
The Implementation of HashCaml

John Billings, Peter Sewell, Mark Shinwell and Rok Strniša

Computer Laboratory, University of Cambridge

http://www.cl.cam.ac.uk/users/pes20/hashcaml/

$Date: 2006-04-14 02:12:41 +0100 (Fri, 14 Apr 2006) $: $Rev: 773 $:

1



Contents

1 Introduction 4
1.1 Overview of the compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Language features and constructs 5
2.1 Type-safe marshalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Runtime type representations for abstract types . . . . . . . . . . . . . . . . . . . . 6
2.3 Type representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Other Acute constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Compiler options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Type-passing translation 10
3.1 Value restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Rewriting on typed syntax trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Translation of value identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Translation of non-recursive let bindings . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Translation of recursive let bindings . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Translation of record fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Rewriting on lambda-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Coercion wrapper insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Insertion of discard wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Closing of lambda code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 AST normalization 21
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Specifying different myname calculation modes . . . . . . . . . . . . . . . . . 21
4.1.2 Calculation of myname in ”hashed” mode . . . . . . . . . . . . . . . . . . . 21
4.1.3 Calculation of myname in ”fresh” mode . . . . . . . . . . . . . . . . . . . . . 22
4.1.4 Calculation of myname in ”cfresh” mode . . . . . . . . . . . . . . . . . . . . . 23

4.2 Implementation details of normalization . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Traversal and the Normtree . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Storing intermediate information . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.4 Normalization of identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.5 Normalization of paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.6 Dependency upon external, pre- and sub- structures . . . . . . . . . . . . . 26
4.2.7 Generating expressions to compute mynames . . . . . . . . . . . . . . . . . . 26
4.2.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.9 Aliasing (of functor parameters) . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.10 Insertion of mynames into module signatures . . . . . . . . . . . . . . . . . 29

4.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Normalization of functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



4.4.1 Functor expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.2 Normalisation of the parameter . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.3 Hash-parameter scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Hash packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Normalization of signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Type normalization 32
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Background: O’Caml type expressions . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Background: O’Caml type declarations . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Normalization for AST hashing (Normtypedecl) . . . . . . . . . . . . . . . . . . . . 35

5.4.1 Normalization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Normalization for type-passing (Normtypes) . . . . . . . . . . . . . . . . . . . . . . 39

5.5.1 Means of representing types . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.2 A note on recursive definitions . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.3 Normalization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Modifications to the O’Caml runtime 47
6.1 Random myname generator (byterun/random256.c) . . . . . . . . . . . . . . . . . 47
6.2 Hashing of structures (byterun/hash256.c) . . . . . . . . . . . . . . . . . . . . . . 47
6.3 Polymarshal (byterun/polymarshal.c) . . . . . . . . . . . . . . . . . . . . . . . . 47

7 The standard library 48

3



Chapter 1

Introduction

This document describes the internals of the HashCaml implementation. HashCaml is a patch on
the O’Caml bytecode compiler, runtime system and standard library that implements support for
type-safe and abstraction-safe marshalling and associated features, summarised in Chapter 2 and
presented in more detail in the paper [BSSS06]. The patch consists of a set of fairly small changes
to the vanilla O’Caml source tree, plus additional C and O’Caml source files to the order of around
5,000 lines.

1.1 Overview of the compiler

The majority of the new code is contained in the source file polymarshal/polymarshal.ml. There
is also a runtime support file byterun/polymarshal.c together with various changes scattered
throughout the compiler.

In outline, the modifications made are as follows. These are listed in ‘chronological’ order with
respect to a compilation session.

• Changes to permit extra compiler/toplevel flags.

• Changes to the lexer, parser and associated modules to accommodate new keywords.

• Changes to the type inference algorithm:

– firstly, to cope with the new keywords;

– secondly, to record information when inferring the types of value identifier nodes in
order that their correct type schemes can be recovered later (see §3.2.1).

• A stage of rewriting inserted after type inference. This operates on typed syntax trees (as
defined in typing/typedtree.mli etc).

• A stage of coercion wrapper insertion (see §3.4).

• A stage of rewriting on lambda-code (as defined in bytecomp/lambda.mli etc.) called from
the Translcore module.

• A new runtime module written in C.

4



Chapter 2

Language features and constructs

This chapter, taken from the HashCaml.README included in the distribution, summarises the new
constructs that HashCaml provides.

2.1 Type-safe marshalling

The O’Caml standard library module Marshal has been modified to support type-safe marshalling:
attempts to unmarshal a value at the wrong type will cause a runtime exception. For example,

let s = Marshal.to_string false []

let b = true && (Marshal.from_string s 0)

executes successfully, whereas

let s = Marshal.to_string 17 []

let b = true && (Marshal.from_string s 0)

fails with the exception Invalid_argument("Marshal type mismatch"). (In O’Caml the second
does not signal an error; it just silently continues with corrupted data. The old Marshal module
that exhibits this behaviour is now available as the Oldmarshal module.)

To implement this, marshalled values now contain a runtime representation of the type at
which they were marshalled, together with the value itself. The standard O’Caml marshaller is
used underneath, so marshalling for code pointers and cyclic structures is as before.

Runtime type representations are 256-bit strings. For concrete types these are built by hash-
ing the type structure, with very low probability of accidental collision. For abstract types the
semantics is more subtle, and is outlined below. It is designed to give reasonable behaviour even
for marshalling between non-identical programs: roughly, unmarshalling will succeed if the types
involved have common definitions.

Marshalling and unmarshalling can be done within polymorphic functions, at types involving
their generalised type variables. For example, in

let pair_and_marshal : ’a -> string

= function x -> Marshal.to_string (x,x) []

let s = pair_and_marshal 17

let n = let (x1,x2)=(Marshal.from_string s 0) in x1+x2

the unmarshal succeeds correctly.
To implement this, runtime type representations are passed around dynamically. Loosely, extra

lambda abstractions are introduced for each polymorphic generalisation point, and extra applica-
tions are introduced at each instantiation of a polymorphic identifier.

However, the dynamic type of marshalled values, and the dynamic type at unmarshal points,
must not contain any (uninstantiated) type variables, otherwise a runtime exception will be raised.
In other words, values cannot be marshalled polymorphically.

5



The current implementation naively passes types everywhere, which does incur a performance
cost. There are many possibilities for optimization, eg to not pass types in the (frequent) cases in
which they do not flow to a marshal or unmarshal point, or where at most one type will flow to
such a point. There is also scope to memoise the type representation computations. We have not
implemented any of these optimizations, or any optimization to the new compiler phases.

Bootstrapping of ocamlc is an order of magnitude slower than usual (much of this slowdown
is likely to be due to the new phases), whilst the standard O’Caml test suite runs at almost the
same speed when compiled with HashCaml as when compiled with vanilla O’Caml.

An SML’97-style value restriction is used rather than the (more liberal) O’Caml restriction.
The implementation is intended to cover all of the standard part of the language except mar-

shalling of polymorphic variants and objects (which has not been addressed and may not work: a
warning will be issued). The compiler can bootstrap itself.

2.2 Runtime type representations for abstract types

Runtime type representations for abstract types are built variously from pseudo-random numbers
and hashes of module definitions, broadly following earlier work on the Acute language and its
predecessor calculi.

In the implementation each structure (and therefore each compilation unit) has a hidden
myname field containing a 256-bit value. This is used when calculating type representations for
abstract types. For example the representation of some abstract type M.t, when viewed from
another module N, will involve a hash of the string "t" and the myname value of M.

The myname value can be calculated in one of three ways, depending on what dynamic type
equality semantics is desired:

1. as a hash of the abstract syntax tree of the module, up to alpha-conversion and type equality,
and taking account of any module dependencies (”hashed mode”); or

2. as a random number determined at compile-time (”cfresh mode”); or

3. as a random number determined at module initialization time (”fresh mode”).

”hashed” mode ensures that if the implementation of the type verb+M.t+ changes, or if its associ-
ated invariants (enforced by functions in module M) change, then the type representations of M.t
will be different from that before the change.

”cfresh” mode ensures incompatibility of such type representations between builds.
”fresh” mode ensures incompatibility of such type representations between instantiations of

the module.
Hashed mode is the default. To specify ”fresh” or ”cfresh” mode, write fresh struct or

cfresh struct, for example:

module M : sig type t end = fresh struct type t=int end

let x : typerep = rep ( M.t )

module M : sig type t end = cfresh struct type t=int end

let x : typerep = rep ( M.t )

module M : sig type t end = struct type t=int end

let x : typerep = rep ( M.t )

These annotations can also be used with functors. Note that although Objective Caml functors
are applicative in the static type system, ”fresh” mode will cause the unique identifier for the
functor body to be re-computed (with very high probability giving a different value) each time the
functor is applied to a structure.

To set an entire implementation file (corresponding to a module of the same name) to ”cfresh”
or ”fresh”, rather than the default of ”hashed”, insert typemode cfresh or typemode fresh as the
first item in the source file, for example:

6



typemode fresh

type t=int

typemode cfresh

type t=int

type t=int

For abstract types with definitions that involve effects at initialisation time, ”fresh” should be
used to guarantee that their invariants are preserved. The implementation permits any of the 3
options, however (it does not do any valuability analysis), as some applications need the more
liberal ”hashed” or ”cfresh” semantics even in the presence of effects.

2.3 Type representations

There is a new built-in abstract type

typerep

of runtime type representations, with constructs rep to build the representation of a type, eg

let x : typerep = rep( int * int )

let s : string = Dyntype.string_of_typerep x

and the representation of the type of an arbitrary expression, eg

let x : typerep = dyntype( 3 )

Their behaviour is unspecified if the dynamic type contains uninstantiated type variables. Cur-
rently an exception is raised.

Usually the only interesting operation for type representations is to compare them for equality
- they have no useful internal structure - but there is a new standard library module Dyntype
containing the function

string_of_typerep : typerep -> string

2.4 Names

There is a new family of types ’a name, represented as 256-bit values. Names can be generated
in several ways:

1. Freshly: just write fresh (of type ’a name). This produces 256-bit random values. For
example:

let x : int name = fresh

2. Using the module hashes produced for calculating type representations, for example

module M = struct let f : int -> int = function z->z end

let x : (int -> int) name = fieldname M.f

which will produce a name based on the module myname value of M and the path t.

There is a special conditional for comparing names:

ifname e1 = e2 then e3 else e4

7



where e1 : ’a name, e2 : ’b name, e3 : ’c, e4 : ’c,
and e3 is typechecked in an environment where ’a and ’b are unified. For example

let x : int name = fresh

let y : bool name = fresh

let f x’ y’ = ifname x’ = y’ then [x’;y’] else [x’]

let a = f x y

let b = f x x

We antipate this to often be used in conjunction with an encoding of existentials, eg to manip-
ulate collections of existential packages of names of channels (carrying t) and the pending values
(of type t).

We also provide name coercions:

namecoercion(path1, path2, e)

where path1 and path2 are type constructor paths (and refer to type constructors of the same ar-
ity) and e has type [ty1 ... tyn] path1 name, yields a value of type [ty1 ... tyn] path2 name.
For example:

type (’a,’b) t = Foo of ’a*’b

type (’c,’d) t’ = Bar of ’c*’d*int

let x : (int,bool) t name = fresh

let y : (int,bool) t’ name = namecoercion(t,t’,x)

There is also a facility for constructing names from a pair of a type and a string:

hashname(t, s)

where t is a type and s is a value of string type. For example:

let x : int name = hashname(int, "foo")

2.5 Other Acute constructs

The prototype Acute language provided various additional features which are not supported by
this implementation:

• dynamic rebinding to programmer-specified marks at unmarshal time (here, instead, rebind-
ing takes place only to the standard library)

• explicit imports, version numbers and version constraints

• polytypic name support and swap operations

• thunkification of executing threads (and mutexes and cvars) into marshallable values

• marshalling of functions between non-identical builds (here the O’Caml marshaller is used
internally, so functions can only be communicated (as function pointers) between identical
builds).

