
Global/Local Subtyping and Capability Inference for a

Distributed �-calculus

Peter Sewell

University of Cambridge

Peter.Sewell@cl.cam.ac.uk

Abstract

This paper considers how locality restrictions on the use of capabilities can be enforced

by a static type system. A distributed �-calculus with a simple reduction semantics

is introduced, integrating location and migration primitives from the Distributed Join

Calculus with asynchronous � communication. It is given a type system in which the

input and output capabilities of channels may be either global, local or absent. This

allows compile-time optimization where possible but retains the expressiveness of channel

communication. Subtyping allows all communications to be invoked uniformly. We show

that the most local possible capabilities for internal channels can be inferred automatically.

1 Introduction

A central theme in programming language and system design is that of restricting access to

resources to be in some sense local. This can support clean design, allow e�cient implementa-

tion, and provide robustness against accidental errors and malicious attacks. The development

of ubiquitous networking, particularly of systems in which executing agents or executable code

are communicable, brings new kinds of resource and locality to the fore. One has resources

such as the capability to input or output on a communication channel, to read or write a

distributed reference cell, and to decrypt or encrypt with a cryptographic key pair. It may

be desirable to restrict the use of these capabilities to, for example, a single agent, a group of

trusted agents, a region of the network or a machine address space.

In this paper we consider how such restrictions, particularly the �rst, can be enforced

by a static type system. We introduce a distributed �-calculus, with primitives for location,

migration and �-calculus style channel communication, as an idealisation of a mobile agent

programming language. It is given a type system in which the input and output capabilities

for a communication channel can be either global, and therefore usable within any location,

restricted to be local, and therefore usable only within the location where the channel is

declared, or absent. The type system allows local communication to be implemented e�ciently,

while subtyping and subsumption ensure that, from the programmer's point of view, it is not

unduly restrictive. The constructs for input and output along a channel are independent of

whether its capabilities are global or local, thus facilitating programming. At the same time the

programmer can distinguish between local and (potentially expensive) global communications

via the typing of channel declarations. For the type system to be pragmatically usable it

is essential that capability annotations can often be inferred automatically { one would like

internal channels to be given the most local capabilities possible, to allow optimisation. We

show that this can be done, by showing that typing is preserved by least upper bounds in a

modi�ed subtype order.

The distributed �-calculus used is introduced in Section 2. It is designed to allow the

global/local type system to be presented clearly; it does not address other issues, such as name

services, failure and administrative domains, that arise in mobile agent programming. It builds

on the �-calculus of Milner, Parrow and Walker [MPW92]. The �-calculus is often described

as a calculus of mobile processes. Strictly, however, this refers to the mobility of the scopes of

channel declarations { channels are statically scoped, but their scopes may change over time as

channel names are sent outside their current scopes. There is no other notion of locality or of

identity of processes, so to directly model distributed phenomena, such as migration of agents,

failure of machines or knowledge of agents, one must add primitives for grouping �-calculus

processes, into units of migration, failure or shared knowledge respectively. This was done by

Amadio and Prasad [AP94] in order to model an abstraction of the failure semantics of Facile

[TLK96], an extension of ML with distribution primitives. More recently, Fournet et al have

proposed the Distributed Join Calculus and a related programming language [FG96, FGL

+

96].

To model migrating agents one needs at least a two level hierarchy, with agents, each containing

some processes, located at named virtual machines. The Distributed Join Calculus takes a

generalisation of this, with primitive tree-structured locations. Immediate sublocations of the

root model virtual machines; descendants of these represent hierarchically structured mobile

agents. Locations are named; new locations can be created and their names can be scope-

extruded by communication just as �-calculus channel names can be. Locations that are

not immediate sublocations of the root may migrate, changing their parent location. The

sublocations of a location thereby migrate with it. We adopt similar location and migration

primitives (this choice gives a reasonably clean calculus, but it is not critical for the type

system). For communication between agents a wide variety of primitives may be useful in

practice. In this paper we adopt those of an asynchronous �-calculus [Bou92, HT92]. They are

rather high level, operating independently of the physical locations of agents, and expressive,

allowing any number of readers and writers on a channel. As in [AP94] channels have locations,

giving the agents in which their queues of blocked writers or readers are stored.

The type system is introduced in Section 3. Generalising the Input/Output type system of

Pierce and Sangiorgi [PS96], it has channel types annotated with capabilities. Here they are

of the form l

io

T , with input and output capabilities i and o each taken from f�; L;Gg. The

intuition is that a G capability may be used at any location, an L capability may be used only

at the location of the channel concerned and a � capability may not be used at all. The types

l

��

T are replaced by a single top type >, leaving the capabilities below.

L� �L

G�

LL

�G

GL LG

GG

For example, consider a channel x of type l

io

T , which is located at a location named k. If

io = GG then x is usable at any location, both for input and for output. If io = LL then x

is usable only within location k, but still for both input and output. If io = LG then x can

be used for output anywhere, but for input only within location k. Such a channel might

be used for sending requests to a server located at k. Conversely, if io = GL then x can be

used for input anywhere, but for output only at location k. Such a channel might be used

for receiving results from servers, or for `pushed' data from an information source. The tags

�;�;+ of [PS96] correspond to the capabilities GG;G�;�G, for global communication, and

to LL; L�;�L, for local communication.

