
1

CN: Verifying Systems C Code with Separation-Logic
Refinement Types
CHRISTOPHER PULTE, University of Cambridge, UK

DHRUV C. MAKWANA, University of Cambridge, UK

THOMAS SEWELL, University of Cambridge, UK

KAYVAN MEMARIAN, University of Cambridge, UK

PETER SEWELL, University of Cambridge, UK

NEEL KRISHNASWAMI, University of Cambridge, UK

Despite significant progress in the verification of hypervisors, operating systems, and compilers, and in verifi-

cation tooling, there exists a wide gap between the approaches used in verification projects and conventional

development of systems software. We see two main challenges in bringing these closer together: verification

handling the complexity of code and semantics of conventional systems software, and verification usability.

We describe an experiment in verification tool design aimed at addressing some aspects of both: we

design and implement CN, a separation-logic refinement type system for C systems software, aimed at

predictable proof automation, based on a realistic semantics of ISO C. CN reduces refinement typing to

decidable propositional logic reasoning, uses first-class resources to support pointer aliasing and pointer

arithmetic, features resource inference for iterated separating conjunction, and uses a novel syntactic restriction

of ghost variables in specifications to guarantee their successful inference. We implement CN and formalise

key aspects of the type system, including a soundness proof of type checking. To demonstrate the usability of

CN we use it to verify a substantial component of Google’s pKVM hypervisor for Android.

CCS Concepts: • Theory of computation→ Separation logic; Type theory; Program reasoning.

Additional Key Words and Phrases: C, verification, separation logic, refinement types, pKVM, Android

ACM Reference Format:
Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krish-

naswami. 2023. CN: Verifying Systems C Code with Separation-Logic Refinement Types. Proc. ACM Program.
Lang. 7, POPL, Article 1 (January 2023), 32 pages. https://doi.org/10.1145/3571194

1 INTRODUCTION
Systems software, such as hypervisors, operating systems, and compilers, is critical infrastructure:

errors can compromise the correctness and security of all software running above it. This motivates

significant effort into ensuring that it works as intended, and recent years have seen major progress

in verified hypervisors [Baumann et al. 2016; Guanciale et al. 2016; Heiser et al. 2020; Klein et al.

2014; Leinenbach and Santen 2009; Li et al. 2021; Tao et al. 2021], operating systems [Gu et al. 2016],

and compilers [Amadio et al. 2013; Fox et al. 2017; Kumar et al. 2014; Leroy 2009; Tan et al. 2016],

Authors’ addresses: Christopher Pulte, University of Cambridge, UK, Christopher.Pulte@cl.cam.ac.uk; Dhruv C. Mak-

wana, University of Cambridge, UK, Dhruv.Makwana@cl.cam.ac.uk; Thomas Sewell, University of Cambridge, UK,

Thomas.Sewell@cl.cam.ac.uk; Kayvan Memarian, University of Cambridge, UK, Kayvan.Memarian@cl.cam.ac.uk; Pe-

ter Sewell, University of Cambridge, UK, Peter.Sewell@cl.cam.ac.uk; Neel Krishnaswami, University of Cambridge, UK,

Neel.Krishnaswami@cl.cam.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART1

https://doi.org/10.1145/3571194

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3571194
https://doi.org/10.1145/3571194

1:2 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

and in verification tooling for low-level code, e.g. [Astrauskas et al. 2022; Barnett et al. 2005; Baudin

et al. 2021; Cao et al. 2018; Hawblitzel et al. 2014; Jacobs et al. 2011; Lepigre et al. 2022; Malecha

et al. 2022; O’Connor et al. 2021; Sammler et al. 2022, 2021; Swamy et al. 2016].

However, there is a wide gulf between the approaches used for this and the world of conventional

systems software development. In most verified software projects, the system was designed and

written from the outset with verification in mind (indeed, standard wisdom has been that to do

otherwise would be foolhardy), and the languages, tools, and skills used are far from those of

conventional systems developers, e.g. Coq proof v.s. C programming. This divergence has been

necessary to make progress, and in some contexts is perfectly acceptable for practical use (where

the verified software can be developed and maintained by an expert verification team, and is not

intertwined with a larger conventional development) – but it significantly impedes the broader

adoption of verification, which remains very costly to do and maintain. In an ideal world, we would

be able to verify the code written by conventional development teams, to do so with a minimum

of highly specialised expertise, and to maintain such verifications at reasonable cost. We see two

main challenges in more closely approaching such an ideal world.

Handling conventional systems software. Conventional systems software relies on many low-level

idioms: pointer arithmetic and manipulation of pointer representations, custom memory allocators,

complex ownership patterns, function pointers, and so on. Much is written in C, to enable those

idioms, to exploit the long-established infrastructure of C compilers and linkers, and to use the long-

established systems developer community skills. This C is not the idealised imperative language of

some programming language research, but the “real thing”, and it has a particularly complicated

semantics, with undefined behaviours, complex control-flow, implicit type coercions, and subtle

arithmetic semantics. Many restrictions that one might like to make to ease verification, e.g. to

forbid manipulation of pointer representations, passing the address of a local variable to a callee,

or complex ownership disciplines, would not be acceptable for conventional production systems

code. Systems software also has to manage systems aspects of the underlying architecture that are

not expressible at the C abstraction, including address translation, instruction-cache, data-cache,

and TLB management, and exceptions, and the relaxed concurrent behaviour of all these.

Verification usability. In the context of conventional software development and deployment,

verification usability becomes essential, but rather than focusing simply on whether a one-off

verification was possible (by a highly expert team), which was the headline result of many early

papers, we need to simultaneously minimise verification cost and the required expertise. We also

need to support maintenance as a first-class goal: software evolves with time and proofs need

to be maintained along with the code. In the limit, one would aim to get to the point where full

verification can be done and maintained by the conventional development team themselves. It is

unclear whether that will ever be realistic, but we certainly want developers to read and review

the assertions used in verification, and (in due course, and with some training) to write them, and

hopefully to maintain verifications in the face of modest changes to the code.

Usability brings conflicting requirements between automation and predictability. Previous work
has explored a wide range of approaches, from fully automated SMT techniques through to manual

mechanised proof in a proof assistant. Some automation is necessary to reduce cost, proof mainte-

nance effort, and the required expertise, but it can make verification failures unpredictable, and

inscrutable for those without deep knowledge of the internals of a tool. To provide a better user

experience for verifiers than has normally been available, verification tooling should be reasonably

predictable, reliably accepting or rejecting the code, without relying on heuristics that may unpre-

dictably fail in the face of minor code changes. Moreover, verification failures should be explained

with diagnosable errors, ideally in the form of counterexamples.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:3

In this paper we describe the design of a verification tool, CN, that reconciles some aspects of

both challenges (supporting all the above remains well beyond the state of the art, obviously). It is

based on two main choices:

We build on an accurate ISO C semantics. Rather than use an idealised “C-like” language, as

assumed by many other tools, or developing a new custom C semantics (either explicit or implicit

in the verification tool), as done by others, we use Cerberus [Memarian et al. 2016], a well-validated

explicit semantics for a large fragment of ISO C. Cerberus defines C by elaboration into the Core

language which our type system targets. This gives us the high coverage of C features needed for

verifying conventional production C code, and some confidence in CN’s soundness with respect to

that semantics. Currently CN’s treatment of this semantics has two limitations. First, we do not

handle C’s weakly sequenced or unsequenced memory actions; we plan to extend CN to support

these along the lines of Frumin et al. [2019]. Second, we use a concrete memory object model

(pointers are essentially just integers); to correctly handle integer-pointer casts we plan to use the

VIP model [Lepigre et al. 2022]. We expect both additions to be straightforward. We diverge from

ISO C by not modeling effective types, as much systems code (including our main target) is compiled

without them, using ‘-fno-strict-aliasing’, and as the exact ISO intent for them remains unclear.

We develop a separation-logic refinement type system with an SMT backend, designed with careful
restrictions to guarantee that inference always succeeds or fails. We see two main aspects to usability.

First, we want to perform verification compositionally along the code structure, so that specifi-

cations better match developer intuition; so that we can give more localised error reports; and

so that verification scales better and can be maintained better. Many different approaches work

compositionally: program logics, type systems, some forms of refinement reasoning, compositional

symbolic execution methods, and so on. Moreover, many of these techniques are closely related –

for example, [Melliès and Zeilberger 2015] show how program logics and refinement types have a

common underlying semantics. Our second aspect leads us to a choice among these: we wanted

CN to be predictable, with every input program either cleanly accepted or rejected. This leads

us to work in terms of a substructural refinement type system with linear resource types. Many

existing verification tools are designed to work on a best-effort basis, but there is an extensive

literature on decidable type inference for refinement types (e.g., liquid types [Rondon et al. 2008]).

Combining this with a substructural resource discipline makes it possible to give functions local

specifications in terms of their relevant memory footprint, and to cleanly specify those footprints

in a value-dependent way – for example, the traditional C linked list is a pointer which points to

a block of memory only if it is not null. In addition, programmers are already familiar with type

systems, and so there is a pre-existing place in their workflow where we can insert CN.

One motivating verification target for CN is pKVM [Deacon 2020; Edge 2020], a hypervisor

developed byGoogle, intended to bewidely deployed onAndroid phones to ensure isolation between

a Linux kernel (untrusted after initialisation) and guest virtual machines. It will be included in

Android 13 [Android Open Source 2022, “Android Virtualization Framework”]. pKVM runs as

a Type 1 hypervisor distinct from the Android Linux kernel, but it is developed as part of the

kernel tree, written in C and Arm assembly, using various Linux kernel header files and other code,

following normal Linux kernel development methods, and compiled with Clang. This context is

fixed, and practical verification of pKVM — or of similar systems code — has to accommodate it,

not redefine the problem with a clean-slate approach.

Contributions
We have designed CN, a separation-logic refinement type system for C. CN has first-class

linear resource types that easily support pointer aliasing and computed access via pointer arithmetic,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:4 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

resource inference with built-in knowledge of the layout of C types, and user-defined inductive

predicates. To make inference predictable we have introduced a novel syntax for separation logic

assertions which uses variable scoping to ensure that programmers write formulae in such a

way that inference of ghost variables and existential witnesses always succeeds. Furthermore, the

refinement type system is carefully engineered to ensure that it always produces logical constraints

which fall into an SMT fragment known to be decidable (quantifier-free formulas using the theories

of uninterpreted functions, linear integer arithmetic, records, and extensional arrays). We support

properties falling outside this fragment via mechanisms to package entailments into lemmas which

can be exported to Coq, and to manually invoke these lemmas and instantiate quantifiers.

We show it is possible to build verification tools for an accurate ISO C semantics. Rather
than an idealised “C-like” language, as assumed by many other tools, or a custom embedding of

a fragment, as used by others, we use Cerberus [Memarian et al. 2016], a semantics for a large

fragment of ISO C. Cerberus defines C by elaboration into its Core language, which our type system

targets, and it has been validated on substantial C test suites. This gives us confidence in CN’s

soundness (albeit without foundational proof) and the high coverage of C features needed for

verifying conventional production C code.

We have implemented CN, an open-source tool for C verification. CN elaborates C into

Core, type checks the Core, and rejects programs with C undefined behaviour or which fail their

specification. CN delegates refinement subtyping and pointer-equality reasoning to the Z3 SMT

solver [De Moura and Bjørner 2008]. It is available in the online materials (see below).

We verify the pKVM hypervisor’s buddy allocator in CN. As a case study, we verify a

substantial component of pKVM: the buddy allocator it uses for managing page-table memory.

The code of the buddy allocator was pre-existing code, written by the pKVM developers before we

began work on CN. We are able to verify the code largely as written (except for locks and minor

changes detailed later), demonstrating that CN handles non-trivial pointer arithmetic and aliasing

data structures, difficult quantified well-formedness invariants, and non-linear integer arithmetic.

We formalise key parts of the type system. We prove soundness of type checking (although

not inference), increasing confidence in the type system design and implementation.

The online materials, at www.cl.cam.ac.uk/∼cp526/popl23.html, contain the CN source, our

formalisation, the buddy allocator verification, and a case study comparing CN with other tools.

Limitations. CN is designed to address some important aspects of verification-tool usability, but

we discuss and evaluate usability only in ways typical of the verification literature: by describing the

verification of a substantial example, done by the tool authors. Ultimately one would like empirical

user studies, but that is a separate (and very interesting) research problem in its own right, and will

need additional tool development. CN currently does not support recursive specification functions;

these are easily added, together with a mechanism for users to manually unfold definitions. We

base CN on Cerberus to soundly handle most C features and their complex semantics, but CN does

not currently support unions; moreover, we use a concrete memory object model, and we currently

ignore the sequencing strengths of memory actions (in C and Cerberus); we plan to incorporate

[Lepigre et al. 2022]’s VIP memory object model and strengthen CN so that one can prove that code

is not sensitive to C’s loose evaluation order. We focus to date only on sequential verification, but

plan to extend the CN separation-logic refinement type system with some of the extensive research

on separation-logic concurrency. All these should be relatively straightforward extensions.

We now explain our type system design and the choices aimed at handling conventional pro-

duction systems software and verification usability (§2), demonstrate the usability of CN in the

verification of pKVM’s buddy allocator (§3), explain the formalisation of key type system aspects (§4),

compare with the Frama-C, RefinedC, and VeriFast tools (§5), and discuss related work (§6).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://www.cl.cam.ac.uk/~cp526/popl23.html

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:5

2 THE CN DESIGN
We now describe the design of CN, balancing expressivity, automation, and predictability.

2.1 Handling a Realistic C Semantics
For a refinement type system for any programming language to be a good one, it has to soundly

and sufficiently accurately capture its semantics. With C this is a significant challenge: C has a no-

toriously complex semantics, with undefined behaviours (UB), implementation-defined behaviours,

unspecified values, implicit type coercions, mutable local variables that can be addressed with

pointers, complex control flow and variable scoping, and under-specified sequencing of memory

accesses. In designing a type system for C one faces the question of how to handle this complexity.

C program, specifications, auxiliary definitions

Core program

Core program

CN (OCaml)
incl. ownership reasoning

Z3

constraints

OK/counter model

success/counterexample Coq lemmas

Cerberus translation

Core simplifications

Working at a level close to the C source is desirable for eas-

ily reporting errors in terms of the source program. However,

doing this for a realistic C semantics would mean replicating

much of that in the typing rules, which would be complex

and error-prone. Instead, we use Cerberus [Memarian et al.

2019, 2016], a well-validated semantics for a large fragment

of C, defined by elaboration into Core, a much simpler first-

order language with pure values; the elaboration makes the

complexities of C explicit in the produced Core programs.

We use Cerberus to reduce the problem of verifying a C pro-

gram to verifying its Core elaboration, which we do by type
checking the Core program. Since Core’s semantics is (mostly)

straightforward, designing a refinement type system for Core

is much easier than doing so for C directly.

Given an input C file, annotated with CN types for func-

tions and loops, in-function CN instrumentation, and user-defined predicates (both described later),

CN translates C to Core using Cerberus. CN type annotations in the source are combined with C

types in function declarations, and mapped to CN types for the Core program. This translation

from C-source types and instrumentation to Core relies on the fact that Cerberus’ elaboration is
compositional in the structure of the C program: C functions are mapped to Core functions, C loop

bodies are mapped to Core goto labels/procedures, and the expressions in the Core program follow

the structure of the C statements. This allows CN to map C function types to Core function types,

C loop (invariant) types to Core procedure types, and in-function CN instrumentation from the C

source to CN Core expressions in the correct position. Finally, CN applies some simplifying Core

rewrites and type-checks the resulting Core program.

