at non-ground
types (an inter-module analysis would be required), so the error in
the first case is dynamic, an exception at the marshal point. This is
unfortunate, but we think unlikely to be a problem in practice, as
such errors should be detected early in testing.

As an alternative, one could use the type system to track types
for which an internal runtime representation is present [16]. One
would add a type ’a withtyperep, have the compiler only permit
construction of values of that type of compile-time-monomorphic
values, e.g. in user code invoking entry points to communication
library code, and have library code pass around values of such
types. This could be heavy to use but would give more predictable
errors.
The Value Restriction SML97 adopted the value restriction
[40], allowing polymorphic generalisation only for syntactic val-
ues. In OCaml 3.09.1 generalization is more liberal, in three ways:
(1) whether a conditional expression is generalizable is independent
of the condition; (2) certain application expressions are generaliz-
able; and (3) type variables that occur only on the right of an arrow
can be generalised, as proposed by Garrigue [15]. All three would
lead to problems with our type-passing translation, as inserting the
internal type-representation lambdas would change the evaluation
order. Hence, HashCaml imposes the value restriction.

We give concrete examples showing the problem for (1) and (3).
For (1), the following is typable in OCaml, with f of type scheme
∀’a. ’a -> ’a.

let r = ref 0
let s = ref ""
let f = if (r:=1;true) then

(fun x-> s := Marshal.to_string x []; x)
else (fun x-> x)

let y = !r
let z = (f true, f 3)

In HashCaml the body of f would need a runtime type represen-
tation for its argument, in order to build the marshalled value, yet
if we were to naively add a type passing lambda around the body
of f then we would observably change the evaluation order, as y
would end up bound to 0 instead of 1. (The use of the reference s
just enables the marshalled values to escape — this might just as
well be via network communication.)

For (3), the example below is legal OCaml 3.09.1 code that re-
quires the Garrigue relaxed generalisation condition to typecheck.

let r = ref 0

let s = ref ([] : string list)
let f = (r := 1 + !r;

fun () -> let x = [] in
(s:=Marshal.to_string x [] :: !s; x))

let z = (3 :: (f ()) , "foo" :: (f ()))

Here f is bound to an expression that is not a syntactic value
(or a conditional or non-expansive application), but a generalized
type scheme ∀’a. unit -> ’a list can be inferred, as the ’a
only occurs on the right of the ->. This generalization is sound in
OCaml, intuitively because no values of type ’a can be returned
[15]. With typed marshalling, however, it would be problematic.
The two uses of f in the last line are at types unit->int list
and unit->string list respectively, so, in the two executions
of f, the x is used at int list and string list. If the example
were allowed in HashCaml then, for marshalling to be type-safe,
the marshalled values produced should be ([] : int list) and
([] : string list). Hence any implementation of f would
actually use its type argument at runtime — but adding a type
lambda around the definition of f would observably alter the order
of evaluation, delaying the assignment to r and causing it to happen
twice.
Alternatives to type passing Instead of passing type representa-
tions, one might aim to recover the type information of values to be
marshalled from data in the heap and call stack, perhaps building
on work on tag-free garbage collection [17]. In the absence of type
abstraction this might work well, but here it seems we would need
to propagate abstraction boundaries at runtime, perhaps using some
form of the coloured brackets introduced by Grossman et. al [18]
and further developed in the Acute semantics [22, 33]. This would
be complex and costly.

6. Implementation
In this section we describe our solutions to the main implementa-
tion issues that do not impinge directly on the user-visible seman-
tics. Documentation for the internal details of the implementation
is available [7].
External and Internal Runtime Type Representations and Type
Normalisation As we saw in §5, the external runtime type rep-
resentations used in marshalled values (against which we do an
equality check at unmarshal time) are unstructured 256-bit strings,
but the internal runtime type representations (passed in to poly-
morphic functions, and used to build the external representations)
must be composable. The simplest possibility would be to use 256-
bit strings also for the internal representations, composing them by
applying the hash function at every node of a type abstract syntax
tree, e.g. with rep(t1 *t2) = SHA-256(rep(t1), *, rep(t2)),
but this would be very expensive. We therefore use a more sophis-
ticated internal representation, ensuring that construction of a new
type representation (e.g. when one function, polymorphic in ’a,
calls another at type ’a * ’a), involves only one allocation and no
hashing.