A subtyping order is lifted from the tag ordering above (with i� and �o covariant and con-

travariant respectively), allowing subcapabilities to be communicated. For example if x : l

LG

T

then x may be transmitted globally, along channels of type l

GG

l

�G

T , to readers that are

guaranteed to use it only at type l

�G

T .

The expressiveness of the system should aid programmers by detecting errors at compile

time, including communications that inadvertently potentially involve network communication.

In an implementation, channels with tags LL, L� and �L can be implemented with data

structures that are local to a single agent, and so always on the same (albeit possibly changing)

machine. Their names need not be globally unique, but only unique within their location (note

that this implies that equality testing of channel names should not be available) and need not

be registered with global name services. Channels with tags GL (resp. LG) are subject to fewer

optimizations, but still allow the references to the channel data structures by writers (resp.

readers) to be local pointers.

The typing rules involve two novel features | the formation of certain types must be for-

bidden by kinding rules and the capabilities of channels must be compared with capabilities

at which they can be used by readers. The main soundness result is subject reduction (Theo-

rem 1); in addition one can see by examination of the typing rules that no well-typed process

can immediately use a capability that it does not have.

In Section 4 we show that the most local possible capabilities for channels can be inferred

(Theorem 2). Some related work and possible generalisations are discussed in Section 5.

Proofs are omitted for lack of space. Further discussion of alternative calculi, and the proof

of soundness for an extension of the type system with type variables and recursive types, may

be found in [Sew97a].

2 A distributed �-calculus

In this section the syntax and operational semantics of our distributed �-calculus (dpi for

short) are given. The operational semantics is a rather mild extension of that for the asyn-

chronous �-calculus. It is a reduction semantics, de�ning reductions over process terms (no

additional notion of con�guration is required) using a structural congruence. It di�ers from

an asynchronous � semantics in only two respects | there is a reduction rule for migration

and the standard structural congruence and reduction rules are adapted to terms containing

location information. Location and channel names are both subject to scope extrusion, just as

�-calculus channel names are. The semantics and type system can therefore be simpli�ed by

treating new location and channel declarations similarly, taking a single binder (new x : @

l

T)

which declares x to be a sublocation of l (respectively a channel located at l) if the type T is

the type loc of location names (respectively a channel type).

Types To the types of channels and locations introduced above we add base types, ranged

over by B, for example a unit type 1 and Int, pairs, as a �rst step towards more interesting

datatypes, and a type to be the top of the subtype order. The pre-types, ranged over by

S; T; U; V , are given by

T ::= B

�

�

�

T � T

�

�

�

l

io

T

�

�

�

loc

�

�

�

>

Only some pre-types will be considered well-formed. The syntax of processes involves types,

and hence the reduction semantics does also. Its de�nition does not depend on them in any

interesting way, however, so we defer the type formation rules to Section 3.

Processes We take an in�nite set X of names, ranged over by a; j; k; l; x; y; z and containing

a distinguished name top. We let m;n; p; q range over N. Values, ranged over by u; v; w, are

v ::= b

�

�

�

x

�

�

�

hv; vi

where b ranges over elements of the base types. There are two extremal possibilities for adding

location information to terms. In one a locator applies to the largest possible unit, with all co-

located subterms gathered into a single subterm. This is adopted, for example, in the Ambient

Calculus of Cardelli and Gordon [CG98]. For dpi, however, communication is possible across

the location tree structure, so to give a reduction semantics (in which writers and readers at

di�erent locations must be brought syntactically adjacent by a structural congruence) the other

extreme is adopted, with each elementary subterm explicitly located. Accordingly, processes,

ranged over by P;Q;R, are:

P ::= @

u

vw at location u, output value w on channel v

@

u

v

(

y

)

:P at u, input a value from channel v and bind it to y in P

@

u

! v

(

y

)

:P replicated input

@

u

migrate to v then P migrate location u to become a sublocation of v

@

u

let hy :T; y

0

:T

0

i = w in P at u, bind the halves of the pair w to y and y

0

in P

(new y : @

u

T)P declare a new channel or location named y, of type T ,

located at u and binding in P

0 the null process

P jP parallel composition

The names y and y

0

above, which must be distinct in the let case, bind in the respective

subterms P (in particular, in (new y : @

u

T)P the scope of y does not include u); we work

up to alpha conversion of bound names. The free names of a value v and process P will be

denoted by fn(v) and fn(P) respectively. The substitution of a value v for a name x in P will

be written fv=xgP . Output values and input binders of type 1 will often be elided.

The syntax of processes includes some nonsensical terms, which the reduction semantics

gives nonsensical reductions to. They will be formally excluded by the typing rules but two

points are worth mentioning now. Firstly, in well-typed processes the u and v appearing in

the grammar will always be names. They are allowed to be arbitrary values in the syntax so

that substitution of values for names is always de�ned. Secondly, the syntax includes terms

which can teleport after a pre�x, e.g.