2.6 Compiler options

The compiler understands some new flags:

• -allowmynames Allow references to myname fields (not recommended)

• -nomlpoly Use relaxed value restriction (implies -nopolymarshal)

8



• -nopolymarshal Disable polymorphic marshalling (experts only)

• -pmdebug Print debugging info for polymorphic marshalling

• -dnormtree Print out normalized trees of compilation unit

• -dnormtrans Print debugging info for normalization

If a program is using polymorphic marshalling, all files that it makes use of must be compiled with-
out -nopolymarshal as well (including the standard library, which is compiled with polymorphic
marshalling by default).

9



Chapter 3

Type-passing translation

To effect the recovery of type information at runtime, HashCaml performs a certain translation
on syntax trees. The guiding principle is to ‘put in all the big lambdas’ together with the corre-
sponding type applications. In fact, these ‘big lambdas’ are just normal lambdas that accept type
representations: type application is then treated as normal function application. We explain how
this translation works after a brief diversion to the value restriction.

3.1 Value restriction

HashCaml enforces the SML’97-style value restriction. This is in contrast to vanilla O’Caml distri-
butions, which use not only the Garrigue criterion1 for generalization of expansive expressions,
but also behave as follows:

• whether or not a conditional expression if e1 then e2 else e3 is judged to be nonexpansive
is independent of the condition e1;

• an application expression will be deemed to be nonexpansive if the function part and all
of the arguments are themselves nonexpansive. (Under the SML-style value restriction, an
application expression is always expansive.)

Why does HashCaml enforce the SML-style value restriction? Simply because the scheme of type-
passing becomes complicated and grotesque under the standard O’Caml restriction. We now ex-
amine why.

First off, the usual intuition with Garrigue’s criterion is that a value whose type scheme involves
a generalized type variable appearing only in covariant position cannot actually contain any value
whose type is that type variable (in other words, the body of an expression yielding that value
does not care about what the type variable is instantiated to). For example the empty list of type
α list never contains any values of type α, whatever that may be instantiated to.

This intuition breaks down when considering the type-passing translation. It is indeed possible
in that scenario to construct a function that is assigned a generalized type, with a type variable
appearing only in covariant position, and yet needs to know what types that variable is being
instantiated to. Here is one such function, given as part of a hypothetical toplevel session:

# let r = ref "";;

val r : string ref = {contents = ""}

# let f () = let x = [] in ((r := Marshal.to_string x []); x);;

val f : unit -> ’a list = <fun>

1That criterion generalizes in the usual way when the expression whose type is being generalized is non-expansive.
If, however, the expression is expansive then it will generalize those type variables that occur only in covariant positions
within the type of the expression.

10



.. 3 :: (f ()) .. "foo" :: (f ()) ..

Note that the function f has a generalized type containing a type variable appearing only in
covariant position. Depending on what type is assigned to the application expression that invokes
the function f, we need to have different type representations appearing for the marshal (and they
should be sensible since the result can be observed via the reference r).

Now whilst it is indeed the case that no value of type τ appears inside the value bound to f

when used at type unit → τ list, we still need to know what type f is being used at inside
its body because the marshalling expression introduces a dependency on the corresponding (type
representation) value identifier. In this case, it is therefore necessary to add a type representation
lambda to the function f to correspond to the covariant-only type variable that is being gener-
alized. A type-passing version of the above might look something like the following2. (We have
abbreviated the marshal to just identify that it uses rep and hence depends on tyrep a.)

# let r = ref "";;

val r : string ref = {contents = ""}

# let f tyrep_a () = let x = [] in ((r := .. .tyrep_a ..); x);;

val f : typerep -> unit -> ’a list = <fun>

.. 3 :: (f rep(int) ()) .. "foo" :: (f rep(string) ()) ..

So this leads us to believe that even covariant-only type variables that are generalized should be
associated with type representation lambdas.

To refute this seemingly attractive proposition, we now consider the question of generalization
of expansive expressions. (The reader will see that f above is being bound to a non-expansive ex-
pression – in that case a lambda abstraction.) First we consider what happens when the expansive
expression evaluates to a non-functional value, as in the following code fragment.

let s = ref "" in

let id = fun y -> (s := Marshal.to_string y []; y) in

let r = ref 0 in

let x = (r := 1; id []) in

(!r, !s)

Here, the identifier x receives the type scheme ∀α. α list; it is assigned to a value that results
from the evaluation of an expansive expression (the sequencing). We also need to pass a type
representation into the function id since that has an (uncontroversial) generalized type. However
we cannot get that type representation to the application point of id within the definition of x,
because adding a type representation lambda to the value bound to x affects the evaluation order.
Besides, we don’t really want to add a lambda anyway: x is not a function, and although it may
be used at one of many types, that use never affects the type representation passed into id. The
solution, therefore, is presumably to never add any type representation lambdas when the type
being generalized is not a function type; and furthermore, in cases such as this one where a type
variable being generalized is used on the right-hand side of the let, dummy type representations
should be added to be passed down as required. Hence the type-passing version of the above
could perhaps be (abbreviating the marshal as above):

let s = ref "" in

let id = fun tyrep_a -> fun y -> (s := .. tyrep_a .. ; y) in

let r = ref 0 in

let x = (r := 1; id <dummy> []) in

(!r, !s)

2The astute reader who has spotted that x has not been given a type representation lambda should wait a few paragraphs
to find out why.

11



Now this may suffice for the case where we have generalization of the type variables that appear
only in covariant position within the type of an expansive but non-functional expression. But what
if the expression is of function type? In such cases, it could be applied multiple times, and type
representations unfortunately need to be propagated through. We slightly alter the first example
above to give the following code:

# let r = ref ""

val r : string ref = {contents = ""}

# let s = ref 0

val s : int ref = {contents = ""}

# let f = (s := 1; fun () -> let x = [] in ((r := Marshal.to_string x []); x))

val f : unit -> ’a list = <fun>

.. 3 :: (f ()) .. "foo" :: (f ()) ..

The Garrigue criterion will still generalize as shown above; this time, however, we cannot add a
type representation lambda onto f because it would disrupt the side effect. The only option is,
unfortunately, to assume within the body of f that the generalized type variable is always bound
to a dummy typerep, just as we had in the previous code fragment. That then gives a type-passing
version like this (no type representation lambda has been added to f and the invocation of rep on
the type variable inside the marshal has yielded a dummy):

# let r = ref "";;

val r : string ref = {contents = ""}

# let s = ref 0;;

val s : int ref = {contents = ""}

# let f = (s := 1; fun () -> let x = [] in ((r := .. <dummy> ..); x));;

val f : unit -> ’a list = <fun>

.. 3 :: (f ()) .. "foo" :: (f ()) ..

Whilst this is unsatisfactory on many counts, it does mean that at least some type representation
(albeit a dummy one) is communicated to the correct point; it also ensures that the side-effect is
not disturbed. If such a scheme were to be implemented, care would need to be taken to record
that the identifier f must never have any type representations applied to it (viz. the last line in the
code above).

The only satisfactory thing to be said about this scheme is that it fits with the non-functional
case: the summary for both cases is therefore that if an expansive expression is having its type
generalized, whether that type is a function type or not, the corresponding type representation
identifiers within the expression should be set to dummies and no type representation lambdas
should be added. Thankfully such cases are, in practice, likely to be rare.

We now return to the O’Caml-style generalization of conditional expressions but assuming that
everything else is as for SML’97. Consider the following code fragment:

let r = ref 0 in

let f = if (r := 1; true) then fun x -> Marshal.to_string x [] in

!r

The identifier f is assigned the type scheme ∀α. α → string, since even though the condition is
not a nonexpansive expression, the body of the whole if expression is nonexpansive. However
we cannot match this generalization with a type representation lambda inserted on the front of
the value bound to f because such a lambda would delay the side effect. In general, the side effect
might never happen or be repeated multiple times due to the erroneous translation. A plausible
solution would be to adopt the same ‘dummy’ strategy as above: indeed, if the Garrigue criterion
combined with that strategy is used then it subsumes this case anyway (the if is an expansive
expression).

12



3.2 Rewriting on typed syntax trees

This section describes the rewrites that are performed on syntax trees whose types are defined in
the Typedtree module.

3.2.1 Translation of value identifiers

The basic aim of the translation at value identifier nodes is to turn them into typerep applications
if the identifier has a non-trivial type scheme. Value identifiers which are not ‘regular’ (such as
ones representing C primitives) are never translated. In the future, when dealing with objects, this
may well need to change: the other varieties of non-regular identifier all pertain to them.

Upon encountering a regular value identifier, we proceed as follows. The type scheme of the
identifier is examined; if it is trivial then we just leave the node alone. Otherwise, we examine the
type at which this occurrence of the value identifier is being used and determine the substitution
which gets us from the type scheme to that type. This substitution will map each quantified
type variable in the type scheme and can, given a canonical order on type variables, be directly
translated into a type representation application.

In order to determine the substitution, we can allocate a number of fresh type variables (as
many as there are quantified in the type scheme) and instantiate the scheme at those variables.
Then the resulting type can be unified with the type at which the identifier is being used and the
substitution read off by examining what the fresh type variables have been unified with.

For example if the identifier in question is called x, has the type scheme ∀αβ. α→ β→ bool,
and is being used at the type bool→ int→ bool, then we will emit

x R(bool) R(int)

where we write R(τ) for the code that constructs the type representation block that represents the
type τ (see §5.5.1). For now it suffices to identify that, for any type variable α, R(α) contains a
value identifier whose name is uniquely derived from the name of the type variable.

When emitting the typerep applications it is important (so that they match up with typerep
abstractions added elsewhere) to ensure that they appear in a consistent order with respect to the
type scheme parameters that they correspond to: this is why we sort using a canonical order. In
the implementation this is the usual order on the natural numbers.

This procedure is significantly more complicated to implement than it might at first appear.
The hardest problem relates to the fact that in the Objective Caml implementation there is ac-
tually no distinction between types and type schemes. In order to perform generalization, the
system simply marks the appropriate type variables as being generalized (by setting their levels
to generic level). Therefore when examining the ‘type scheme’ of an identifier to determine
the quantified variables, what we are actually doing is examining a plain type and just extracting
those whose level is generic level.

This all sounds well and good, but is not in itself a solution: since we examine the typed syntax
trees after type inference has taken place, it is possible that the imperative generalizations give a
false view of the world. Consider the following fragment:

let f x = dyntype(x) in (f "foo") :: (f 42) :: [];;

This should be translated to something like:

let f tyrep_a x = ... tyrep_a ... in (f String "foo") :: (f Int 42) :: [];;

writing String for R(string) and likewise for Int.
Suppose we are looking at the occurrence of the identifier x in the body of f. It is clear that

this identifier has type scheme ∀∅. α. However inside the compiler this is not obvious. When
typechecking the body of f the identifier would indeed have been assigned a type corresponding
to the previous trivial type scheme. The difficulty is that after that body has been typechecked,
generalization happens and that type variable is imperatively updated to be general. This is safe,

13



because no uses of it occur outside of the function definition. So when we later come to look at
the typed trees and come across that occurrence of x, it appears to have type scheme ∀α. α, which
is erroneous.

To circumvent this problem we adjust the type inference algorithm itself to record, whenever
it hits a value identifier, which type variables in its type are marked as general at that time. We
call such a record a type variable identifier memo. In the above case, the corresponding set of type
variables would be empty, and so when we examine the typed trees after type inference we know
that the identifier actually had type scheme ∀∅. α.