Building these representations occurs in several stages, which
we illustrate for the example type ’a * (int M.t), where M.t is
abstract. First we build a normalised tree:

NTtuple
[NTvar 42;
NTconstructed (
SHA-256(NTDexternal abstract "t"),
[M],
[NTconstructed (
SHA-256(NTDbuiltin abstract "int"),
[],
[])])]

Here the type variable ’a has been replaced by a canonical index,
42 (in the generated lambda code this will be captured by the ap-
propriate type representation lambda); the paths of external mod-
ules on which this type depends have been collected and duplicates
removed (the [M]); and the remaining (essentially closed) parts of
the structure have been hashed (though in this example there is no
variant type or record type definition). The tree is then injectively
flattened into a list of strings, type variable references and module
references:
[FNstring "T(";
FNtyvar 42;
FNstring ")(E(...hash value...))";
FNmyname (...OCaml type environment... , M);
FNstring "(E(...hash value...))"]

Lambda code is then emitted to build a block with corresponding
structure: various strings; a real pointer to a block which will con-
tain the type representation for ’a; and a reference to the myname
field of M. At marshal and unmarshal points these structures are
flattened and a SHA-256 hash of the resulting string computed.
Computation of myname values and AST normalization Gen-
erating lambda code to compute the myname values of hashed mod-
ules involves the following: (1) normalisation w.r.t. alpha equiva-
lence; (2) removal of irrelevant information, e.g. stamps, to ensure
that the myname of a submodule is independent of its supermod-
ules if it does not reference them; (3) collection of paths to external
modules (with duplicates removed), to generate references to their
mynames; and (4) dealing with functors etc. as outlined in §4.
Pattern matching For a polymorphic generalization of a com-
pound pattern, e.g.

let (x,y) = (fun x->x),(fun y->y)

we generate lambda code in two phases: first adding type repre-
sentation lambdas for the type variables needed by all parts of the
right hand side, and later introducing dummy applications for un-
used ones. This rewriting on lambda code means that we do not
have to change the (complex) OCaml pattern matching code.
OCaml generalization The OCaml implementation does not
distinguish between types and type schemes; instead, to perform
generalization, it imperatively marks the appropriate type variables.
This is safe for OCaml, but as we examine the typed syntax tree
after type inference it could give the wrong result, e.g. for the
example below. Here g has a trivial type scheme, but after type
inference its type variables will be marked as general due to the
outermost let.

let f x = let g y = (x=y) in g x

We therefore adapt the type inference algorithm to record, when it
meets a value identifier, which type variables in its type are marked
as general at that time.
Signature coercions A module’s interface may have less general
types than the actual implementation underneath. For example, the
standard library List.iter code has inferred type

val iter : (’a -> ’b) -> ’a list -> unit

but is declared in the interface file as
val iter : (’a -> unit) -> ’a list -> unit

This would cause problems with a naive type-passing translation as
the first would expect two type representation arguments but clients
of the interface file would provide only one. Now, if an implemen-
tation has an interface then the interface must be compiled first. We
can therefore detect this situation and for each such identifier, say
old, both (a) rename all occurrences of it within the structure, say

to new, and (b) add a wrapper function named old that accepts as
many type representation parameters as the interface requires and
then calls new, supplying it with parameters built from its argu-
ments and the signature coercion.
Runtime support There are three small additions to the OCaml
runtime: (1) random256.c is used for generating pseudo-random
cfresh and fresh mynames at compile-time and runtime; (2)
hash256.c is used for (i) flattening of type representation blocks
and (ii) for hashing of strings representing flattened type represen-
tation or AST blocks; and (3) polymarshal.c is an interface for
the new Marshal module. All of the above were written in C to
minimize the runtime overhead of the additional functionality.
Marshalling Values The HashCaml Marshal library uses the
underlying OCaml marshaller underneath, so the semantics of mar-
shalling values is unchanged. In particular, a copy of the reachable
part of the store is included; and flags allow control of whether shar-
ing is preserved and whether closures are marshalled. Closures can
only be unmarshalled in an identical runtime, as marshalled val-
ues include only function pointers, not bytecode. (A preliminary
experiment by Billings, compiling a small fragment of Acute to a
modified OCaml bytecode, suggests that supporting bytecode mar-
shalling between non-identical runtimes would be feasible without
a huge performance hit [5].)