@

k

x

(

y

)

:@

l

x

(

z

)

:0 @

k

x

(

y

)

:@

y

x

(

z

)

:0

For conceptual simplicity we would like migration to be the only way in which processes may

move, and so want locators @

l

to describe the locations of processes rather than cause them to

move. Teleporting terms are excluded by considering the set of free inhabited locations (P)

of a process P . This is the set of the free location names that are inhabited in P by outputs,

inputs, migrates, pair splits, channels or locations. It is the set of names which occur free in P

within the argument u of a subterm @

u

. For example, ((new j : @

l

loc)(@

j

x j@

l

x j@

k

x)) =

fk; lg. The type system will require, in every pre�x located at l with continuation P , that

(P) � flg.

Reduction semantics Structural congruence � is the least congruence relation over pro-

cesses satisfying the following.

P j 0 � P (1)

P jQ � Q jP (2)

P j(Q jR) � (P jQ) jR (3)

(new x : @

u

S)(new y : @

v

T)P � (new y : @

v

T)(new x : @

u

S)P x 62 fn(v); y ^ y 62 fn(u) (4)

P j(new x : @

v

T)Q � (new x : @

v

T)(P jQ) x 62 fn(P) (5)

The �rst three equations are standard, allowing parallel compositions to be treated as multisets.

Equation 5 allows scope extrusion, both of channel names and of location names. Equation 4

allows new-binders to be permuted; the side condition ensures that the location tree structure,

and the locations of channels, are preserved.

The reduction relation �! over processes is the least relation satisfying the following.

@

k

xv j@

l

x

(

y

)

:P �! fv=ygP

@

k

xv j@

l

!x

(

y

)

:P �! fv=ygP j@

l

!x

(

y

)

:P

@

l

let hy

1

: T

1

; y

2

:T

2

i = hv

1

; v

2

i in P �! fv

1

=y

1

gfv

2

=y

2

gP

(new l : @

j

T)(new �)(Q j@

l

migrate to k then P) �! (new l : @

k

T)(new �)(Q jP)

if fk; lg \ dom(�) = fg ^ k 6= l

P�!Q

P jR�!Q jR

P�!Q

(new x : @

l

T)P�!(new x : @

l

T)Q

P � P

0

P

0

�!Q

0

Q

0

� Q

P�!Q

where we de�ne (new �)P , for lists of the grammar � ::= �

�

�

�

�; x : @

l

T , by (new �)P = P

and (new �; x : @

l

T)P = (new �)(new x : @

l

T)P . The �rst two reduction rules are the

standard communication rules for an asynchronous �-calculus; note that the communications

can take place irrespective of the locations of the writer, reader and channel. The third is

an unproblematic pair splitting reduction. The fourth is the only substantially new reduction

rule. It allows location l to migrate from being a sublocation of j to become a sublocation of

k. After the migration the continuation P is released. The additional context (new �)(Q j),

which is preserved by the reduction, is required as the scope of l may contain other location and

channel declarations, and processes, that mention l. In particular, note that Q may contain

other subterms @

l

: : : that remain located at l as it migrates. Note also that the side condition

means that the rule is not applicable if k is a sublocation of l. Such migrations, which would

introduce a cycle into the location tree, are blocked, although later migrations may unblock

them. The last three rules are standard.

The sublocation tree of a migrating location is unchanged, and so migrates with it. The unit

of migration is thus a subtree of locations with all their processes and channels. The largest

unit that is guaranteed to stay together (and so always be on the same machine), however, is

not a subtree but just the processes and channels at a single location | its sublocations may

migrate away. The tree structure is therefore essentially orthogonal to global/local typing.

Examples We give some simple example processes that will be well-typed in the empty

context. First, a server that returns the result of some computation (in this trivial example it

simply pairs the argument with itself):

(new pairServer :@

top

loc)(new client :@

top

loc)

(new pair : @

pairServer

l

LG

(Int� l

�G

(Int� Int)))

@

pairServer

! pair

(

y

)

:@

pairServer

let hn : Int; c : l

�G

(Int� Int)i = y in @

pairServer

chn; ni

j

(new c : @

client

l

LG

(Int� Int))@

client

pairh7; ci j@

client

c

(

x

)

: � � �

Note the use of subsumption for typing the output @

client

pairh7; ci. Secondly, a rudimentary

tracker, that receives location names on a channel move (perhaps provided by an active badge

system controller) and migrates to them:

(new l

1

: @

top

loc) � � � (new l

3

: @

top

loc)

(new controller : @

top

loc)

(new move :@

controller

l

GL

loc)

@

controller

move l

1

j � � � j@

controller

move l

3

j

(new follower :@

controller

loc)

@

follower

! move

(

l

)

:@

follower

migrate to l then � � �

j@

follower

� � �

A more realistic tracker would have additional communications so that the moves could be

sequentialised. As these examples show, the syntax of processes contains redundant location

information. The design of a less verbose representation, allowing co-located processes to be

gathered together at compile time, is discussed in [Sew97a]. Also discussed there is a calculus

that is better suited to use by programmers, allowing locators to occur more freely. Both of

these require a more complex operational semantics.

