Passive Attack Analysis for Connection-Based Anonymity
Systems

Andrei Serjantov and Peter Sewell
University of Cambridge
First.Last@cl.cam.ac.uk

April 11, 2003

Abstract

In this paper we consider low latency connection-based anonymity system which
can be used for applications like web browsing or SSH. Although several such sys-
tems have been designed and built, their anonymity has so far not been adequately
evaluated.

We analyse the anonymity of connection-based systems against passive adver-
saries. We give a precise description of two attacks, evaluate their effectiveness,
and calculate the amount of traffic necessary to render the attacks useless.

1 Introduction

Systems for anonymous interaction are a basic building block for application-level pri-
vacy. The anonymity properties these systems aim to provide are subtle: in contrast to
most security protocols, they must cover statistical traffic analysis attacks. A number
of anonymity systems have been designed, starting from [Cha81]. They can be divided
into two classes:

e Message-based (mix) systems, for asynchronous (email) messages. They provide
anonymity by delaying and mixing messages; email can tolerate substantial delay.
There is a significant body of work on their design [Cot94, GT96] and implemen-
tation [MC00, DDM03, DDMO02].

e Connection-based systems, for low-latency bidirectional communication (e.g.
SSH connections and web browsing). There are several implemented designs
[GRS99, RP02, FM02, SBS02, RR98]. Although these are also sometimes called
mix systems, current designs do not do any mixing as such, so we choose not to
use this term in the paper.

Analysis of these systems is crucial: users need more than a “warm fuzzy feeling”
that they are anonymous. For message-based systems, we have well-understood threat
models and both qualitative [BPS00, Ray00] and quantitative [SD02, SDS02] analysis.
For connection-based systems, on the other hand, the threats are harder to characterise
— the low-latency constraint makes these systems vulnerable to powerful timing attacks.
Qualitative analyses include [BMSO01]. Quantitative analysis has so far been limited to



evaluating the impact of compromised nodes on the anonymity provided. [STRLOO,
WALS02].

In this paper we provide precise descriptions of several timing attacks for connection-
based systems. We give quantitative analyses of their effectiveness; and, using these,
examine possible protection mechanisms.

2 Systems and Usage

We begin by outlining the application scenario, high-level anonymity goals, and system
architecture that we consider in our analysis. The latter is a distillation of the key
choices of Onion Routing, Tarzan and MorphMix [GRS99, FM02, RP02].

Scenario We are primarily considering systems for anonymous web browsing. A num-
ber of users, running anonymity clients, connect through the system to some web servers
(not running special software). HTTP requests and responses both travel through the
system.

System goals  Such a system should:

1. provide usable web browsing, with no more than a few seconds additional latency;
and

2. make it hard for an attacker to determine what any given user is browsing'.

In particular, as we discuss below, it should protect a user against an attacker who
can observe all traffic on the path of their connection. (detailed further below).

The goals clearly involve a tradeoff: The more delay, the higher the (potential)
anonymity.

Architecture

e The system consists of a number of nodes. Some designs have a ‘classic’ architec-
ture, with relatively few nodes, whereas others have a ‘P2P’ architecture, with
nodes run by each user. Each node has logical links to some (not necessarily all)
other nodes, along which it forwards traffic. Links are implemented above inter-
node TCP connections between IP/port addresses, link-encrypted. To protect
against node compromise, each connection passes through several nodes. Nodes
also accept connections from end-user clients.

e To protect against the simple passive observer, who can bitwise compare traf-
fic entering and leaving a node, traffic is onion-encrypted (as first suggested in
[Cha81]). This also protects against some node compromise attacks.

e The length of messages remains observable, so the data is divided into fixed-length
cells. Typically these are small (in the Onion Routing design each cell carries 128
bytes of data).

!The system need not protect against the attacker determining that the user is browsing, or which
web servers are being accessed through the anonymity system. The system does, of course, pro-
tect against the webserver determining who is browsing the website, unless it is compromised by an
application-level features (e.g. cookies).



e “Onion connection” setup is expensive, so each client/server communication is
routed via the same sequence of nodes. (Application proxying may reduce the
number of communications, e.g. fetching all objects of a webpage in one commu-
nication.)

e Routes may be chosen either by the end-user or by the network.

This architecture broadly follows the design of 2nd generation Onion Routing [ord],
Tarzan [FMO02], and MorphMix [RP02]. Some of our results are also applicable to
WebMixes [BFKO00] and the Freedom Network [BGS00].