Similar problems apply when dealing with let expressions as we shall see in §3.2.2 and §3.2.3.

3.2.2 Translation of non-recursive let bindings

The basic procedure followed here is to equip let-bound values with typerep lambdas according
to the type scheme of the value. This apparently simple procedure is made complicated by two
things:

• the fact that let bindings can involve arbitrarily complicated patterns on the left-hand side;

• difficulties in identifying the type scheme of let-bound identifiers (in a similar vein as those
encountered when translating value identifier nodes).

The first problem manifests itself in examples such as the following:

let (x, y) = (fun x -> x), (fun y -> y);;

What we need to do here is to insert one typerep lambda on the front of the values of the let-bound
identifiers x and y. We know this because we have examined the types of x and y and noted that
both types contain one generalized type variable.

In order to effect the addition of lambdas, we either need to decompose the pair on the right-
hand side of the binding (before the match compiler is applied), or we need to rewrite after the
match compiler. Since the right-hand side of such a binding could be arbitrarily complicated
(although still a value if enforcing the SML 97-style value restriction), and the match compiler
already has ways of decomposing such values, we choose the second option. This means that
the majority of the rewrites performed on let expressions are applied at the lambda-code level
rather than at the typed tree level. The exact transformation performed there is described in §3.3:
nothing more happens at this stage.

The transformation on lambda code requires the type schemes of each identifier occurring
on the left-hand side of a let binding, bringing us to the second difficulty identified above. As
for value identifier nodes, we cannot simply use the post-type-inference type to determine which
type variables are generalized. For example in the following example the identifier g has a trivial
type scheme, whereas its type variables will be marked as general after type inference due to the
generalization occurring at the outermost let.

# let f x = let g y = (x = y) in g x;;

val f : ’a -> bool = <fun>

To obtain the correct answers we adopt a similar procedure to before; nodes representing let

expressions (and, correspondingly, value bindings in structures) in the typed syntax trees are
augmented with a type variable memo that enables us to recover, after type inference, the correct
generalization information which we require. This entails a reasonable number of small changes
throughout the compiler.

Even though we defer discussion of the lambda-code rewrites until §3.3, we do give the fol-
lowing lambda-code, which is the output of the translation on the above fragment (when placed
in a file test.ml).

14



(setglobal Test!

(let

(f/71 (function _tyrep_678/99999

(function x/72 (

let (g/73 (function y/74 (caml_equal x/72 y/74)))

(apply g/73 x/72))))

myname/83

(hash256_checked

(makeblock 0 "\019 .. \252"

(field 81 (global Pervasives!)))))

(makeblock 0 f/71 myname/83)))

3.2.3 Translation of recursive let bindings

A further complication arises when the value identifier being considered is bound by a let rec.
For example:

let rec f x n = if n = 0 then dyntype(x)

else f x (n - 1);;

The function f has type scheme ∀α. α→int→string and so the occurrence of f on the right-hand
side of the binding should be replaced by the application of a typerep to f. However applying the
scheme of §3.2.1 for determining generalized variables at value identifier nodes fails: originally,
the occurrence of f would have been assigned a trivial type scheme (because polymorphic re-
cursion is not permitted in O’Caml) and the record of that fact would later be used to identify
(incorrectly) f as having a trivial type scheme at the end of it all.

To understand how we solve this problem consider a general let rec expression where mul-
tiple, possibly mutually-recursive, identifiers are being bound at once, thus:

let rec x1 = ...

...

and xn = ...

(Whether or not the let rec has a body makes no difference, for inside the body the scheme of
§3.2.1 is correct.)

During type inference, type variable memos will be formed for each identifier x1 through xn

in the same manner as is done for non-recursive bindings (viz. §3.2.2). What we then do, when
effecting the type-passing translation, is to first combine all those memos into one single one and
then combine that with a current ‘running memo’ that is the result of this procedure happening
at any outer let rec bindings. In this case, that combined memo enables us to identify which
type variables in the types of x1 through xn are those generalized by the let rec (rather than any
enclosing expression). Also (by virtue of the ‘running memo’), if our let rec expression is actually
sitting inside the bindings of another such, the memo enables us to get the correct generalization
information for value identifiers bound by that outer expression.

When delving inside the bindings of the let rec, then, we use the combined memo whenever
we encounter a value identifier that is being recursively (monomorphically) bound by either the
left-hand side of our current binding or (if we are nested inside the binding of another let rec)
an outer left-hand side. Upon examining the memo we determine the correct type scheme of
the recursively-bound identifier and thus we can insert correspondingly many type representation
lambdas.

Note that since let rec expressions may only possess single variable patterns on their left-
hand sides, we can perform all rewrites on recursive let expressions at the typed syntax tree level
rather than on lambda-code.

Now going back to the example above:

15



let rec f x n = if n = 0 then dyntype(x)

else f x (n - 1);;

we can understand how the following lambda-code is generated as a result of this procedure:

(setglobal T!

(letrec (f/71

(function _tyrep_667/99999 x/72 n/73

(if (== n/73 0)

(let (_marshalled/83 x/72) (flattentyperep _tyrep_667/99999))

(apply f/71 _tyrep_667/99999 x/72 (- n/73 1)))))

(let (myname/82

(hash256_checked

(makeblock 0 "g\189 .. >\154" (field 81 (global Pervasives!))

(field 81 (global Pervasives!)))))

(makeblock 0 f/71 myname/82))))

Observe how we have correctly identified the occurrence of f on the right-hand side as being a
recursively-bound identifier.

3.2.4 Translation of record fields

In O’Caml record fields may be assigned a polymorphic type; during type inference the compiler
correspondingly attempts to generalize the type of a value being put into a record field. Since the
field’s value may subsequently be used at multiple types, we equip it with as many type represen-
tation lambdas as are necessary to reflect the generalization that has happened. Correspondingly,
when a record field is referenced, we add type representation applications as appropriate.

For example the following source text:

type record_t = { field : ’a . ’a list -> int }

let record = { field = List.length }

let l1 = ["foo"; "bar"]

let l2 = [1; 2]

let xs = (record.field l1) :: (record.field l2) :: []

yields the lambda-code below:

(setglobal T!

(let

(record/74 (makeblock 0 (

function _tyrep_694/99999

(apply (field 0 (global List!)) _tyrep_694/99999)))

l1/75 [0: "foo" [0: "bar" 0a]]

l2/76 [0: 1 [0: 2 0a]]

xs/77

(makeblock 0

(apply (field 0 record/74) [0: "Ew\031 .. \023z9"] l1/75)

(makeblock 0 (apply (field 0 record/74)

[0: "E].\227 .. e\""] l2/76) 0a))

myname/79

(hash256_checked

(makeblock 0 "\027 .. V5" (field 42 (global List!)))))

(makeblock 0 record/74 l1/75 l2/76 xs/77 myname/79)))

16



3.3 Rewriting on lambda-code

Recall the following example from §3.2.2.

let (x, y) = (fun x -> x), (fun y -> y);;

When compiled with a standard Objective Caml compiler we obtain the following lambda-code:

(let

(match/75 (makeblock 0 (function x/73 x/73) (function y/74 y/74))

y/72 (field 1 match/75)

x/71 (field 0 match/75))

(makeblock 0 x/71 y/72))

It is straightforward, having examined the various types and determined which typerep lambdas
need to be inserted (by means of the type variable identifier memos discussed in §3.2.2), to put
them on the bindings for x and y in this code. However, the right-hand side of the original let
binding has been moved into the lambda-code binding of the fresh identifier match/75. So in fact
we need to determine all of the typerep abstractions which are needed across the right-hand side of
the original bindings and add all of those onto the bindings for any auxiliary match identifiers such
as this one. The individual bindings for x and y in this case only have one lambda added to them
each, but they actually each apply two typerep arguments to match/75. If a particular typerep
argument of a match identifier is not needed in a particular case, it is replaced by a dummy.

As an example consider the following fragment:

let (x, y) = (fun x -> dyntype(x)), (fun y -> dyntype(y))

The output of translation to lambda code is as follows (ignore the redundant lets binding the
marshalled identifiers; they exist for historical reasons):

(setglobal T!

(let

(match/86

(function _tyrep_667/99999

(function _tyrep_675/99999

(makeblock 0

(function x/73 (

let (_marshalled/77 x/73) (flattentyperep _tyrep_667/99999)))

(function y/74

(let (_marshalled/78 y/74) (flattentyperep _tyrep_675/99999))))))

y/72 (function _tyrep_675/99999

(field 1 (apply match/86 _tyrep_667/99999 _tyrep_675/99999)))

x/71 (function _tyrep_667/99999

(field 0 (apply match/86 _tyrep_667/99999 _tyrep_675/99999)))

myname/76 "h\230 .. \175\220")

(makeblock 0 x/71 y/72 myname/76)))

Note that the bindings for x and y contain unbound type representation identifiers. These are
caught at a later stage (after dumping of the above output) and replaced by dummy type repre-
sentations, since they will never be used. It would be pleasing if a more satisfactory means of
treating this could be produced.

Another outstanding issue at the moment, which makes the code unclear (and indeed neces-
sitates de-shadowing of all lambda code), is that the translation is performed at every let node
in the lambda code, rather than it being effected by starting at the top level of the lambda code
and working downwards. An implementation along the latter lines would be desirable and more
straightforward.

17



3.4 Coercion wrapper insertion

Coercion wrapper insertion pertains to a certain problem, which arises due to the fact that mod-
ules’ interfaces may exhibit less general types than the actual implementation underneath. We
start with a simple example. In the standard library is a function called List.iter declared thus:

let rec iter f = function

[] -> ()

| a::l -> f a; iter f l

Due to a typechecking peculiarity, this has the inferred type

val iter : (’a -> ’b) -> ’a list -> unit

but is declared in the interface file as

val iter : (’a -> unit) -> ’a list -> unit

This means that when using type-passing, the code for iter has two typerep abstractions on the
front of it. However, when an external user (viewing iter only via the interface) uses it, they
think it only has one, and so it fails to work correctly. (One might think that in such scenarios the
coercion is invisible; however, it can be observed as we shall see in the next example.)

Our analysis of this problem centres on the fact that

if an implementation has an interface then the interface must be compiled first.

Therefore, when compiling such an implementation, we can see if the interface is causing coer-
cions. If it is, we proceed as follow. For each identifier old exposed in the interface in such a
way as to coerce its type, we allocate a fresh identifier (call it new). We rename all occurrences of
the identifier old to new throughout the structure body (including in the domains of type variable
identifier memos) and then insert a wrapper function called old which accepts as many typerep
arguments as there are type parameters exposed in the interface of that function and then calls
the function new, supplying it with parameters as necessary from the called arguments and also
those statically known from the interface coercion.

Here is a concrete example, which will clarify the situation. We have three source files com-
prising a program: m.ml, with accompanying interface m.mli, and n.ml. Remember that the .mli

file must be compiled first.
The source of m.ml is:

let foo a b = (dyntype(a), dyntype(b))

The source of m.mli is:

val foo : ’a -> unit -> (typerep * typerep)

The source of n.ml is:

M.foo 42 ()

Because foo exhibits a coercion in the interface, we rename it to a fresh identifier (in this case
foo 61 body/66) and insert a wrapper function called foo. This yields the following output of
compiling m.ml:

(setglobal M!