Action calculus semantics There is a rather large space of possible calculi with reduction

semantics. One way of understanding it, particularly for comparing di�erent calculi, is to put

them into a common framework, such as the Action Calculi of Milner [Mil96]. This provides a

well-understood structural congruence, with a graphical intuition, that has clari�ed the design

of dpi. As an illustration, we give an action calculus presentation of the fragment of dpi

without pairs or base type values. We take the arity monoid (N;+; 0), the names of arity 1 to

be X and controls:

new

T

: 1! 1 out : 3! 0

a : 1! 0

in(a) : 2! 0

rep(a) : 2! 0

a : 0! 0

mig(a) : 2! 0

Comparing with the action calculus for the �-calculus AC(�;out;box; rep), from [Mil96, x5.4],

the arities of new, out, in and rep are obtained by adding one to the source of their cor-

responding arities; the name binding the new port on a control giving the location of that

control. There is an obvious mapping taking processes in the fragment of dpi considered to

actions of arity 0! 0. Taking the reaction rules of the action calculus to be the translation

of the �rst, second and fourth dpi rules, this is a bijection, up to structural congruence, that

preserves one-step reaction.

3 Global/local subtyping

This section gives the global/local type system. It de�nes a judgement � ` P : process which

should be read as `under assumptions � the process P is well-formed'. As usual these contexts

� contain assumptions on the types of names that may occur free in P . They must also contain

assumptions on the locations of such names. Pre-contexts are therefore lists:

� ::= � the empty context

�; x : @

l

T � extended with name x, located at l, of type T

We now illustrate the three main phenomena that the type system must address. Firstly, a

channel name must only be used (for input or output) if it has the appropriate capability, i.e.

L or G for usages at its location; G for usages at other locations. For example, with respect to

the context

�

def

= k : @

top

loc; l : @

top

loc; w : @

l

l

�G

1; z : @

l

l

�L

1

we should have

� ` @

l

w : process � ` @

l

z : process

� ` @

k

w : process � 6` @

k

z : process

Secondly, local capabilities must not be sent outside their locations. Consider the context

�

def

= k : @

top

loc; top level location

l : @

top

loc; top level location

z : @

l

l

LL

1; local channel carrying 1, at l

x : @

l

l

GG

l

LL

1 global channel carrying names of local channels carrying 1, at l

and the process P

def

= @

l

xz j@

k

x

(

y

)

:@

k

y. At �rst sight one might expect � ` P : process, but

the reduction

@

l

xz j@

k

x

(

y

)

:@

k

y�!@

k

z

can send both L capabilities of z out of l | it is clear that � ` @

k

z : process should not

hold, and hence that � ` P : process should not. It is prevented by restricting type formation,

ruling out channel types, such as l

GG

l

LL

1, that can be used to communicate local capabilities

globally.

Thirdly, there must be a restriction on the mention of names outside their locations. This

is a little delicate, as one cannot simply forbid all such mentions of the names of channels

that are declared with some local capability. Suppose x : l

LL

l

�o

1 is located at l and z : l

�o

0

1,

and consider when @

l

xz should be well typed. If o

0

= G then z may be located anywhere, as

its output capability is global. If o = G and o

0

= L then z is not a subtype of the expected

value, so @

l

xz should never be well typed. On the other hand, if o = o

0

= L then the output

capability of z is local and may be used by a reader on x, so z must be located at l also. The

essential point is whether the capabilities of z and the capabilities at which it can be used

by readers (as determined by the type of x) share a local capability (either for input or for

output). This will be captured by a relation of colocality over types. Note that if x : l

LL

l

�L

1

and z : l

LG

was not located at l the output should still be well typed, despite the fact that both

types have a local capability.

Kinds, Contexts, Types and Values We �rst de�ne four mutually recursive judgements,

` T :K, read as `type T is well-formed and has kind K', ` � ok , read as `context � is well-

formed', � ` v :T , read as `value v has type T ', and � ` x@l, read as `name x is located at

l'.

The kinds, ranged over by K, are Type

"

where and " range over the 2-point lattices

G 6 � and E 6 � respectively. They are ordered by the product order. The intuition is that

types that have a kind Type

G"

are global, with values of such types being freely communicable

between locations. Types that have a kind Type

E

are extensible; new names at these types

may be created by new-binders. We write t for the least upper bounds in these lattices. The

kinding rules for types are:

` B : Type

G�

` T : Type

"

` T

0

: Type

0

"

0

` T � T

0

: Type

(t

0

)�

` loc : Type

GE

` > : Type

GE

` T : Type

G"

io 2 fGG;G�;�Gg

` l

io

T : Type

GE

` T : Type

G"

io 2 fGL; LGg

` l

io

T : Type

�E

` T : Type

"

io 2 fLL;�L; L�g

` l

io

T : Type

�E

` T :K

K 6 K

0

` T :K

0

The rules for channel types prevent the formation of types that could be used to carry local

capabilities between locations. For example, we have:

` l

LL

l

LL

1 : Type

�E

6` l

GG

l

LL

1 : Type

��

` l

LL

l

GG

1 : Type

�E

` l

GG

l

GG

1 : Type

GE

and ` l

io

l

i

0

o

0

1 : Type

�E

i� io 2 fGG;G�;�G;GL; LGg) i

0

o

0

2 fGG;G�;�Gg, i.e. if io is at

all global then i

0

o

0

must be not at all local. Products are global only if both their components

are global. Base types and > are global, as is loc, so location names may be communicated

freely. For illustration, the types (in boxes) and global types (in double boxes) of the form

l

io

l

i

0

o

0

1 are shown in Figure 1. The only extensible types are channel types, loc, and >.