Marshalling of exception values in OCaml produces surprising
results, as noted by Verlaguet [38]. Pattern matching on exceptions
is relative to the pointer that references the exception. When an
exception is unmarshaled, it is reallocated with a new pointer that
does not correspond to an exception pointer. Because of this, any
pattern matching performed on an unmarshaled exception, e.g. as
below, will fail.

exception E;;
let s=Marshal.to_string E [];;
print_string (match Marshal.from_string s 0 with

E -> "true"
| _ -> "false") ;;

(* output : false *)

Fixing this would involve changing the OCaml runtime representa-
tion of exceptions, for which in principle we should fresh- or hash-
generate runtime names.
Other issues There are many other local issues, related to the in-
tricacies of the existing OCaml implementation, that have had to be
dealt with. Dealing with De Bruijn indexing has been significant,
for expression identifiers, type parameters, record polytype quan-
tifiers, and functor arguments. Typechecking for OCaml lambda
code or bytecode would have significantly eased development. On
the other hand, using OCaml lambda-code binding for plumbing
type variable representations, and myname data, has meant that
much of our implementation is orthogonal to internal details of the
existing compiler.
Performance data Here we give some brief preliminary perfor-
mance data, showing that the overhead of type passing can often
be negligible and that the system as a whole is usable. For the first,
we ran the test suite from the OCaml CVS repository (fib, takc,
taku, sieve, quicksort, quicksort.fast, fft, fft.fast,
soli, soli.fast, boyer, kb, nucleic, bdd, hamming, sorts,
almabench, almabench.fast). Executing those tests is less than
2% slower (302s vs 297s, in the noise). Executing artificial bench-
marks that make very heavy use of type passing and/or marshalling
can be from 2 to 12 times slower.

On the other hand, compilation is significantly slower than
the OCaml ocamlc. On a G5 PowerPC make world is around
3.5 times slower, and make bootstrap around 9 times slower;
making the test suite from the OCaml CVS is also around 3.5 times

slower. Little attempt has been made so far to optimise the new
compiler phases.
Outstanding implementation problems For completeness we
summarise the known open problems in the implementation. At
the time of writing (in the HashCaml 3.09.1-alpha-785 release): (1)
types are not normalised w.r.t. type abbreviations, above; (2) type
normalisation for records with universally-quantified type variables
is not always correct; (3) type normalisation should be De Bruijn
indexed per structure, not per type; and (4) functor applications are
re-evaluated for extended module paths, giving incorrect semantics
for non-pure functor bodies.

7. Example: Distributed Channel Library
In this section we show by example how the HashCaml marshalling
and naming facilities can be used to write safe communication ab-
stractions, discussing exactly what safety properties are guaranteed.
The example (loosely based on an earlier Acute library) is a type-
safe distributed channel library for asynchronous messaging over
typed channels; it is built above the untyped byte-stream network
connections provided by the Sockets API for TCP.

From a practical point of view, this example demonstrates the
feasibility of creating a simple yet robust typed communication
layer as a library in a high-level language; the code is thread-safe
and gracefully handles any TCP errors. It is implemented in fewer
than 500 lines of code.

7.1 Library Interface
The distributed channel library consists of two modules: LChan and
DChan. LChan provides facilities for local channels, whilst DChan
implements distributed channels using LChan.

Both use typed channel names: here t chan is the type of
names of channels that carry values of type t . Channel names are
implemented simply as HashCaml names (internally represented as
256-bit values).

type ’a chan = ’a name

The interface to LChan is given below. Prior to transferring any
data, it is necessary to invoke init, which returns an abstract han-
dle to an empty channel-manager state. The client may then asyn-
chronously send data, and register receiver functions, on specified
channels. Sent messages and pending receivers are queued on the
specified channel; whenever there is one of each, the receiver func-
tion is applied to the message, after which both are deleted.
module type LChan = sig

type com_handle
val init:unit -> com_handle
val send:com_handle -> ’a chan -> ’a -> unit
val register_recv:com_handle->’a chan->(’a->unit)->unit

end

The DChan module is an ‘internet-aware’ version of LChan. At
initialisation a server is bound to a local internet address to listen
for incoming messages. The send function transfers messages to
remote hosts, while receiver functions are registered with the local
server.
module type DChan = sig

type com_handle
val init:Unix.inet_addr -> port -> com_handle
val send:Unix.inet_addr -> port -> ’a chan -> ’a ->unit
val register_recv:com_handle->’a chan->(’a->unit)->unit

end

For brevity we describe a slightly simplified version of the two
modules. In the actual implementation, one can specify timeout and
replication options when registering a receiver, and can deregister
a receiver.