(let

(foo/71

(function _tyrep_664/99999

(function _tyrep_669/99999

(function a/72 b/73

18



(makeblock 0 (let (_marshalled/76 a/72)

(flattentyperep _tyrep_664/99999))

(let (_marshalled/77 b/73)

(flattentyperep _tyrep_669/99999))

))))

myname/75 "\002 .. \024")

(makeblock 0

(function _tyrep_721/99999

(apply foo/71 _tyrep_721/99999 [0: "E\180 .. \161"]))

myname/75)))

Note the way that the original foo, equipped with all its typerep arguments, has been renamed.
Internal users will still use that version, whilst external users (viewing the function through the
interface) will use the wrapper (the third and second lines from the bottom).

The output of compiling n.ml is then:

(setglobal N!

(seq (apply (field 0 (global M!)) [0: "E].\227 .. \""] 42 0a)

(let

(myname/72

(hash256_checked

(makeblock 0 "\012 .. \233kP" (field 1 (global M!)))))

(makeblock 0 myname/72))))

Note how the typerep corresponding to the int type has been statically filled in.
When compiling modules containing other modules (or functors) nested inside them, we must

be careful to insert the coercion wrappers at the end of the appropriate module to ensure that the
relevant identifiers are in scope.

3.5 Insertion of discard wrappers

External functions (written in C) are never passed type representation blocks – if such a function
needs the type information it must explicitly have an extra argument and an ML wrapper function
that uses rep() to obtain the appropriate type. Such functions are likely to be polymorphic and
higher-order, for example one that takes a polymorphic function as argument and then invokes it
from C. Cases like this—of which only one has been identified in the compiler system itself—may
need to explicitly pass type representation arguments back to ML functions. If the reader needs to
do this they should note the order in which the type representation lambdas have been added to
the ML function (using option -drawlambda) and insert explicit applications in their C code. Type
representations are applied curried, not tupled.

In order to ensure that external functions are not passed type representation blocks, the com-
piler does not add type applications to values of kind Val prim. The only case that might seem
tricky is when a value identifier is assigned to be an external function (for example, given an ex-
ternal f, we might say let g = f). However, in all such scenarios the O’Caml compiler already
eta-expands the primitive (presumably because application of it requires special treatment, which
only needs to be inserted once—in the eta-expanded code—and not at every use point). In a sim-
ilar manner, then, we allow the eta-expanded versions to be equipped with type representation
lambdas (and since they are regular values, not Val prim ones, they will get type representation
blocks applied to them as usual). The lambda-code that consists of such type representation lamb-
das, with an eta-expanded primitive in the middle, is called a discard wrapper – so named because
it accepts the relevant number of type representation lambdas and simply discards the arguments
passed into them.

19



3.6 Closing of lambda code

When the lambda code has been generated there may be unbound type representation identifiers.
These arise from two sources: the translation of §3.3 and situations where free type variables
end up having their type representations calculated. Currently, a pass at bytecode generation
time traps these unbound identifiers and converts them into dummy type representations. If they
arose from the translation of §3.3 they will never be used; however if they arose from free type
variables they might be used via a dyntype() or a rep(). Attempting to use either of these
on a type representation block that contains dummies within it fails with a runtime exception
Invalid argument "Dynamic type contains free type variables". This should probably be
turned into a distinguished, predefined exception.

20



Chapter 4

AST normalization

4.1 Overview

Each structure (and therefore each compilation unit) contains a hidden field called myname that
is a unique identifier for the module. This field cannot be accessed by the user without explicitly
specifying the -allowmynames compiler flag.

4.1.1 Specifying different myname calculation modes

The different modes for calculating myname are ”hashed” (default, no keyword), ”fresh” (keyword
fresh) and ”cfresh” (keyword cfresh). The keywords can appear in front of any struct keyword
making the corresponding structure’s myname of the selected mode. To select the mode for the
top level (compilation unit’s) structure other than the default ”hashed” mode, the keyword pair
typemode fresh or typemode cfresh must appear as the first item in the file.

4.1.2 Calculation of myname in ”hashed” mode

The abstract syntax tree of a structure is subjected to a process of normalization before it is hashed
to compute the unique identifier for that module.

The normalization process satisfies the following.

1. All identifiers that cannot be externally visible are assigned de Bruijn indices, e.g.

let f x = x

is normalized to

let f [0] = [0]

Here f is visible and remains unchanged, whereas x is not visible, so it is assigned a de Bruijn
index.

2. The myname of a named structure is independent of that structure’s name.

3. A module’s myname depends on the myname values of modules it refers to. For example
consider:

module M = struct let _ = print_endline "HashCaml" end

21



Here M.myname depends on Pervasives.myname, since it uses its print endline function.
Pervasives.myname is thus included in the hash calculation that yields M.myname. (That
calculation is not performed until runtime, since in general a module might depend on
another that is specified as ”fresh”.)

4. A module’s myname depends on the mynames of its inner modules.

5. An inner module’s myname depends on the hash of the (compilation unit’s) prefix (all the
structure items defined up to that module) iff the inner module uses the prefix, e.g.

module M = struct

let x = 1

module N = struct

let y = x

end

end

Here N’s myname depends on the hash of module M = struct let x = 1. In the following
case, however, N’s myname is completely independent of its prefix:

module M = struct

let x = 1

module N = struct

let y = 2

end

end

6. The myname value inside a functor body depends on the myname of the functor argument iff
the functor body uses it, e.g.

module F(P : sig val x : int end) = struct

module Q = P

let y = Q.x

end

module M = struct let x = 1 end

module N = F(M)

Here N’s myname depends on the myname of M, whereas in the following case it does not:

module F(P : sig end) = struct end

module M = struct end

module N = F(M)

During the process of normalizations, any type declarations or type expressions that are en-
countered are converted to a normalized form. This involves identifying any references to exter-
nal modules and inserting appropriate myname dependencies, together with quotienting modulo
alpha-conversion for type parameters.

Note that if any sub-structure, or any structure that a structure depends on, uses ”fresh” or
”cfresh” myname type mode, the structure will effectively also use ”fresh” or ”cfresh” type mode,
respectively.

4.1.3 Calculation of myname in ”fresh” mode

The structure’s mynames will be assigned a pseudo-random 256bit string at execution-time.

22



4.1.4 Calculation of myname in ”cfresh” mode

The structure’s mynames will be assigned a pseudo-random 256bit string compile-time.

4.2 Implementation details of normalization

4.2.1 Introduction

The normalization is performed separately for each compilation unit, and is invoked from within
typing/typemod.ml, by calling the main function in hashing/normtrans.ml. The function there-
fore receives a Typedtree.structure and returns an identical Typedtree.structure, but where
all (sub-)structures contain an appropriately assigned myname field.

4.2.2 Traversal and the Normtree

The myname of a module depends mainly on the hash of the normalized structure of the module
itself. The normalization is performed recursively on the original Typedtree.structure structure:

type structure = structure_item list

and structure_item =

Tstr_eval of expression

| Tstr_value of rec_flag * (pattern * expression * Ident.t tyvar_id_memo) list

| Tstr_primitive of Ident.t * value_description

| Tstr_type of (Ident.t * type_declaration) list

| Tstr_exception of Ident.t * exception_declaration

| Tstr_exn_rebind of Ident.t * Path.t

| Tstr_module of Ident.t * module_expr

| Tstr_recmodule of (Ident.t * module_expr) list

| Tstr_modtype of Ident.t * module_type

| Tstr_open of Path.t

| Tstr_class of (Ident.t * int * string list * class_expr) list

| Tstr_cltype of (Ident.t * cltype_declaration) list

| Tstr_include of module_expr * Ident.t list

and ...

There is a translation function for each type of an (sub-)element of the Typedtree.structure,
which calls other translation functions for each of its sub-elements. A translation function (pre-
fix = tr ) takes a sub-element E of the original tree, and returns a tuple (nE, E’), where nE

is a normalized version of E, and E’ is the original E, where all (sub-)modules already con-
tain appropriately assigned mynames. The normalized version of the original tree is defined in
hashing/normtree.ml:

type nstructure = nstructure_item list

and nstructure_item =

Nstr_eval of nexpression

| Nstr_value of Asttypes.rec_flag * (npattern * nexpression) list

| Nstr_primitive of ident_t * nvalue_description

| Nstr_type of (string * Normtypedecl.ntype_decl) list

| Nstr_exception of ident_t * (Normtypedecl.ntype list)

| Nstr_exn_rebind of ident_t * npath

| Nstr_module of ident_t * nmodule_expr

23



| Nstr_recmodule of (ident_t * nmodule_expr) list

| Nstr_modtype of ident_t * nmodule_type

| Nstr_open of npath

| Nstr_class of (ident_t * int * string list * nclass_expr) list

| Nstr_cltype of (ident_t * Types.cltype_declaration) list

| Nstr_include of nmodule_expr * ident_t list

and ...

The Normtree either uses the original type present in the Typedtree erasing some information
from it during normalization, or it uses the corresponding normalized type, when the normalized
tree requires to store different type of information to the original tree. Most used of the different
types are ident t and npath, which are described later.

4.2.3 Storing intermediate information

The normalization procedure needs to preserve some information throughout the translation of a
(sub-)structure. This is done by using state represented by the type Normtrans.state t, of which:

seen external states whether the current sub-module references anything defined before it (in
the same compilation unit),

bcounter is the de Bruijn counter for the current (sub-)module,

bmap is a map from identifiers in the current (sub-)module to their normalized form,

old bmap is a map from identifiers in all the super-modules to their normalized form,

functor params is a list of the visible identifiers of the functor parameters,

local module params is a list of identifiers of modules defined with let module construct,

param set is a set that stores the expressions accessing mynames of structures (either internal or
external to the compilation unit) referenced from within the code in the current structure,
but not also from within its sub-structures,

packages is a list of lists of all the already normalized Normtree.structure items in a form of a
Hashpackage.package, such that each list stores items defined within a particular level, and
where a Hashpackage.package stores Normtree.structure item(s) with a corresponding
Hashpackage.hash param set, which is a param set for this Normtree.structure item,

mod defs is a list of names of immediate sub-structures already normalized, and

extra deps is a list of paths of external modules used during normalization of types.

Most of the (sub-)structures use their own copy of state, but pass part of it to the state of its
sub-structure and part to its super-structure. The normalization of the outermost module starts
with the null state, where all the above parts of the state are set to either false, 0 or [],
except for the param set, which is initialized to Hashpackage.empty hash param set. Every sub-
module starts with the same null state, with the exception of old bmap and packages, which
are assigned the combination bmap and old bmap of the super-state and the packages of the super-
state, respectively.

24



4.2.4 Normalization of identifiers

When speaking of identifiers, we do not only refer to something of type string, but rather of
something of type Ident.t, which also distinguishes same string identifiers on different levels,
by storing a stamp, which is unique within the same compilation unit. For this reason, we do not
need to worry about variable hiding, as identifiers of variables always include their own stamp.
Its type definition in typing/ident.ml is:

type t = { stamp: int; name: string; mutable flags: int }

We distinguish identifiers to those which also appear in the externally visible definitions (also
referred to as top identifiers), and all the others (referred to as normal identifiers). All identifiers
are normalized to Normtree.ident t, however, top identifiers are normalized to its Id string

variant, which only stores the original identifier’s string, whereas normal identifiers are normal-
ized to Normtree.ident t’s Id bruijn variant, which stores the appropriately assigned de Bruijn
index. The type of ident t is therefore:

type ident_t =

| Id_bruijn of int

| Id_string of string

By splitting relevant parts of the tree (Typedtree.structure to Normtree.structure) trans-
lation, we know when a top identifier’s definition is encountered. The mapping from that identifier
to Id string is then simply put in current sub-structure’s bmap. On the other hand, when a normal
identifier is encountered for the first time, i.e. its definition does not appear in either old bmap or
bmap, we map it to Id bruijn with the current value of the de Bruijn counter bcounter. Having
done the mapping, all the identifiers are then simply replaced by whatever they are mapped to in
either old bmap or bmap. Note that if the identifier is found in old bmap, the flag seen external

is set to true, which consequently means that the current (sub-)structure’s myname depends on its
prefix.