The formation rules for contexts are:

` � ok

` T :K

(� ` l : loc) _ (l = top)

x 62 dom(�) [ftopg

` �; x : @

l

T ok

Contexts thus contain location and type assumptions on free names. The rules ensure that

locations are tree structured, with root top. The typing rules for values, and the rule for the

location of names, are straightforward.

` �; x : @

l

T;� ok

�; x : @

l

T;� ` x :T

` � ok b 2 jBj

� ` b :B

� ` v :T � ` v

0

:T

0

� ` hv; v

0

i :T � T

0

` �; x : @

l

T;� ok

�; x : @

l

T;� ` x@l

Subtyping The ordering on tags induces a subtype order on types | if io 6 i

0

o

0

then a

channel of type l

io

T may be used as if it were a channel of type l

i

0

o

0

T , which has weaker

capabilities. As in [PS96], a tag io is covariant i� o = �, contravariant if i = � and non-variant

otherwise. The subtype order 6 is the least binary relation over the pre-types such that

B6B

S

1

6 T

1

S

2

6 T

2

S

1

� S

2

6T

1

� T

2

io 6 i

0

o

0

i

0

6= �) S 6 T

o

0

6= �) T 6 S

l

io

S6 l

i

0

o

0

T

loc6loc S6>

L�L� L��L �LGG

L�G� L�LL L��G �LGL �LLG

L�GL L�LG �LG� �LLL �L�G

L�GG �LL� �L�L

LLL� LL�L

G�G� G��G LLG�

LLLL

LL�G �GGG

G�GG

LLGL LLLG

�GG� �G�G

LLGG

GLG�

GLGG

GL�G LGG�

LGGG

LG�G

GGG�

GGGG

GG�G

Figure 1: The subtype order over well-formed types l

io

l

i

00

o

00

1. They are ordered by l

io

l

i

00

o

00

1 6 l

i

0

o

0

l

i

000

o

000

1 i� io 6 i

0

o

0

and

o

0

= �) i

0

o

0

6 i

000

o

000

, i

0

= �) i

000

o

000

6 i

0

o

0

and o

0

6= � ^ i

0

6= �) i

0

o

0

= i

000

o

000

.

T
h

e
r
e
p

l
a
c
e
m

e
n
t

o
f

t
h

e
t
a
g
�
�

b
y

a
s
i
n
g
l
e

t
o
p

t
y
p

e
e
n
s
u
r
e
s

t
h
a
t

s
u
b
t
y
p
i
n
g

i
s

a
p
a
r
t
i
a
l

o
r
d

e
r

{
o
t
h

e
r
w

i
s
e

n
a
m

e
s

o
f

t
y
p

e
s
l

�
�

T
w

o
u
l
d

b
e

c
o
m

m
u
n
i
c
a
b
l
e

b
u
t

n
o
t

u
s
a
b
l
e
,

s
o

w
e

w
o
u

l
d

h
a
v
e
l

�
�

S
6
l

�
�

T
f
o
r

a
l
l
S

a
n
d
T

.
T

h
e

s
u
b
t
y
p

e
o
r
d
e
r

o
v
e
r

w
e
l
l
-
f
o
r
m

e
d

t
y
p

e
s
l

i
o

l

i

0

o

0

1
i
s

illustrated in Figure 1. Note that the well-formed types are not up, down or convex-closed

under the subtype order on pre-types.

Colocality We say that a tag is local if it contains an L capability and that two tags

are colocal if they share a common L capability, i.e. local(io)

def

, i = L _ o = L and

colocal(io; i

0

o

0

)

def

, (i = L ^ i

0

= L) _ (o = L ^ o

0

= L). The key properties of these de�ni-

tions are that colocal(io; io) () local(io) and that, if io 6 i

0

o

0

6 i

00

o

00

and colocal(io; i

00

o

00

),

then colocal(io; i

0

o

0

) and colocal(i

0

o

0

; i

00

o

00

). Note that the local tags are neither up, down

or convex closed in the tag ordering. Further, colocal is a symmetric relation but is not re-

exive or transitive, or closed under relational composition with the tag ordering. It does

satisfy colocal(io; i

0

o

0

)) (io 6 i

0

o

0

_ i

0

o

0

6 io). Colocality is lifted from tags to a relation on

well-formed types that are in the subtype relation as follows.

(i = i

0

= L) _ (o = o

0

= L)

` l

io

S : Type

��

` l

i

0

o

0

T : Type

��

l

io

S 6 l

i

0

o

0

T

colocal(l

io

S; l

i

0

o

0

T)

colocal(S

i

; T

i

)

` S

1�i

: Type

��

` T

1�i

: Type

��

S

1�i

6 T

1�i

colocal(S

0

� S

1

; T

0

� T

1

)

i 2 f0; 1g

We de�ne the colocal names of a value with respect to two types that are in the subtype

relation:

� ` x :S

colocal(S; T)

� ` x 2 colocaln(x; S; T)

� ` x 2 colocaln(v

i

; S

i

; T

i

)

� ` v

1�i

:S

1�i

` T

1�i

: Type

��

S

1�i

6 T

1�i

� ` x 2 colocaln(hv

0

; v

1

i; S

0

� S

1

; T

0

� T

1

)

i 2 f0; 1g

The key properties lift as follows. If a value has any colocal names with respect to two types

then those types are colocal, the types of the colocal names of a value are themselves local and

the set of colocal names of a value varies contravariantly with the upper type.