Adding dummy traffic is a standard technique for anonymity, used for message-based
systems e.g. Mixmaster. For connection-based systems, however, practical experience
shows the bandwidth requirements of nodes are large; the additional cost of dummies
must be minimised. Accordingly, in this paper we assume that inter-node links do
not involve dummies (though it may be beneficial to apply some padding to the links
between the client and the first-node). We leave for future work the question of how a
given quantity of dummy traffic can be most effectively used.

3 Threat Models

Prior work on threat models for connection-based systems has focused on the threat
of malicious nodes, looking at how anonymity is affected by the fraction of attacker-
controlled nodes [Shm02, STRLO0O].

In this paper we focus on the threat of traffic analysis by a passive observer. Earlier
notions of “global passive” attacker, as used in analysis of message-based systems, are
too vague for connection-based systems. The threats must be stated more precisely: the
quality (time accuracy) of the traffic data available to different global passive attackers
may vary considerably, making different traffic analyses possible. We leave analysis of
active attacks to future work.

There are several different low-level mechanisms an attacker might use to obtain
traffic data, differing in the quality of data they make available, and in the effort
required.

e Attacker-controlled nodes. Outside our scope.

e By applying legal (or sublegal) pressure to an ISP, a high-resolution traffic monitor
can be installed on a machine on the same collision domain as a node. This could
capture all IP packets travelling to and from other nodes, with precise (sub-
millisecond) timestamps; that data could be forwarded on-line to an analysis
machine. Note that if nodes are distributed among judicial domains, it is hard to
attack a substantial proportion of them.

e By compromising a machine in the same collision domain as a node the same
data could be captured, though here there may be difficulties in surreptitiously
forwarding it to the analyser.

e By installing non-intrusive fibre taps ‘in the field’, on the fibres that carry traffic
between nodes [Hod91], one can capture similar data, but here, as there are
typically routers between a node and an external fibre, some timing accuracy will



be lost (several router delay variances). How many such attackers are required to
intercept all node-to-node communications depends on the topology, but typically
examining just backbone fibres will not suffice.

e Traffic data can also be obtained by compromising a router on each of the inter-
node links and placing traffic monitoring code there. However, here the attacker
is more likely to get per link packet counts (over large fractions of a second) rather
than per-packet data with timestamps. These can be retrieved via the standard
SNMP protocol. More accuracy can be obtained by compromising routers closer
to each node.

Broadly, all these attackers gain access to the same class of data — the number of
packets that travel between pairs of nodes (on anonymity-system logical links) during
particular time intervals. The packet counting interval determines what kinds of traffic
analysis the attacker can perform: taking long intervals amounts to low-pass filtering
of the data, erasing informative high-frequency components.

A further distinction is between per-interval and waveform analysis. In the former,
each packet-counting interval is treated separately — the attacker can forget the data for
each interval after it has been analysed — whereas in the latter a substantial region of
the traffic waveform must be considered. The latter may obviously be more expensive
to mount.

4 Analysis: Lone Connection Tracking

Our first analysis is based on packet counting. We recall that traffic travels down a
connection in small cells. Consider a node in the system. During a particular time
interval the number of packets on each of the connections travelling through it is highly
likely to be different. This attack requires the delay introduced by the node to be small,
compared to the size of the time interval, so the number of incoming and outgoing
packets of the node on each connection will be very similar. They will not be identical
as some packets will have been in the node before the interval started and some will
remain after the interval ends.

A passive attacker can observe the number of packets of a connection which arrive
at the node and leave the node only if this connection is lone — it is the only one
travelling down that link — on its incoming and outgoing links during the time interval.
This scenario is illustrated on Figure 1. It is clear that the numbers of packets on
links from D to the node X and from X to T are very similar, so the attacker can be
confident that the connection(s) from D have been forwarded to T'. Naturally, there is
a possibility that he is mistaken: one of the connections from A, B or C carried 1079
packets and was forwarded to T', while the connection(s) from D was forwarded to Q, R
or S. However, the probability of this is very small (we do not calculate it here) as we
assume that the number of packets on each of the incoming connections is highly likely
to be different. We can further reduce this probability by doing the same observations
during a different time interval and checking the results are consistent.

Note that this attack does not require a global packet counting attacker, merely
one who observes all the links a connection travels on.