2.2 Core
Consider the simple C function increment, which takes a signed int i, increments i, and returns it.

signed int increment(signed int i) {

i = i + 1;

return i;

}

The produced Core function is shown below (slightly sim-

plified for presentation). Core maps all C control flow to

if-then-else and goto; a Core function comprises a collec-

tion of labeled blocks/non-return procedures, here just the

distinguished entry procedure body (3), and a return procedure, here ret1 (2), without a code body.

Returning from a function is expressed as calling the return procedure (14). Since C has mutable

local variables (including function arguments), Core allocates them explicitly: they are allocated

on function entry (4), initialised (5), read and written using memory loads (6,12) and stores (11),

and de-allocated on function exit (13). In place of C’s fixed-width integers Core uses unbounded

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:6 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

integers; e.g. function argument 𝑖 (1) has type integer= Z; C integer operations are mapped to

operations in Z, with explicit handling of unrepresentable values: here line 8’s ‘+’ is addition in Z
and line 9 has an undefined behaviour (UB) assertion checking for signed integer overflow. CN

proves the absence of UB by proving that all such assertions succeed. Finally, C arithmetic involves

implicit type coercions. Core makes these explicit using conv_int (8,11,14); for a given target C type

𝜏 , conv_int(𝜏) : integer -> integer ensures the return value is representable at 𝜏 ; in the case of

an unrepresentable value, it either specifies wrap-around semantics (for unsigned types) or UB (for

signed types). Here the conv_int calls are no-ops since all arithmetic happens at signed int type.

1 proc increment (i: integer): integer :=

2 return label ret1

3 body =

4 let i_l: pointer = create(4, 'signed int ') in

5 store('signed int ', i_l , i);

6 let v1: integer = load('signed int ', i_l) in

7 let sv: integer =

8 let n: integer = conv_int('signed int ', v1) + 1 in

9 assert_undef (-2147483648 <= n /\ n <= 2147483647 , <<UB036 >>);

10 n in

11 store('signed int ', i_l , conv_int('signed int ', sv));

12 let v2: integer = load('signed int ', i_l) in

13 kill('signed int ', i_l);

14 run ret1(conv_int('signed int ', v2))

2.3 Refinement Types
We now recall basic refinement types [Rondon et al. 2008] and show how they appear in CN. For the

previous increment function to behave correctly, we must ensure i does not overflow, or increment

will have undefined behaviour according to the C standard and the Core program (and CN would

reject it). Refinement types allow placing constraints on a function’s argument and return values.

Here we can use them to specify that increment requires i to be sufficiently small, and that it

returns 𝑖 + 1. The CN type for this is (slightly simplified):

Π𝑖 : integer. (𝑖 < power(2, 32) − 1) ⇒ Σreturn : integer. (return = 𝑖 + 1) ∧ 𝐼

Here Π binds the computational argument 𝑖 , i.e. the (single) runtime argument of the C function;

(𝑖 < power(2, 32) − 1) ⇒ . . . specifies a constraint type for 𝑖; Σ binds the computational return

value; and (return = 𝑖 + 1) ∧ . . . specifies a constraint type fixing its value; finally 𝐼 is the “empty”

return type, corresponding to the empty-heap assertion emp in separation logic). In C, function

arguments, such as i, are mutable; in this specification, 𝑖 refers to the initial value of i. Like Core, CN

uses unbounded integers of type integer = Z in place of C’s bounded integers (such as signed int),

and handles integer bounds using constraint types. The full CN type of increment is as follows:

Π𝑖 : integer. good⟨signed int⟩(𝑖) ⇒ (𝑖 < power(2, 32) − 1) ⇒
Σreturn : integer. good⟨signed int⟩(return) ∧ (return = 𝑖 + 1) ∧ 𝐼

signed int increment(signed int i)

/*@ requires i < power (2,31) - 1 @*/

/*@ ensures return == i + 1 @*/

{ i = i + 1;

return i; }

This captures the integer range constraints using the pred-

icate good; for pointers, good also includes alignment con-

straints. In the CN implementation, the computational

types and the “good” constraint types do not have to be

specified explicitly, as they are implied by the C function declaration. Moreover, since CN targets

systems developers, we choose a more C-like concrete syntax, shown above.

CN’s expression language includes arithmetic and comparison operations, boolean operations and

the _?_:_ if-then-else operator, pointer-offsetting for struct members or array indices, pointer/inte-

ger casts, struct member access and update, etc. Constraint types are boolean typed expressions, and

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:7

CN supports constraints with a single top-level universal quantifier (we may extend this, if needed).

Moreover, users can define non-recursive logical functions, as abbreviation for complex expressions,

using a C-like syntax; for instance “function (bool) positive (integer x) { return x>0; }” de-

fines a function positive : integer → bool.
Refinement typing in CN works roughly as follows. The typing context includes a constraint

context Φ. For type checking a function, CN initially adds each argument constraint type to Φ; in
the above example we initially have Φ = {good⟨signed int⟩(𝑖), (𝑖 < power(2, 32) − 1)}. Then CN

checks the function body. The return types in the typing rules of an expression or statement have

constraint types capturing its semantics, which CN accumulates into Φ. Consider, for instance, the
expression i in the R-value of the assignment in the increment function. This translates to the load

(6) in Core, reading from the variable i_l (holding i’s location on the stack). Assuming this value,

according to the resource inference (described later), is 𝑣𝑖 , the (slightly simplified) return type of the

load is Π𝑟 : integer. (𝑟 = 𝑣𝑖) ∧ 𝐼 , specifying a computational return value 𝑟 , of integer type, and a

constraint type equating it to 𝑣𝑖 . Type checking is control-flow-sensitive; for instance, for checking

some statement if (e) S1 else S2, CN adds to Φ the logical constraint 𝑐 corresponding to e when

checking S1, and ¬𝑐 when checking S2.

Finally, CN type checks against the function’s return type rt: checking whether each constraint

type lc in rt holds, given constraint context Φ. Constraints lc can refer to the return value return and
other values in the specification (e.g. values in resources, as described later). CN delegates constraint

reasoning to the Z3 solver [De Moura and Bjørner 2008]. In this example, the return value is the

value of i on function exit, say 𝑣 ′𝑖 , and rt is Σreturn : integer. good⟨signed int⟩(return) ∧ (return =

𝑖 + 1) ∧ 𝐼 . CN checks that 𝑣 ′𝑖 has type integer, substitutes 𝑣
′
𝑖 for return, and checks using Z3 that∧

Φ ⇒ good⟨signed int⟩(𝑣 ′𝑖) and
∧

Φ ⇒ (𝑣 ′𝑖 = 𝑖 + 1) hold (where 𝑖 refers to the initial function

argument value); i.e. CN checks that both constraints hold given the assumptions in Φ. Here they
will, since Φ records the initial assumptions about i (from increment’s argument constraint types)

and the details of this trace through the program. (The refinement reasoning in checking a call of a

function f is similar: CN checks at the call site whether, in Φ at that point, all argument constraint

types of f, instantiated to the concrete arguments of the function call, hold.)

2.4 Decidable Refinement Typing
Our refinement type system design follows the liquid types approach [Rondon et al. 2008], and adds

mechanisms to reconcile it with the requirements for systems code. We reduce refinement typing

to checking decidable propositional logic formulae, for predictable refinement reasoning using SMT

solvers: we target SMT formulas known to be in a decidable fragment (quantifier-free formulas

using the theories of uninterpreted functions, linear integer arithmetic, records, and extensional

arrays), for which SMT solvers should provide reliable (non-UNKNOWN) answers. By itself this is at

odds with the requirements of verifying realistic systems software, which can rely on complex

invariants with quantifiers and non-linear arithmetic, or indeed use non-linear arithmetic in the

code. Our design handles this tension between expressivity and predictable automation as follows.

Non-linear arithmetic. CN rejects specifications with non-linear arithmetic: e.g. for two variables 𝑥

and 𝑦, the expression 𝑥 ∗𝑦 in a type results in a type error (whereas 𝑥 ∗ 512 is accepted). Where this

limits verification, users can specify types referring to user-declared uninterpreted functions; e.g.

function (integer) my_mul (integer x, integer y)

(without a function body) declares my_mul, and the expression my_mul(x,y) is accepted by CN.

Moreover, some C operations are intrinsically non-linear (e.g. x*y). CN’s typing rules for certain

arithmetic operations (multiplication, division, exponentiation, etc.) distinguish between constant

and non-constant arguments: for linear arithmetic their return types include constraints in terms of

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:8 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

standard (“interpreted”) integer operations, otherwise the constraints use uninterpreted functions;

e.g. for C code x*4096 CN uses ‘∗’, whereas for x*y it uses a built-in uninterpreted function mul_uf,
and warns the user about this. Since uninterpreted functions are opaque to CN and Z3, proofs

about them require assistance from the user: users have to state the relevant properties in lemmas

and explicitly apply these (detailed in §2.11).

Quantifiers. Users can write constraint types with a single universal quantifier. Reasoning

about these is reduced to propositional formulae using a simple default quantifier instantia-

tion strategy and support for manual quantifier instantiation by the user. For proving

∧
Φ ⇒

∀𝑖 : bt . 𝑝 [𝑖], for some propositional expression 𝑝 depending on 𝑖 of base type bt, CN checks if

∀𝑖 : bt .
((∧

Φqf ∧
∧

Φ[𝑖]
)
⇒ 𝑝 [𝑖]

)
holds, where Φqf is the quantifier-free subset of Φ and Φ[𝑖] is the

set of all constraints 𝑞 [𝑖] for which Φ contains ∀𝑗 : bt . 𝑞[𝑗]. CN does this by checking that the fol-

lowing quantifier-free SMT formula is unsatisfiable for a fresh constant 𝑐 :
(∧

Φqf ∧
∧

Φ[𝑐]
)
∧¬𝑝 [𝑐];

i.e. to check whether ∀𝑖 : bt . 𝑝 [𝑖] holds in Φ, CN checks that ¬𝑝 [𝑐] is impossible assuming (1) all

quantifier-free constraints from Φ and (2) all universally quantified constraints from Φ with quan-

tifier base type bt, instantiated at the same constant 𝑐 . Since this scheme is clearly not com-

plete, users can use lemmas or additionally manually instantiate quantifiers: the CN statement

“instantiate name, 𝑒” instructs CN to instantiate any universally-quantified constraint 𝑞 in Φ, with
the value of expression 𝑒 , if 𝑞 mentions predicate name and its quantifier has the same base type as

𝑒; §3.3 has an example of manual instantiation. Where this is insufficient, lemmas can be used.

Discussion. Past research has investigated decidable fragments of first-order logic with some form

of quantification. In particular, Bradley et al. [2006] study the array property fragment, which allows

a restricted form of quantified propositions about arrays, sufficiently expressive for specifying

properties such as sortedness. We experimented with applying their results, but found the array

property fragment insufficiently expressive for encoding properties of arrays required in our setting,

in particular certain invariants in the buddy allocator verification.

2.5 Counterexamples
By reducing refinement typing to checking quantifier-free formulae, CN ensures that the resulting

constraint problems are SMT-friendly and Z3 gives reliable yes/no answers (not unknown). An

important benefit is that when the answer is “no” (i.e. refinement typing has failed), Z3 produces a

(trustworthy) counter-model, which CN can use to explain verification failures in terms of concrete

values for program variables (which would not be trustworthy in the case of the outcome unknown).

2.6 Resource Types
C programs are stateful: they read, write, allocate and de-allocate memory, and the safety of this has

to be verified. For reasoning about memory safety we use resource types based on separation logic.

In the example below, struct s comprises two int members x and y, and zero_y takes a struct s

pointer and zeroes the pointee’s y member. To justify the safety of this function, ownership of the

memory pointed at by p is required.
struct s { int x; int y; };

void zero_y (struct s *p) {

p->y = 0;

}

Substructural type systems like Rust [Matsakis and Klock II 2014]

closely couple ownership of a memory location to the (computa-

tional) types of pointers to that location, to facilitate ownership

reasoning: if pointer types and resources are linked, programmers implicitly pass the ownership of

the pointers’ memory locations, obviating resource inference. CN chooses the opposite approach

and uses first-class resource types (inspired by L3 [Ahmed et al. 2007]), separating ownership of

memory from pointer types. This gives the expressiveness we need, to support pointer aliasing and

computed access to data structures via pointer arithmetic (as can be found in C systems code such

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:9

as the pKVM buddy allocator), at the cost of making type inference more complex. CN uses linear

(rather than affine) resource types, so we can (later) encode protocols via resource types.

Returning to the example, we can specify the required memory ownership using CN’s Owned
resource type. Owned⟨𝜏⟩(𝑝) (𝑣), for a C-type 𝜏 , pointer 𝑝 and value 𝑣 , asserts ownership of the

memory location pointed at by 𝑝 and that the value is 𝑣 . (We slightly modify the presentation of the

value 𝑣 shortly, below.) This is equivalent to a separation logic points-to resource 𝑝 ↦→𝜏 𝑣 , indexed

by a C-type 𝜏 to capture its memory layout [Cao et al. 2018; Krebbers 2016]. The function zero_y

should receive the ownership of 𝑝 in the form of an Owned resource argument with some pointee

value 𝑣 , and return an Owned resource for some pointee value 𝑣 ′. We would like to specify this as

follows (omitting some details around “good” C values and how 𝑣 ′ relates to 𝑣):

Π𝑝 : pointer.∀𝑣 : struct s. (Owned⟨struct s⟩(𝑝) (𝑣)) −∗
Σreturn : unit. ∃𝑣 ′ : struct s. (Owned⟨struct s⟩(𝑝) (𝑣 ′)) ∗ 𝐼

Here r −∗ ft and r ∗ rt introduce a resource type 𝑟 into a function type ft or return type rt,
respectively, while ∀ and ∃ are binders for the logical variables 𝑣 and 𝑣 ′. However, unrestricted
use of logical variables via ∀ and ∃ makes inference infeasible, e.g. by allowing for imprecise

specifications (see §2.12). We would like CN to automatically infer the correct instantiation of

logical variables (such as 𝑣 and 𝑣 ′ in this example), reliably and without back-tracking.

To this end we impose a simple syntactic restriction that guarantees inference of logical variables
always succeeds. The restriction is based on partitioning the arguments of a resource into inputs
and outputs, following the intuition that fixing the inputs determines the outputs. For example,

in Owned⟨𝜏⟩(𝑞) (𝑤), CN regards the pointer 𝑞 as an input and the value𝑤 as an output, since for

any choice of 𝑞 at most one value𝑤 can exist for which Owned⟨𝜏⟩(𝑞) (𝑤) holds. We explain the

input/output distinction in more detail in §2.12. CN then only allows introducing logical variables

for the outputs of resources and replaces general ∀ and ∃ binders in function and return types with

resource-let-bindings, which syntactically link the introduction of logical variables to their use as

outputs of resources. The type

let 𝑂 = Owned⟨struct s⟩(𝑝)

specifies ownership of an Owned/points-to resource at type struct s for pointer 𝑝 and some out-
put/value, which it binds to the name 𝑂 .

Owned has a single output, the pointee value, but user-defined predicates, described in §2.9, can

have multiple. In a functional language it would be natural to allow (tuple) pattern-matching in

resource-let-bindings, to directly give a name to each output. To make CN syntax as close to C

programs as reasonably possible, we instead choose to present resource outputs using records:

• Instead of Owned⟨struct s⟩(𝑝) (𝑣), CN specifies the value of an Owned resource using a

unary record with field value: Owned⟨struct s⟩(𝑝){.value = 𝑣}.
• Resource-let-bindings bind a name to a record that is the collection of the resource’s outputs;

e.g. the name 𝑂 in let 𝑂 = Owned⟨struct s⟩(𝑝) refers to a unary record with field 𝑂.value
for the (single) output of an Owned resource. (In the case of user-defined predicates,𝑂 might

have multiple fields, one for each output.)

