
Applied Semantics: Specifying and Developing Abstractions for Distributed Computation
(Grand Challenge Discussion Paper – GC2, GC4, and GC6)

Peter Sewell Keith Wansbrough

Computer Laboratory, University of Cambridge
http://www.cl.cam.ac.uk/users/{pes20,kw217}

February 2, 2004

Introduction

Over the last six years or so much of our research, together with colleagues, has aimed at establishing solid
foundations for large-scale distributed computation: applying semantic techniques (existing or newly-
developed) to real-world system problems. In this paper we briefly reflect on this work, discussing its
relationship to the Grand Challenge proposals

GC2: Science for Global Ubiquitous Computing,
GC4: Scalable Ubiquitous Computing Systems, and
GC6: Dependable systems evolution,

and the conclusions for these that can be drawn from our experience. This paper gives a personal view:
we cannot here survey the entire field except in the broadest terms, and so, with apologies to its authors,
do not discuss the substantial body of related research.

Modelling Complex Systems

Here we take a broad view of distributed computation, encompassing traditional client-server systems,
wide-area systems, global computing, ubiquitous computing, peer-to-peer systems, and grid computing.

In all of these, system designers must cope with many highly complex issues.

Some of this complexity is fundamental, arising from the problems of software evolution and version
change, partial failure, malicious attack, and mobility (not an exhaustive list!). Other complexity is
contingent, arising from historical design choices that are now baked in to the global infrastructure.
For example, the sockets interface to the TCP and UDP protocols first appeared more that 20 years
ago and, while it has changed, it is conceivable that it will never be entirely replaced. On a shorter
timescale, the JVM and .NET CLR intermediate languages may be pervasive for a number of years.
This combination of complexities makes it extremely difficult to understand systems — well enough to
engineer them robustly — with the current software tools and languages, based only on informal intuition
and engineering experience. Accordingly, we believe it is necessary to support intuition and experience
with rigorous models.

Much theoretical work has been concerned with highly idealised models of systems. This idealisation
is essential: for establishing basic concepts and results, to understand design questions in isolation,
and to keep the mathematical definitions simple enough that proof is feasible. To be directly applicable,
however, we also need models that have very clear relationships to real-world systems, and must consider
the integration of design questions in full-system settings. We need semantic descriptions that cover the
behaviour of executable code (indeed, of widely deployed and executing code), capturing its response to
partial failure, attack, etc.

The construction of these models can be either post-hoc, describing an existing software artifact, or pre-
hoc, during design. The former may be necessary for ‘baked in’ components of the infrastructure: if,
pragmatically, a component cannot be replaced or changed, the best we can do is to describe precisely
what its existing behaviour is (exactly which components are in this class depends on the timescale
under consideration, of course). The latter can be a powerful design tool, allowing design choices to be
described precisely and concisely, and promoting conceptual clarity.

Complete models (of either kind) can be used in several ways: as precise documentation for informal
reference, as a basis for rigorous proof of higher layers, and as a basis for applying the many semi-
automated analysis and verification techniques — type systems, model-checking, static analysis etc. —
either to the executable code or to some well-understood abstraction thereof.

1



Modelling in Practice

Beginning with the general goal of establishing solid foundations for large-scale distributed computation,
we have focussed on a number of specific aspects. This has involved both pre-hoc and post-hoc model
building and design, at several levels of abstraction (network protocols, programming languages, and
distributed communication and security infrastructure).

Our work on network semantics [1, 2, 3] is developing rigorous post-hoc behavioural specifications of the
ubiquitous UDP and TCP protocols and sockets API, to supplement the existing informal and partial
RFCs and texts. The specifications cover interactions across the sockets interface and on the wire; to be
useful they must be (and are) closely based on the de facto standard — the deployed implementations
— rather than the idealisations common in the theoretical literature. They precisely characterise the
semantics of partial failure that is visible across the sockets interface, and necessarily deal also with
many other details, e.g. of congestion control. The HOL proof assistant is used to sanity-check the
large higher-order logic definitions and as a basis for automated symbolic model-checking, to validate
the specification by comparing it with traces captured from running implementations (BSD, Linux, and
Windows XP). Work on UDP has been completed; a TCP specification is also complete and its validation
is in progress.