This attack is based on assumptions, some of which we have touched on already:
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Figure 1: Each arrow represents an incoming or an outgoing link. The number on the
arrow represents the number of packets observed by an attacker on the link over one
time period

e The packet counting interval is much larger than the mix delay. This is necessary
as otherwise the packets inside the mix at the starts and ends of packet counting
intervals will make the incoming and outgoing packet counts dissimilar.

e The packet counting interval is much smaller than the mean time between new
connections being set up on this pair of links. The longer the time interval,
the more likely there is to be a new connection initiated which will traverse an
incoming or an outgoing link, thereby ruining the packet counts and thus the
attack. Note that if the adversary is unable to obtain packet counts for short
enough time periods (e.g. due to extracting packet counts via SNMP), he loses
some opportunity for attacks.

It may seem that the attacker can just as easily count packets coming in from the
users to the first node of the connection and try to correlate this with the packet counts
coming out of the anonymity system to the webservers. This is not the case; such an
attack will be much more difficult to mount (and easier to protect against) for the
following reasons:

e In the description of the attack on a single node, we required that the packet
counting interval should be much larger than the node delay. Thus, in the case
of mounting the attack on the anonymity system as a whole, the packet counting
interval will have to be made much larger than the delay on all the nodes of a
connection together plus all the link delays. This increases the chances of the
user initiating another connection to the same first node, thereby confusing the
packet counts. Implementors of connection based systems should note that this
is a good and cheap defence strategy (though it relies on the first node being
uncompromised).

e A small amount of padding between the user and the first node protects against
the attack. This is much cheaper than padding each link in the anonymity system
as suggested by [Ren03]. Of course, it would be desirable to also pad the link
from the last node to the webserver, but this is impossible as the webserver is not
running anonymity software.

Having shown that lone connections allow the attacker to compromise anonymity,
we now calculate how many lone connections a system may have. First, we derive an



approximation, and then examine the subject in more detail using a simulator. Finally
we suggest ways of defending against this attack.

4.1 Mean-based analysis

Assume the users initiate on average ¢ connections per second, each forwarded along
¢ links (inside the network) and that there are m nodes in the anonymity system.
Furthermore assume each connection has duration dur.

Thus on average at any instant there are ¢ X dur connections. Each connection
exists on £ links, so on average there are ¢ x dur x £ link-occupancies. If there is a
link between each pair of nodes, there are roughly n x n links?. On average there are
¢ X dur x £/(n x n) connections per link. It is clear that the absolute lower bound of
the number of connections per link is 1, and for a good anonymity system this number
should be much greater.

Let us illustrate this with an example. Suppose we have a system with n = 30 nodes,
the users initiate connections through ¢ = 3 network links (or 4 nodes), each lasting
dur = 2 seconds. If each node can talk to every other, then around 150 connection
initiations per second are necessary for this system to provide at least some anonymity.

4.2 Definitions

It is clear that the approximations calculated in the previous section are rather crude.
We now proceed to define lone connections formally and show how to work out the
fraction of lone connections of a particular system.

First, define the anonymity system graph as a set of nodes G with |G| = n and a set
of edges (links) F, with each edge being a pair of nodes. A path (a connection), then,
is a sequence of edges. Take all connections ¢; (of length [;) which are open during
a particular packet counting interval and let ¢ = {|[e11...e1,];[e21 ... ea];-.. [} be
the multiset of paths of these connections®. We can easily express the number of

connections on each link resulting from such a configuration.

fle) = Z occurrences of e in p
PEY
A connection is lone when it is lone on all the links it is going through. Now
calculating the set of lone connections in a configuration is straightforward:

lone = |{p|lp € g AVe € p.f(e) = 1]}

We can also find the fraction of lone connections: o_n|e_

We now go on to define the probability of a connection going through the anonymity
system being lone.
First, let us assume some parameters of the anonymity system.

e &(c), the probability that ¢ connections go through the anonymity system during
the same interval.

%It is debatable whether routes with the same node occurring twice consecutively should be allowed
3Paths can be identical, so we tag them with a unique integer.



e U(j), the probability that a route going through it is chosen to have length j.
(Naturally, routes are chosen independently).

e The graph of the anonymity system is given by G, F.

e The maximum number of connections which can go through a system is max_c
and the maximum route length is max_rt.