4.2.5 Normalization of paths

A path, e.g. List.map, is a reference to something external of the current module. Its type is found
in typing/path.ml:

type t =

Pident of Ident.t

| Pdot of t * string * int

| Papply of t * t

We translate paths to npaths, the definition of which is found in hashing/normtree.ml:

and npath =

Bruijn_param of ident_t

| Hash_param of Hashpackage.hash_param * string

In case a simple identifier is encountered (Pident), we normalize it as a normal identifier
(tr id) putting the result in Bruijn param. In case of a compound structure (Pdot) of our path,
e.g. List.map, however, we take the following steps:

1. get the path’ to the containing module, i.e. List in our example,

2. locate the offset vd of the myname field within that module using the local environment (env
: Env.t) using get offset env path’,

3. create an expression path expr accessing the field with offset vd in the module,

25



4. add path expr to state’s param set using Hashpackage.add hash param, which also returns
the sequence number param (see §4.5) of the hash parameter added to the set,and

5. return (insert into the normalized tree) the Hash param containing param and the name of
the member being accessed, i.e. map in our example.

Note that a reference to a member of a module, which has been opened, will be converted to
a Pdot, as if there were no open statements and all accesses were made by specifying a full path,
e.g. a reference to max with module Pervasives implicitly open results in a path Pervasives.max

being seen during normalization. This conversion happens earlier in the compilation process.
The last case of the path dealing with the functor applications (Papply) is not supported yet.

4.2.6 Dependency upon external, pre- and sub- structures

As mentioned before, the myname of a structure depends on many things, including:

1. the (hash of the) normalized version (Normtree.structure) of the structure itself (including
the sub-structures),

2. the mynames of modules, which are referenced within the structure itself, but not also within
the sub-structures,

3. the mynames of immediate sub-structures (this is how their external dependencies are in-
cluded), and

4. the (hash of the) normalized version of the prefix of the structure (within the same compi-
lation unit), and the mynames of the modules it references.

All of the above are then hashed into a single 256bit long string. A lot of myname calculation is
performed at execution-time, when it is required; however, when possible, the computation (or
part of it) is performed at compile-time. Since the myname of a structure depends on mynames of
its sub-structures, it is easiest to put the myname field at the end of each structure. However, this
way we always have to determine the offset of the myname field as shown in the previous section.

4.2.7 Generating expressions to compute mynames

When the normalisation of a (sub-)structure is complete, the following steps are performed:

1. combine the Hashpackage.packages of normalized Typedtree.structure items of the cur-
rent structure (head of packages in state t) into a single package P of same type by using
the Hashpackage.combine packages function,

2. add P to the packages of the super-module’s state,

3. add expressions accessing mynames of immediate sub-structures (stored in mod defs) to
hash param set of P,

4. if the sub-module depends on its prefix (seen external is true), combine each list in the list
of lists of Hashpackage.packages of normalized Typedtree.structure items of the prefix
(tail of packages) into a single list of packages Q of the same type, then generate code for
each package in Q, obtaining a Hashpackage.hash param set H, which is added to P using
Hashpackage.add hash params to package, and

5. add a myname field at the end of the structure, and

6. depending on the myname type mode of the compilation unit (optionally specified as the first
word of a file), the value of the myname is an expression, which:

• hashes P, if myname type mode is left unspecified,

26



• generates a pseudo-random 256bit string at execution-time, if myname type mode is
set to ”fresh”, or

• generates a pseudo-random 256bit string at compile-time, if myname type mode is
set to ”cfresh”.

4.2.8 Example

module M = struct

let x i = i (* package_x *)

let y = (x 7) + 29 (* package_y *)

module N = struct

let w = max (* package_w *)

let z = y (* package_z [external dependency detected] *)

end (* package_N *)

let k = 4 (* package_k *)

end (* package_M *)

At end of scanning N, we have the following relevant part of the state:

seen_external = true

param_set = [(Pervasives.myname, "max")]

packages = [[package_z; package_w]; [package_y; package_x]]

mod_defs = []

where

package_x = ([let x = fun Id_bruijn (0) -> Id_bruijn (0)], [])

package_y = ([let y = ((Id_string ("x")) 7) + 29], [])

package_w = ([let w = Hash_param (0, "max")], [(0, Pervasives.myname)])

package_z = ([let z = Id_string ("y")], [])

As described above, we take the following steps:

1. P = ([package_zw], [])

where

package_zw = ([let z = Id_string ("y"); let w = Hash_param (0, "max")],

[(0, Pervasives.myname)])

2. M.packages = [package zw; package y; package x]

3. (this step is skipped, since module N has no sub-modules)

4. Q = [package_yx]

H = [generate_code package_yx]

P = ([let z = Id_string ("y"); let w = Hash_param (0, "max")],

[H; (0, Pervasives.myname)])

where

package_yx = ([let y = ((Id_string ("x")) 7) + 29;

let x = fun Id_bruijn (0) -> Id_bruijn (0)], [])

H = [compile-time-hash package_yx]

5. add myname to the end of module N

6. N.myname = runtime-hash P

27



At end of scanning M, then, we have the following relevant part of the state:

seen_external = false

param_set = []

packages = [[package_k; package_zw; package_y; package_x]]

where

package_x = ([let x = fun Id_bruijn (0) -> Id_bruijn (0)], [])

package_y = ([let y = ((Id_string ("x")) 7) + 29], [])

package_zw = ([let z = Id_string ("y"); let w = Hash_param (0, "max")],

[(0, Pervasives.myname)])

package_k = ([let k = 4], [])

Again, we take the same steps as before:

1. P = ([package_M], [])

where

package_M = ([let k = 4;

[let z = Id_string ("y"); let w = Hash_param (0, "max")];

let y = ((Id_string ("x")) 7) + 29;

let x = fun Id_bruijn (0) -> Id_bruijn (0)],

[(0, Pervasives.myname)])

2. (this step is skipped, since there is no super-module)

3. P = ([package M], [N.myname])

4. (this step is skipped, since M does not depend (and has no) prefix

5. add myname to the end of module M

6. M.myname = runtime-hash P

4.2.9 Aliasing (of functor parameters)

A functor’s application’s myname only depends on the myname of its parameter’s myname if the
functor’s body actually uses the parameter or its alias anywhere. An example:

module F(U : sig val x : int end) =

struct

module L = U

let y = L.x

end

The lambda code for this looks like:

(setglobal T!

(let

(F/77

(function U/73

(let

(L/74 U/73

y/75 (field 0 L/74)

myname/80

(hash256_checked

28



(makeblock 0 "\\\170\187 .. \237\191"

(field 1 L/74) "G\170\024 .. \221\135ZZ")))

(makeblock 0 L/74 y/75 myname/80)))

myname/93 "+\250\146 .. \198\179|G;\027p\029")

(makeblock 0 F/77 myname/93)))

As you can see, the functor’s myname correctly includes the first field of L, which is actually
U.myname. This is all done automatically by the original compiler.

4.2.10 Insertion of mynames into module signatures

With hashing/transig.ml within typing/typemod.ml.

4.3 Debugging

Compiling with option -dnormtrans, the compiler will output lots of information about the various
aspects of the normalization of the tree. With option -dnormtree, the compiler outputs the most
of the resulting normalized tree using the hashing/npretty.ml.

4.4 Normalization of functors

4.4.1 Functor expressions

An O’Caml functor is defined as one of module expression descriptions:

type module_expr_desc =

...

| Tmod_functor of Ident.t * module_type * module_expr

...

and module_expr =

{ mod_desc: module_expr_desc;

mod_loc: Location.t;

mod_type: module_type;

mod_env: Env.t }

Therefore, the definition contains the name of the functor parameter (Ident.t), the type of
the functor parameter (module type), and the body of the functor (module expr).

• Ident.t – the name of the functor parameter.

• module type – the type of the functor parameter.

• module expr – the body of the functor containing:

– module expr desc – the description of the functor body.

– Location.t – the location of source code for the functor body.

– module type – the type of the functor body.

– Env.t – the environment of the functor body.

29



4.4.2 Normalisation of the parameter

Say we have the following example:

module Foo = struct

module type T = sig val x : int end

module F(P : T) = struct

module P’ = P

module M = struct

let _ = P.x

let _ = P’.x

end

end

end

Because the functor’s parameter P is local, the path P.x needs to be normalised (de Bruijn-ed):

module Foo = struct

module type T = sig val x : int end

module F(0 : T) = struct

module P’ = 0

module M = struct

let _ = 0.x

let _ = P’.x

end

end

end

The de Bruijn counter is reset to 0 every time a new structure is entered, or just before every
functor’s parameter.

Note, however, that aliases of the parameter are not normalised, since they can be accessed
from outside the functor, i.e. F(X).P’ where X is a module of type T.

4.4.3 Hash-parameter scope

Normally, a path such as P.x generates a hash parameter (P.myname, "x"), which is used when
calculating myname of any module that encloses the path (contains the expression). In our ex-
ample above, the hash parameter should, therefore, be used for calculating the myname of M, F
and Foo. However, P is not in scope at the end of Foo (where its myname is calculated), therefore
the expression P.myname would generate an error. For this reason, we use hash parameters in the
enclosing module only if they are in its scope. In our example, this means that hash parameter
(P.myname, "x") is not used when calculating myname of Foo — Foo’s myname still holds all the
information about the enclosed functor, since it contains the hash of its normalised tree.

Note that the same rule holds for aliases of functor’s parameter, e.g. P’, since (P’.myname,

"x") would generate an error outside functor F.

4.5 Hash packages

We mentioned before that structure’s myname depends on the mynames of the structures, which
the original structure uses. This is done by including expressions accessing these mynames into
the expression computing the myname. Hash package (hashing/hashpackage.ml) is used to store
the dependencies, insert appropriate links in the Hashpackage.hash param normalized tree, and
finally generate the expression, which computes structure’s myname.

30



A brute-force approach would insert an expression for each external dependency found in
the original tree. Instead, a package (Hashpackage.hashpackage) stores this dependencies in a
map, where dependencies (expressions accessing mynames of structures being used) are mapped
to indices. Whenever a dependency is begin added (Hashpackage.add hash param), it is added
(if not already present in the map) and the corresponding index is returned. This index is then
inserted into the normalized tree where the dependency arose from, so that no information is lost.
This way only one expression is generated for each distinct dependency, which drastically speeds
up the runtime computation of mynames.

Note that each (sub-)structure stores a separate hash package, which logs all of the (sub-
)structure’s external dependencies. The super-structure gets those dependencies by including
expressions accessing mynames of its sub-structures into the expression for computing its own
myname — in a sense, the super-structure depends on its sub-structures.

4.6 Normalization of signatures

Signatures are normalized in much the same way as the rest of the typed tree structure. The
definition of a normalized signature can also be found in hashing/normtree.ml.

31



Chapter 5

Type normalization

5.1 Overview

Broadly speaking, there are two parts of the compiler that require the conversion of O’Caml types
and type declarations to normalized forms. They are:

1. the Normtrans module that calculates the hashes of modules’ abstract syntax trees;

2. the Polymarshal module that performs the type-passing translation.

The normalization in these two cases is performed by the Normtypedecl and Normtypes modules,
respectively.

The two applications require types and type declarations to be normalized in different ways.
When calculating the hashes of modules’ abstract syntax trees, we are simply interested in nor-
malizing type declarations in such a way that we work up to α-conversion and collect the names
of any external modules on which those declarations depend. Similarly, when normalizing types
in this scenario, we are just interested in the external modules on which they depend.