Our work on programming languages, on the other hand, is pre-hoc: developing high-level language
constructs for distributed programming, expressing them with rigorous semantics and evaluating them
with prototype implementations. Early work focussed on mobility. As devices and computations become
mobile, there is an increasing need for location-independent communication primitives. To implement
these above the low-level location-dependent communication of standard networking requires delicate
distributed algorithms. The Nomadic Pict language was developed to express such algorithms (and ap-
plications that use them) as clearly as possible. The language was implemented, a range of algorithms
with differing properties developed, and one algorithm proven correct – necessitating the development
of a rich new semantic theory [4, 5, 6]. Recent work has investigated the broader question of what
high-level language support is needed to allow the many high-level abstractions required for distributed
programming to be written simply as type-safe libraries in a general-purpose language, above a well-
understood TCP/UDP layer. We have primitives for global communication: type-safe (and respecting
abstract types), supporting software evolution with versions and version constraints, allowing typed com-
munication between programs with differing versions of modules, and with controlled dynamic rebinding
to local resources. No existing languages support all these, or deal with the subtle interactions between
modules, type identity, and versions. The Acute prototype language, with a core based on OCaml, has
been designed and implemented to test these ideas experimentally [7, 8, 9, 10].

Questions of security exist across all levels of abstraction, as attacks are unconstrained. We have studied
the secure encapsulation of untrusted components [11] and (with current PhD students) are looking
at systems for anonymity and privacy [12] and policy- and role-based access control, the latter with a
substantial case study based on the NHS National Electronic Health Record requirements [13].

Addressing the Grand Challenges

Our general goal, establishing solid foundations for large-scale distributed computation, is consistent
with those of the three challenges GC2,GC4, and GC6:

GC2 – Science for Global Ubiquitous Computing.

• To develop a coherent informatic science whose concepts, calculi, theories and automated tools
allow descriptive and predictive analysis of the GUC at each level of abstraction;

• That every system and software construction – including languages – for the GUC shall employ
only these concepts and calculi, and be analysed and justified by these theories and tools.

GC4 – Scalable Ubiquitous Computing Systems.

• A central aim of this challenge for Computer Systems research is to make it feasible to program
such systems without having to employ many orders of magnitude more programmers with greater
skills than today’s software engineers.

• From the model/architectural viewpoint, a goal should be to provide a hierarchy of abstractions
that allow us to specify and understand these systems at many levels of detail.

2



• From the pragmatic viewpoint, rather than a single system implementation, a classical computer
science approach suggests itself — a generative approach to building systems, where the standards
are the rules that the generator follows, but the systems that it constructs may be quite different
for different pieces of the architecture, or different points in the scale.

GC6 – Dependable systems evolution.

• Commercial and industrial-scale software can be developed to be truly dependable, at lower cost
and with less development risk than today.
• The vulnerabilities in legacy systems and COTS components can be discovered and corrected,

improving their dependability.
• Dependable systems can be evolved dependably including, for a class of applications, just-in-time

creation of required services.

Indeed, there is little we would disagree with in any of these proposals. It may be worth commenting on
some points of emphasis, however, and on the problems of scale and integration that arise in this kind
of work.

Applied Semantics: Application-Driven Semantics, Semantically-Founded Systems

Primarily, we would like to emphasise the importance of tightly interlinked systems and semantic research.
System-design problems have become harder, and are now demanding better conceptual and software
tools, while theoretical techniques have advanced. It now seems very fruitful to approach the general
goal by trying to build particular systems, using whatever theory is required. In doing so, it may be
possible to take a model off the shelf, or to use an existing analysis tool, or (the common case, and the
ideal for the researcher) one may discover that new semantics, languages or tools must be created, and
proceed to do so. Of course, it is vital to choose example systems of the right scale — involving some
problems that are not yet well-understood, but not overwhelmingly complex. Further, expectations of
timescale must be realistic: if one demands a working system in 3 months (or, indeed, 3 years) then the
most useful and creative solutions, which require substantial research, may be automatically ruled out.

The GC2 proposal discusses some possible experimental applications, but they appear to us to be of
a longer-term nature — applications for theorists to keep firmly in mind, but perhaps too complex to
actually attempt to (re)build them, on new foundations, in the next few years. The complementary GC4
focusses on the new architectural techniques required to build large systems, but does not discuss how
they should be expressed — how we can best support good engineering of interfaces and abstraction
layers. A short-term goal is to have interesting fully specified systems, with integrated rigorous descrip-
tions of the behaviour of communication primitives, programming language, and executable application
code above. This is clearly within reach, though dependent on exactly what level of communication is
involved (as a step towards this, for example, work is underway by Michael Compton on integrating our
UDP/sockets semantics, a semantics for an OCaml fragment, and code written therein, all in the Isabelle
proof assistant.) Our personal focus is primarily on improving software quality by providing better, and
better-understood, abstractions, not on the complete verification of correctness properties of GC6, but
integrated semantic descriptions are a necessary precondition for verification.