7.2 Library Implementation
In this section we outline the implementation of the channel library.
We focus upon the use of the HashCaml marshalling and naming
primitives and the safety guarantees they provide.
Message types The DChan module defines a polymorphic type
for network messages, containing both a channel and a data field:

type ’a message = {
msg_chan = ’a chan;
msg_dat = ’a }

Prior to marshalling these messages onto the wire, we existentially
package them so that they effectively have type

wire_message = ∃’a. ’a message

OCaml does not directly support existentials, but does support
record fields with universally-quantified type variables; we use
those to encode existentials in a module Msg.
Sending messages The DChan.send function transfers a value
to another host over the specified channel. The code performs four
main tasks: (i) the data and channel are packed into an existentially-
quantified message, as above; (ii) the message is marshalled to a
string; (iii) a TCP connection is established with the destination
host; and (iv) the marshalled message is sent over the TCP connec-
tion.

let send : Unix.inet_addr->port->’a chan->’a->unit
= function ip port chan dat ->

...
let msg = Msg.pack {
msg_chan = chan;
msg_dat = dat } in

...
Marshal.to_string msg [Marshal.Closures] ;
...

Here the HashCaml implementation of Marshal.to_string
builds a marshalled value by applying the untyped OCaml mar-
shaller to a pair of a runtime type representation of the type of
msg (i.e. wire_message) and the value msg. That runtime type
representation is essentially a 256-bit hash of the structure of
wire_message.1

Receiving messages The DChan implementation contains a
recv function that is invoked whenever an incoming connection
is made to the local server. The code effectively performs the in-
verse of the visible DChan.send function, (i) unmarshalling the
message, and (ii) unpacking the data. The data is then forwarded to
the local channel module.
let recv ... =

...
let msg = Marshal.from_string s 0 in

let unpack = { f = fun m ->
LChan.send local_com_handle m.msg_chan m.msg_dat } in

Msg.use unpack msg
...

When the message is unmarshalled, HashCaml performs a dynamic
equality type check, verifying that the received type representation
from the marshalled value is equal to the locally-computed type
representation for the expected wire_message type. If they differ
then an exception is raised at the unmarshal point.

1 The Marshal.Closures flag, as for the underlying OCaml marshaller,
enables marshalling of function pointers. This is necessary here, whether or
not the user data is functional, as the existential encoding involves a function
type — but it has the unfortunate consequence that this library in its current
form cannot be used for communication between differing programs, as the
underlying marshaller depends on identity of binaries for function-pointer

Different instances of the channel library (in different execu-
tions of the code, possibly on different machines) can therefore in-
teract. Further, (apart from the existential encoding issue1) differ-
ent implementations of the channel library could interact so long as
the definition of wire_message in each is identical. If this is done
correctly then the unmarshal will never fail, but if an incompati-
ble implementation is accidentally connected to the IP address and
port of an instance of DChan then the unmarshal exception would
be raised.

HashCaml protects against accidental error, not malicious at-
tack, just as the OCaml static type system does; protecting against
forged messages (that claim to have type wire_message but actu-
ally have a different structure) requires additional mechanisms that
we discuss later.
Local channels The LChan module uses a hashtable (from the
OCaml standard library) to map from channel names to channel
data structures, each storing a queue of received data values and
a queue of registered receiver functions for a single channel. We
maintain the invariant that at least one of these is empty, i.e. we only
enqueue data or a receiver if it cannot be immediately consumed.
type ’b channeldata = {

h_chan : ’b name;
h_dat : ’b list ref;
h_recvs : (’b -> unit) list ref }

To store channel data structures for channels carrying arbitrary
types we must existentially pack both them and the hashtable keys;
the hashtable is effectively of type

(∃’a. ’a chan) -> (∃’b. ’b channeldata)

The local channel library send and register_recv functions take
as arguments an ’a chan and either an ’a or an ’a->unit. Their
implementations first do a hashtable lookup, using an existentially-
packed version of their channel name argument, and returning
an existentially-packed channel data structure. They then use the
HashCaml ifname to compare the supplied and stored names; in
the ‘equal’ branch of the conditional the types of the two names are
unified so the channel data structures can be manipulated. We are
performing a dynamic, term-level equality check between names
to obtain a static, type-level guarantee that the associated types of
values are the same.