Now define g([l1,...,[l:]), the set of multiset of all multisets of paths of lengths
AR

g([l,- -5 leonn]) = {mIm = {lleq,1y - - - e [e@n) - el - -5 [€(e1) - - - €(e) IFA
Yo,p.eop) € E}

Now, the probability P of a particular connection being unmixed is:

P= Z ®(c) x Z H\I;(lj)xz {plp € g AVe € p.f(e) = 1}]

c€0...max_c L=[l1,...,lc]AVi.l;<max_rt [;E€L g(L) |g|

Although the above formula defines the probability of a connection going through
an anonymity system unmixed, it is hard to see the quantitative implications of it
directly. We therefore make a simulation of the anonymity system.

4.3 Simulator Results

We have constructed a simulator which uses the definitions above to calculate the
fraction of lone connections. Given a graph of nodes connected by links, and the
number of connections we wish to simulate, it picks a route length for each connection
(¥(y) is assumed to be a uniform distribution between a minimum and a maximum
value) and then generates the routes themselves. Then it calculates the fraction of
lone connections (using the definitions above). Clearly, the fraction of lone connections
going through the network is also the probability that a particular user’s connection is
going to be observed by the global packet counting attacker.

For example, let us take a peer to peer anonymity system with 100 nodes (each user
running a node) all connected to each other. Suppose each of the 100 users initiates a
connection through a minimum of 2 and a maximum of 4 network links. This system,
provides very low anonymity — around 92% of the connections going through it are
lone.

A graph of the number of nodes vs the probability of connection compromise is
shown in Figure 2. There are 60 connections going through the network and each
connection is going through 2 network links.

It is worth noting that the fraction of lone connections is not the only measure of
anonymity we could have used. Indeed, although it conveys a very clear message to the
user (the probability of the connection they are about to establish being observable),
it also suffers from some disadvantages. First, it does not indicate how many other
connections a particular connections has been mixed with as an anonymity set (or
the information theoretic metric of [SD02]) does. It is worth pointing out that if a
connection is lone on some, but not all of its links, its anonymity set set is very much
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Figure 2: Graph of the number of nodes in an anonymity system vs the fraction of lone
connections.

reduced (which is not reflected in the probability of it being compromised). Secondly,
the designers of the anonymity system might like to know the probability of any one or
more connections being compromised — a much stronger property. We leave calculating
these metrics and analysing the attack in detail to (rather tedious) future work.

4.4 Protection

As we saw in the previous section, the packet counting attack on the lone connections
is quite powerful against some systems. Here we examine ways of protecting against it.

Firstly, more traffic (and/or fewer nodes) makes the system much less vulnerable to
the attack. Modifying the system from the example above to one with 20 nodes with
200 connections going through it (and keeping the route length the same at between 2
and 4 links) reduces the fraction of compromised connections from 92% to 2.5%.

Secondly, increasing the route length helps increase the total volume of traffic in the
network, but also has the undesirable effect of increasing latency. For example, doubling
the route length in our example above (100 nodes, 100 connections, route length of 4
to 8 network links) reduces the probability of a connection being compromised from
around 92% to 72%. The graph showing how route length affect the fraction of lone
connections is show in Figure 3.

Thirdly, and most importantly, we can design the architecture of the system to
suit the amount of traffic we expect to flow through it. If there is very little traffic, a
cascade ought to be used. If there is slightly more, a restricted route architecture (see
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Figure 3: Graph of the route length vs the fraction of lone connections.

[Dan03]) can be employed to dramatically decrease the fraction of lone connections.
For instance, for an anonymity system of 100 nodes, each able to forward traffic to 5
others (with route length of between 2 and 4 links and 100 connections), the fraction
of lone connections is reduced to around 17%. This is still, however, unacceptable and
suggests that making every client run a node is not a good choice for a strong anonymity
system.

As well as designing the system in a way which suits the expected level of traffic,
we need to be able to handle daily or weekly variations in the number of connections
established through the system. This may be possible by dynamically reconfiguring the
network topology (from cascade to restricted routes to full network), and giving the
user some indication as to how many nodes his connection should go through to stay
anonymous.

5 Analysis: Connection-Start Tracking

Our second attack is based on tracking the increase in the volume of traffic from an
incoming to an outgoing link of a node which results from data starting to flow on
a new connection. This increase happens when the webserver is starting to send the
webpage data in response to a request made by a client. We call such an increase a
“connection start”. We note that the propagation of such a connection start through a
node is observable to a packet counting attacker, even if the connection is not lone. If
the node does not delay traffic significantly (as current systems do not), the attacker



will observe a node in a steady state; a start of connection arriving followed by a start
of connection leaving, and will deduce where the new connection has come from and
been forwarded to.