The process of type normalization invoked by the Polymarshal module in order to calculate
type representations that are to be passed around at runtime works differently. In this scenario,
when faced with a type such as int t (say ’a t is a variant type), we wish to include any known
declaration of the type t into the normalized type. Including the declaration like this ensures
that the runtime type representations of types with the same names but different declarations are
distinct.

It is not obvious why the procedure of type normalization invoked from Normtrans does not
need to perform this additional inclusion of the declarations of types. The reason why it does not
is because it already happens elsewhere: prefix hashing ensures that the declaration of any type
defined in the same module (or a previous substructure thereof) will already have been included
in the hash; similarly, if the type is defined in an external module then the myname field of that
module will be included in the hash.

The differences can be summarized by saying that the procedure used by Normtrans hashes in-
dividual types and type declarations before combining them all together with any external myname
fields, whereas that used by Polymarshal takes a type as a standalone entity and returns a type
representation encompassing all of the type declarations on which that particular type depends.

5.2 Background: O’Caml type expressions

An O’Caml type expression is represented by the following data structure:

type type_expr =

{ mutable desc: type_desc;

32



mutable level: int;

mutable id: int }

and type_desc =

Tvar

| Tarrow of label * type_expr * type_expr * commutable

| Ttuple of type_expr list

| Tconstr of Path.t * type_expr list * abbrev_memo ref

| Tobject of type_expr * (Path.t * type_expr list) option ref

| Tfield of string * field_kind * type_expr * type_expr

| Tnil

| Tlink of type_expr

| Tsubst of type_expr

| Tvariant of row_desc

| Tunivar

| Tpoly of type_expr * type_expr list

and row_desc =

{ row_fields: (label * row_field) list;

row_more: type_expr;

row_bound: type_expr list;

row_closed: bool;

row_fixed: bool;

row_name: (Path.t * type_expr list) option }

and row_field =

Rpresent of type_expr option

| Reither of bool * type_expr list * bool * row_field option ref

| Rabsent

and abbrev_memo =

Mnil

| Mcons of Path.t * type_expr * type_expr * abbrev_memo

| Mlink of abbrev_memo ref

and field_kind =

Fvar of field_kind option ref

| Fpresent

| Fabsent

and commutable =

Cok

| Cunknown

| Clink of commutable ref

5.3 Background: O’Caml type declarations

An O’Caml type declaration is represented by the following data structure:

type type_declaration =

{ type_params: type_expr list;

type_arity: int;

type_kind: type_kind;

33



type_manifest: type_expr option;

type_variance: (bool * bool * bool) list }

and type_kind =

Type_abstract

| Type_variant of (string * type_expr list) list * private_flag

| Type_record of (string * mutable_flag * type_expr) list

* record_representation * private_flag

The type kind field identifies the basic variety of type being defined. The possible interpretations
are:

• Type abstract – an abstract type, including those predefined abstract types such as int.

• Type variant – a standard sum type (not a polymorphic variant). In this case there is extra
data encoded in the type kind consisting of:

1. a list of constructor descriptions, each consisting of the name of the constructor and a
list containing the types of its parameters;

2. a flag identifying whether the type is public or private.

• Type record – a record type. The extra data in this case consists of:

1. a list containing information about the record type’s components: for each there is the
label, a flag identifying whether it is mutable, and the type of the component;

2. a flag specifying whether the record type’s values are to be laid out in the normal
fashion or the optimized fashion used for floating-point records;

3. a flag identifying whether the type is public or private.

The type params field gives the type parameters of the type constructor being defined. I think
these are always type variables.

The type arity field specifies the number of type parameters to the type constructor being
defined.

The type manifest field is only not None in the case where the type declaration is of the form
of that for t’ below:

# type t = C1 of int | C2 of string;;

type t = C1 of int | C2 of string

# type t’ = t = C1 of int | C2 of string;;

type t’ = t = C1 of int | C2 of string

In this case, the argument to type manifest would correspond to the equality with the type t

specified in the second declaration. (See case 4 “Re-exported variant type or record type: an equa-
tion, a representation” of http://caml.inria.fr/pub/docs/manual-ocaml/manual016.html.)

The type variance field is a list of entries specifying the variance properties of each type
parameter. Each entry consists of three entries that indicate whether the corresponding type
parameter occurs in covariant, contravariant and weakly contravariant1 positions respectively on
the right-hand side of the declaration. Such variance annotations may also be present for abstract
types (they can be supplied by the user, for example type +’a t).

1I believe that a type variable is weakly contravariant if it occurs on the left of a function arrow, even if the particular
occurrence of the variable is in fact positive. The necessity for such information seems to be due to a principality-of-type-
inference issue identified on page 15 of Garrigue’s “Relaxing the value restriction” paper.

34



5.4 Normalization for AST hashing (Normtypedecl)

The target datatypes are currently:

(* Normalized type declarations. *)

type ntype_decl = NTDabstract of string

| NTDvariant of (string * (ntype list)) list

| NTDrecord of (string * Asttypes.mutable_flag * ntype) list

| NTDabbreviation of ntype

(* Normalized types. *)

and ntype = NTarrow of ntype * ntype

| NTtuple of ntype list

| NTctor_param of int

| NTconstructed of type_constructor_info * (ntype list)

| NTunsupported

| NTvar of int

| NTunivar of int

| NTpoly of int * ntype

(* Information about type constructors used within normalized types. *)

and type_constructor_info =

TCabbreviation of ntype (* abbreviation *)

| TCbuiltin of string (* built-in abstract tycon *)

| TClocal of string (* abstract tycon in same module

or superstructure *)

| TCexternal of string * string (* external abstract tycon *)

| TCbeing_defined of string (* (recursive) reference to

a tycon being defined in

the current type

declaration(s) *)

| TCthrough_functor of int * string (* something like H.t where

H is an in-scope functor

argument *)

Type declarations are classified into one of the following categories:

Declaration of abstract type. The name of the type is stored.

Declaration of variant type. The textual name of each constructor along with the normalized
types of its arguments are stored.

Declaration of record type. The textual name of each field along with its mutable/immutable
flag and its normalized type is stored.

Declaration of type abbreviation. The normalized type to which the abbreviation expands is
stored.2 (Data constructor NTDabbreviation.)

A type constructor is classified into one of the following categories:

Type abbreviation. The normalized type to which the abbreviation expands is stored. (Data con-
structor TCabbreviation.)

Built-in type constructor. The textual name of the type constructor is stored. (Data constructor
TCbuiltin.)

2What should actually happen is that abbreviations should be fully expanded before this normalization happens, in
order that the hashing of ASTs is modulo type abbreviations. However this is not currently implemented.

35



Locally-defined type constructor. Applies if the type constructor is defined in the current module
at an earlier point to where we are currently yet at the same textual level. (Currently it is
not used for type constructors previously-defined in a substructure of the current module.)
The textual name of the type constructor is stored. (Data constructor TClocal.)

Externally-defined type constructor. Applies if the type constructor is defined in an external
module or a previously-defined substructure of the current module. The module name and
the remaining textual path of the type constructor is stored. (Data constructor TCexternal.)

Recursive references. Used to signify a recursive reference to a type constructor being defined
by the current type declaration being normalized. The textual name of the type constructor
in question is stored. (Data constructor TCbeing defined.)

Through-functor-argument references. Used to represent a type constructor defined in a mod-
ule that is an in-scope functor argument (for example, it would be used in the body of a func-
tor when normalizing H.t where H is an in-scope functor argument). The de Bruijn index of
the functor argument (as assigned by Normtrans) and the textual name of the type construc-
tor minus the functor argument prefix is stored. (Data constructor TCthrough functor.)

Normalized types themselves are classified as follows.

Type variables (NTvar). The argument is an integer stamp. Note that (unlike in Normtypes) this
stamp is not the type variable stamp used in type inference. Instead it is one assigned in a
canonical manner by the normalization procedure. This ensures that the normalized type
value is independent of the order in which type variables were created by the rest of the
compiler.

Bound univars (NTunivar). The de Bruijn index of the univar is stored.

Function types (NTarrow). The normalized forms of the argument and result types are stored.

Tuple types (NTtuple). The normalized forms of the types of the tuple’s components are stored.

Bound type constructor parameters (NTctor param). The de Bruijn index of the type construc-
tor parameter is stored. When normalizing a type declaration (say that of a variant type
’a t) we may encounter the parameters of the type constructor being defined (’a in this
case). Such parameters are to be treated as bound variables up to α-conversion and are
hence represented by de Bruijn indices.

Constructed types (NTconstructed). The information about the type constructor, as described
above, and the normalized forms of the argument types are stored.

Polytypes. The number of bound univars and the normalized form of the body type are stored.

Unsupported types (NTunsupported). Used for any varieties of types not listed above.

5.4.1 Normalization algorithm

We may either start by normalizing a type declaration or a type. We treat these two cases sepa-
rately, although the first of course relies on the second.

5.4.1.1 Normalization of type declarations

The inputs are:

• the environment to be used;

• a list of identifiers to be treated as the names of locally-defined type constructors (to be
used in the case where they will not exist in the environment, such as during signature
normalization);

36



• a list of identifiers to be treated as in-scope functor arguments;

• a list of (identifier, type declaration) pairs giving the type constructors being declared and
their associated declarations to be normalized.

During the process two maps are kept, both from type stamps (the id fields) to integers. One is
used to assign de Bruijn indices to the parameters of type declarations whilst the other is used to
assign de Bruijn indices to the bound univars of polytypes.

For each type declaration we proceed as follows.
At the start of the process both maps are cleared. Then as many fresh type variables as there

are parameters to the current declaration are allocated and assigned de Bruijn indices. (The fresh
variables are going to be used to instantiate the parameters of the type declaration before we
traverse it, to avoid any possibility of name clashes.) We then case split according to the variety of
declaration.

• If the declaration is that of an abstract type declaration, we simply construct an NTDabstract

node containing the name of the type constructor being declared.

• If the declaration is that of a concrete type declaration, it is either declaring a variant or
record type. These yield values whose outermost constructor is NTDvariant or NTDrecord,
respectively. In either case, we instantiate the declaration at the fresh type variables. Then,
if we have a variant, we normalize each constructor declaration by applying the procedure
in §5.4.1.2 to each argument type; in the other case, where we have a record, we proceed
similarly to apply §5.4.1.2 to the type of each field. The constructor declarations and record
fields are then sorted by name to ensure that the eventual hash value is independent of the
order of the constructors.

• If the declaration is that of a type abbreviation, we take the type to which the abbrevia-
tion expands and substitute the fresh type variables for any occurrences of the declaration’s
parameters throughout it. We then follow the procedure in §5.4.1.2 to normalize the type.

5.4.1.2 Normalization of types

The inputs are:

• the environment to be used;

• a list of identifiers to be treated as the names of locally-defined type constructors (to be
used in the case where they will not exist in the environment, such as during signature
normalization);

• a list of identifiers to be treated as in-scope functor arguments;

• the type to be normalized.

During the process we keep a map from type stamps to type variable stamps. This is used to assign
the contents of NTvar nodes in a canonical manner that ensures that the resulting normalized type
is independent of the order in which the rest of the compiler allocates type variables. Initially this
map will be empty.

We also keep maps from constructor parameter type stamps to de Bruijn indices, and from
univar type stamps to de Bruijn indices, as in §5.4.1.1.

We proceed by recursion down the structure of the type. The various cases are as follows.

Type variables. Check to see if the type variable’s stamp is mapped by the constructor parameter
map. If so, then we emit an NTctor param node. If not, check the type variable stamp map
to see if this type variable has been seen before. If so, we use the corresponding canonical
stamp in the map to form an NTvar node. Failing that, we assign a new canonical stamp,
update the map and form a corresponding NTvar node.