Lemma 1 If � ` x 2 colocaln(v; V; T) then colocal(V; T) and there exists U such that � ` x :U

and colocal(U;U). If in addition ` S : Type

��

and V 6 S 6 T then � ` x 2 colocaln(v; V; S).

Processes Finally the typing rules for processes can be given.

Out

� ` l : loc

� ` x : l

io

T

� ` v :T

0

T

0

6 T

o 6 L

o = L) � ` x@l

8a : � ` a 2 colocaln(v; T

0

; T)) � ` a@l

� ` @

l

xv : process

(Rep-)In

� ` l : loc

� ` x : l

io

T

�; y : @

l

T ` P : process

i 6 L

i = L) � ` x@l

(P) � flg

� ` @

l

x

(

y

)

:P : process

� ` @

l

!x

(

y

)

:P : process

Let

� ` l : loc

� ` v :T

0

�; y

1

: @

l

T

1

; y

2

: @

l

T

2

` P : process

T

0

6 T

1

� T

2

8a : � ` a 2 colocaln(v; T

0

; T

1

� T

2

)) � ` a@l

(P) � flg

� ` @

l

let hy

1

: T

1

; y

2

:T

2

i = v in P : process

Mig

� ` l : loc

� ` v : loc

� ` P : process

(P) � flg

� ` @

l

migrate to v then P : process

New

` T : Type

�E

�; x : @

l

T ` P : process

� ` (new x : @

l

T)P : process

Nil

` � ok

� ` 0 : process

Par

� ` P : process

� ` Q : process

� ` P jQ : process

Most of the premises of these rules are routine; we discuss the others briey.

Out The �rst premise ensures that l is a location. The second through �fth premises are

analogous to those of the Out rule of [PS96]. Name x must be a channel, value v

must be of a subtype of the type carried by the channel, and the channel must have

an output capability (either G or L). The fourth and �fth premises could be replaced

by l

io

T 6 l

�L

T

0

. The penultimate premise addresses the �rst phenomenon discussed

at the beginning of this section, ensuring that if x has only a local output capability

then it can only be used at its own location. The last premise addresses the third such

phenomenon, ensuring that any transmitted channel names that have a local capability

which can be used by receivers on x are located at l.

(Rep-)In This is very similar to Out except for the premise (P) � flg, which prevents

teleportation after the input. Note that for typing P it is assumed that y is located at l.

New This allows new-binding of names at channel types, loc, and >.

Let This is similar to a combination of Out and (Rep-)In (as, indeed, the reduction rule for

Let is).

A few remarks: (1) The rules allow locations and channels, but not processes, to be located

at top. This is consistent with the intuition that immediate sublocations of top model virtual

machines. For other applications of the calculus di�erent treatments of top are appropriate and

should be straightforward. (2) Local channels can be sent outside their location (with reduced

capabilities) and then back inside. Their local capabilities cannot then be used, however. (3)

A name may be assumed to have a local type in a process P and still, if P is placed in a

process context, engage in cross-location communication. (4) The let construct includes an

explicit type for its pattern, which may be a supertype of the type of its value. Without this

the set of typable processes would be unduly restricted. In the input construct the type of the

pattern can be left implicit, as it is bounded by the type of the channel. (5) To add recursive

types contexts must contain kind assumptions on type variables, type formation rules must

be relativised to contexts, and enforce guardedness, subtyping must be de�ned coinductively,

and type unfolding must be allowed in the value typing rules and de�nitions of subtyping and

colocality. The details can be found in [Sew97a].

Soundness The main soundness result is that typing is preserved by reduction.

Theorem 1 (Subject reduction) If � ` P : process and P�!Q then � ` Q : process.

To prove this it is necessary to show that typing is preserved by legitimate context permutations,

by relocation (changes of location assumptions for names of non-local types), by narrowing

(taking type assumptions of lower types, while keeping location assumptions constant) and by

substitution. For reasons of space we state only the substitution lemma for processes.

Lemma 2 (Substitution | Processes) The rule below is admissible.

�; z : @

j

V ` P : process

� ` u :U

U 6 V

8a : � ` a 2 colocaln(u; U; V)) � ` a@j

z 62 (P)

� ` fu=zgP : process

The �rst three premises are standard. The fourth ensures that any names of the substituted

value u are located at the same place as the substituted variable z was assumed to be at, if

their actual and assumed types are colocal. The last premise ensures that no locators in P

can be a�ected by the substitution.

In addition, it is easy to see from the typing rules that no well-typed process can imme-

diately use a local capability outside its location. This can be made precise by immediate-

soundness results such as the following.

Proposition 1 If � ` (new �)(@

l

xv jQ) : process, �;� ` x : l

iL

T and �;� ` x@k then

k = l.