7.3 Library Usage
A client can use the send and register recv functions at any
type. In the following example we show a simple scenario in which
a fresh channel name is constructed and then this channel is used
to send an integer value locally.

let local_com_handle = LChan.init ()
let f : int -> unit = fun i -> Printf.printf "%d\n" i
let c : int name = fresh
let _ = LChan.register_recv local_com_handle c f
let _ = LChan.send local_com_handle c 42

In more interesting examples, one might want to register a
receiver on a channel in program A and also send the channel name
to program B (possibly on a remote machine), expecting it to use
DChan to send back values on that channel. How, though, should the
two programs first establish a shared, typed, channel name? There
are two possibilities:
(1) If the two programs share a type and a string, then we can

use the hashname construct to hash this pair to form a chan-
nel name. This is the minimum information necessary for con-
structing a common name.

marshalling. We would like to add an explicit existential type to HashCaml,
which would be straightforward and solve the problem.

(2) Providing that the two programs share some code, we can
use the fieldname construct to create a channel name which
depends on this shared code, instead of a simple string (as in
(1)). Hence, the channel name is related to the context it is
used in, and not simply to the type being transferred, making
unintended name equalities less likely.

The following example illustrates the use of the fieldname
construct. Say A and B share a function M.f, and B wants to invoke
it at A, i.e. make a remote procedure call.

module M = struct
let f : int -> unit = fun i -> Printf.printf "%d\n" i

end

First, A uses the fieldname construct to build an
(int->unit) name, then applies the namecoercion con-
struct to build an int name. Then the function is registered
with this name, which is used as a channel name on which its
arguments, of type int, can be received.

type ’a arrow = ’a -> unit
type ’a id = ’a
let c : (int -> unit) name = fieldname M.f

let c’ : int name = namecoercion (arrow, id, c)

let _ = DChan.register_recv dist_com_handle c’ M.f

B also constructs the same int name (first four lines above),
and uses it to make a remote invocation.

let _ = DChan.send ip port c’ 42

Several other naming scenarios are possible. For example, as
in Acute, one can build structures of compile-time-fresh names,
e.g. when behaviour changes at major version-number releases, and
then distribute the resulting object files to be linked in with clients.

We have achieved type-safe remote function invocation in just
a few lines of code built over DChan. Moreover, if one wanted
slightly different communication semantics, e.g. to discard mes-
sages that arrive for a channel on which no receiver has been reg-
istered, or to return an error to the sender, or to store them persis-
tently, it would be a simple matter of recoding the DChan library;
the HashCaml language would be unchanged.

Note that, when using the DChan library to communicate values
of abstract types, the invariants of those types will be preserved: it
will not be possible to establish a shared channel name on which
one program can receive a value from a differing implementation
of an abstract type and misinterpret it.

8. Related work
There is little other work on type-safe marshalling for ML-like
languages, and almost none that deals with dynamic type equality
across programs in the presence of abstract types. A notable excep-
tion is the Alice language of Rossberg et. al [30, 29]. Alice provides
type-safe marshalling (there, ‘pickling’). Abstract types are all dy-
namically generative, but to establish shared abstract types across a
distributed system one can pre-evaluate a component and distribute
the result. This is rather less flexible than HashCaml.

Furuse and Weis [14] discuss type-safe marshalling for OCaml
but ignore abstraction boundaries. The GCaml language of Furuse
[13] provides runtime type analysis for a variant of OCaml but
again ignores abstraction — indeed, two variant type definitions
that have the same structure but different constructor names will be
treated as compatible. Henry, Mauny, and Chailloux [21] address
the problem of type-checking an untrusted marshalled value, en-
suring that it has the expected low-level structure and so will not
crash the local runtime, but again working up to a coarse notion of
type isomorphism.

Several languages build in a form of typed distributed commu-
nication directly, including Facile [37], JoCaml [12], and Nomadic
Pict [35], with typed channels (building on work on the π-calculus
[26], CML [28], and Pict [27]). These support type-safe distributed
executions that arise from single executions of single programs
(with the distributed parts all spawned from a single initiator), but
some ad-hoc ‘trader’ mechanism is needed to establish connections
between multiple executions or different programs. Further, build-
ing communication into the language runtime entails a commitment
to a particular synchronisation and failure semantics. In HashCaml,
in contrast, one can simply write multiple type-safe communication
libraries for different circumstances.