37



Univars. Form an NTunivar containing the de Bruijn index of the univar, as identified from the
univar map.

Polytypes. Save the univar map, update it to include new de Bruijn indices for the bound univars
of this polytype, and normalize the body. Then restore the univar map and return an NTpoly

value containing the number of bound univars and the normalized body.

Function types. Form an NTarrow node containing the normalized forms of the argument and
result types.

Tuple types. Form an NTtuple node containing the normalized forms of the types of the tuple’s
components.

Constructed types. First normalize the arguments to the constructed type. Then check to see
if the type constructor is one whose type declaration we are currently normalizing; if it is,
return an NTconstructed node encapsulating a TCbeing defined node and the normalized
arguments. Otherwise, check to see if the type constructor is listed in the list of type con-
structors to be treated as locally-defined. If it is, return a NTconstructed node encapsulating
a TClocal node and the normalized arguments.

In other cases, we proceed by looking up the type declaration in the environment. If it
cannot be found, we check to see if the path of the type constructor contains a dot. If it
does, we check to see if the part of the path to the left of the leftmost dot is that of an
in-scope functor argument. If it is, the de Bruijn index of that functor argument is packaged
up with the remainder of the path in a TCthrough functor node that is then wrapped inside
an NTconstructed node together with the normalized arguments to the type constructor. If
the check for functor arguments fails, we issue a warning and return NTunsupported. (This
should really be an assertion failure, but the use of the include keyword would trigger it.
To be fixed in the future: some careful analysis of how to cope with include is needed.)

In all other cases, we have now found the type declaration in the environment. Just like
when directly normalizing a type declaration, as many fresh type variables as there are
parameters to the current declaration are allocated and assigned de Bruijn indices. (The
fresh variables are going to be used to instantiate the parameters of the type declaration
before we traverse it, to avoid any possibility of name clashes.) We then check to see if the
declaration is that of a type abbreviation; if it is, we substitute the fresh type variables for the
declaration’s parameters throughout the type to which the abbreviation expands, normalize
the resulting type, and then return a TCabbrevation node encapsulated (together with the
normalized arguments to the type constructor) in an NTconstructed node3.

If the declaration is not a type abbreviation, first check to see if it is one of the type declara-
tions from the initial environment. If it is, then return a TCbuiltin node encapsulated (to-
gether with the normalized arguments to the type constructor) in an NTconstructed node.
Otherwise, we need to examine the type constructor’s path to determine which module the
declaration lies in. There are three cases:

Path of length one. The type constructor is defined at the same scoping level in the current
module, or in a superstructure. Simply emit a TClocal node encapsulated (together
with the normalized arguments to the type constructor) in an NTconstructed node.

Path of length two or more. Split the path at the leftmost dot, since we have to emit a
myname reference. Record the part of the path to the left of the leftmost dot so that we
can cause Normtypes to emit that reference. Then return a TCexternal node (whose
arguments are the name of the external module whose myname we are going to depend
on, together with the rest of the original type constructor path) and wrap it (together
with the normalized arguments to the type constructor) in an NTconstructed node.

3As identified previously, what should actually happen is that abbreviations should be fully expanded before this nor-
malization happens, in order that the hashing of ASTs is modulo type abbreviations.

38



Application path. (The Papply case.) This is an assertion failure, since such a path can
never be that of a type constructor (it is always the path of a module).

Links to other types (Tlink and Tsubst). Return the normalized form of the type being linked
to.

Anything else. Issue a warning and return NTunsupported.

5.5 Normalization for type-passing (Normtypes)

5.5.1 Means of representing types

Inside the compiler and its output files, types are represented in the following ways:

• normalized type trees – the initial output from the type normalization algorithm;

• flattened normalized types – a list representation of normalized type trees;

• optimized flattened normalized types – flattened normalized types after having a certain opti-
mization applied, which we explain below;

• type representation blocks – the runtime version of optimized flattened normalized types
(code to construct these may contain free value identifiers and references to mynames as
described later);

• type representations – type representation blocks that have been flattened and passed through
a hash function.

Each representation above is computed from the variety immediately above it in the list, if one
such exists. We now examine each variety in turn.

5.5.1.1 Normalized type trees

Normalized type trees are values of the following datatype.

type ntype = NTvar of int

| NTunivar of int

| NTarrow of ntype * ntype

| NTtuple of ntype list

| NTctor_param of int

| NTconstructed of string * (Longident.t list) * (ntype list)

| NTisorecursive_loop of string

| NTpoly of int * ntype

| NTother

| NTloop

The various constructors and their arguments are as follows.

Type variables (NTvar) The argument is an integer stamp specifying which type variable is being
represented. This is the same as used during type inference (the id field of the type). Recall
that in Normtypedecl we assign stamps to normalized type variables in a canonical order
to guarantee a certain independence: here, we do not need to do this since values of type
ntype are subsequently transformed in such a way that the NTvar nodes actually turn into
value identifier references – the stamps themselves do not get into the final hash.

Bound univars (NTunivar) The argument is a de Bruijn index. Bound univars (those type vari-
ables bound by the quantification in a polytype) are to be treated up to α-conversion and
are hence assigned de Bruijn indices.

39



Function types (NTarrow) The arguments are the argument and result types in the usual manner.

Tuple types (NTtuple) The arguments are the types of the components in the usual manner.

Bound type constructor parameters (NTctor param) The argument is a de Bruijn index. When
normalizing a type declaration (say that of a variant type ’a t) we may encounter the
parameters of the type constructor being defined (’a in this case). Such parameters are to
be treated as bound variables up to α-conversion and are hence represented by de Bruijn
indices.

Constructed types (NTconstructed) The arguments are:

1. the SHA-256 hash of the normalized type declaration of the type constructor being
applied;

2. a list of modules on which that normalized type declaration depends (all of these mod-
ules’ myname values must be hashed into the eventual type representation);

3. the normalized forms of the types at which the type constructor is being applied.

The normalized form of the type declaration in question is the hash of a value of type
ntype decl, as follows:

type ntype_decl = NTDexternal_abstract of string

| NTDbuiltin_abstract of string

| NTDlocal_abstract of string

| NTDvariant of (string * (ntype list)) list

| NTDrecord of

(string * Asttypes.mutable_flag * ntype) list

| NTDmanifest of ntype

The various cases here are:

External abstract type constructors (NTDexternal abstract) Used for type constructors
defined in an external module (and also in substructures of the current module pre-
vious to the current point being normalized4). The path of the type constructor, mi-
nus the portion of the path to the left of the leftmost dot, is stored as a string. For
example the path M.t turns into NTDexternal abstract "t" and M.N.t turns into
NTDexternal abstract "N.t". The portion to the left of the leftmost dot corresponds
to the outermost of the modules surrounding the definition of the type constructor (in
this case M); rather than storing this module name inside the value of type ntype decl

it is emitted separately so that the appropriate myname dependency can be added. (Note
that the myname values cannot be included directly in the hash because they may not be
calculated until runtime.)

Built-in abstract type constructors (NTDbuiltin abstract) This case is used for abstract
type constructors defined in the initial environment (viz. typing/predef.ml). The
textual name of the type constructor is stored.

Local abstract type constructors (NTDlocal abstract) This is used for abstract type con-
structors defined at the current scoping level in the current module or in a superstruc-
ture thereof. The textual name of the type constructor is stored.

Variant types (NTDvariant) The textual name of each data constructor is stored, together
with a list containing the normalized forms of the types of its arguments.

Record types (NTDrecord) Declaration of a record type. For each field of the record, the
field name, mutable/immutable flag and the normalized form of the argument type are
stored.

4This means that a reference to a type constructor defined inside a previously-defined substructure of the current
module will yield a type representation dependent on the entire contents of that module.

40



Type abbreviations (NTDmanifest) Declaration of a type abbreviation. The normalized
form of the type to which the abbreviation expands is stored5.

Recursive occurrences of type constructors (NTisorecursive loop) When normalizing a type
declaration we may encounter occurrences of the type constructor being defined. Such
recursive occurrences turn into nodes of this data constructor; the argument is the textual
form of the type constructor.

Polytypes (NTpoly) The number of bound univars and the normalized form of the body is stored.
(Occurrences of the univars inside the body will turn into NTunivar nodes.)

Other loops (NTloop) Used if an actual loop is found in the type structure. (It is not clear how
these can arise.)

Unsupported types (NTother) Used for types of any variety not listed above.

5.5.1.2 Flattened normalized types

The idea of a flattened normalized type is to obtain a primarily textual, flat representation of a
normalized type tree: such a representation takes less space and is easier to manage than a tree
structure. These representations cannot just be strings because of two things: firstly, there may be
type variable nodes in the normalized type tree and these must eventually turn into dependencies
on identifiers corresponding to those type variables; secondly, there may be external module ref-
erences that have been identified during production of the normalized type tree and these must
also be preserved so the relevant myname dependencies can eventually be emitted.

Therefore a flattened normalized type is represented as a list of flat ntype entry values,
which themselves have the form:

type flat_ntype_entry = FNtyvar of int

| FNmyname of Env.t * Longident.t

| FNstring of string

Such flattened types are generated from normalized type trees by traversing the trees and assign-
ing mainly textual codes to the various nodes. The actions are as follows, depending on the type
of node encountered.

Type variables. The emitted flattened normalized type is a singleton list containing an FNtyvar

node, whose argument holds the stamp from the corresponding NTvar node.

Univars. The emitted flattened normalized type is a singleton list whose element is an FNstring

holding the de Bruijn index of the univar prefixed by U.

Function types. The emitted flattened normalized type is a list whose elements are as follows (in
order):

1. a textual string FNstring "F(";

2. the flat ntype entry values obtained by flattening the normalized form of the argu-
ment type;

3. a textual string FNstring ")(";

4. the flat ntype entry values obtained by flattening the normalized form of the result
type;

5. a textual string FNstring ")".

Tuple types. The emitted flattened normalized type is a list whose elements are as follows (in
order):

5What should actually happen is that abbreviations should be fully expanded before this normalization happens, just as
it should in Normtypedecl as previously noted.

41



1. a textual string FNstring "T";

2. for each component of the tuple type,

(a) a textual string FNstring "(";
(b) the flat ntype entry values obtained by flattening the normalized form of the

component’s type;
(c) a textual string FNstring ")".

Bound type constructor parameters. A list containing an FNstring holding the de Bruijn index
of the parameter prefixed by C is emitted.

Polytypes. The emitted flattened normalized type is a list whose elements are as follows (in or-
der):

1. a textual FNstring formed by concatenating the character Y, the number of bound
univars in the polytype, and an underscore, in that order;

2. the flat ntype entry values obtained by flattening the normalized form of the body
type.

Constructed types. Firstly, any external dependencies that were identified during the production
of the normalized type tree are collected together and turned into FNmyname nodes refer-
encing the appropriate modules and environments. (The arguments to such a node are the
environment in which the myname lookup may be performed, together with the module prefix
– so if the prefix is M then a reference to M.myname will be emitted.)

Having done that the emitted list is then:

1. the string node FNstring "E";

2. another FNstring node holding the hash of the type declaration (as stored in the
NTconstructed node);

3. the list of FNmyname nodes from above;

4. for each argument of the constructed type,

(a) a textual string FNstring "(";
(b) the flat ntype entry values obtained by flattening the normalized form of the

argument’s type;
(c) a textual string FNstring ")".

Recursive occurrences of type constructors. A list containing an FNstring holding the name of
the type constructor prefixed by I is emitted.

Loops. A list containing just FNstring "P" is emitted.

Unsupported types. A list containing just FNstring "O" is emitted.