We thus see scope for much work in the intersection of GC2, GC4, and GC6. A useful medium-term
goal for this is to demonstrate, for some particular systems, that semantic tools really can be used to
build more them more robustly and more easily, in a way that is persuasive for the software engineer in
the street.

The Problems of Scale

In all of this kind of work, one has to deal with problems of scale that do not arise when working with
small calculi and languages. Firstly, just the amount of detail is large. The description of even a simple
real-world protocol or of a moderate-size programming language goes far beyond the point where hand-
proof is feasible without prohibitive effort. Indeed, such descriptions are too large even for one to have
complete confidence that they are internally type consistent (for example, our TCP/UDP specification is
some 14000 lines of HOL; our Acute definition is 35 pages of informal mathematics). Good tool support
is therefore needed, likely based on existing proof assistants (HOL, Isabelle, Twelf, PVS, Coq, etc.).
Automated reasoning has made great strides, but —from our user perspective— much more is required:
improved proof automation (e.g. for type preservation proofs), support for object-language syntax (with

3



variable binding and better surface-syntax support), error reporting, efficiency, and integration between
provers to allow portability of definitions.

Secondly, one needs to integrate semantic descriptions of different components (e.g., for us, of TCP/UDP
and of OCaml fragments or of Acute). This is not conceptually challenging, but a matter of semantic
engineering.

Thirdly, one must have semantics for realistic languages, both for description and for reasoning. Semantic
technology and idioms have improved to the point where it is perfectly feasible to design a large language
in terms of its operational reduction semantics and type system (though better tool support is needed
to manage the detail). Dealing with the number and integration of language features is still challenging,
however, and more work is certainly necessary on compositional semantics of languages, or on ad-hoc
tools for composing definition fragments. Reduction semantics is currently the best definition tool, but
for much reasoning a more abstract semantics is necessary: theories of observational congruence, logics,
and/or denotational semantics, that simultaneously cover all the language features. For example, we
recently wanted to reason about programs in a language with abstract types, concurrency, mutable
state, partial failure, and exceptions. Understanding observational congruence for such a combination
goes well beyond the state of the art.

Fourthly, one must deal post-hoc with the detail of whatever existing systems are involved in the problem
at hand. Better tool support for testing conformance of a specification and an implementation is needed,
both to validate post-hoc specifications and to provide confidence in implementations of pre-hoc specifi-
cations. Such testing cannot provide the level of confidence that complete proof-based verification can,
of course, but it is extremely valuable nonetheless, being (largely) automatable, and currently feasible
for more complex systems.

Fifthly (specific to programming-language research), there is a major design challenge of selecting and
integrating the many language features that have been developed into one or more coherent wholes. For
example, many sophisticated type systems for enforcing security properties have been developed, but
any attempt at combining all of them would certainly give an unusably-complex language.

Recommendations

We see potential for a real research community at the intersection of GC2, GC4, and GC6, marked by
significant interaction and collaboration between its members. This synergy could be very productive.
However, for it to occur it will be necessary for the present research, publication, and funding culture to
change.

1. Most importantly there must be a shift of focus, of both theoretical and practical researchers,
towards more tightly-integrated research. This might be encouraged by workshops on large-
scale semantics and tool support, which should be satellites of appropriate conferences and be
internationally-based, not purely UK-centric. Enlarging the (small) pool of potential researchers
with expertise in both systems and semantics could be supported by targetted MSc programmes
and PhD summer schools and, to some extent, in undergraduate curricula.

2. The shift of focus must carry over into publication values: the community needs work on large-scale
composition, implementation, and tool support just as much as work on core principles and novel
theories. The results of this research must be used in anger.

3. It is clear that the scale of problem far exceeds the typical single paper, the work of a single research
group over a few years, or even the long-term extended collaboration that has produced e.g. OCaml
and Haskell. One should therefore ask what is needed to enable collaborations of this size or larger.
We strongly believe they should arise bottom-up — nothing would be worse than recreations of the
large industrial standards committees (though in some cases they can be influenced for the better).
To encourage the formation of such collaborations sometimes simply longer-term, or larger, funding
is required.