A type Dynamic was introduced in Amber [8]. Leroy and
Mauny added a variant to CAML [25], including an extern primi-
tive to marshal values of type dyn. This included definitions of rele-
vant types, with the corresponding intern checking that the reader
program defines types with the same names and similar structure.
Abadi et. al study type Dynamic with and without parametric poly-
morphism [2, 3]. None of these address abstraction boundaries.

With sufficiently expressive intensional type analysis [9, 39] one
could define type-safe marshalling within the language itself, but
there is a tension here: if the language is this expressive, allowing
abstract types to be analysed, then abstraction boundaries are not
enforced even within a single program.

Java’s serialization facility [1] includes version identifiers
(serialVersionUIDs) with the class definitions of serialized ob-
jects. These default to 64-bit hashes of all method and field sig-
natures, but not of method bodies. Abstraction safety is not guar-
anteed, since changing a method body does not change the ver-
sion identifier. Additionally, class authors may override the version
identifiers for purposes of compatibility.

The .NET platform supports sharable assemblies, which in-
clude a public key, file hashes, and a version number. To the best
of our knowledge, however, type identity is not dependent on code
hashes, giving weaker type-safety guarantees.

9. Discussion
We have described the design and implementation of HashCaml,
an extension of the OCaml bytecode compiler with support for
type-safe and abstraction-safe marshalling and related naming con-
structs, and have demonstrated with an example communication
library how this supports type-safe distributed programming. The
implementation covers all the standard part of OCaml except mar-
shalling of polymorphic variants and objects; it includes the stan-
dard libraries; and it has performance reasonably close to ocamlc
(and around three orders of magnitude faster than Acute). An alpha
release is available and should be usable for non-trivial software;
feedback on its use would be very welcome.

In the rest of this section we discuss some of our choices and
possible future work.
Optimization The performance of the compiler and of the gen-
erated code is clearly usable but less than ideal, and there is much
scope for optimization. As for execution times, one would like mar-
shalling to impose no additional cost on code that does not use it,
but at present our implementation adds type-passing everywhere.
It should be reasonably straightforward to (conservatively) stati-
cally analyse where runtime type representation data is actually
needed and (for example) generate two copies of every function,
one with type-passing and one without. One might also detect poly-
morphic functions that are in fact only used at one type. Memoiz-
ing the SHA-256 computation of marshalled type representations
is likely worthwhile. In fact, the number of distinct types that occur
in a large program (especially the marshalled types) is likely small
enough that it is worth precomputing all their marshalled represen-

tations, together with the actions of the implicit type operators in
the program (e.g. λ’a. ’a*’a) over those.
Type-passing revisited Of course, a simpler way to remove the
cost of type-passing is simply to forbid it — to disallow marshalling
at types that mention free type variables. It would then be straight-
forward to compute all marshalled type representations at compile-
time. Whether this would be a serious loss of expressivity is not
clear. The DChan library of §7, for example, does not require type-
passing. The library has a polymorphic interface, with send taking
an ’a and an ’a name for any ’a, but the marshalled values sent
over the wire are all of a single closed existential type. On the other
hand, a library function send : fd -> ’a -> unit, that takes a
value, marshals it, encrypts the resulting string, and writes that to a
file descriptor, would require type-passing. To use such a function
successfully the sender and receiver would have to share implicit
knowledge about the expected types of values, e.g. that at this point
in a protocol a value of such-and-such a type is expected. More ex-
perience in typed distributed programming is needed to understand
whether this latter is an important scenario. In any case, it would be
straightforward to provide a HashCaml compiler option to disable
type-passing (but retain the hash and fresh computation of runtime
type representations, which is the larger part of our work).
Threat model HashCaml protects against accidental error, not
malice. It does not attempt to ensure that no information about
the representation of an abstract type can leak out, as that already
does not hold in OCaml (compare, Obj.magic, etc. mean that no
parametricity property holds). On the other hand, distinguishing
abstract types from their representations, as we do, should catch
many programmer errors.