5.5.1.3 Optimized flattened normalized types

Flattened normalized types often have contiguous runs of FNstring nodes due to the way in which
the flattening algorithm operates. An optimized flattened normalized type is one where there are
never any adjacent FNstring nodes: such a value is formed by traversing a flattened normalized
type and collecting contiguous runs of FNstring nodes into single FNstring nodes holding the
strings from the original nodes concatenated together.

42



5.5.1.4 Type representation blocks

Type representation blocks are the runtime representations of optimized flattened normalized
types. Such blocks are heap-allocated with tag zero and have fields containing:

• constant strings (corresponding to FNstring nodes); or

• pointers to other type representation blocks.

Pointers to other type representation blocks arise due to the evaluation of code emitted to cor-
respond to FNmyname and FNtyvar nodes inside an optimized flattened normalized type. For
when emitting code for FNmyname, we emit a value identifier (such as M.myname), and when
emitting code for FNtyvar, we do the same (in this case the identifier would be something like
tyrep 1000). At runtime, these identifiers will be ‘pointing at’ other type representation blocks,

and thus the second case in the list above arises.

5.5.1.5 Type representations

Type representations are computed from type representation blocks. This computation happens
only when the code generated for a dyntype or rep is executed. That generated code calls a C
primitive flatten typerep block (defined in hash256.c) that takes a type representation block
as argument.

The purpose of that primitive is to flatten the type representation block into a single string and
then call the SHA-256 hash function on the result. To perform the flattening, a pass is made over
the type representation block, concatenating adjacent strings together. If one of the fields of a
type representation block turns out to be a pointer to another such block (as it will be if the type
representation block is parameterized on another – for example if it represents the type α× int –
or if if the type representation block is parameterized on a myname), then that pointer is followed
to continue the flattening; at the end of that we continue at the previous level, etc.

For example this block (displayed as the output of -drawlambda and abbreviated):

(makeblock 0 "T(" _tyrep_664/99999 ")(E ... )")

flattens to the string "T(XXX)(E ... )" where XXX is the result of flattening the value of the
identifier tyrep 664/99999 at runtime.

The flattening algorithm is implemented in C as noted above; it makes use of setjmp() and
longjmp() to simulate exception handling.

5.5.1.6 Compositionality

The means of representing types are carefully constructed to ensure that compositionality is main-
tained. For example, given a type that does not contain any type variables and neither any external
references, one might think that it is more efficient to simply hash the corresponding normalized
type tree when the user compiles their code. This is likely to be incorrect, however, because if
that (hashed) type representation could be substituted into some (non-hashed) larger one (say
the type under consideration here is the instantiation of a type variable in a larger type) then we
may lose compositionality.

Consider for example the code fragment:

let f1 x = dyntype (x, 42)

let f2 x = dyntype x

let a = f1 10

let b = f2 (10, 42)

43



The values of a and b should clearly be equal; however, if hashing happens too early then this will
not be the case because the result of hashing the type representation obtained by substituting the
(hashed) representation of int into the (non-hashed) representation of α × int will not be the
same as the (hashed) representation of int× int.

This problem could be solved by inserting lots of calls to the hash function (one at each point
where two type representations are combined into another); compositionality would then be re-
stored. However this will lead to an excessive number of calls to the hash function; we believe the
solution described earlier that is used in the compiler to be far more efficient.

5.5.2 A note on recursive definitions

Before we embark on the details of the normalization algorithm, we remark on the procedure that
will be used to normalize references to type constructors that are involved in mutually-recursive
declarations. For example suppose we have the following:

type t1 = C of int | D of t2

and t2 = E of int | F of t1

and we are normalizing a reference to the type t1. The intuition here is that we should get
the hash of both type declarations paired with the string t1. Our algorithm computes something
equivalent, but it is not really quite the same. This arises from the way in which the O’Caml
compiler handles mutually-recursive declarations: they are stored as separate type declarations
rather than in one structure. (The values corresponding to those type declarations aren’t mutually
recursive either: for example the t2 in the declaration of t1 is simply referenced via its path, and
so one needs to perform environment lookups to retrieve further type declarations in order to
traverse the ‘recursive’ loop.)

What we would do for the above is to note that we are examining the declaration of t1 on
a stack and then delve inside it, normalizing its parameters. Upon reaching the occurrence of
the type t2 we start a similar procedure. When we then reach the occurrence of t1 within the
constructor argument of F, we attempt to normalize it but identify that we are already delving
inside the declaration of t1. A recursive loop has therefore been identified. We are therefore not
hashing the declarations of t1 and t2 together, but rather identifying when we are going to go in
a cycle and noting that in the value to be hashed.

5.5.3 Normalization algorithm

The normalization algorithm (normalize type and normalize type rec in Normtypes) is some-
what of a mess, having evolved together with our understanding of the O’Caml type structure, and
could do with rewriting. The newer Normtypedecl module, already described, is significantly bet-
ter in this regard. However whilst the code is untidy the algorithm behind it, explained forthwith,
is believed to be sound (with the possible exception of not handling loops correctly).

The inputs are:

• the environment to be used;

• the type to be normalized.

Throughout the run of the compiler the following state is kept in the Normtypes module.

• A map from type expressions to normalized type expressions (keys compared using physical
equality).

Additionally the following state is kept whilst normalizing a particular type.

• A map from constructor parameter type stamps to de Bruijn indices.

• A map from univar type stamps to de Bruijn indices.

44



• A map from type declarations to hashes of normalized type declarations and their associ-
ated external dependencies. This is highly important for efficient compilation as it saves
recomputation of the normalized forms of type declarations.

• A set of type expressions (compared using physical equality) that we are already involved in
examining.

• A set of type constructor paths whose declarations we are currently examining (used for
detection of recursive loops in type declarations).

Upon entry to the algorithm, we check some special cases. If the type to be normalized is a type
variable, we immediately generate the corresponding normalized type tree and convert it to the
lambda code to generate a type representation block which is then returned. If the incoming type
is a link to another (Tlink or Tsubst cases), we follow the link immediately. Otherwise, we check
the type expression map to determine if we have seen the type before: if we have, we return the
corresponding normalized type found as the data part of the map entry.

In all other cases we initialize the constructor parameter map, univar map, type declaration
map and type constructor path set to empty. We then proceed by recursion down the structure
of the type to generate a normalized type tree. In parallel with the generation of the normalized
type tree, we also collect together all of the external module dependencies for the type being nor-
malized. We leave the propagation of such information through the recursive procedure implicit
in the description below in order to simplify matters as much as possible; it is clearly visible in the
code, often using List.fold left to combine dependency sets.

The normalized type tree is then flattened (using the external dependency information to
produce the appropriate FNmyname nodes) to an optimized flattened normalized type tree and
then converted to the lambda code to generate a type representation block.

The recursive procedure to produce the normalized type tree works as follows. First we check
to see if the current type expression being examined has been seen before; if so we return an
NTloop node. Otherwise, we note that we have visited this type expression, and case split; after-
wards, we remove that note to show that that type expression is no longer in the process of being
traversed. The various cases are as follows.

Type variables. Check to see if the type variable’s stamp is mapped by the constructor parame-
ter map. If so, then we emit an NTctor param node. Otherwise, we emit an NTvar node
encapsulating the type variable’s stamp.

Univars. Form an NTunivar containing the de Bruijn index of the univar, as identified from the
univar map.

Polytypes. Save the univar map, update it to include new de Bruijn indices for the bound univars
of this polytype, and normalize the body. Then restore the univar map and return an NTpoly

value containing the number of bound univars and the normalized body.

Function types. Form an NTarrow node containing the normalized forms of the argument and
result types.

Tuple types. Form an NTtuple node containing the normalized forms of the types of the tuple’s
components.

Constructed types. First normalize the arguments to the constructed type. Then check to see
if the type constructor is one whose type declaration we are currently normalizing; if it is,
return an NTisorecursive loop node containing the path of the type constructor.

In other cases, we find the type declaration in the environment (using the path of the type
constructor) and proceed by looking up the type declaration to see if we already have a hash
for it. If we do, we return an NTconstructed node containing that hash, the external depen-
dencies (also stored in the map), and the normalized arguments to the type constructor.

45



Otherwise, we note that we are currently examining the type declaration. Just like in
Normtypedecl, as many fresh type variables as there are parameters to the current dec-
laration are allocated and assigned de Bruijn indices. (The fresh variables are going to be
used to instantiate the parameters of the type declaration before we traverse it, to avoid
any possibility of name clashes.) We then check to see if the declaration is that of a type
abbreviation; if it is, we substitute the fresh type variables for the declaration’s parameters
throughout the type to which the abbreviation expands, normalize the resulting type, and
then return a NTDmanifest node encapsulated (together with the normalized arguments to
the type constructor) in an NTconstructed node.

If the declaration is not a type abbreviation, and is that of an abstract type, first check to
see if it is one of the type declarations from the initial environment. If it is, then return
an NTDbuiltin abstract node encapsulated (together with the normalized arguments to
the type constructor) in an NTconstructed node. Otherwise, we need to examine the type
constructor’s path to determine which module the declaration lies in. There are three cases:

Path of length one. The type constructor is defined at the same scoping level in the current
module, or in a superstructure. Simply emit an NTDlocal abstract node encapsulated
(together with the normalized arguments to the type constructor) in an NTconstructed

node.

Path of length two or more. Split the path at the leftmost dot, since we have to emit a
myname reference. Record the part of the path to the left of the leftmost dot so that
we can cause the flattening procedure to emit a myname reference. Then return a
NTDexternal abstract node, containing the rest of the original type constructor path,
and wrap it (together with the normalized arguments to the type constructor) in an
NTconstructed node.

Application path. (The Papply case.) This is an assertion failure, since such a path can
never be that of a type constructor (it is always the path of a module).

If the declaration is not a type abbreviation, and is also not that of an abstract type, then
it must be that of a variant or record type. In this case, we first substitute the fresh type
variables for the declaration’s parameters throughout the constructor argument types or
record field types respectively. Then we either normalize the constructor argument types
or the record field types as appropriate, eventually yielding a value whose outermost con-
structor is NTDvariant or NTDrecord respectively. This value is then wrapped up together
with the arguments to the normalized type constructor in an NTconstructed node. As for
Normtypedecl, the constructor declarations or record fields should be sorted by name to en-
sure that the eventual hash value is independent of the order of the constructors—currently
this is not done.

Links to other types (Tlink and Tsubst). Return the normalized form of the type being linked
to.

Anything else. Issue a warning and return NTother.

46



Chapter 6

Modifications to the O’Caml runtime

6.1 Random myname generator (byterun/random256.c)

The C function random256 takes no arguments, and returns a random 256bit long O’Caml string. It
is generated using the pseudo-random number generator found in C’s standard library (stdlib.h).
When first invoked, the generator’s seed is set (srandom) using O’Caml’s own random seed. The
32byte (256bit) string is then generated by concatenating 8 4byte long ints generated with the
random number generator (random).

This function is used for generating random myname values at compile-time and runtime for
”cfresh” and ”fresh” myname type modes, respectively.

6.2 Hashing of structures (byterun/hash256.c)

6.3 Polymarshal (byterun/polymarshal.c)

47



Chapter 7

The standard library

The O’Caml standard library is largely unchanged. The original Marshal module is now available
as Oldmarshal. The Marshal module itself has of course been modified to support type-safe
marshalling.

There is a new standard library module Dyntype providing a single function for converting
values of type typerep into strings.

48



Bibliography

[BSSS06] John Billings, Peter Sewell, Mark Shinwell, and Rok Strniša. Type-safe distributed
programming for OCaml, April 2006. Submitted for publication. http://www.cl.cam.
ac.uk/users/pes20/hashcaml.

49