Using resource-let-bindings, the specification we give to zero_y (omitting details around good) is:

Π𝑝 : pointer. let 𝑂1 = Owned⟨struct s⟩(𝑝) −∗
Σreturn : unit. let 𝑂2 = Owned⟨struct s⟩(𝑝) ∗ 𝐼

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:10 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

Here “−∗” is used for resource arguments in function types and “∗” for resources returned in return

types. The scope of𝑂 in let 𝑂 = 𝑅 −∗ ft (resp. let 𝑂 = 𝑅 ∗ rt) is ft (resp. rt) — i.e. the scoping is the

same as with let-bindings if “−∗” and “∗” were replaced with “in”.

Hence, in the example above, “later” parts of the type specification can refer to 𝑂1 and 𝑂2 for

asserting other properties; e.g. we can specify the struct-update effect of zero_y on the pointee

by adding the constraint type 𝑂2 .value = 𝑂1.value{.𝑦 = 0} to the return type of zero_y. Often
the C-type annotation for the Owned resource can be inferred from the pointer, in which case

it can be omitted. Moreover, to optimise the common pattern of specifying properties of some

pointer 𝑞’s pointee, CN supports the notation ∗𝑞 for doing so; CN supports the syntax “{∗𝑞}@start”
and “{∗𝑞}@end” for referring to the pointee of 𝑞 at the start or end of the function, instructing

CN to “evaluate” ∗𝑞 using the resource arguments (“pre-condition”) or returned resources (“post-

condition”), respectively. The ∗𝑞 and ‘@’ notation are surface-level features only, not present in

the core type system. Shown below is the example in two equivalent versions using CN’s concrete

syntax. In CN, specifying Owned implicitly also asserts a “good” constraint for the pointee.

void zero_y (struct s* p)

/*@ requires let O1 = Owned <struct s>(p) @*/

/*@ ensures let O2 = Owned <struct s>(p) @*/

/*@ ensures O2.value == ({O1.value}@start){.y=0}@*/

{ p->y = 0; }

void zero_y (struct s* p)

/*@ requires Owned(p) @*/

/*@ ensures Owned(p) @*/

/*@ ensures *p == ({*p}@start){.y=0} @*/

{ p->y = 0; }

Fig. 1. CN specification for zero_y

2.7 Return and Function Types
We can now give the grammar of function types ft and return types rt. Here bt are base types
(including mathematical integers integer, untyped pointers pointer, etc.), 𝑃 are resource predicate

names, includingOwned⟨𝜏⟩ for C-types 𝜏 , 𝑒 and lc are expressions and constraint types, respectively,
and 𝑥 and𝑂 are variable names. Π and Σ bind computational variables in function and return types;

CN has “effectful” let-bindings (with −∗ and ∗) for asserting ownership of resources (second line)

and iterated resources (third line), which we explain in §2.10, as well as “pure” let-bindings for

terms; finally ⇒ and ∧ introduce constraint types into function and return types, respectively.

ft = Π𝑥 : bt . ft

| let 𝑂 = 𝑃 (𝑒1, . . . , 𝑒𝑛) −∗ ft

| let 𝑂 = (∗𝑖 .𝐺𝑃 (𝑒 ∗ 𝑖 + 𝑘, 𝑒2, . . . 𝑒𝑛)) −∗ ft

| let 𝑥 = 𝑒; ft

| lc ⇒ ft

| rt

rt = Σ𝑥 : bt . rt

| let 𝑂 = 𝑃 (𝑒1, . . . , 𝑒𝑛) ∗ rt

| let 𝑂 = (∗𝑖 .𝐺𝑃 (𝑒 ∗ 𝑖 + 𝑘, 𝑒2, . . . 𝑒𝑛)) ∗ rt

| let 𝑥 = 𝑒; rt

| lc ∧ rt

| 𝐼

2.8 Resource and Logical Variable Inference
CN types include resources for reasoning about the safety of memory accesses and logical variables

for abstracting over their values. For verifying C programs against these types, CN has to bridge a

gap: CN uses first-class resources (splitting resource types from computational value types) while

C programs are unaware of resource types; in checking C programs against CN types, the correct

use of resources and the correct instantiation of logical variables has to be decided.

Requiring explicit annotations for both would require too much manual input, given the per-

vasive use of pointer accesses in C. On the other hand, any inference must be predictable. CN

chooses a design where most resource inference is automatic, user instructions are required for

packing/unpacking user-defined predicates (which can be inductive), and logical variables are

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:11

inferred automatically. We illustrate CN’s inference for zero_y from Fig. 1. (We slightly simplify

the reasoning and skip over some steps in the Core program for presentation.)

(1) CN has typing contexts C, binding computational variables to base types; L, binding log-

ical variables to base types; R, the set of available resources; and (as before) Φ, the set of con-

straints. For type checking a function, CN initially adds computational, logical, resource, and

constraint arguments from the function type into the respective typing contexts; e.g. for let 𝑂1 =

Owned⟨struct s⟩(𝑝) in zero_y’s function type, CN adds 𝑂1 to L and Owned⟨struct s⟩(𝑝) (𝑂1) to
R. CN then checks the function body.

(2) For any C function, the elaborated Core program first creates memory allocations for the

local variables (including function arguments) and initialises their values. For zero_y it allocates

and initialises one memory location, for the value of p. The implicit store for the initialisation has

the return type

Σ𝑢 : unit. let 𝑂𝑠 = Owned⟨struct s *⟩(p_l) ∗ (𝑂𝑠 .value = 𝑝) ∧ 𝐼

meaning it returns a computational value𝑢 of type unit, an Owned/points-to resource for the pointer

𝑝_𝑙 to the location of 𝑝 in memory, with output argument 𝑂𝑠 , and a constraint type specifying the

pointee value 𝑂𝑠 .value equals 𝑝 . CN binds this return type into the context, adding, (for a fresh 𝑂𝑠)

𝑂𝑠 to L, Owned⟨struct s *⟩(p_l) (𝑂𝑠) to R, and (𝑂𝑠 .value = 𝑝) to Φ.
(3) In Core, the L-value p->y of the assignment p->y = 0 translates to a load of 𝑝 (at loca-

tion p_l) and a “member-shift” of this pointer. The typing rule for the load requires a resource

Owned⟨struct s *⟩(𝑒) (_), for some pointer value 𝑒 , for which
∧

Φ ⇒ (𝑒 = p_l) is provable, and an

arbitrary output argument. CN’s resource inference scans R and finds Owned⟨struct s *⟩(p_l) (𝑂𝑠),
from the allocation and initialisation step. The inferred resource’s output argument determines

the pointee value to be 𝑂𝑠 .value (where (𝑂𝑠 .value = 𝑝) ∈ Φ), which the typing rule for the load

returns: Σ𝑟 : pointer. (𝑟 = 𝑂𝑠 .value) ∧ 𝐼 .

(4) The typing rule for the p->y member-shift operation then returns a pointer 𝑝y suitably offset

from 𝑂𝑠 .value.
(5) The typing rule for the store of 0 to p->y requires a resource Owned⟨int⟩(𝑒) (_) for an 𝑒

such that

∧
Φ ⇒ 𝑒 = 𝑝y and arbitrary output argument. However, R instead contains a resource

Owned⟨struct s⟩(𝑝) (_), as per the function pre-condition. CN’s resource inference includes au-

tomatically splitting or combining Owned resources based on their footprints and C-types: CN

detects an inclusion of the footprint of the requested resource, (𝑝y, sizeof(int)), and the available one
(𝑝, sizeof(struct s)) and splits the struct resource into resources for the members (and of padding

bytes, where appropriate). Here this results in R containing (A) Owned⟨int⟩(p_l->x) (. . .) and (B)

Owned⟨int⟩(p_l->y) (. . .), where p_l->x and p_l->y are CN expressions for the member-shifted

pointer values. Now the resource inference finds resource (B), justifying the store. The typing rule

for the store consumes it and returns a resource with updated output (pointee value).

(6) The Core function ends by de-allocating p_l. The typing rule (for “kill”) requires a resource

for a pointer 𝑒 provably equal to p_l, inferred by CN as for the load at p_l earlier, and destroys it.

(7) Finally, CN checks against the function return type, with its let 𝑂2 = Owned⟨struct s⟩(𝑝).
CN now has to infer 𝑂2 and the correct resource for this specification. CN’s inference searches

for a resource Owned⟨struct s⟩(𝑒) (_) for some 𝑒 for which 𝑒 = 𝑝 is provable and an arbitrary

output. Due to the splitting of the struct-resource, R contains two resources (A and an updated B)

for the members. The footprint analysis detects that the requested footprint is covered by these

and combines them into a resource Owned⟨struct s⟩(𝑝) (𝑂𝑟) (for a padded struct, this step would

also consume ownership of padding bytes); here 𝑂𝑟 combines the values of A and B, and hence

Φ appropriately relates 𝑂𝑟 to the original resource output 𝑂1 (i.e. 𝑂𝑟 has member y updated to 0

compared to 𝑂1). The found resource uniquely determines 𝑂2 to be 𝑂𝑟 . CN substitutes 𝑂𝑟 for 𝑂2

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:12 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

and proceeds with checking the remainder of the return type. Here, for instance, the constraint type

(𝑂2.value = 𝑂1.value{.𝑦 = 0}) under the substitution [𝑂𝑟/𝑂2] refers to𝑂𝑟 , for which Φ records the

necessary information. (The resource reasoning in checking function calls with resource argument

types is analogous to the “subtyping” check against the function return type just described.)

(8) At last, CN checks that the resource context is empty, with no unused resources.

Discussion. As illustrated above, CN’s resource inference is not syntax-directed: e.g. a store to 𝑝

requires ownership of some pointer that is provably-equal to 𝑝 (rather than syntactically 𝑝). An

earlier design envisaged syntax-directed resource typing, with all resources explicit in the C code;

we decided against this to avoid a higher annotation burden for the user. Earlier versions of CN

had syntax-directed unpacking of Owned resources: e.g. taking the L-value p->y in the example

above as a hint to expand the struct resource. This correctly handled many examples but made

verification brittle, e.g. pointer accesses could fail type checking due to irrelevant code changes

earlier in the function. CN instead now relies on the footprint analysis described above. This makes

resource inference computationally expensive — in the implementation, each resource request can

involve several calls to Z3 — however, it allows CN to easily support pointer arithmetic. (As an

optimisation we have implemented an expression simplifier that can obviate some SMT queries.)

2.9 Inductive Predicates
CN supports inductive resource predicates, a standard mechanism in separation logic for abstracting

over the memory representation of data types [Reynolds 2002], but restricts the definition language

based on a distinction between predicate inputs and outputs to guarantee reliable inference.

We illustrate them for a standard integer linked list data structure. (Note that CN does not

currently support logical functions on lists; this example is for illustration only.) A linked list is

a struct node pointer, where NULL encodes the empty list. A struct node comprises an element

value entry, and a pointer next to the next struct node (or NULL) for the remainder of the list.

struct node { int entry; struct node *next; };

In separation logic, one might specify the predicate on the left below, linking a mathematical list 𝑙

to the pointer 𝑝 representing it:

list(𝑝, 𝑙) =
(𝑝 = NULL ∧ 𝑙 = nil ∧ emp)∨
(∃𝑛′ : struct node, 𝑙 ′ : list⟨integer⟩.

𝑙 = cons(𝑛′ .entry, 𝑙 ′)∧
(𝑝 ↦→struct s 𝑛

′ ∗ list(𝑛′ .next, 𝑙 ′)))

predicate {list <integer > l} List (pointer p) {

if (p == NULL) {

return { l = nil <integer > }; }

else {

let Head = Owned <struct node >(p);

let Tail = List(Head.value.next);

return { l = cons(Head.value.entry , Tail.l) };

} }

This specifies that the list predicate holds if either: 𝑝 is NULL, 𝑙 is the empty list, and the heap is

empty (emp); or there exists a node struct value 𝑛′ and list value 𝑙 ′ such that 𝑙 = cons(𝑛′ .entry, 𝑙 ′),
𝑝 points to 𝑛′, and the list predicate holds for 𝑛′ .next and the tail of the list 𝑙 ′.
The CN list predicate, shown on the right, is similar, but has a particular structure, enforced

by CN, that guarantees reliable inference. The definition can be read roughly as follows: List has

two arguments, an input p and an output l. The predicate “checks” whether p is NULL; if so, it

returns/defines l as the empty list; otherwise it requires ownership of p, binding the outputs to

Head, and (inductively) an instance of List for the tail of the list starting at the Head item’s next

pointer, binding the outputs to Tail. For the latter case it defines l as the cons of the Head item’s

value and the logical list value of the tail.

CN imposes the following restrictions on predicate definitions, to guarantee reliable inference.

First, as described in §2.6, CN distinguishes between inputs and outputs of a resource, with the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:13

intuition that the inputs should uniquely determine the outputs. CN only allows specifications

(function types or resource predicate definitions) to abstract over resource outputs, since for

these the fact that they are uniquely determined guarantees successful inference. For the built-in

Owned(𝑝) (𝑂) resource, CN regards pointer 𝑝 as an input and pointee value 𝑂.value as an output:

an owned pointer 𝑝 uniquely determines the pointee value, since ownership is unique.

For predicates, CN requires the user to make this distinction. Determining arguments to be

outputs will allow the user to abstract over these in other specifications, whereas input arguments

have to be specified explicitly. The language of predicate definitions captures the intuition that

fixing the inputs determines the outputs with a syntax resembling function definitions: inputs
resemble C function arguments; outputs are specified using an anonymous-struct syntax in place

of a C function’s return type. Here, p is an input and l an output (with the intuition that fixing p

uniquely determines the list value l). For CN to accept l as an output, it requires that l is indeed

uniquely determined by the choice of inputs (here p); this is enforced by simply requiring that the

definition does not depend on l: l is not in scope; it must be defined using return statements. Here

the NULL case defines l to be nil, the non-NULL case as the cons of the head and the tail.

Second, CN does not allow general disjunction in predicate definitions; instead predicate defi-

nitions are ordered lists of guarded cases, where each case implicitly requires, in addition to its

own guard, the negation of the preceding guards to hold. This ensures that the cases are mutually

exclusive, and — combined with the above restriction that the cases do not depend on the output

arguments — ensures that CN can determine, without back-tracking, which case applies based only

on checking which guard applies for the given input arguments. The cases in this example are

the same as in the separation logic predicate (NULL or not NULL), just encoded using if-then-else.

Each case is a sequence of “specification statements”, containing resource let-bindings (following

the same syntactic restriction as return and function types described in §2.6), constraint type

“assertions”, and pure let-bindings for introducing names to expressions.

The resulting predicate definition has the same shape as the code a programmer might write for

a recursive function or loop traversing the list: “check if the pointer is null or not; if null, done; if

not, dereference the value of the head and recurse/loop with the next pointer.”

While CN automates most resource inference, including the automatic packing/unpacking of

resourcesOwned⟨𝜏⟩ for complex C-types 𝜏 (structs and arrays), CN requires users to manually pack

and unpack user-defined predicates, to avoid the need for back-tracking or unreliable heuristics

in automating this. However, the restrictions CN places on predicate definitions, described above,

mean that the only user input required for this is a CN “statement” of the form “pack 𝑃 (𝑖1, . . . , 𝑖𝑛)”
or “unpack 𝑃 (𝑖1, . . . , 𝑖𝑛)”, for a predicate name 𝑃 and input arguments 𝑖1, . . . , 𝑖𝑛 . The inference of

the output arguments, determining which case of the predicate applies, and the inference required

for that case’s resource types are automatic.