To protect against maliciously-produced marshalled values
one may either (1) ensure that marshalled values only come
from trusted sources, e.g. by implementing (within HashCaml)
cryptographically-protected communication libraries, and/or (2)
check the structure of marshalled values at unmarshal-time, as in
[21] (though that does not check abstract type invariants). One
might combine the two approaches, with the HashCaml type equal-
ity check and this low-level structure check.
Other OCaml features Adapting the ocaml interactive top level
to HashCaml is not completely trivial, as (a) later definitions can
instantiate free type variables from earlier ones, and (b) the top
level allows shadowing of type definitions. Adapting the ocamlopt
native-code compiler involves no major problems, as far as we
know, but signature coercions are implemented slightly differently.
Understanding what dynamic type equality one should use for
OCaml object and polymorphic variant types is an open problem.
Other Acute features In the Acute design [33, 34] we argued
that several additional features are desirable for typed distributed
programming: flexible dynamic rebinding to local resources, mar-
shalling of functions between non-identical programs, polytypic
name support and swap operations (as in Fresh OCaml [36]), ex-
plicit versioning, and thunkification of executing threads into mar-
shallable values. Addition of these would be well worth-while,
but (at least for the latter) would involve rather more substantial
changes to the existing OCaml language and implementation.
Subtyping, richer module systems, and structured runtime type
representations In the large-scale distributed setting, in which
differing versions of programs must interoperate, supporting un-
marshalling up to a subtype relation would be very useful. Work by
Deniélou and Leifer addresses this issue in the presence of type ab-
straction boundaries [10]. Other work by Peskine is addressing the
design of runtime type names for a rich module system, along the
lines of Dreyer et. al [11]. The type-safe marshalling machinery of
HashCaml also supports a limited form of typecase, with type

equality testing. To experiment with richer forms of intensional
type analysis [9] in OCaml, the HashCaml type-passing could be
adapted to work with more structured type representations.
Dynamic type equality Finally, with an eye to future language
design, we note that our work here has essentially involved design-
ing a reasonable dynamic type equality (and one that is global, de-
fined across scopes and between programs), for a language with an
existing nontrivial static type equality. Ideally the two should be de-
signed together and, where comparison is meaningful, they should
coincide. Generativity of type definitions has been extensively dis-
cussed in the literature. In the distributed setting, as marshalling
makes it possible to compare types across scopes and between pro-
grams, there are additional subtle choices that must be made. Fur-
ther, for marshalling to be useful —i.e. for typed communication
between programs to not be unreasonably restricted— there are ad-
ditional constraints. Within a single ML program all type defini-
tions could often be (statically and dynamically) generative, but for
distributed programming that is no longer the case.
Acknowledgements We acknowledge support from a Royal
Society University Research Fellowship (Sewell), EPSRC grant
GRT11715, and APPSEM 2. We thank Jacques Garrigue for dis-
cussions on type passing, Julien Verlaguet for work on a predeces-
sor system, and Adam Biltcliffe, James Leifer, Benjamin Pierce,
Tom Ridge, Viktor Vafeiadis, and Alisdair Wren for comments.

References
[1] JavaTM object serialization specification 1.5.0. Technical report, Sun

Microsystems, Apr. 2004.
[2] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in

a statically typed language. ACM TOPLAS, 13(2):237–268, 1991.
[3] M. Abadi, L. Cardelli, B. Pierce, and D. Rémy. Dynamic typing in

polymorphic languages. J. Functional Programming, 5(1):111–130,
1995.

[4] G. Bierman, M. Hicks, P. Sewell, G. Stoyle, and K. Wansbrough.
Dynamic rebinding for marshalling and update, with destruct-time λ.
In Proc. ICFP, 2003.

[5] J. Billings. A bytecode compiler for Acute, 2005. Computer Science
Tripos Part II Dissertation, University of Cambridge.

[6] J. Billings, P. Sewell, M. Shinwell, and R. Strniša. HashCaml
3.09.1-alpha-785. http://www.cl.cam.ac.uk/users/pes20/
hashcaml, Apr. 2006.

[7] J. Billings, P. Sewell, M. Shinwell, and R. Strniša. The implemen-
tation of HashCaml, Apr. 2006. http://www.cl.cam.ac.uk/
users/pes20/hashcaml.

[8] L. Cardelli. Amber. In Combinators and Functional Programming
Languages, LNCS 242, pages 21–70, 1986.

[9] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in
type erasure semantics. In Proc. ICFP, pages 301–313, 1998.

[10] P.-M. Deniélou and J. J. Leifer. Abstraction preservation and
subtyping in distributed languages, Sep. 2006. In Proc. ICFP, 2006.

[11] D. Dreyer, K. Crary, and R. Harper. A type theory for higher-order
modules. In Proc. POPL, 2003.

[12] C. Fournet, F. L. Fessant, L. Maranget, and A. Schmitt. The JoCaml
language beta release documentation and user’s manual, Jan. 2001.
http://moscova.inria.fr/jocaml/.