4 Capability Inference

One would like to be able to automatically infer the most local possible type for new-

bound channels, to allow compile-time optimisation. Unfortunately, this is not possi-

ble in any straightforward sense based on the subtype order. Consider for example

k : @

top

loc; z : @

k

l

LL

1 ` (new x : @

k

T)(@

k

xz j@

k

x

(

y

)

:@

k

y). This holds i� T is either l

LL

l

�L

1

or l

LL

l

LL

1; these types are not related by subtyping. We can, however, infer the most local

possible top-level capabilities for T . Take the modi�ed `subtype' order v (with all channel

type constructors covariant) to be the least relation over the pre-types such that

B v B

S

1

v T

1

S

2

v T

2

S

1

� S

2

v T

1

� T

2

T v T

0

io 6 i

0

o

0

l

io

T v l

i

0

o

0

T

0

loc v loc > v >

l

io

S v >

and de�ne ' to be the least relation over the pre-types such that

B ' B

S

1

' T

1

S

2

' T

2

S

1

� S

2

' T

1

� T

2

T ' T

0

l

io

T ' l

i

0

o

0

T

0

loc ' loc > ' >

l

io

S ' >

> ' l

io

S

relating any two types that have essentially the same shape, neglecting capabilities. Say a

set of types

~

T = fT

n

j n 2 N g is compatible if it is non-empty and 8m;n 2 N : T

m

' T

n

.

One can show that any compatible

~

T has a least upper bound, written t

~

T , with respect to v.

Lifting v, ', compatibility and t pointwise to pre-contexts and processes, one can show that

the typing judgements are preserved by taking least upper bounds with respect to v.

Theorem 2 (Capability Inference)

1. If

~

T is compatible and 8n 2 N :` T

n

:K

n

then ` t

~

T :t

~

K.

2. If

~

S is compatible,

~

T is compatible and 8n : S

n

6 T

n

then t

~

S 6 t

~

T .

3. If

~

� is compatible,

~

S is compatible,

~

T is compatible, 8n : �

n

` v :S

n

, 8n :` T

n

: Type

��

,

8n : S

n

6 T

n

and t

~

� ` x 2 colocaln(v;t

~

S;t

~

T) then 9n : �

n

` x 2 colocaln(v; S

n

; T

n

)

4. If

~

� is compatible,

~

P is compatible and 8n 2 N : �

n

` P

n

: process then t

~

� ` t

~

P : process.

For any pre-type S the set fT j S v T g is �nite. Given some � ` P : process (perhaps with

types containing only GG capabilities, inferred by an algorithm along the lines of [Gay93, VH93,

Tur96]) one can therefore compute the least upper bound of fP

0

j P v P

0

^ � ` P

0

: process g.

For the example above this gives T = (l

LL

l

�L

1) t (l

LL

l

LL

1) = l

LL

l

�L

1. A more e�cient

algorithm will clearly be required in practice.

5 Conclusion

We conclude by briey mentioning some related type systems and some possible future work.

Capability-based type systems for process calculi have been given by De Nicola, Ferrari and

Pugliese [DFP97], for a variant of Linda with localities, and by Riely and Hennessy [RH98],

for a distributed �-calculus with site failure. Several authors have given type systems that

enforce information ow properties, e.g. [HR98, SV98]. A type system that enforces secrecy

and freshness for the Spi Calculus [AG97] has been proposed by Abadi in [Aba97]. In [Ste96]

Steckler has given a static analysis technique for distributed Poly/ML with similar motivation

to ours | to detect when channels are guaranteed to be local to a single processor. It incor-

porates also some reachability analysis, but does not separate input and output capabilities.

Finally, Nielson and Nielson have studied static analysis techniques for CML, focussing on the

number of usages of capabilities, in [NN95].

Special cases Three special cases of the type system may be of interest. In the Join Calculus

the names introduced by a de�nition def D in P can only be used in P for output (to a �rst

approximation D declares a single replicated reader on these names). For typing P , therefore,

they are analogous to channels with capability �G. One could allow the output capability

to be local, taking the suborder of tags �G 6 �L. In some circumstances it may not be

necessary to allow the input and output capabilities of channels to vary separately, cutting

down to the suborder of tags GG 6 LL. This greatly reduces the complexity (although also the

expressiveness) of the type system as all channel type constructors become nonvariant. It can

be used to prevent the extrusion of local references from agents. A milder simpli�cation is to

omit the tags GL and LG, i.e. to take the product of the tags �;�;+ of [PS96] with the two-

point lattice G 6 L. For such tags, if io 6 i

0

o

0

then colocal(io; i

0

o

0

) () local(io) ^ local(i

0

o

0

).

Linearity and Location Types In a distributed application one would expect many chan-

nels to be in some sense linear ; in particular many servers will have a single replicated receiver

(this observation motivates the introduction of join patterns in [FG96]). The integration of

global/local typing with some form of linearity or receptiveness [Ama97, KPT96, San97] would

allow more precise typing, and hence further optimizations, while retaining the expressiveness

of general channel communication. One might also re�ne the system to allow location names

to be local, with types loc

G

and loc

L

, enabling migration to locations to be restricted, and

allow locations to be immobile or mobile, restricting the migration of locations. Linearity

would again be useful | a common case is that of one-hop locations (c.f. Java Applets).

Behavioural equivalences In order to reason about dpi processes a labelled transition

system and behavioural congruence are required, perhaps building on the bisimulation con-

gruence results of Riely and Hennessy [RH97, RH98], together with an understanding of the

appropriate extensional equivalence for a mobile agent programming language, building on

[Sew97b].