2.10 Array Resources
Arrays are an essential feature of C that our type system needs to support. One could in principle

encode arrays using inductive resource predicates, but this would not support computed accesses

well: since such “random accesses” do not follow the inductive structure, lemmas or other user

assistance would be required to handle them. Instead, CN supports arrays via iterated separating

conjunction, with a scheme inspired by the work of Müller et al. [2016], but restricted to ensure

quantifier-free SMT queries.

Consider, for instance, a pointer 𝑝 with ownership for an int array of 100 items. CN can represent

this asOwned⟨int[100]⟩(𝑝) (𝑉), i.e. a singleOwned resource, of array type. Here the output𝑉 .value
is an “SMT-array” map⟨integer, integer⟩, a function from integer indices to values. For reading or

writing within an array, CN converts such array-typed resources, via an automatic unpack step,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:14 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

into an iterated separating conjunction, here:(∗𝑖 . 0≤𝑖<100Owned⟨int⟩(𝑝 +𝑙 (𝑖 ∗ 4))
)
(𝑉) (A)

where (+𝑙) : pointer × integer → pointer and 𝑝 +𝑙 𝑛 offsets 𝑝 by 𝑛 bytes (regardless of the pointee

size). This asserts ownership for 𝑝 +𝑙 (𝑖 ∗ 4) for each array index 𝑖 from 0 to 99, for the same

output argument𝑉 . The ∗ iteration operator is treated as a quantifier that the inference mechanism

handles automatically. In CN’s implementation we use a concrete syntax resembling loops for

specifying iterated resource types; e.g. the following specifies the same resource.

/*@ let V = each(integer i; 0 <= i && i < 100){ Owned <int >(p + (i * 4))} @*/

CN constrains iterated resources to the shape (∗𝑖 .𝐺𝑃 (𝑞 +𝑙 𝑖 ∗ 𝑘, ia2, . . . ia𝑛) (𝑂). Here 𝑖 binds an
integer-typed index; 𝐺 is a boolean-typed expression, called the guard; and 𝑃 a predicate name (i.e.

Owned or a user-defined one) applied to some input arguments: a pointer argument 𝑞 +𝑙 𝑖 ∗ 𝑘 , for
some expression 𝑞 and constant 𝑘 , that is a linear function of 𝑖 (e.g. the linear progression 𝑞 +𝑙 𝑖 ∗ 4

above) and possibly additional input argument expressions, which may depend on 𝑖 . Finally, 𝑂 is

the record of outputs of the iterated resource, and so its fields have types lifted to maps: if predicate

𝑃 has an output oarg of type bt, then 𝑂.oarg has type map⟨integer, bt⟩. Note that the guard does

not need to be a simple inequality, so quantified resources need not form a contiguous array.

The constraints above are to simplify inference. To illustrate this, consider how a store *q = 4,

via an int pointer q, might adjust (A). The typing rule for the store consumes an Owned⟨int⟩
resource from the context and returns one with the new value. In the presence of (A) in the

context, there is an additional candidate “source” for the Owned⟨int⟩ resource. Since the resource
pointer in (A) is linear, the inference can compute exactly the candidate index 𝑖𝑞 = (castinteger (𝑞) −
castinteger (𝑝))/sizeof⟨int⟩ which might result in a matching resource [Müller et al. 2016]. CN

considers it a match if the iterated resource’s guard𝐺 (here 0 ≤ 𝑖 < 100) holds for this 𝑖𝑞 (according

to the SMT solver). If so, CN extracts ownership for 𝑖𝑞 , by adjusting the iterated resource (A) to

have the guard 0 ≤ 𝑖 < 100 ∧ 𝑖 ≠ 𝑖𝑞 and splitting out the single instance at 𝑖𝑞 as a separate resource.

The extracted Owned resources for 𝑖𝑞 corresponding to 𝑞 allow the inference to succeed.

Note that this works whenever 𝑞 is provably a pointer to a cell of the array. Obviously this works

when 𝑞 is constructed as an array offset syntactically, but CN also supports cases where pointers

into an array are read from other structures in memory or computed by pointer arithmetic, and

our buddy allocator example in §3 requires this.

In addition to splitting elements from arrays, CN can infer the reverse step, joining a single

element to an array. For instance, this may be needed for passing the modified array to another

function following the store *q = 4. To infer a single resource for the whole array, with a required

guard 𝐺req of 0 ≤ 𝑖 < 100, CN first examines the non-quantified resources of matching type in the

context (here those of Owned⟨int⟩ type). For each such resource 𝑅 with pointer 𝑟 , CN computes

the index 𝑖𝑟 at which 𝑟 would appear in the array, and checks whether 𝐺req holds for 𝑖𝑟 (using the

SMT solver); when it does, 𝑖𝑟 corresponds to a required index within the array and CN “collects” it:

removing 𝑅 from the context and updating𝐺req to𝐺req ∧ 𝑖 ≠ 𝑖𝑟 to record that 𝑖𝑟 is no longer needed.

After all non-quantified resources have been scanned, a single quantified resource must be found

in the context, with matching address and a guard covering the remaining 𝐺req. This quantified

resource is combined with the already-collected resources, into a single resource whose output

argument can be described via array updates. For instance, in our simple example, the combined

resource would be Owned⟨int[100]⟩(𝑝) (𝑉 ′) with 𝑉 ′ .value = 𝑉 .value[𝑖𝑞 := 4]}.

Discussion. CN’s approach to iterated separating conjunction is based on the work of Müller

et al. [2016]. However, we do not allow combining the ownership of multiple iterated resources,

to ensure the outputs of the combined resource can be described in a quantifier-free way. To our

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:15

understanding, the scheme of Müller et al. is more general, permitting such merging, however,

in a system that requires quantified SMT queries (handled via triggers), which we aim to avoid.

Moreover, their (elegant) resource inference loop is optimised to only ask the SMT solver once,

and otherwise “symbolically subtracts” required ownership from existing resources, simplifying

the resulting terms where possible. We experimented with this style, but found that it lead to

syntax explosions, especially in the guard component of iterated resources. With our approach, we

obtained more predictable performance, albeit at the cost of more SMT queries.

2.11 Lemmas
As discussed in §2.4, CN reduces refinement typing to decidable propositional logic reasoning, while

still supporting code and specificationswith non-linear arithmetic, and quantified constraint types. It

does so by mapping non-linear arithmetic to uninterpreted functions, and using a default quantifier

instantiation strategy and manual quantifier instantiation by the user. Where reasoning requires

knowledge about uninterpreted functions, which are opaque to CN and Z3, or CN’s quantifier

instantiation methods are insufficient, CN requires user assistance: users need to manually “fill the

gaps” in the proof by capturing the relevant reasoning steps in lemmas.

void lemma_power2_def(int y)

/*@ trusted @*/

/*@ requires y >= 0 @*/

/*@ ensures (power_uf(2,y+1)) == (2*(power_uf(2,y))) @*/

{}

Lemmas in CN are just C functions

with empty body and a CN type anno-

tation that states the relevant prop-

erty. For instance, as part of a veri-

fication the user may require CN to

know the fact 2
𝑦+1 = 2 ∗ 2

𝑦
, for an uninterpreted power_uf function and for a concrete instance of 𝑦

from the code. This can be captured with the lemma shown above. The user must explicitly “invoke”

this lemma via a function call that specifies the value 𝑦. The trusted annotation tells CN that this

type signature should not be proven in CN but instead exported to a theorem prover. CN generates

a Coq theory file which defines the proposition to be proven for each lemma in the C source. These

are gathered in a module specification which also takes the uninterpreted functions as parameters.

If the user can instantiate this module, i.e. provide interpretations of the functions and proofs of

the propositions, then the verification is complete. Currently we support “pure” lemmas, with

implications involving only constraint types. These can be encoded in Coq using only integers,

functions and tuples. In the future we plan to add support for lemmas about resources, so resource

equivalences that would be difficult to infer automatically can be proved manually.

It is an open empirical question of how often in practical systems C verification one would need

lemmas, for reasoning about non-linear arithmetic and quantifiers, and whether this mechanism is

sufficiently convenient, but at least in the buddy allocator case study of §3, it suffices.

2.12 Logical Variables
As discussed in §2.6 and §2.9, CN restricts the use of logical variables in type specifications to

guarantee that they can be inferred reliably. Assume for the moment that CN allowed arbitrary

logical variable bindings via ∀ and ∃ in function and return types, respectively, and consider the

following type ft
1
for a function 𝑓 :

ft1 = Π𝑝 : pointer.∀𝑞1 : pointer.∀𝑣1 : integer. (Owned⟨int⟩(𝑞1){.value = 𝑣1}) −∗
∀𝑞2 : pointer.∀𝑣2 : integer. (Owned⟨int⟩(𝑞2){.value = 𝑣2}) −∗
(lc1 [𝑞1, 𝑣1]) ⇒ (lc2 [𝑞2, 𝑣2]) ⇒ rt

whereby 𝑓 takes a computational argument 𝑝 of pointer type, and two Owned resources, for

arbitrary pointers𝑞1, 𝑞2 and pointee values 𝑣1, 𝑣2, satisfying the constraint types lc1 and lc2. (Perhaps

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:16 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

the latter relate𝑞1 and𝑞2 to known concrete values, such as 𝑝 —how else could theOwned resources
for those pointers be useful to 𝑓 ?) This specification would be problematic for inference. Consider

a function call 𝑓 (𝑟); after checking 𝑟 against the computational argument type, CN would have

to infer the instantiation of 𝑞1 and 𝑣1 and the first Owned resource. If the resource context at this

point contained two Owned⟨int⟩ resources, CN would not be able to decide which one to pick, and

how to instantiate 𝑞1 and 𝑣1, without backtracking: CN would need to try a choice, then infer the

second resource, instantiate 𝑞2 and 𝑣2 accordingly, and check lc1 and lc2 before “knowing” whether

the choice was correct, potentially having to re-wind and try the second choice.

On the other hand, given the type ft
2
for 𝑓 , shown below, where 𝑞1 and 𝑞2 are replaced by known

pointer values 𝑝 +𝑙 4 and 𝑝 +𝑙 8 (𝑝 offset by 4, resp. 8, bytes using the notation from §2.10), the

instantiation of the remaining logical variables, 𝑣1 and 𝑣2, is easy: first, find the unique Owned⟨int⟩
resource with a pointer provably equal to 𝑝 +𝑙 4 (if any exists) and instantiate 𝑣1 to match its value;

second, do the same for 𝑝 +𝑙 8 and instantiate 𝑣2.

ft2 = Π𝑝 : pointer.∀𝑣1 : integer. (Owned⟨int⟩(𝑝 +𝑙 4){.value = 𝑣1}) −∗
∀𝑣2 : integer. (Owned⟨int⟩(𝑝 +𝑙 8){.value = 𝑣2}) −∗
(lc1 [𝑝 +𝑙 4, 𝑣1]) ⇒ (lc2 [𝑝 +𝑙 8, 𝑣2]) ⇒ rt

For predictable type checking it is desirable to avoid the backtracking needed forft
1
and guarantee

that logical variables are immediately correctly resolved, as in ft
2
. What makes the use of logical

variables 𝑞1 and 𝑞2 in ft
1
problematic and 𝑣1 and 𝑣2 in ft

2
not? The logical/“non-computational”

part of ft
1
amounts to an imprecise separation logic predicate [Reynolds 2008]: e.g.

∀𝑞1 : pointer.∀𝑣1 : integer. (Owned⟨int⟩(𝑞1){.value = 𝑣1})

can be satisfied by an arbitrary owned heap cell, because𝑞1 is unknown (similarly for𝑞2). This means

any Owned⟨int⟩ resource in the context can satisfy this type, and 𝑞1 and 𝑣1 are underspecified.

In contrast, in ft
2
the concrete pointer 𝑝 +𝑙 4 of the first resource type uniquely identifies a heap

cell; hence, only one (if any) resource from the context R can satisfy this type. Since ownership

of Owned resources is unique, this uniquely determines the instantiation of the pointee value 𝑣1.

(The second resource and 𝑣2 are analogous.) More generally, each argument of a resource can be

assigned a mode, input or output, such that fixing the inputs of a resource uniquely determines the

outputs; in the case of points-to/Owned the pointer is an input and the pointee an output.

Logical variables should be restricted so they can always be inferred based on resource types, as

illustrated in the case of ft
2
: each resource type in the specification should determine a resource

in the typing context (if any) that satisfies it and thereby uniquely determine the instantiation

of any logical variables in the resource type. Note that a typing context may contain multiple

interchangeable resources (i.e. two instances of the same predicate applied to provably-equal

arguments), which is possible, for instance, with predicates that do not assert ownership of memory;

this is fine, since the choice between them leads to provably-equal instantiations of logical variables.

In a setting without CN’s resource-let-bindings from §2.6 and §2.9 but with general ∀ and ∃
logical-variable binders, one could achieve such a restriction of logical variables by defining a mode
check function for types,MC, which ensures:

• that each logical variable will be resolved as an output of some resource,

• that each constraint type only depends on logical variables that are resolved “at that point”,

• that each resource’s inputs are resolved “at that point”.

Below is a possible definition of a mode check for function types: MC takes sets 𝑣𝑟 and 𝑣𝑢 of

resolved and unresolved variables, both initially empty, and a function type ft, and checks the use

of unresolved variables, by induction on the structure of ft. Here FV 𝑒 is the set of free variables

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:17

in 𝑒 . (1) explicitly passed run-time values are considered resolved; (2) logical variables are initially

unresolved; (3) refinement typesmust not refer to unresolved variables; (4, 6) neither should resource

inputs; (5) resource outputs resolve logical variables; (7) once the return type rt is “reached”, all
logical variables should be resolved. In this definition, 𝑣𝑟 is passed for illustration purposes only, the

code does not actually use it. Return types and predicate definitions can be checked analogously.

1 MC 𝑣𝑟 𝑣𝑢 (Π𝑥 : bt . ft) = MC (𝑣𝑟 ∪ 𝑥) 𝑣𝑢 ft
2 MC 𝑣𝑟 𝑣𝑢 (∀𝑥 : bt . ft) = MC 𝑣𝑟 (𝑣𝑢 ∪ 𝑥) ft
3 MC 𝑣𝑟 𝑣𝑢 (lc ⇒ ft) = FV lc ∩ 𝑣𝑢 = ∅ ∧MC 𝑣𝑟 𝑣𝑢 ft
4 MC 𝑣𝑟 𝑣𝑢 (re −∗ ft) =
5 let 𝑣 ′𝑟 = outputs re ∩ 𝑣𝑢 in
6 FV (inputs re) ∩ 𝑣𝑢 = ∅ ∧MC (𝑣𝑟 ∪ 𝑣 ′𝑟) (𝑣𝑢 \ 𝑣 ′𝑟) ft
7 MC 𝑣𝑟 𝑣𝑢 rt = 𝑣𝑢 = ∅

Inspecting the shape of the types ft
that pass this check, one can find that

those all have the property that ev-

ery logical variable 𝑥 introduced via

∀, is first “mentioned” as an output

of a resource (since otherwise the

empty-conjunction checks in (3) and

(6) fail). This observation allows CN

to enforce mode correctness in the

use of logical variables in a simpler way: instead of general ∀ and ∃ binders for logical variables,

CN instead uses the resource-let-binding syntax described in §§2.6,2.9. Resource-let-bindings

let 𝑂 = 𝑃 (𝑖1, . . . , 𝑖𝑛), for some predicate 𝑃 and input 𝑖1, . . . , 𝑖𝑛 , simultaneously:

• introduce a logical variable 𝑂 , for the record of outputs {.f1 = 𝑜1, . . . , .f𝑚 = 𝑜𝑚} of 𝑃 , and
• assert ownership of 𝑃 applied to inputs 𝑖1, . . . , 𝑖𝑛 and outputs 𝑜1, . . . , 𝑜𝑚 .