Hence, nodes must delay traffic (but still provide low latency communications). The
most appropriate mixing strategy here is the SG-Mix of Kesdogan (see [KEB98]). It
is easy to analyse, handles each packet separately and does not rely on batching. We
proceed to describe this mix and examine how it can help us protect against the above
attack.

The SG-Mix mix treats each packet (cell) independently. When a cell arrives, the
mix draws a random value from an exponential distribution with parameter p and
delays the cell by that time. The mean delay is of the mix is thus 1/pu.

Assume the users initiate (on average) ¢ connections per second, each going through
¢ nodes. The system consists of n nodes. Write A for the mean rate of arrival of starts
of connections (per second) to a particular node. We have A = ¢//n.

Assume further that the arrivals of the starts of connections to the node are Poisson
distributed (with parameter X).

Now, the attacker tracks a connection through a mix iff:

1. When the start of the connection arrives, the mix is “empty of starts of connec-
tions”. This means that there has not been an incoming start of connection not
followed by an outgoing one.

2. Having arrived on an incoming link, the start of the connection leaves the mix
whilst no other start of a connection has arrived.

This is essentially the n— 1 attack scenario described in [KEB98], though performed
here for starts of connections instead of individual asynchronous messages. We want
to choose the parameters A and p such that the probability of the attacker tracking a
start of connections through all the mixes is small.

First, consider the probability that a connection is tracked through one node.

A

e ~

A
1+2

The probability of the attacker tracking a particular connection which is going

through ¢ mixes is:
A V4
( = )
A
1+ 7

substituting in the expression for A from above gives:

cl 14
14
1+ ﬁ—u

A user of this system would incur a delay of roughly 2¢/u seconds for onion con-
nection setup, ¢/ for a request and ¢/ for a response, or a total connection delay of:

40/ .
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We will now do some order-of-magnitude calculations to see how much traffic needs
to go through the anonymity system to get acceptable delay and anonymity values.

Clearly, as long as £ > 3 and cl/nm > 1, the probability of tracking a connection is
low (< 0.006). Hence, ¢//nyu > 1 or ¢f > npy.

Suppose ¢ = 3 and the maximum acceptable delay is 2 seconds, hence 4¢/u = 2,
hence y = 2¢ = 6. Substituting in, we get ¢ > 2n. This implies that the users of the
system have to initiate twice as many connections per second as there are nodes.

Suppose we have U users browsing every day. If each browses 100 pages a day,
¢ =100/(3600 x 24)

Now suppose we have an anonymity system of 30 nodes. We find the number of
users U needed for the system to provide anonymity. U x 100/(3600 x 24) > 2 x 30,
or U > 2 x 30 x 36 x 24 =51000. This is a realistic target for a small to medium size
anonymity system.

Naturally, these calculations are rather crude as they involve the mean amount of
traffic (and suppose that the traffic is evenly distributed throughout the day). More
traffic is required to to protect against traffic troughs (e.g. at night).

It is worth considering the quality of the traffic data the adversary has to have
access to to mount such an attack. If a timestamp for every packet is available, the
attack can be mounted with maximum effectiveness. However, if the adversary can
only do packet counting over some time intervals, then the time interval must be much
longer than the node delay and much smaller than the interarrival times of starts of
connections to a node. Note that this is more precision than was required for the lone
connections attack (the time interval there had to be much less than the interarrival
times of connections on a single link).

5.1 Working with Richer Traffic Features

Before we considered starts of connections and showed that if these are allowed to
propagate through the network, then a certain level of traffic is required to maintain
anonymity. Now we consider how the attacker could use more general traffic features
(spikes) to track individual connections. This is an example of a waveform analysis —
data from several intervals will be required.

Let us consider a simple case of a node with 2 incoming and 2 outgoing links.
The adversary sees a spike on one of the incoming links (say from A) and one of the
outgoing links (to @) some time later. He knows that both the links which exhibited
spikes have lone connections on them?, but the other links (from B and to R) contain
many connections, so some spikes may be hidden. The smart adversary does not jump
to conclusions about a correlation between the links with spikes, but instead calculates
the probability of it.

There are two possibilities: Either the attacker is correct and the spike from A
really went to (), or the attacker is mistaken and there was a hidden spike which came
in from B and went to (), while the spike from A got forwarded to R and hidden in
the traffic.

The probability of the former is 1/2 (assuming the connection from A was equally
likely to be forwarded to @ and R). The probability of the latter is P(spike) x 1/2.

*This contraint is easily relaxed, we include it for clarity of exposition
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T repike)
occurring on a link is low, so the attacker of the attacker being correct is high.