Typing for secrecy properties The focus of this paper has been on locality information

that can be used for implementation optimization. Very similar type systems should be ap-

plicable to the enforcement of secrecy properties for cryptographic keys or nonces. For this

it would be desirable to take capabilities not just from fG; L;�g but from the lattice of arbi-

trary sets of location names, lifted above a bottom element G. These (dependent) types would

allow new names (modelling keys, for example, as in the Spi Calculus) to be created that

are restricted to a dynamically calculated set of individuals. One would want a rather strong

soundness result | the analogue of Theorem 1 would only show that secrecy is preserved by

well-typed processes, whereas an attacker may perform some ill-typed computation.

Acknowledgements The author would like to thank C�edric Fournet, Robin Milner, Ben-

jamin Pierce, Pawe l Wojciechowski, and the Thursday group, for interesting discussions about

this work, and to acknowledge support from EPSRC grant GR/K 38403 and Esprit Working

group 21836 (CONFER-2).

References

[Aba97] Mart��n Abadi. Secrecy by typing in security protocols. In TACS '97 (open lecture), LNCS

1281, pages 611{638, September 1997.

[AG97] Mart��n Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi

calculus. In Proceedings of the Fourth ACM Conference on Computer and Communications

Security, Z�urich, pages 36{47. ACM Press, April 1997.

[Ama97] R. M. Amadio. An asynchronous model of locality, failure, and process mobility. In Proc.

COORDINATION 97, LNCS 1282, 1997.

[AP94] R. M. Amadio and S. Prasad. Localities and failures. In P. S. Thiagarajan, editor, Proceed-

ings of 14

th

FST and TCS Conference, FST-TCS'94. LNCS 880, pages 205{216. Springer-

Verlag, 1994.

[Bou92] G�erard Boudol. Asynchrony and the �-calculus (note). Rapport de Recherche 1702, INRIA

So�a-Antipolis, May 1992.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Proc. of Foundations of Software

Science and Computation Structures (FoSSaCS), ETAPS'98, March 1998.

[DFP97] Rocco De Nicola, GianLuigi Ferrari, and Rosario Pugliese. Coordinating mobile agents via

blackboards and access rights. In Proc. COORDINATION '97, LNCS 1282, 1997.

[FG96] C�edric Fournet and Georges Gonthier. The reexive CHAM and the join-calculus. In

Proceedings of the 23rd POPL, pages 372{385. ACM press, January 1996.

[FGL

+

96] C�edric Fournet, Georges Gonthier, Jean-Jacques L�evy, Luc Maranget, and Didier R�emy.

A calculus of mobile agents. In Proceedings of CONCUR '96. LNCS 1119, pages 406{421.

Springer-Verlag, August 1996.

[Gay93] Simon J. Gay. A sort inference algorithm for the polyadic �-calculus. In Proceedings of the

20th POPL. ACM Press, 1993.

[HR98] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy and

integrity. In Proceedings of the 25th POPL, January 1998.

[HT92] Kohei Honda and Mario Tokoro. On asynchronous communication semantics. In M. Tokoro,

O. Nierstrasz, and P. Wegner, editors, Object-Based Concurrent Computing. LNCS 612,

pages 21{51, 1992.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus.

In Proceedings of the 23rd POPL, pages 358{371. ACM press, January 1996.

[Mil96] Robin Milner. Calculi for interaction. Acta Informatica, 33:707{737, 1996.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I + II. Infor-

mation and Computation, 100(1):1{77, 1992.

[NN95] Hanne Riis Nielson and Flemming Nielson. Static and dynamic processor allocation for

higher-order concurrent languages. In Proceedings of TAPSOFT 95 (FASE). LNCS 915,

1995.

[PS96] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Math-

ematical Structures in Computer Science, 6(5):409{454, 1996.

[RH97] James Riely and Matthew Hennessy. Distributed processes and location failures. In Pro-

ceedings of ICALP '97. LNCS 1256, pages 471{481. Springer-Verlag, July 1997.

[RH98] James Riely and Matthew Hennessy. A typed language for distributed mobile processes.

In Proceedings of the 25th POPL, January 1998.

[San97] Davide Sangiorgi. The name discipline of uniform receptiveness. In Proceedings of ICALP

'97. LNCS 1256, pages 303{313, 1997.

[Sew97a] Peter Sewell. Global/local subtyping for a distributed �-calculus. Tech-

nical Report 435, University of Cambridge, August 1997. Available from

http://www.cl.cam.ac.uk/users/pes20/.

[Sew97b] Peter Sewell. On implementations and semantics of a concurrent programming language.

In Proceedings of CONCUR '97. LNCS 1243, pages 391{405. Springer-Verlag, 1997.

[Ste96] Paul Steckler. Detecting local channels in distributed Poly/ML. Technical Report ECS-

LFCS-96-340, University of Edinburgh, January 1996.

[SV98] Geo�rey Smith and Dennis Volpano. Secure information ow in a multi-threaded imperative

language. In Proceedings of the 25th POPL, January 1998.

[TLK96] Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A Facile tutorial. In Proceedings of

CONCUR '96. LNCS 1119, pages 278{298. Springer-Verlag, August 1996.

[Tur96] David N. Turner. The Polymorphic Pi-calculus: Theory and Implementation. PhD thesis,

University of Edinburgh, 1996.

[VH93] Vasco Thudichum Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic

�-calculus. In Proceedings of CONCUR '93. LNCS 715, pages 524{538, 1993.