This syntactically links the introduction of logical variables to their use as resource outputs and

captures the types accepted byMC. It does so by enforcing mode-correctness via variable scoping:
MC rejects types that introduce a logical variable via ∀ or ∃ and use it in a constraint type (3) or

resource input (6) before it is resolved as a resource output. With CN’s resource-let-binding syntax

this is just a scoping violation: a logical variable 𝑂 only enters the scope when used as an output

argument. Hence, mode failures can be explained to users in term of familiar variable scoping.

Note that our restriction does not preclude the use of logical variables in resource inputs; e.g.

Π𝑝 : pointer. let 𝑂1 = Owned⟨int*⟩(𝑝) −∗
let 𝑂2 = Owned⟨int⟩(𝑂1.value) −∗ . . .

specifies the type of a function that takes an int-pointer-pointer 𝑝 , ownership for 𝑝 , and ownership

for 𝑝’s pointee 𝑂1.value; the latter is asserted using the first resource’s output as an input for the

second. When checking a function call against this type, 𝑂1 is resolved after inferring the first

resource, at which point the second resource’s inputs are fixed, so that its inference can proceed.

3 BUDDY ALLOCATOR
We now demonstrate CN’s usability in the verification of pKVM’s buddy allocator, used after

initialisation for managing the memory it uses for various page tables. It was written by a conven-

tional development team at Google as part of Android/Linux. The buddy allocator code, together

with the required dependencies has 364 non-comment lines of C code (leading to 6169 lines of

Core). In our formalisation, we add 417 lines of function and loop specifications and 78 lines of

in-function instrumentation, plus 249 lines for auxiliary definitions and 165 for lemma statements

and 1219 lines of Coq for their proofs, totalling 5.85× the code size including Coq proofs and 2.50×
excluding Coq proofs. Checking the buddy allocator in CN takes 141s on a standard laptop (2GHz

Quad-Core Intel Core i5, 16GB ram). We verify a version of the buddy allocator from October

2020
1
. The verification involves difficult ownership reasoning, pointer arithmetic into an aliasing

1original: https://android-kvm.googlesource.com/linux/+/39111fc40453747f8213cf9ef4337448d3c6197d/arch/arm64/kvm/

hyp/nvhe/page_alloc.c formalisation: in the online materials;

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://android-kvm.googlesource.com/linux/+/39111fc40453747f8213cf9ef4337448d3c6197d/arch/arm64/kvm/hyp/nvhe/page_alloc.c
https://android-kvm.googlesource.com/linux/+/39111fc40453747f8213cf9ef4337448d3c6197d/arch/arm64/kvm/hyp/nvhe/page_alloc.c

1:18 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

data structure (including XOR of pointer representation bits), iterated resources, and complex

universally quantified constraints.

CN does not currently support concurrency; we comment out locks and the buddy allocator’s lock

type (which also requires unions) — a standard separation-logic treatment of locks would handle

these — and Linux READ_ONCE and WRITE_ONCE operations. We also make the following light changes:

(1) We make minor additions to the initial meta-data setup (conveniently setting initial refcounts

and page orders as assumed by auxiliary functions), replacing a memset zero’ing out this data (for

which CN would have required (easily added) support for converting Owned resources of a group

of representation bytes to an Owned resource of the represented C-type). (2) The main allocator

invariant is associated with a “pool” pointer, pointing to certain allocator meta-data. For proof

convenience we add this pool pointer as an extra argument to some functions. (3) We initialise some

variables at declaration time to overcome a limitation of CN’s annotation language. (4) We simplify

the macro definition for the min minimum operation. (5) Finally, in the allocator initialisation,

we skip the verification of one auxiliary arithmetic function get_order, with non-linear integer

arithmetic, whose value the verification does not depend on; we merely “trust” it to return values

greater than 0.

3.1 Overview of the Allocator Implementation
The allocator follows a standard buddy scheme. It allocates blocks, each of size 2

𝑜
4k pages of some

order 𝑜 ∈ 0..MAX_ORDER=11, and with its physical address 2
𝑜
page-aligned. The allocatable memory

is partitioned into pools, each a contiguous range of pages, with metadata in a struct hyp_pool

struct hyp_pool {

/* hyp_spinlock_t lock; */

struct list_head free_area[MAX_ORDER];

phys_addr_t range_start;

phys_addr_t range_end;

unsigned int max_order;

};

struct list_head {

struct list_head *next , *prev;

};

comprising a lock (omitted for this verification), its

range of physical start and end address, its maximum

order, and, for each order, the head of a list of its free

blocks at that order. This is a standard Linux-kernel

circular doubly-linked list, empty iff the head points to

itself. The buddy of a block 𝐵 of order 𝑜 is the (unique)

adjacent order-𝑜 block that can be merged with 𝐵 into

a block of order 𝑜 + 1 with 2
𝑜+1

page-aligned physical

address (if the buddy is within the range of the pool).

The buddy physical address is calculated by flipping bit 𝑜 + 12 of 𝐵’s address. If a block of order 𝑜 is

requested from a pool and the corresponding free list does not contain one, the allocator splits a

higher-order block as needed; conversely, when a block is returned, it coalesces it with any free

buddy blocks of the same or higher order.

struct hyp_page {

unsigned int refcount;

unsigned int order;

struct hyp_pool *pool;

struct list_head node;

};

The allocator’s main state is the vmemmap, an array of per-page

struct hyp_page metadata. This includes a refcount; the order 𝑜 ∈
0..MAX_ORDER− 1 if this is the initial page of any free or allocated block,

or HYP_NO_ORDER otherwise; a pointer to the associated pool; and a

list_head node. The free lists are maintained as intrusive lists, with

the list pointers embedded within the linked structures, a standard idiom in Linux. The buddy

allocator also accesses a global signed integer hyp_physvirt_offset to map between hypervisor

physical and virtual addresses.

The API functions are hyp_pool_init, to initialise the allocator, hyp_alloc_pages, to request

a block of a particular order, hyp_get_page, to increase the refcount of an allocated block, and

hyp_put_page, to decrement a block’s refcount and, if zero, return block ownership. (As noted

earlier, compared to the original, we add the pool pointer to the get and put functions.)

int hyp_pool_init(struct hyp_pool *pool , u64 pfn , unsigned int nr_pages ,

unsigned int reserved_pages);

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:19

void *hyp_alloc_pages(struct hyp_pool *pool , unsigned int order);

void hyp_get_page(struct hyp_pool *pool , void *addr);

void hyp_put_page(struct hyp_pool *pool , void *addr);

3.2 Verification Approach
The Specification. The API functions have types phrased in terms of Hyp_pool, the allocator’s

main invariant, defined shortly. We give the following specifications (omitting some details).

Function hyp_pool_init takes a start-of-the-range page index and a non-zero number of pages; it

requires somewell-formedness conditions to hold (such as range, alignment and pointer disjointness

constraints), and requires ownership of the pool meta-data, the pool’s range of the vmemmap, and of

(not necessarily zeroed) order-0 blocks for the pool’s range. It then returns the Hyp_pool invariant
for this range. Function hyp_alloc_pages takes a pool pointer and an order, and requires Hyp_pool;
it returns the Hyp_pool predicate and either a pointer to the virtual address of a freshly allocated

block at order together with appropriate block ownership, or a NULL pointer without ownership.

Function hyp_get_page takes a pool pointer and a block virtual address whose corresponding

physical address is in the pool’s range, requires Hyp_pool and that the block’s initial page has

refcount non-zero and less than 2
31−1 (so it can be incremented); it returns theHyp_pool predicate.

Finally, hyp_put_page takes a pool pointer and a virtual block address addr in its range, requires

Hyp_pool, that the physical address corresponding to addr is page-aligned and non-NULL, and

that the block’s initial page has a non-zero refcount; it additionally requires ownership of a block

of memory for addr, at the order of the block’s initial page, if the current refcount is 1 (and so will

be decremented to 0); it then returns Hyp_pool.
The main difficulty in the verification is handling pKVM’s use of computed accesses and pointer

aliasing into the vmemmap. Its entries are accessed using two kinds of pointers:

(1) prev or next linked-list pointers into the vmemmap;

(2) for a (suitably aligned) physical page address 𝑝 , computed access to its meta-data at vmemmap

index 𝑝/(212).
Both kinds of pointers are dereferenced by pKVM, the safety of which has to be verified. However,

CN cannot give the (unique) ownership to both kinds of pointers simultaneously. Instead, we

choose a strategy based on iterated resources. We assert ownership once, of all vmemmap entries for

a pool’s range of physical memory, and have additional constraint types that guarantee that each

struct hyp_page accessed by pKVM falls in this range. The main invariant, the resource predicate

Hyp_pool, captures these and various other conditions. It takes as arguments the pool pointer pool_l,

the vmemmap pointer vmemmap_l and the current value physvirt_offset of hyp_physvirt_offset

and is defined as follows (omitting predicate outputs and some details):

predicate . . . Hyp_pool (pointer pool_l , pointer vmemmap_l , integer physvirt_offset) {

let P = Owned <struct hyp_pool >(pool_l); /*A*/

let start_i = P.value.range_start / 4096;

let end_i = P.value.range_end / 4096;

let off_i = physvirt_offset / 4096;

let V = each(integer i; (start_i <= i) && (i < end_i)) /*B*/

{Owned <struct hyp_page >(vmemmap_l + i*32)};

assert (each(integer i; (start_i <= i) && (i < end_i)) /*C*/

{vmemmap_b_wf (i, vmemmap_l , V.value , pool_l , P.value)});

let R = each(integer i; (start_i <= i + off_i) && (i + off_i < end_i) /*D*/

&& (((V.value)[i+off_i]). refcount == 0)

&& (((V.value)[i+off_i]). order != (hyp_no_order ())))

{ZeroPage (((pointer) 0) + i*4096, 1, ((V.value)[i+off_i]). order)};

. . .

}

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:20 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

(A) Resource: pool_l is an owned struct hyp_pool pointer; the output is bound to the name P

(and so P.value is the logical struct value).

(B) Resource: the allocator pool owns the iterated separating conjunction of all vmemmap indices 𝑖

from start_i = P.value.range_start/4096 to end_i = P.value.range_end/4096, where 4096 =

2
12 = PAGE_SIZE and 32 = sizeof<struct hyp_page>. This binds V, so V.value is the logical

vmemmap meta-data array.

(C) Constraint: for any vmemmap index i from start_i to end_i some properties hold, including

the following two that are specified as part of the user-defined function vmemmap_b_wf:

• Its linked-list pointers, if non-empty, point to vmemmap entries in the same range or into the

pool’s free_area array. This condition guarantees that we have the ownership required for

dereferencing these, either from (A) or (B). Note that this means that we do not track the

contents of the linked list; we merely assert some constraints each linked list prev/next

pointer has.

• Its physical address, 𝑝 = 𝑖 ∗ 2
12
, is 2

12+𝑜
-aligned, for the order 𝑜=(V.value[i]).order

(specified with uninterpreted functions due to the non-linear arithmetic). The condition

ensures that the computed address of the buddy of 𝑝 is in the pool’s range, meaning that

(B) includes the ownership required for accessing the buddy’s meta-data.

(D) Resource: the allocator owns all free pages, as an iterated resource holding ownership of

ZeroPage for each page address 𝑖 ∗ 4096 wherever the page address is in the right range and

its vmemmap entry, in V.value, has 0 refcount and a non-HYP_NO_ORDER order. The resource

ZeroPage captures ownership of a zeroed block of memory, of the page’s order. It is phrased

in terms of virtual addresses (so these can be accessed via C pointers). To this end, 𝑖 is the

index for the virtual address and we use i + off_i to translate this to the corresponding

physical address index, which we can use to index the vmemmap, V.value.

Note that simpler strategies, such as using an inductive list predicate for the ownership of vmemmap

entries, do not support the computed vmemmap access that the code relies on.

3.3 Example Function
We now walk through an example function to illustrate the reasoning required in the verification.

The function __hyp_attach_page returns ownership of a block B to the allocator, coalescing it with

adjacent free blocks. We show the un-annotated source code below.

1 static void __hyp_attach_page(struct hyp_pool *pool ,

2 struct hyp_page *p) {

3 unsigned int order = p->order;

4 struct hyp_page *buddy = NULL;

5 memset(hyp_page_to_virt(p),0,PAGE_SIZE << p->order);

6 p->order = HYP_NO_ORDER;

7 for (; (order + 1) < pool ->max_order; order ++) {

8 buddy = __find_buddy_avail(pool , p, order);

9 if (!buddy)

10 break;

11 list_del_init (&buddy ->node);

12 buddy ->order = HYP_NO_ORDER;

13 p = min(p, buddy);

14 }

15 p->order = order;

16 list_add_tail (&p->node , &pool ->free_area[order]); }

The function arguments are a pool

pointer and a pointer p, to the vmemmap

meta-data for the initial page in 𝐵,

within this pool. Its body sets order

to that of p (3), zeroes 𝐵 (5), sets p’s

order to HYP_NO_ORDER (6), and loops.

In each iteration, __hyp_attach_page

checks whether p’s buddy at order

starts a free block (8,9), and, if so,

pulls out the buddy’s block, by delet-

ing it from the free list (11) and set-

ting its order to HYP_NO_ORDER (12). It

then coalesces the blocks of p and the

buddy, by making p the initial page of the combined block, their minimum (13); finally, it increments

order (7) to reflect this coalescing, and loops. It loops until the order is maximal or no free buddy is

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:21

1 for (; (order + 1) < pool ->max_order; order ++)

2 /*@ inv let p_i2 = (((integer) p) - __hyp_vmemmap) / 32 @*/
3 /*@ inv let Z = ZeroPage((pointer) ((p_i2 * 4096) - hyp_physvirt_offset), 1, order) @*/
4 /*@ inv let OP = Owned(pool) @*/
5 /*@ inv let hyp_vmemmap = (pointer) __hyp_vmemmap @*/
6 /*@ inv let start_i2 = (*pool).range_start / 4096 @*/
7 /*@ inv let end_i2 = (*pool).range_end / 4096 @*/
8 /*@ inv let off_i = hyp_physvirt_offset / 4096 @*/
9 /*@ inv let V2 = each (integer i; start_i2 <= i && i < end_i2)
10 {Owned<struct hyp_page>(hyp_vmemmap+(i*32)) } @*/
11 /*@ inv let p_page = V2.value[p_i2] @*/
12 /*@ inv let p_page_tweaked2 = (p_page){.order = order} @*/
13 /*@ inv each(integer i; start_i2 <= i && i < end_i2)
14 {vmemmap_b_wf(i, hyp_vmemmap, V2.value[p_i2 = p_page_tweaked2], pool, *pool)} @*/
15 /*@ inv each(integer i; 0 <= i && i < ((*pool).max_order))
16 {freeArea_cell_wf(i, hyp_vmemmap, V2.value, pool, (*pool))} @*/
17 /*@ inv hyp_pool_wf(pool, *pool, hyp_vmemmap, hyp_physvirt_offset) @*/
18 /*@ inv let R = each(integer i; start_i2 <= (i + off_i) && (i + off_i) < end_i2
19 && (V2.value[i + off_i]).refcount == 0
20 && (V2.value[i + off_i]).order != (hyp_no_order ()))
21 { ZeroPage(((pointer) 0) + (i*4096), 1, (V2.value[i+off_i]).order) } @*/
22 /*@ inv 0 <= order; order+1 <= (*pool).max_order @*/
23 /*@ inv cellPointer(hyp_vmemmap,32,start_i2,end_i2,p) @*/
24 /*@ inv (p_page.refcount) == 0; (p_page.order) == (hyp_no_order ()); (p_page.pool) == pool @*/
25 /*@ inv (p_page.node.next) == &(p->node); (p_page.node.prev) == &(p->node) @*/
26 /*@ inv order_aligned(p_i2,order) @*/
27 /*@ inv (p_i2 * 4096) + (page_size_of_order(order)) <= (*pool).range_end @*/
28 /*@ inv each(integer i; {p_i}@start < i && i < end_i2)
29 {(({V.value[i]}@start).refcount == 0) || ((V2.value[i]) == {V.value[i]}@start)} @*/
30 /*@ inv {__hyp_vmemmap} unchanged; {hyp_physvirt_offset} unchanged; {pool} unchanged @*/
31 /*@ inv ({*pool}@start){.free_area = (*pool).free_area} == *pool @*/
32 {