We have not presented a complete analysis here — we would need to examine real
connection traffic to determine the probability of spikes occurring and determine what
other kinds of traffic features we might make use of. It is notable that interactive ap-
plications like SSH are much more vulnerable to this kind of attack than web browsing
as the traffic is much less uniform. In general one would expect to use signal-processing
techniques — filtering the signal to frequency ranges known to include identifiable fea-
tures and/or calculating running correlations between signals and common feature pat-
terns.

Hence, the attacker is correct with probability The probability of a spike

6 Discussion and Solutions

In the previous sections we looked at two powerful attacks which can be mounted
on connection-based anonymity systems by passive attackers, quantitatively evaluated
their effectiveness in different scenarios and assessed potential protection measures.

Unlike all previous analyses, we stayed clear of using vague and costly proposals of
adding dummy traffic to the system, instead calculating the amount of user connections
required to maintain anonymity. This approach is crucial for building efficient, fast
and therefore deployable connection based anonymity system, whilst still providing
anonymity to the users.

However, we have not examined all the attacks which the adversaries can potentially
mount against connection-based anonymity systems. In particular, in this paper we
have not considered the “first and last node” attack or any active attacks. We comment
upon them briefly here.

The “first and last node” attack involves the attacker compromising the first and
the last node of a particular connection. He can now filter padding from the client
to the first node (if there was any) and modify traffic travelling in both directions.
In particular, he can insert a signal into the inter-arrival times of cells of a particular
connection and then look for it (low-pass filtered to account for the variances in network
and mix delays) on the other side. As the packets are small, the signal is likely to carry
a substantial amount of information and help the attacker succeed. Note that an active
attacker who can modify traffic on links (but has not compromised any nodes has the
same capability).

There are several potential countermeasures which will help make this attack less
powerful. First, longer routes will help reduce the amount of signal which propagates
from the first to the last node. Secondly, increasing the packet size (and thus decreasing
the number of packets) will help reduce the size of the signal which can be inserted into
the connection. In the limit, if all webpages fit into one packet, active attacks become
ineffective (though this comes with a massive efficiency loss).

We also briefly mentioned traffic shaping as a countermeasure to the “lone connec-
tions” attack. It is worth noting that such a traffic shaping policy would have to make
all the connections in the anonymity system have the same profile, which is likely to
be expensive in terms of introducing delays or bandwidth (dummy traffic). We have
not investigated this mostly because protection against the attacks outlined could be
achieved by cheaper means.

12



One of the implications of the results presented here is that (peer to peer) anonymity
systems which involve all the users running nodes are impractical simply because there
is not enough traffic to fill all the links. Therefore, it is evident that adding nodes
provides less anonymity (contrary to popular belief) against the global passive attacker.
Whether this statement is true for the case of partial attackers remains the subject of
future work.

7 Related Work

As mentioned before, there is relatively little quantitative analysis of connection-based
anonymity systems. The notable exception is [STRL00] which gives a detailed account
of the security of the first generation of the Onion Routing system against compromised
nodes.

To the best of our knowledge, the first work which describes the packet counting
attack is the analysis by Back, Moller and Stiglic [BMS01], however, they fail to point
out the crucial requirement of the connection being lone on its link.

Another recent work [Ren03] analyses “packet counting” attacks but remains vague
about the assumptions on node delay and details of connections travelling on links, and
proposes a constant dummy traffic policy which turns out to be costly.

There are also systems which provide anonymous connections for web browsing
[SBS02] which do not follow the “mix” architecture of Chaum, but they also lack
quantitative analyses of the anonymity provided.

8 Conclusion

We examined in some detail two attacks which can be mounted by passive adversaries on
connection-based anonymity systems. These compromise existing anonymity systems
completely. However, the threats can be analysed and can be protected against without
resorting to dummy traffic and keeping the delay to users’ connections acceptable.

We note that these threats to connection-based anonymity systems (some of which
are currently in the process of being implemented and deployed) are practical and
realistic, and the designers should take them into account, especially as the methods
of protection need not be costly.

Finally, this paper shows that quantitative analysis of connection-based anonymity
systems is just as feasible as of message-based ones. Furthermore, such analysis is
required to develop and evaluate methods of protection against real threats. As a
promising direction for future work, we suggest that mounting real attacks on imple-
mented (and deployed) anonymity systems will provide further insight into the measures
necessary to keep anonymity systems anonymous.
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