4. More subtly, to enable synergy between different research groups, it is desirable for the community
to converge somewhat on common notation, common definitions, and common language fragments
(contrast, say, the variety of definitions and notation for lambda calculi with the commonality of
notation in thermodynamics). All this would enable re-use, e.g. of a semantics for a large Java
fragment.

4



5. Finally, in a virtuous circle, this commonality may be driven by the improved tools which are
required. For example, if it were only slightly easier to use automated proof assistants for pro-
gramming language definition fragments, it might become commonplace to exchange them, and to
place them in the public domain.

To conclude, while this is not short-term research, there is urgency. The economic and human cost of
poor information infrastructure being built now may be with us for a long time.

Acknowledgements

This paper rests on joint work with many people, including: Mair Allen-Williams, Moritz Becker, Gavin
Bierman, Steve Bishop, Gian Luca Cattani, Michael Compton, Matthew Fairbairn, Michael Hicks, James
Leifer, Michael Norrish, Gilles Peskine, Benjamin Pierce, Andrei Serjantov, Gareth Stoyle, Asis Un-
yapoth, Jan Vitek, and PaweÃl Wojciechowski.

We acknowledge support from a Royal Society University Research Fellowship (Sewell), a St Catharine’s
College Heller Research Fellowship (Wansbrough), EPSRC grants GRN24872 and GRL62290, and EC
FET-GC project IST-2001-33234 PEPITO.

References
[1] Michael Norrish, Peter Sewell, and Keith Wansbrough. Rigour is good for you, and feasible: re-

flections on formal treatments of C and UDP sockets. In Proceedings of the 10th ACM SIGOPS
European Workshop (Saint-Emilion), pages 49–53, September 2002.

[2] Keith Wansbrough, Michael Norrish, Peter Sewell, and Andrei Serjantov. Timing UDP: mechanized
semantics for sockets, threads and failures. In Proceedings of ESOP 2002: the 11th European
Symposium on Programming (Grenoble), LNCS 2305, pages 278–294, April 2002.

[3] Andrei Serjantov, Peter Sewell, and Keith Wansbrough. The UDP calculus: Rigorous semantics for
real networking. In Proceedings of TACS 2001: Theoretical Aspects of Computer Software (Sendai),
LNCS 2215, pages 535–559, October 2001.

[4] Asis Unyapoth and Peter Sewell. Nomadic Pict: Correct communication infrastructure for mobile
computation. In Proceedings of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (London), pages 116–127, January 2001.

[5] PaweÃl T. Wojciechowski and Peter Sewell. Nomadic Pict: Language and infrastructure design for
mobile agents. IEEE Concurrency, 8(2):42–52, April–June 2000.

[6] Peter Sewell, PaweÃl T. Wojciechowski, and Benjamin C. Pierce. Location-independent communica-
tion for mobile agents: a two-level architecture. In Internet Programming Languages, LNCS 1686,
pages 1–31. Springer-Verlag, October 1999.

[7] James Leifer, Peter Sewell, and Keith Wansbrough. Marshalling: Abstraction, rebinding, and version
control, 2004. draft, available http://www.cl.cam.ac.uk/users/pes20.

[8] Gavin Bierman, Michael Hicks, Peter Sewell, Gareth Stoyle, and Keith Wansbrough. Dynamic
rebinding for marshalling and update, with destruct-time lambda. In ICFP: the 8th ACM SIGPLAN
International Conference on Functional Programming (Uppsala), pages 99–110, August 2003.

[9] James Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough. Global abstraction-safe mar-
shalling with hash types. In Proceedings of ICFP 2003: the 8th ACM SIGPLAN International
Conference on Functional Programming (Uppsala), pages 87–98, August 2003.

[10] Peter Sewell. Modules, abstract types, and distributed versioning. In POPL: 28th ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages (London), pages 236–247, January 2001.

[11] Peter Sewell and Jan Vitek. Secure composition of untrusted code: Box-π, wrappers and causality
types. J. Computer Security, 11(2):135–188, 2003. Invited submission, CSFW 00 special issue.

[12] Andrei Serjantov and Peter Sewell. Passive attack analysis for connection-based anonymity systems.
In ESORICS: European Symp. on Research in Computer Security (Gjøvik), pages 116–131, Oct 2003.

[13] Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management, applied to electronic
health records, 2004. Draft available http://www.cl.cam.ac.uk/users/mywyb2/.

5