33 buddy = __find_buddy_avail(pool , p, order);

34 if (!buddy)

35 break;
36 /*CN*/instantiate vmemmap_b_wf , hyp_page_to_pfn(buddy);

37 /*CN*/unpack ZeroPage (hyp_page_to_virt(p), 1, order);

38 /*CN*/unpack ZeroPage (hyp_page_to_virt(buddy), 1, order);

39 /*CN*/lemma_attach_inc_loop (*pool , p, order);

40 /*CN*/lemma2(hyp_page_to_pfn(p), order);

41 /*CN*/lemma_page_size_of_order_inc(order);
42 /*CN*/if ((buddy ->node).next != &pool ->free_area[order])

43 /*CN*/ instantiate vmemmap_b_wf ,

44 hyp_page_to_pfn(container_of ((buddy ->node).next , struct hyp_page , node));

45 /*CN*/if ((buddy ->node).prev != &pool ->free_area[order])

46 /*CN*/ instantiate vmemmap_b_wf ,

47 hyp_page_to_pfn(container_of ((buddy ->node).prev , struct hyp_page , node));

48 /*CN*/if ((buddy ->node).prev != (buddy ->node).next);

49 list_del_init (&buddy ->node);

50 buddy ->order = HYP_NO_ORDER;

51 p = min(p, buddy);

52 /*CN*/pack ZeroPage (hyp_page_to_virt(p), 1, order + 1);

53 }

Fig. 2. Annotated loop body from __hyp_attach_page. In-function annotations are prefixed with /*CN*/.
Along with __hyp_extract_page this is the most difficult function, with a high annotation overhead.

found. After the loop, __hyp_attach_page adds the coalesced block into the allocator by setting p’s

order to order (15) and adding p to the free list (16).

We now describe the verification steps, just for “non-breaking” execution of the loop. Fig. 2

shows the fully CN-annotated loop body (in the following, all line numbers refer to this figure).

The invariant asserts (roughly):

(I1) Ownership of ZeroPage, a zeroed block at the page address corresponding to 𝑝 , of order

order: see line 3. Initially this is the ownership of 𝐵; each iteration “grows” the ownership,

by coalescing adjacent free blocks.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:22 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

(I2) The Hyp_pool invariant holds — at least almost: since 𝑝 is “being processed” in the loop,

some of its meta-data does not satisfy certain conditions of Hyp_pool until __hyp_attach_page

is fully executed. Hence lines 4–21, the details of Hyp_pool are expanded and adjusted where p

needs to be treated specially. (The remaining lines 22–31 record some additional facts about p,

or state that certain parts of the state are unchanged by the loop body; we skip the discussion

of these details in the following description.)

The verification of the loop body consists of three main proof goals: proving safety, and proving

that invariants I1 and I2 are re-established.

Safety. CN has to verify the safety of the access to the buddy pointer (49,50). Invariant I2 asserts

ownership of this pool’s vmemmap range; as per __find_buddy_avail’s post-condition, buddy is in

this range. Hence, CN’s inference detects that it can break the Owned resource for buddy out of

the vmemmap iterated separating conjunction, justifying (50). The list deletion (49) is more difficult

since it requires ownership of not just the buddy but also its prev and next pointers (recall that

we do not use a linked list resource predicate). We now manually instantiate vmemmap_b_wf of

I2 for buddy, to conclude that prev and next are either vmemmap pointers or pointers to the pool’s

free_area (line 36; hyp_page_to_pfn returns the buddy’s vmemmap index, at which we instantiate

vmemmap_b_wf). Either way we have ownership. Since it can be from different “sources”, however,

we have to manually distinguish these cases (which we do using C’s if-then-else; lines 42, 45).

Additional difficulty arises from the fact that the free lists are circular. That means prev and next

could alias, and the specification of list_del_init treats this case specially, since it then only

receives ownership of one resource; and we have to make another case distinction at the call site

(48). With the guidance to distinguish these cases, CN’s resource inference automatically infers

the resources for the list access, breaking one or two Owned resources out of the vmemmap iterated

resource or the pool’s free_area resource, as needed.

I1. By assumption we have ownership of the block for the page address corresponding to p, at

order; we have to prove ownership of a block for the updated p and incremented order. Combining

the post-condition of __find_buddy_avail and the vmemmap_b_wf condition for buddy, instantiated

earlier, we know that buddy has refcount 0 and order ≠ HYP_NO_ORDER. According to (I2) we then

have ownership of ZeroPage for buddy’s page address at order order, which we should combine

with the block ownership by assumption (I1). We manually unpack both (37,38) and re-pack a single

combined block (52) to establish the loop invariant (I1). The ability to combine these resources

requires showing the adjacency of the page addresses of buddy and p for blocks at order— non-linear

integer arithmetic reasoning, which we state in lemmas and invoke here to finish the proof (40,

41). The lemmas are mostly simple arithmetic facts about exponentiation and alignment, which we

export and manually prove in Coq.

I2. Finally, we have to show invariant (I2) holds. This mainly requires proof that constraint

types such as vmemmap_b_wf are correctly re-established. This proof is a combination of automatic

refinement reasoning, exercising CN’s default quantifier instantiation to prove that the universally

quantified constraint types in the assumption imply the universally quantified constraint types

in the proof goal, and manual instantiation at additional relevant indices — here instantiating

vmemmap_b_wf for buddy (36, as before) and the buddy’s prev and next pointers (46,43), as well as

lemmas to close gaps in the proof of invariants involving non-linear integer arithmetic (39).

4 FORMALISATION
In this section, we formalise and prove type safety for “kernel CN”, which is essentially ordinary

CN with no type and resource inference. In particular, we assume that all universal quantifiers

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:23

are explicitly instantiated, that all existential quantifiers have explicit witnesses, and all resource

manipulations have proof terms with linear/substructural types. However, we do not require proof

terms for the logical properties, since by construction all of the entailments fall into the SMT

fragment. Since our inference algorithm can be extended to an elaboration algorithm producing

a fully-annotated program (which we have so far formalised for iterated resource manipulation,

though not footprint analysis), kernel CN could serve as an intermediate representation for the CN

compiler. Moreover, the lack of inference makes it a simpler language to prove type safety for.

Kernel CN is a calculus in A-normal form, with a bidirectional type system. Since we handle

most of C (via Core), the entire system is large. We only present the highlights here; the full details,

and a discussion of minor differences compared to the implementation, are in the online materials.

4.1 Types and Terms
As mentioned earlier, CN programs have both computational and logical terms. Every such term,

computational or ghost, has a base type 𝛽 , which are things like unit, booleans, (mathematical)

integers, locations, and records of other base types. Each C type 𝜏 is mapped to a corresponding

base type – for example, to_base(int*) = pointer. Logical terms are variously referred to as

term, 𝑝𝑡𝑟 (for pointers), 𝑣𝑎𝑙𝑢𝑒 (for pointees), iarg (for input-arguments), oarg (output-arguments,

of type record or array of records), and iguard (for boolean guards of iterated resources).

In Figure 3, we give the grammar of resource types (i.e., separation logic predicates) and resource

terms (the proof terms used by the kernel Core typechecker). The standard resources res can be

an empty heap emp, a boolean condition term, the separating conjunction res1 ∗ res2, an existential

type ∃ y:𝛽. res, and the disjunction if term then res1 else res2. We use a conditional rather than a

traditional disjunction to avoid backtracking during typechecking.

Resource predicates have special syntax to handle the division of their arguments into inputs and

outputs. An occurrence of a predicate is written 𝛼 (𝑝𝑡𝑟, iargs) (oarg). This is read as the predicate 𝛼 ,
applied to a pointer argument 𝑝𝑡𝑟 and a list of other input arguments iargs. The output argument

oarg is highlighted and in a second set of parentheses. Every predicate has exactly one output

argument, of type record (with zero or more fields). A qpred represents the iterated separating

conjunction of predicate instances; it quantifies over integer indices x satisfying a guard iguard,
and is with input arguments iargs and output oarg. It represents an instance of 𝛼 beginning at 𝑝𝑡𝑟 ,

and repeating every step bytes, for as long as the iguard is true.

Each resource type has introduction and elimination forms – e.g. res1 ∗ res2 has pairing and

pattern matching proof terms. The standard resource types have the expected rules, and predicate

types can be introduced by explicitly folding a predicate definition fold res_term:pred, and unfolded
via pattern-matching.

In addition, there are resource operations recording the resource-manipulation steps that infer-

ence uses to successfully type a program. If we suppress the book-keeping of checking that input

arguments match, calculating indices, and updating output arguments, most of these operations

have simple intuitions. explode (res_term) and implode (res_term, 𝑡𝑎𝑔) are operations on structs

and their members; the first takes an Owned ⟨struct 𝑡𝑎𝑔⟩ and turns it into a Owned ⟨𝜏i⟩ for each of

of its members; the second does the inverse. iterate (res_term, 𝑖𝑛𝑡) and congeal (res_term, 𝑖𝑛𝑡)
function similarly, but for C’s fixed-size arrays, returning a quantified Owned ⟨𝜏⟩ instead.
Morally, break has type qpred → qpred ∗ pred: it extracts a single predicate from a quantified

one, and must return the remainder as well because resource terms are linearly typed; glue has type
qpred ∗ pred → qpred: it is the inverse to break; split has type qpred ∗ iguard → qpred ∗ qpred:
given a quantified predicate of index-guard iguard′

, and an iguard, if iguard implies iguard′
then

it splits the given quantified predicate into two disjoint parts (one of index-guard iguard and the

other of iguard′ ∧ ¬ iguard); inj has type pred ∗ 𝑝𝑡𝑟 ∗ step ∗ iargs → qpred: it turns a predicate

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:24 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

res ::= emp | term | pred | qpred | res1 ∗ res2 | ∃ y:𝛽. res′ | if term then res1 else res2

pred ::= 𝛼 (𝑝𝑡𝑟, iargs) (oarg)
qpred ::= (x; iguard){𝛼 (𝑝𝑡𝑟 + x×step, iargs)}(oarg)

res_term ::= emp | term | pred_term | qpred_term | ⟨res_term1, res_term2⟩ | pack (oarg, res_term′)
r | fold res_term:pred | pred_ops

pred_ops ::= explode (res_term) | implode (res_term, 𝑡𝑎𝑔) | iterate (res_term, 𝑖𝑛𝑡)
congeal (res_term, 𝑖𝑛𝑡) | break (res_term, term) | glue (res_term)
inj (res_term, 𝑝𝑡𝑟, step, x . iargs) | split (res_term, iguard)

Fig. 3. Grammar of Resource Terms

𝛼 (𝑝𝑡𝑟 ′, iargs′) into a quantified predicate, with iguard = (x = k), where k = (𝑝𝑡𝑟 ′ − 𝑝𝑡𝑟)/step
and iargs′ = k/x (iargs). Because our inference algorithm does not support inferring merging

arrays (2.10), there is no inverse to split of type qpred ∗ qpred → qpred.

4.2 Judgements and Example Rules
The contexts for the rules consist of four parts: (1) C containing the computational variables from

the Core program; (2) L containing purely logical variables mentioned in specifications; (3) Φ, the

constraint context, containing a list of (non-quantified) SMT constraints; and (4) R a linear context
containing the resources available at that point during type-checking. Assuming a constraint

context of only non-quantified constraints is an acceptable simplification, because the elaboration

pass can annotate terms with fully-instantiated constraints, whose quantifiers were either supplied

by lemmas, annotations or default instantiation.

We focus on the judgements for typing resource terms and memory actions. The judgement

C;L; Φ;R ⊢ res_term ⇒ res should be read as “under a context of computational variables C,
logical variables L, constraints Φ and resources R, the resource term res_term synthesises resource

type res ” (the highlighting shows the part of the judgement with an output mode). The judgement

C;L; Φ;R ⊢ res_term ⇐ res reads similarly, replacing ‘synthesises’ with ‘checks against’.

We need both judgements because variables, folding, and predicate operations are naturally typed

as synthesising rules, whereas constraints, packing existentials, and conditional resources require

checking. Furthermore, as we shall see soon, memory actions require a synthesising judgement

(to obtain and manipulate the output argument of Owned ⟨𝜏⟩), whereas top-level values require
checking judgements. smt (Φ ⇒ term)

C;L; Φ;R ⊢ res_term ⇐ res1

C;L; Φ;R ⊢ res_term ⇐ if term then res1 else res2

pred ≡ 𝛼 (𝑝𝑡𝑟, iargi
i) (oarg)

𝛼 ≡ xp :pointer , xi :𝛽i
i
, y :record tagj :𝛽

′
j

j ↦→ res ∈ Globals

C;L; Φ;R ⊢ res_term ⇐ [oarg/y, [iargi/xi
i], 𝑝𝑡𝑟/𝑥𝑝] (res)

C;L; Φ;R ⊢ fold res_term:pred ⇒ pred

On the left is one of two rules

for checking a conditional re-

source. Thanks to the ordered dis-

junction, the rule is simple: if the

SMT solver can statically prove

term, then check the resource term

against the res1. The converse

(omitted) checks against res2 if the

SMT solver can prove the negation of the condition; if neither is provable, the rules try to synthesise

an under-determined conditional resource (the only way this is possible is if res_term is a variable

of an SMT-equivalent type). The rule for folding predicates shown is simplified for presentation

(omitting only the type checking of the all the predicate arguments, and the exclusion of the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:25

Owned ⟨𝜏⟩ predicate because it cannot be folded). The first line simply looks up the types of the

arguments based on the predicate name, and the “body” res of the predicate. The second checks

res_term against the res with its arguments (supplied by the fold term) substituted in.

ret ≡ Σ𝑦𝑝 :pointer. term ∧ (𝑦𝑝
false↦→𝜏 default 𝛽𝜏) ∗ I

C;L; Φ; · ⊢ create (pval, 𝜏) ⇒ ret

C;L; Φ;R ⊢ res_term ⇒ term
init↦→𝜏 pval1

smt (Φ ⇒ (term = pval0) ∧ (init = true))
ret ≡ Σ y:𝛽𝜏 . y = pval1 ∧ (pval0

true↦→𝜏 pval1) ∗ I
C;L; Φ;R ⊢ load (𝜏, pval0, _, res_term) ⇒ ret

C;L; Φ;R ⊢ res_term ⇒ term
_

↦→𝜏 _

smt (Φ ⇒ term = pval0)
ret ≡ Σ _:unit. (pval0

true↦→𝜏 pval1) ∗ I
C;L; Φ;R ⊢ store (_, 𝜏, pval0, pval1, _, res_term) ⇒ ret

C;L; Φ;R ⊢ res_term ⇒ term
_

↦→𝜏 _

smt (Φ ⇒ term = pval)
C;L; Φ;R ⊢ kill (static𝜏, pval, res_term) ⇒ Σ _:unit. I

The rules for typing memory actions

are also simplified for presentation. Allo-

cating memory with create takes an align-

ment pval and a C-type 𝜏 and synthesises

a return type ret representing: a newly cre-
ated pointer (𝑦𝑝), a constraint (term) about

alignment and representability (omitted),

and the resource itself (printed in more

familiar ↦→ notation). In addition to the

𝑣𝑎𝑙𝑢𝑒 output of the Owned ⟨𝜏⟩ resource (in
this case, an unconstrained default value

of the appropriate type, default 𝛽𝜏), the
formalisation includes an initialisedness

status 𝑖𝑛𝑖𝑡 (in this case, false). Loading
from a memory location requires a cor-

rectly typed resource term, and that its

output argument’s initialisedness status

init is true. It returns the pointed-to value
and the same permission it consumed. Storing to a memory location requires a points-to permission,

but without any constraints on initialisedness. It returns the permission, with initialisedness status

true and updated value. De-allocating memory with kill is the converse of allocating memory:

a resource term is required, but not returned.

4.3 Soundness
Theorem 4.1 (Progress and type preservation for resource terms). For all closed resource

terms (res_term) which type check or synthesise (·; ·; Φ;R ⊢ res_term ⇐ res) and all well-typed
heaps (Φ ⊢ h ⇐ R) there exists a resource value (res_val), context (R′) and heap (h′), such that:
the value is well-typed (·; ·; Φ;R′ ⊢ res_val ⇐ res); the heap is well-typed (Φ ⊢ h′ ⇐ R′); for all
frame-heaps (f), the resource term reduces to the resource value without affecting the frame-heap
(⟨h + f ; res_term⟩ ⇓ ⟨h′ + f ; res_val⟩).

Proof: §B8.6 of the online materials.

Theorem 4.2 (Progress for the annotated and let-normalised Core). If a top-level ex-
pression (texpr) is well-typed (·; ·; Φ;R ⊢ texpr ⇐ ret) and all computational patterns in it are
exhaustive, then either it is a value (tval), or it is unreachable, or for all heaps (h), if the heap is
well-typed (Φ ⊢ h ⇐ R) then there exists another heap (h′) and expression (texpr′) which is stepped to
(⟨h; texpr⟩ −→ ⟨h′

; texpr′⟩) in the operational semantics.

Proof: §B9.6 of the online materials.

Theorem 4.3 (Type preservation for the annotated and let-normalised Core). For all
closed and well-typed top-level expressions (·; ·; Φ;R ⊢ texpr ⇐ ret), well typed heaps (Φ ⊢ h ⇐ R),
frame-heaps (f), new heaps (heap), and new top-level expressions (texpr′), which are connected by
a step in the operational semantics (⟨h + f ; texpr⟩ −→ ⟨heap; texpr′⟩), if all top-level functions are
annotated correctly, there exists a constraint context (Φ′), sub-heap (h′), and resource context (R′),

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:26 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

such that the constraint context is Φ extended, the frame is unaffected (heap = h′ + f), the sub-heap is
well-typed (Φ′ ⊢ h′ ⇐ R′), and the top-level expression too (·; ·; Φ

′
;R′ ⊢ texpr′ ⇐ ret).

Proof: §B10.2 of the online materials.

5 COMPARISON
The related work has explored many approaches to C code verification; §6 gives an overview. To put

CN into context, we compare it with three state-of-the-art tools: VeriFast, RefinedC, and Frama-C.

Semantics and TCB. VeriFast [Jacobs et al. 2011] is a verification tool for C with similar design

to CN, based on separation logic. VeriFast uses an ad hoc C semantics, rather further from ISO C,

e.g. (unlike CN) treating uninitialised memory as stable and (like CN currently) not taking pointer

provenance into account in its memory model. Frama-C [Baudin et al. 2021] is a framework for

analysing C programs. Frama-C translates programs into CIL [Necula et al. 2002] for analysis; its

tool suite includes WP, a Hoare Logic verifier based on weakest preconditions. WP uses a custom

semantics for CIL, parametric in the memory model; users can choose between them based on a

trade-off between performance and support for pointer manipulation. RefinedC [Sammler et al.

2021] is a C type system with separation logic and refinement types. It handles C by first translating

into a kernel language, Caesium, using Cerberus’ frontend (but not Core elaboration); Caesium has

an ad hoc semantics that does not handle “lifetimes of block-scoped variables” [Sammler et al. 2021]

or weak sequencing of memory actions in C (CN handles the former but not the latter); in contrast

to CN’s fully concrete memory model, RefinedC integrates VIP [Lepigre et al. 2022]. Unlike CN,

Frama-C, and VeriFast, RefinedC is implemented inside a theorem prover, in Coq above Iris, and

so the TCB is the C semantics and Coq itself, but not typing rules or automation [Sammler et al.

2021]. CN builds directly on Cerberus’s (elaboration) semantics and benefits from its validation;

currently, however, CN does not handle the weak sequencing semantics and uses an overly simple

fully concrete memory model. Besides the Cerberus and CN code, CN’s TCB includes Z3.

Specification language and expressivity. VeriFast’s annotation language is the closest to CN’s:

it distinguishes ownership assertions from pure assertions in a similar way to CN and provides

languages for user-defined separation logic predicates and logical functions; VeriFast supports some

features CN currently does not, such as recursive logical functions, as well as automatic lemma

application and predicate un/packing. RefinedC is much more expressive than CN or VeriFast: being

based on Iris, it has built-in support for higher-order predicates, unrestricted logical quantifiers,

and arbitrary Coq terms inside types; these cannot generally be handled fully automatically; users

can increase automation by extending its reasoning rules or using custom tactics. Frama-C has a

function specification language with C-like syntax that is superficially similar to CN’s; however

Frama-C is based on Hoare Logic. Frama-C supports a number of features that CN could benefit

from: it supports ghost variables, updated via ghost code, it allows multiple specifications for

functions (“behaviours”), and it can generate runtime checks from specifications. Compared to

these tools, a special feature of CN is the restrictions it imposes on specifications, such as our

resource-let-binding syntax and typing rules that prevent non-linear integer arithmetic (except via

uninterpreted functions), to ensure predictable type checking.

Annotation overhead and performance. To compare annotation overhead and verification perfor-

mance, we verify a smaller case study in each tool: pKVM’s “early allocator”, a simple allocator

without memory reclamation, which pKVM uses during initialisation (before using the buddy

allocator of §3). The source code consists of 96 lines of C code and macro definitions, and can be

found at https://github.com/rems-project/pKVM-early-allocator-case-study. The allocator’s main

functions are hyp_early_alloc_init, which initialises the allocator; hyp_early_alloc_nr_pages,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://github.com/rems-project/pKVM-early-allocator-case-study

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:27

which calculates how many pages have already been allocated; and hyp_early_alloc_page, which

returns a void pointer to a freshly allocated page, zeroed using clear_page. We have also included

hyp_early_alloc_contig from a newer version of the early allocator, which takes an unsigned int

nr_pages and allocates several adjacent pages; moreover, since clear_page is originally written in

assembly, we have added a simple C implementation.

tool spec. instr. defs. proof total time

CN 47 7 17 0 0.74x 0.47s

Frama-C 38 0 0 0 0.40x 3.46s

RefinedC 50 2 5 8 0.77x 16.72s

VeriFast 38 5 14 3 0.62x 0.05s

spec./instr./defs./proof are line counts, x: overhead factor, s: seconds

We formalise the early allocator in each of the

four systems, specifying function pre- and post-

conditions that guarantee safe execution, correct

ownership transfer, and certain properties of the

resulting values. For RefinedCwe base the formal-

isation on an existing one [Lepigre and Sammler

2022; Lepigre et al. 2022]. Since one of the types

(for regions of zero’ed memory) does not currently have good RefinedC support, we skip the

RefinedC proof of clear_page and a loop in hyp_early_alloc_contig (accounting for this in calcu-

lating the formalisation overhead). Since Frama-C is based on Hoare Logic rather than separation

logic, it does not easily support the ownership specifications used for the other tools; our Frama-C

specifications therefore are weaker than those for the other tools. The table on the right shows

the formalisation overheads and verification running times. “Instr.” counts intra-function instru-

mentation: pack and unpack statements for VeriFast and CN, and pointer provenance hints for

RefinedC. The Frama-C formalisation is concise, but not directly comparable (see above). Among

the separation logic tools, VeriFast has the most concise specifications and smallest overhead,

indicating room for improvement for CN. CN, Frama-C, and VeriFast, all verify the code fairly

quickly; in the case of Frama-C the solver times out for one proof goal after 10s; in the statistics

we use a 1s limit (with the same one goal timing out). RefinedC is implemented inside Coq, so

higher running times are expected. We run the tools inside a Ubuntu 22.04 VirtualBox with 8GB

ram restricted to two cores, on a 2GHz Quad-Core Intel Core i5 machine.

6 RELATEDWORK
Xi introduced the idea of combining solver-resolved logical constraints and typechecking in his

work on Dependent ML [Xi 2007], which combined much of the expressiveness of dependent type

theory with a lightweight, “proof-free” style of programming. DML permitted a very rich language

of logical constraints, and so did not have decidable type inference. Rondon et al. [2008] introduced

liquid types, which can be seen as a natural restriction of DML supporting decidable type inference.

The two key ideas behind liquid types are (1) to restrict the logical constraints to be quantifier-free,

and (2) to ensure that the quantifiers occurring in types track program values (function arguments

for universal quantifiers, function return values for existentials). The second restriction permits

quantifier instantiations to be resolved by looking at the arguments to a function, ensuring that

all the logical generated entailments remain quantifier-free and hence SMT-solvable. CN adopts

essentially the liquid types methodology to ensure that refinement checking is decidable, with some

additions for quantified variables in resource types and to support a restricted form of quantified

constraints with default instantiation and manual instantiation by the user.

Using substructural types to track mutable data is a very old idea, dating back to Reynolds’

syntactic control of interference [Reynolds 1978] and Girard’s linear logic [Girard 1987]. Reynolds

(with Peter O’Hearn) also invented separation logic, the most successful extension of Hoare logic for

reasoning about heap-manipulating programs. CN’s resource types are a hybrid of separation logic

and linear types. Unlike a pure linear type system, all program values in CN are nonlinear. Instead

(inspired by L3 [Ahmed et al. 2007]), resource ownership is decoupled from individual values and

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:28 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

managed linearly. The added flexibility of this approach simplifies verifying complex ownership

transfers which do not follow the structure of the data (as in the buddy allocator).

CN’s resource language must be a subset of separation logic, since our liquid types discipline

requires decidable logical constraints. However, expressing the ownership of a linked list requires

existential quantifiers. CN’s approach – distinguishing between input and output positions to ensure

existential constraints – is not novel, and is used by several earlier systems like VeriFast [Jacobs

et al. 2011] and Gillian [Maksimovic et al. 2021]. However, both of these systems permit writing

assertions which fall outside the well-moded fragment, and our realisation that the moding problem

can be formulated as a variable scoping problem is novel. Furthermore, Brotherston et al. [2016]

show that this fragment can be model-checked in polynomial time, which suggests that this style

of assertion should also be amenable to runtime checking (though we leave this to future work).

The system closest in design to CN is VeriFast [Jacobs et al. 2011]. VeriFast is also designed to

support predictable, decidable verification of separation logic proofs, though it is structured more

like a program logic rather than a type system. The biggest design differences are that VeriFast

uses an ad hoc C semantics and that it (like ATS [Cui et al. 2005], discussed below) treats the

array predicate as an inductive assertion, and so random access to array elements requires lemmas.

VeriFast also has features that CN does not yet have, such as user-defined inductive types and

some automation of opens and closes, which are not substantial design differences but are very

important to the user experience.

Since random array access is important for our target applications, we needed to support richer

automation for array accesses. We went through several iterations of our automation before settling

on our current scheme. The traditional SMT theory of arrays is insufficiently expressive, and

even extensions like the scheme of [Bradley et al. 2006] were still insufficiently expressive for the

invariants required for our buddy allocator verification. The Viper framework [Müller et al. 2017]

(used in the Prusti tool [Astrauskas et al. 2022]) has rich support for modelling arrays as iterated

separation conjunctions [Müller et al. 2016]. Our implementation of the Viper array inference

algorithm did not perform well, and we adopted a modified scheme (§2.10).

Also close in design to CN is ATS [Cui et al. 2005]. ATS extends a full functional programming

language (including higher-order functions and polymorphism) with support for linear resource

types. It can be seen as something like a higher-order, polymorphic version of kernel CN: in

particular, all linear types are tracked by explicit proof terms, which occur in the source, but are not

relevant at runtime. This makes it possible to express many rich ownership transformations, at the

price of even heavier annotations than CN. It is also its own language, with C as a compiler target.

Smallfoot [Berdine et al. 2005] initiated a line of work on developing tools to automatically derive

proofs for fixed, decidable fragments of separation logic, later reaching widespread production

usage with Infer [Calcagno and Distefano 2011]. These tools require very little annotation, but do

not prove strong properties – bug-finders rather than functional-correctness verification tools.

At the other end of the spectrum, systems like the Verified Software Toolchain [Appel et al. 2014],

Iris [Jung et al. 2018], and the C semantics of Krebbers [2015] build complete toolchains for doing

interactive separation logic proofs in the Coq proof assistant. In these systems the specification

language is a maximal one (with assertions as shallow embeddings in Coq), and proofs are mostly

manual (a 10-to-1 ratio of proof to code is typical for nontrivial Iris developments). VST is built

atop a verified compiler, CompCert [Leroy 2006], and specialises its logic to the CompCert dialect

of C, rather than ISO (or clang, or gcc) C. Iris is generic over the programming language.

In between these two extremes are Boogie [Barnett et al. 2005], F
∗
[Swamy et al. 2016] and similar

tools, as well as RefinedC [Sammler et al. 2021]. RefinedC is a refinement type system based on

separation logic. It instantiates Iris for C and provides significant proof automation using its Lithium

language; users can extend automation with new rules and provide custom tactics. RefinedC uses

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:29

the Cerberus front-end, but then its own ad hoc semantics, not the Cerberus elaboration. Boogie

and F
∗
make heavy use of SMT-based automation to discharge proof obligations. They both freely

use Z3’s support for quantifiers, and as such aim at tactic-based proof automation rather than

reliable inference. Boogie implements a program logic for a custom low-level language, and F
∗
a

dependent type theory, but both support generating C code from verified programs.

More distant from CN are tools like Frama-C [Baudin et al. 2021], which implements (essentially)

pure Hoare logic (rather than separation logic) for C, with support for manually discharging proofs

that automation cannot solve. (Boogie used to be in this category, but has recently grown support

for linear types, making it more similar to CN.)

There have beenmany verification projects of low-level systems code, using an equally wide array

of approaches. Many involve substantial manual work in a theorem prover, e.g. the verification of the

seL4 [Klein et al. 2010] microkernel in Isabelle by refinement, or the verification of the CertiKOS [Gu

et al. 2016] and SeKVM [Li et al. 2021] kernels in Coq via a stack of smaller refinement proofs, or

the BedRock hypervisor [Malecha et al. 2022], being verified by instantiating the Iris separation

logic with weakest precondition rules for a fragment of C++, in Coq. More similar to CN are more

automated approaches, e.g. verification of the Hyper-V hypervisor [Leinenbach and Santen 2009]

and Ironclad environment [Hawblitzel et al. 2014] using the Boogie system. These projects have

typically built a clean-slate implementation (e.g. seL4, CertiKOS), or even extracted it from their

proof environment (e.g. Ironclad).

All these systems have their own limitations, making direct comparison difficult; it would be

useful for the community to develop a common set of C functional correctness verification examples,

with a range of C feature and programming idiom usage. As a sanity check, we proved in CN some

example problems from VST and VeriFast. These examples are provided as gentle introductions

that work smoothly in those tools, and sometimes require more manual work (lemmas, etc.) in CN.

Conversely, we believe the low-level systems-code idioms of the pKVM buddy allocator would

make it challenging to verify in many other systems.

Overall, there are almost as many different approaches as there are verified systems, indicating

that the community still does not have a good sense of what the tradeoffs in this space are. CN

adds a promising and previously unexplored direction, and the successful verification of pKVM’s

buddy allocator using CN is encouraging. We plan to apply CN to more parts of pKVM, study

whether its design scales, and discover and add whatever extensions are required for handling

larger verifications of such conventional production systems code.

DATA ACCESS
Data accompanying this publication can be accessed at [Pulte et al. 2022].

ACKNOWLEDGMENTS
We thank Jean Pichon-Pharabod for valuable discussions. We thank the anonymous reviewers for

their helpful feedback. Finally, we thank Ben Laurie, Sarah de Haas, Hongseok Kim, the pKVM

development team, and the Android Security and Android Platform teams for their support. This

work was supported in part by a European Research Council (ERC) Consolidator Grant for the

project “TypeFoundry”, funded under the European Union’s Horizon 2020 Framework Programme

(grant agreement no. 101002277), in part by a European Research Council (ERC) Advanced Grant

“ELVER” under the European Union’s Horizon 2020 research and innovation programme (grant

agreement no. 789108), in part by an EPSRC Doctoral Training studentship, and in part by funding

from Google Research.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

1:30 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

REFERENCES
Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2007. L

3
: A Linear Language with Locations. Fundam. Informaticae 77, 4

(2007), 397–449.

Roberto M. Amadio, Nicholas Ayache, François Bobot, Jaap Boender, Brian Campbell, Ilias Garnier, Antoine Madet, James

McKinna, Dominic P. Mulligan, Mauro Piccolo, Randy Pollack, Yann Régis-Gianas, Claudio Sacerdoti Coen, Ian Stark,

and Paolo Tranquilli. 2013. Certified Complexity (CerCo). In Foundational and Practical Aspects of Resource Analysis -
Third International Workshop, FOPARA 2013, Bertinoro, Italy, August 29-31, 2013, Revised Selected Papers. 1–18. https:

//doi.org/10.1007/978-3-319-12466-7_1

Android Open Source. 2022. Android 13 Release Notes. https://source.android.com/docs/setup/about/android-13-release.

[Online; accessed 11-November-2022].

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon Stewart, Sandrine Blazy, and

Xavier Leroy. 2014. Program Logics for Certified Compilers. CUP. https://doi.org/10.1017/CBO9781107256552

Vytautas Astrauskas, Aurel Bílý, Jonás Fiala, Zachary Grannan, Christoph Matheja, Peter Müller, Federico Poli, and

Alexander J. Summers. 2022. The Prusti Project: Formal Verification for Rust. In NFM (Lecture Notes in Computer Science,
Vol. 13260). Springer, 88–108.

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. RustanM. Leino. 2005. Boogie: AModular Reusable

Verifier for Object-Oriented Programs. In FMCO (Lecture Notes in Computer Science, Vol. 4111). Springer, 364–387.
Patrick Baudin, François Bobot, David Bühler, Loïc Correnson, Florent Kirchner, Nikolai Kosmatov, André Maroneze,

Valentin Perrelle, Virgile Prevosto, Julien Signoles, and Nicky Williams. 2021. The dogged pursuit of bug-free C programs:

the Frama-C software analysis platform. Commun. ACM 64, 8 (2021), 56–68.

Christoph Baumann, Mats Näslund, Christian Gehrmann, Oliver Schwarz, and Hans Thorsen. 2016. A high assurance

virtualization platform for ARMv8. In European Conference on Networks and Communications, EuCNC 2016, Athens, Greece,
June 27-30, 2016. 210–214. https://doi.org/10.1109/EuCNC.2016.7561034

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Smallfoot: Modular Automatic Assertion Checking with

Separation Logic. In FMCO (Lecture Notes in Computer Science, Vol. 4111). Springer, 115–137.
Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s Decidable About Arrays?. In Verification, Model

Checking, and Abstract Interpretation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 3855), E. Allen Emerson and Kedar S. Namjoshi (Eds.). Springer,

427–442. https://doi.org/10.1007/11609773_28

James Brotherston, Nikos Gorogiannis, Max I. Kanovich, and Reuben Rowe. 2016. Model checking for symbolic-heap

separation logic with inductive predicates. In POPL. ACM, 84–96.

Cristiano Calcagno and Dino Distefano. 2011. Infer: An Automatic Program Verifier for Memory Safety of C Programs. In

NASA Formal Methods (Lecture Notes in Computer Science, Vol. 6617). Springer, 459–465.
Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. 2018. VST-Floyd: A Separation

Logic Tool to Verify Correctness of C Programs. J. Autom. Reason. 61, 1-4 (2018), 367–422. https://doi.org/10.1007/s10817-

018-9457-5

Sa Cui, Kevin Donnelly, and Hongwei Xi. 2005. ATS: A Language That Combines Programming with Theorem Proving. In

FroCoS (Lecture Notes in Computer Science, Vol. 3717). Springer, 310–320.
Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340. http://dl.acm.org/citation.cfm?id=1792734.

1792766

Will Deacon. 2020. Virtualisation for the Masses: Exposing KVM on Android. KVM Forum slides, https://mirrors.edge.

kernel.org/pub/linux/kernel/people/will/slides/kvmforum-2020-edited.pdf. Accessed 2022-07-07.

Jake Edge. 2020. KVM for Android. Linux Weekly News, LWNarticle](https://lwn.net/Articles/836693/. Accessed 2022-07-07.

Anthony C. J. Fox, Magnus O. Myreen, Yong Kiam Tan, and Ramana Kumar. 2017. Verified compilation of CakeML to

multiple machine-code targets. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP
2017, Paris, France, January 16-17, 2017. 125–137. https://doi.org/10.1145/3018610.3018621

Dan Frumin, Léon Gondelman, and Robbert Krebbers. 2019. Semi-automated Reasoning About Non-determinism in C

Expressions. In Programming Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11423), Luís Caires (Ed.). Springer, 60–87. https://doi.org/10.1007/978-

3-030-17184-1_3

Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1–102.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://doi.org/10.1007/978-3-319-12466-7_1
https://doi.org/10.1007/978-3-319-12466-7_1
https://source.android.com/docs/setup/about/android-13-release
https://doi.org/10.1017/CBO9781107256552
https://doi.org/10.1109/EuCNC.2016.7561034
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://mirrors.edge.kernel.org/pub/linux/kernel/people/will/slides/kvmforum-2020-edited.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/will/slides/kvmforum-2020-edited.pdf
LWN article](https://lwn.net/Articles/836693/
https://doi.org/10.1145/3018610.3018621
https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1007/978-3-030-17184-1_3

CN: Verifying Systems C Code with Separation-Logic Refinement Types 1:31

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016.

CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 653–669. https:

//www.usenix.org/conference/osdi16/technical-sessions/presentation/gu

Roberto Guanciale, Hamed Nemati, Mads Dam, and Christoph Baumann. 2016. Provably secure memory isolation for Linux

on ARM. Journal of Computer Security 24, 6 (2016), 793–837. https://doi.org/10.3233/JCS-160558

Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad

Apps: End-to-End Security via Automated Full-System Verification. In 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, Jason Flinn and Hank Levy (Eds.). USENIX

Association, 165–181. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel

Gernot Heiser, Gerwin Klein, and June Andronick. 2020. seL4 in Australia: from research to real-world trustworthy systems.

Commun. ACM 63, 4 (2020), 72–75. https://doi.org/10.1145/3378426

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods, Mihaela Bobaru, Klaus Havelund,

Gerard J. Holzmann, and Rajeev Joshi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 41–55.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2010. seL4: formal

verification of an operating-system kernel. Commun. ACM 53, 6 (2010), 107–115.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski, and Gernot Heiser.

2014. Comprehensive Formal Verification of an OS Microkernel. ACM TOCS 32, 1 (Feb. 2014), 2:1–2:70. https:

//doi.org/10.1145/2560537

Robbert Krebbers. 2015. The C Standard Formalized in Coq. Ph. D. Dissertation. Radboud University Nijmegen.

Robbert Krebbers. 2016. A Formal C Memory Model for Separation Logic. J. Autom. Reason. 57, 4 (2016), 319–387.

https://doi.org/10.1007/s10817-016-9369-1

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation of ML. In

Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California,

USA) (POPL ’14). ACM, New York, NY, USA, 179–191. https://doi.org/10.1145/2535838.2535841

Dirk Leinenbach and Thomas Santen. 2009. Verifying the Microsoft Hyper-V Hypervisor with VCC. In FM 2009: Formal
Methods, Second World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings. 806–809. https://doi.org/

10.1007/978-3-642-05089-3_51

Rodolphe Lepigre and Michael Sammler. 2022. RefinedC formalisation of the early allocator. https://gitlab.mpi-sws.org/iris/

refinedc/-/tree/master/linux/pkvm. [Online; accessed 24-October-2022].

Rodolphe Lepigre, Michael Sammler, Kayvan Memarian, Robbert Krebbers, Derek Dreyer, and Peter Sewell. 2022. VIP:

verifying real-world C idioms with integer-pointer casts. Proc. ACM Program. Lang. 6, POPL (2022), 1–32. https:

//doi.org/10.1145/3498681

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In POPL.
ACM, 42–54.

Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reason. 43, 4 (2009), 363–446. https://doi.org/10.

1007/s10817-009-9155-4

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. 2021. A Secure and Formally Verified Linux KVM

Hypervisor. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,
1782–1799. https://doi.org/10.1109/SP40001.2021.00049

Petar Maksimovic, José Fragoso Santos, Sacha-Élie Ayoun, and Philippa Gardner. 2021. Gillian: A Multi-Language Platform

for Unified Symbolic Analysis. CoRR abs/2105.14769 (2021).

Gregory Malecha, Gordon Stewart, Frantisek Farka, Jasper Haag, and Yoichi Hirai. 2022. Developing With Formal Methods

at BedRock Systems, Inc. IEEE Security & Privacy 20, 3 (May 2022), 33–42. https://doi.org/10.1109/MSEC.2022.3158196

Nicholas D. Matsakis and Felix S. Klock II. 2014. The Rust language. In Proceedings of the 2014 ACM SIGAda annual conference
on High integrity language technology, HILT 2014, Portland, Oregon, USA, October 18-21, 2014, Michael Feldman and

S. Tucker Taft (Eds.). ACM, 103–104. https://doi.org/10.1145/2663171.2663188

Paul-André Melliès and Noam Zeilberger. 2015. Functors are Type Refinement Systems. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 3–16. https://doi.org/10.1145/2676726.2676970

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.3233/JCS-160558
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://doi.org/10.1145/3378426
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://doi.org/10.1007/s10817-016-9369-1
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
https://gitlab.mpi-sws.org/iris/refinedc/-/tree/master/linux/pkvm
https://gitlab.mpi-sws.org/iris/refinedc/-/tree/master/linux/pkvm
https://doi.org/10.1145/3498681
https://doi.org/10.1145/3498681
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1109/MSEC.2022.3158196
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2676726.2676970

1:32 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami

Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson, and Peter

Sewell. 2019. Exploring C Semantics and Pointer Provenance. In Proceedings of the 46th ACM SIGPLAN Symposium on
Principles of Programming Languages. https://doi.org/10.1145/3290380 Proc. ACM Program. Lang. 3, POPL, Article 67.

Also available as ISO/IEC JTC1/SC22/WG14 N2311.

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N. M. Watson, and Peter

Sewell. 2016. Into the depths of C: elaborating the de facto standards. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra
Krintz and Emery D. Berger (Eds.). ACM, 1–15. https://doi.org/10.1145/2908080.2908081

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Automatic Verification of Iterated Separating Conjunctions

Using Symbolic Execution. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh Farzan

(Eds.). Springer, 405–425. https://doi.org/10.1007/978-3-319-41528-4_22

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2017. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In Dependable Software Systems Engineering. NATO Science for Peace and Security Series - D: Information

and Communication Security, Vol. 50. IOS Press, 104–125.

George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. 2002. CIL: Intermediate Language and

Tools for Analysis and Transformation of C Programs. In Compiler Construction, 11th International Conference, CC
2002, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France,
April 8-12, 2002, Proceedings (Lecture Notes in Computer Science, Vol. 2304), R. Nigel Horspool (Ed.). Springer, 213–228.
https://doi.org/10.1007/3-540-45937-5_16

Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson, Sidney Amani, Gerwin Klein, Toby Murray, Thomas

Sewell, and Gabriele Keller. 2021. Cogent: uniqueness types and certifying compilation. J. Funct. Program. 31 (2021), e25.
https://doi.org/10.1017/S095679682100023X

Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and Neel Krishnaswami. 2022. Data

for "CN: Verifying Systems C Code with Separation-Logic Refinement Types". https://doi.org/10.5281/zenodo.7320414

John C. Reynolds. 1978. Syntactic Control of Interference. In POPL. ACM Press, 39–46.

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on Logic
in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74.

https://doi.org/10.1109/LICS.2002.1029817

John C. Reynolds. 2008. An Introduction to Separation Logic (Preliminary Draft). "https://www.cs.cmu.edu/~jcr/

copenhagen08.pdf". "[Online; accessed 4-July-2022]".

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In PLDI. ACM, 159–169.

Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean Pichon-Pharabod, Derek Dreyer, Deepak Garg,

and Peter Sewell. 2022. Islaris: verification of machine code against authoritative ISA semantics. In PLDI ’22: 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, San Diego, CA, USA, June 13 -
17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 825–840. https://doi.org/10.1145/3519939.3523434

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC:

automating the foundational verification of C code with refined ownership types. In PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
Stephen N. Freund and Eran Yahav (Eds.). ACM, 158–174. https://doi.org/10.1145/3453483.3454036

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.

2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). ACM, 256–270. https://www.fstar-lang.org/papers/mumon/

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J. Fox, Scott Owens, and Michael Norrish. 2016. A new

verified compiler backend for CakeML. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. 60–73. https://doi.org/10.1145/2951913.2951924

Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and Ronghui Gu. 2021. Formal Verification of a Multiprocessor

Hypervisor on Arm Relaxed Memory Hardware. In SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021, Robbert van Renesse and Nickolai Zeldovich (Eds.).

ACM, 866–881. https://doi.org/10.1145/3477132.3483560

Hongwei Xi. 2007. Dependent ML: An approach to practical programming with dependent types. Journal of Functional
Programming 17, 2 (2007), 215–286. https://doi.org/10.1017/S0956796806006216

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3290380
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1017/S095679682100023X
https://doi.org/10.5281/zenodo.7320414
https://doi.org/10.1109/LICS.2002.1029817
https://www.cs.cmu.edu/~jcr/copenhagen08.pdf
https://www.cs.cmu.edu/~jcr/copenhagen08.pdf
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/3453483.3454036
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/2951913.2951924
https://doi.org/10.1145/3477132.3483560
https://doi.org/10.1017/S0956796806006216

	Abstract
	1 Introduction
	2 The CN Design
	2.1 Handling a Realistic C Semantics
	2.2 Core
	2.3 Refinement Types
	2.4 Decidable Refinement Typing
	2.5 Counterexamples
	2.6 Resource Types
	2.7 Return and Function Types
	2.8 Resource and Logical Variable Inference
	2.9 Inductive Predicates
	2.10 Array Resources
	2.11 Lemmas
	2.12 Logical Variables

	3 Buddy Allocator
	3.1 Overview of the Allocator Implementation
	3.2 Verification Approach
	3.3 Example Function

	4 Formalisation
	4.1 Types and Terms
	4.2 Judgements and Example Rules
	4.3 Soundness

	5 Comparison
	6 Related Work
	Acknowledgments
	References