[13] J. Furuse. Extensional Polymorphism: Theory and Applications. PhD
thesis, Université Paris 7, 2002.

[14] J. Furuse and P. Weis. Entrées/sorties de valeurs en Caml. In J.
Francophones des Langages Applicatifs, 2000.

[15] J. Garrigue. Relaxing the value restriction. In International
Symposium on Functional and Logic Programming, Nara, LNCS
2998, Apr. 2004.

[16] J. Garrigue. Personal communication, Sept. 2005.
[17] B. Goldberg. Tag-free garbage collection for strongly typed

programming languages. Sigplan, 26(6):165–176, 1991.

[18] D. Grossman, G. Morrisett, and S. Zdancewic. Syntactic type
abstraction. ACM TOPLAS, 22(6):1037–1080, 2000.

[19] R. Harper and M. Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In Proc. 21st POPL, 1994.

[20] R. Harper and B. C. Pierce. Design issues in advanced module sys-
tems, 2005. Chapter in Advanced Topics in Types and Programming
Languages, B. C. Pierce, editor.

[21] G. Henry, M. Mauny, and E. Chailloux. Typer la désérialisation
sans sérialiser les types. In Journées Francophones des Langages
Applicatifs, Jan. 2006.

[22] J. J. Leifer, G. Peskine, P. Sewell, and K. Wansbrough. Global
abstraction-safe marshalling with hash types. In Proc. ICFP, 2003.

[23] X. Leroy. Manifest types, modules, and separate compilation. In
Proc. 21st POPL, 1994.

[24] X. Leroy et al. Objective Caml 3.09.1. http://caml.inria.fr,
Jan. 2006.

[25] X. Leroy and M. Mauny. Dynamics in ML. Journal of Functional
Programming, 3(4):431–463, 1993.

[26] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
Parts I + II. Information and Computation, 100(1):1–77, 1992.

[27] B. C. Pierce and D. N. Turner. Pict: A programming language based
on the pi-calculus. In Proof, Language and Interaction: Essays in
Honour of Robin Milner, pages 455–494. MIT Press, 2000.

[28] J. H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.

[29] A. Rossberg. Generativity and dynamic opacity for abstract types. In
Proc. 5th PPDP, Aug. 2003.

[30] A. Rossberg, D. L. Botlan, G. Tack, T. Brunklaus, and G. Smolka. Al-
ice through the looking glass. In Trends in Functional Programming,
Vol. 5, Feb. 2006.

[31] P. Sewell. Modules, abstract types, and distributed versioning. In
Proc. 28th POPL, 2001.

[32] P. Sewell, J. J. Leifer, K. Wansbrough, M. Allen-Williams,
F. Zappa Nardelli, P. Habouzit, and V. Vafeiadis. Acute: High-level
programming language design for distributed computation. Design
rationale and language definition. Technical Report 605, University
of Cambridge Computer Laboratory, Oct. 2004. Also published as
INRIA RR-5329. 193pp.

[33] P. Sewell, J. J. Leifer, K. Wansbrough, F. Zappa Nardelli, M. Allen-
Williams, P. Habouzit, and V. Vafeiadis. Acute: High-level
programming language design for distributed computation. In
Proc. ICFP, Sept. 2005.

[34] P. Sewell, J. J. Leifer, K. Wansbrough, F. Zappa Nardelli, M. Allen-
Williams, P. Habouzit, and V. Vafeiadis. Acute: High-level
programming language design for distributed computation. Dec.
2005. Submitted for publication. http://www.cl.cam.ac.uk/
users/pes20/acute/paper3.ps.

[35] P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Location-
independent communication for mobile agents: a two-level archi-
tecture. In Internet Programming Languages, LNCS 1686, pages
1–31, 1999.

[36] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
Programming with binders made simple. In Proc. ICFP, 2003.

[37] B. Thomsen, L. Leth, and T.-M. Kuo. A Facile tutorial. In
CONCUR’96, LNCS 1119, 1996.

[38] J. Verlaguet. Acaml: An extension of OCaml with Acute-like
marshalling, Oct. 2005. Masters Dissertation.

[39] D. Vytiniotis, G. Washburn, and S. Weirich. An open and shut
typecase. In Proc. ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI), Jan. 2005.

[40] A. K. Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343–355, 1995.

$Date: 2006-04-05 20:15:20 +0100 (Wed, 05 Apr 2006) $ $Rev: 830 $:

