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Abstract
Existing languages provide good support for typeful programming of standalone programs. In a
distributed system, however, there may be interaction between multiple instances of many distinct
programs, sharing some (but not necessarily all) of their module structure, and with some instances
rebuilt with new versions of certain modules as time goes on. In this paper we discuss programming-
language support for such systems, focussing on their typing and naming issues.

We describe an experimental language, Acute, which extends an ML core to support distributed
development, deployment, and execution, allowing type-safe interaction between separately built
programs. The main features are: (1) type-safe marshalling of arbitrary values; (2) type names that
are generated (freshly and by hashing) to ensure that type equality tests suffice to protect the in-
variants of abstract types, across the entire distributed system; (3) expression-level names generated
to ensure that name equality tests suffice for type safety of associated values, e.g. values carried
on named channels; (4) controlled dynamic rebinding of marshalled values to local resources; and
(5) thunkification of threads and mutexes to support computation mobility.

These features are a large part of what is needed for typeful distributed programming. They are
a relatively lightweight extension of ML, should be efficiently implementable, and are expressive
enough to enable a wide variety of distributed infrastructure layers to be written as simple library code
above the byte-string network and persistent store APIs. This disentangles the language runtime from
communication intricacies. This paper highlights the main design choices in Acute. It is supported
by a full language definition (of typing, compilation, and operational semantics), by a prototype
implementation, and by example distribution libraries.

1 Introduction

Distributed computation is now pervasive, with execution, software development, and de-
ployment spread over large networks, long timescales, and multiple administrative do-
mains. Because of this, distributed systems cannot in general be deployed or updated atom-
ically. They are not necessarily composed of multiple instances of a single program version,
but instead of many versions of many programs that need to interoperate, perhaps sharing
some libraries but not others. Moreover, the intrinsic concurrency and nondeterminism
of distributed systems, and the complexity of the underlying network layers, makes them
particularly hard to understand and debug, especially without type safety. Existing pro-
gramming languages, such as ML, Haskell, Java and C], provide good support for local
computation, with rich type structures and (mostly) static type-safety guarantees. When it
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comes to distributed computation, however, they fall short, with little support for its many
system-development challenges.

In this work we seek to remedy this lack, concentrating on what must be added to ML-
like (typed, call-by-value, higher-order) languages to support typed distributed program-
ming. We have defined and implemented a programming language, Acute, which extends
an OCaml core with features for type-safe marshalling and naming in the distributed set-
ting. Our extensions are lightweight changes to ML, but suffice to enable sophisticated
distributed infrastructure, e.g. substantial parts of JoCaml (Conchon & Fessant, 1999),
Nomadic Pict (Sewell et al., 1999), and Ambient primitives (Cardelli & Gordon, 1998),
to be programmed as simple libraries. Acute’s support for interaction between programs
goes well beyond previous work, allowing type-safe interaction between different runtime
instances, different builds, and different versions of programs, whilst respecting modular
structure and type abstraction boundaries in each interacting partner. In a distributed sys-
tem it will often be impossible to detect all type errors statically, but it is not necessary to be
completely dynamic — errors should be detected as early as possible in the development,
deployment, and execution process. We show how this can be done.

The main part of this paper, §2–9, is devoted to an informal presentation of the main
design issues, which we introduce briefly in the remainder of this section. It uses small
but executable examples to discuss these from the programmer’s point of view. Acute has
a full definition (Sewell et al., 2004), covering syntax, typing, compilation, and opera-
tional semantics, and a prototype implementation is also available (Sewell et al., 2005a).
This closely mirrors the structure of the operational semantics; it is efficient enough to run
moderate examples. The semantics and implementation are outlined in §12 and §13 re-
spectively. The definition and implementation have both been essential to resolve the many
semantic subtleties introduced by the synthesis of the various features.

We demonstrate that Acute does indeed support typeful distributed programs with vari-
ous examples (§11), including distributed communication infrastructure libraries, and in
§14 and §15 we describe related and future work and conclude.

Starting point The starting point for Acute is a conventional ML-like language. The
Acute core language consists of normal ML types and expressions: booleans, integers,
strings, tuples, lists, options, recursive functions, pattern matching, references, exceptions,
and invocations of OS primitives in standard libraries. The module language includes top-
level declarations of structures containing expression fields and type fields, with both ab-
stract and manifest types in signatures. Module initialisation can involve arbitrary compu-
tation.

We omit some other standard features to keep the language relatively small: user-defined
type operators, constructors, and exceptions; substructures; and functors (we believe that
adding first-order applicative functors would be straightforward; going beyond that would
be more interesting and is addressed in recent work by Peskine (2007)). Some more sub-
stantial extensions are discussed in the Conclusion. To avoid syntax debate we fix on that
of OCaml. Most of the Acute grammar is shown in Appendix A, with the novel forms
highlighted.

Type-safe marshalling (§2, §3) Our basic addition to ML is type-safe marshalling: con-
structs to marshal arbitrary values to byte-strings, with a type equality check at unmarshal-
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time guaranteeing safety. We argue that this is the right level of abstraction for a general-
purpose distributed language, allowing complex communication infrastructure algorithms
to be coded (type-safely) as libraries, above the standard byte-string network and persist-
ent store APIs, rather than built in to the language runtime. We recall the different design
choices for trusted and untrusted interaction.

Dynamic linking and rebinding (§4) When marshalling and unmarshalling code val-
ues, e.g. to communicate ML functions between machines, it may be necessary to dy-
namically rebind them to local resources at their destination. Similarly, one may need to
dynamically link modules. There are many questions here: how to specify which resources
should be shipped with a marshalled value and which should be dynamically rebound;
what evaluation strategy to use; when rebinding takes effect; and what to rebind to. In this
section our aim is to articulate the design space; for Acute we make interim choices which
suffice to bring out the typing and versioning issues involved in rebinding while keeping
the language simple. A running Acute program consists roughly of a sequence of module
definitions (of ML structures), imports of modules with specified signatures, which may
or may not be linked, and marks which indicate where rebinding can take effect; together
with running processes and a shared store.

Type names (§5) Type-safe marshalling demands a run time notion of type identity
that makes sense across multiple versions of differing programs. For concrete types this
is conceptually straightforward — for example, one can check the equality between type
int from one program instance and type int from another. For abstract types more care is
necessary. Static type systems for ML modules involve non-trivial theories of type equality
based on the source-code names of abstract types (e.g. M.t), but these are only meaningful
within a single program. We generate globally meaningful run-time type names for abstract
types in three ways: by hashing module definitions, taking their dependencies into account;
or freshly at compile time; or freshly at run time. The first two enable different builds or
different programs to share abstract type names, by sharing their module source code or
object code respectively; the last is needed for modules with effect-full initialisation. In all
three cases the way in which names are generated ensures that type name equality tests
suffice to protect the invariants of abstract types.

Expression-level names (§6) Globally meaningful expression-level names are needed
for type-safe interaction, e.g. for communication channel names or RPC handles. They can
also be constructed as hashes or created fresh at compile time or run time; we show how
these support several important idioms. The ways in which expression-level names are gen-
erated ensure that name equality tests suffice to guarantee that any associated values (e.g.
any values passed on named channels) have the right types. The polytypic support and
swap operations of Shinwell, Pitts, and Gabbay’s FreshOCaml (Shinwell, 2005; Shinwell
et al., 2003) are included to support swizzling of local names during communication.

Versions and version constraints (§7, §8) In a single-program development process
one ensures the executable is built from a coherent set of versions of its modules by con-
trolling static linking — often, simply by building from a single source tree. With dynamic
linking and rebinding more support is required: we add versions and version constraints to
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modules and imports respectively. Allowing these to refer to module names gives flexib-
ility over whether code consumers or producers have control.

There is a subtle interplay between versions, modules, imports, and type identity, re-
quiring additional structure in modules and imports. A mechanism for looking through
abstraction boundaries is also needed for some version-change scenarios.

Local concurrency and thunkification (§9) Local concurrency is important for dis-
tributed programming. Acute provides a minimal level of support, with threads, mutexes
and condition variables. Local messaging libraries can be coded up using these, though in a
production implementation they might be built-in for performance. We also provide thunki-
fication (loosely analogous to call/cc), allowing a collection of threads (and mutexes and
condition variables) to be atomically captured as a thunk that can then be marshalled and
communicated or stored; this enables various constructs for mobility and checkpointing to
be coded up.

Polymorphism (§10) Acute does not have standard ML-style polymorphism, as our dis-
tributed infrastructure examples need first-class existentials (e.g. to code up polymorphic
channels) and first-class universals (for marshalling polymorphic functions). We therefore
have explicit System F style polymorphism, and for the time being the implementation
does some ad-hoc partial inference. For writing typed communication libraries we need to
compare names of different name types, with the ‘true’ branch typed under the assumption
that these are the same; we add a namecase operation that combines this with existential
unpacking.

Examples (§11) We demonstrate that Acute does indeed support typeful distributed
programs with several medium-scale examples, all written as libraries in Acute above the
byte-string TCP Sockets API: a typed distributed channel library, an implementation of
the Nomadic Pict (Sewell et al., 1999) primitives for communication and mobility, and an
implementation of the Ambient primitives (Cardelli & Gordon, 1998). These require and
use most of the new features.

Semantics (§12) The main parts of the Acute definition are a type system, a definition
of compilation, and a small-step operational semantics. The static type system for source
programs is based on an OCaml core and a second-class module system, with singleton
kinds for expressing abstract and manifest type fields in modules.

The definition of compilation describes how global type-level and expression-level
names are constructed, including the details of hash bodies.

The operational semantics for rebinding rests on our redex-time evaluation strategy
(Bierman et al., 2003) for simply typed λ-calculus and here adapted to a second-class
module system: to express rebinding the semantics must preserve the module structure
throughout computation instead of substituting it away.

The semantics also preserves abstraction boundaries throughout computation, with a
generalisation of the coloured brackets of Grossman et al. (2000) to the entire Acute

language (except, to date, the System F constructs). This is technically delicate (and not
needed for implementations, which can erase all brackets) but provides useful clarity in a
setting where abstraction boundaries may be complex, with abstract types shared between
programs.
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The semantics preserves also the internal structure of hashes. This too can be erased in
implementations, which can implement hashes and fresh names with literal bit-strings (e.g.
128-bit MD5 or 160-bit SHA1 hashes, and pseudo-random numbers), but is needed to state
type preservation and progress properties. As we discuss later, the abstraction-preserving
semantics makes these rather stronger than usual.

Implementation (§13) The Acute implementation is written in FreshOCaml, as a meta-
experiment in using the Fresh features for a medium-scale program (some 25 000 lines). It
is a prototype: designed to be efficient enough to run moderate examples while remaining
rather close in structure to the semantics. The runtime interprets an intermediate language
which is essentially the abstract syntax extended with closures. Performance is roughly
3000 times slower than OCaml bytecode.

The definition is too large (on the scale of the ML definition (Milner et al., 1990) rather
than an idealised λ-calculus) to make proofs of soundness properties feasible with the
available resources and tools. To increase confidence in both semantics and implement-
ation, therefore, our implementation is designed to optionally type-check the entire con-
figuration after each reduction step. This has been extremely useful, identifying delicate
issues in both the semantics and the code.

Relationship to previous work Acute builds on previous work, in which we intro-
duced new-bound type names for abstract types (Sewell, 2001), hash-generated type names
(Leifer et al., 2003a), and controlled dynamic rebinding in a lambda-calculus (Bierman
et al., 2003), all in simple variants for for small calculi.

Our contribution in this paper is threefold: discussion of the design space and identi-
fication of features needed for high-level typed distributed programming, the synthesis of
those features into a usable experimental language, and their detailed semantic design. The
main new technical innovations are:

• a uniform treatment of names created by hash, fresh, or compile-time fresh, both for
type names and (covering the main usage scenarios) for expression names, dealing
with module initialisation and dependent-record modules;

• explicit versions and version constraints, with their delicate interplay with imports
and type equality;

• module-level dynamic linking and rebinding;
• support for thunkification; and
• an abstraction-preserving semantics for all the above.

This paper is a revised and extended version of Sewell et al. (2005b) and Part I of Sewell et
al. (2004). With respect to the latter technical report, §12 outlining the semantics is entirely
new, and there are various other local changes. The main changes with respect to the former
paper are:

• addition of §4.7 on the relationship between modules and the filesystem;
• addition of §4.8 on module initialisation;
• addition of §4.9 on marshalling references;
• addition of §6.2–§6.4 on naming: name ties, polytypic name operations, and the

implementation of names;
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• extension of §7 on versioning;
• extension of §8.2 on breaking abstractions and with!;
• addition of §8.5 on marshalling inside abstraction boundaries;
• extension of §9 on concurrency, with §9.1–9.11 covering the choices for threads and
thunkify in more detail, discussing several interactions between language features;

• addition of §10 on polymorphism and namecase;
• addition of §12 outlining key aspects of the semantic definition; and
• addition of §13 describing the implementation.

2 Distributed abstractions: language vs libraries

A fundamental question for a distributed language is what communication support should
be built in to the language runtime and what should be left to libraries. The runtime must
be widely deployed, and so is not easily changed, whereas additional libraries can easily be
added locally. In contrast to some previous languages (e.g. Facile (Thomsen et al., 1996),
Obliq (Cardelli, 1995), and JoCaml (Conchon & Fessant, 1999)), we believe that a general-
purpose distributed programming language should not have a built-in commitment to any
particular means of interaction.

The reason for this is essentially the complexity of the distributed environment: system
designers must deal with partial failure, attack, and mobility — of code, of devices, and
of running computations. This complexity demands a great variety of communication and
persistent store abstractions, with varying performance, security, and robustness proper-
ties. At one extreme there are systems with tightly coupled computation over a reliable
network in a single trust domain. Here it might be appropriate to use a distributed shared
memory abstraction, implemented above TCP. At another extreme, interaction may be in-
trinsically asynchronous between mutually untrusting runtimes, e.g. with cryptographic
certificates communicated via portable persistent storage devices (smartcards or memory
sticks), between machines that have no network connection. In between, there are sys-
tems that require asynchronous messaging or RMI but, depending on the network firewall
structure, tunnel this over a variety of network protocols.

To attempt to build in direct support for all the required abstractions, in a single general-
purpose language, would be a never-ending task. Rather, the language should be at a level
of abstraction that makes distribution and communication explicit, allowing distributed
abstractions to be expressed as libraries.

Acute has constructs marshal and unmarshal to convert arbitrary values to and from
byte strings; they can be used above any byte-oriented persistent storage or communication
APIs.

This leaves the questions of (a) how these should behave, especially for values of func-
tional or abstract types, and (b) what other local expressiveness is required, especially in
the type system, to make it possible to code the many required distributed abstractions as
libraries. The rest of the paper is devoted to these.
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3 Basic type-safe distributed interaction

In this section we establish our basic conventions and assumptions, beginning with the
simplest possible examples of type-safe marshalling. We first consider one program that
sends the result of marshalling 5 on a fixed channel:

IO.send( marshal "StdLib" 5 : int )

(ignore the "StdLib" for now) and another that receives it, adds 3 and prints the result:

IO.print_int(3+(unmarshal(IO.receive()) as int))

Compiling the two programs and then executing them in parallel results in the second
printing 8. This and subsequent examples are executable Acute code. For brevity they
use a simple address-less IO library, providing primitives send:string->unit and
receive:unit->string. To emphasise that interaction might be via communication or
via persistent store, there are two implementations of IO, one uses TCP via the Acute

sockets API, with the loopback interface and a fixed port; the other writes and reads strings
from a file with a fixed name. Below we write the parallel execution of two separately built
programs vertically, separated by a dash —.

For safety, a type check is obviously needed at run time in the second program, to ensure
that the type of the marshalled value is compatible with the type at which it will be used.
For example, the second program here

IO.send( marshal "StdLib" "five" : string )

—
IO.print_int(3+(unmarshal(IO.receive()) as int))

should raise an exception as it receives a string which it uses as an int. Allowing in-
teraction via an untyped medium inevitably means that some dynamic errors are possible,
but they should be restricted to clearly identifiable program points, and detected as early
as possible. This error can be detected at unmarshal-time, rather than when the received
value is used as an argument to +, so we should do that type check at unmarshal-time,
but in some scenarios one may be able to exclude such errors at compile time, e.g. when
communicating on a typed channel; we return to this in §6.

The unmarshal dynamic check might be of two strengths. We can:

(a) include with the marshalled value an explicit representation of the type at which
it was marshalled, and check at unmarshal-time that that type is equal to the type
expected by the unmarshal — in the examples above, int=int and string=int

respectively; or
(b) additionally check that the marshalled value is a well-formed representation of some-

thing of that type.

In a trusted setting, where one can assume that the string was created by marshalling in a
well-behaved runtime (which might be assured by network locality or by cryptographically
protected interaction with trusted partners), option (a) suffices for safety.

If, however, the string might have been created or modified by an attacker, then we
should choose (b), to protect the integrity of the local runtime. Note, though, that this op-
tion is not always available: when we consider marshalled values of an abstract type, it
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may not be possible to check at unmarshal-time that the intended invariants of the type are
satisfied. They may have never been expressed explicitly, or be truly global properties. In
this case one should marshal only values of concrete types.(One could imagine an interme-
diate point, checking the representation type but ignoring the invariants, but the possibility
of breaking key invariants is in general as serious as the possibility of breaking the local
runtime.)

In Acute we focus on the trusted case, with option (a), and the problems of distributed
typing, naming, and rebinding it raises. We aim to protect against accidental programming
and configuration error, not against malice. A full language should also support the untrus-
ted case, perhaps with type- or proof-carrying code for marshalled functions.

One goal for Acute is to make it possible to write high-level distributed infrastructure
(middleware) in a high-level language. It would be a very interesting exercise to provide
as much as possible of the functionality of a middleware framework such as CORBA in an
Acute library. Note, though, that the main focus of Acute is rather different from that of the
core of CORBA (the IDL and IIOP). CORBA provides globally defined scalar types and
arrays and records thereof, along with marshalling and unmarshalling functions in many
languages. Its goal is thus to transport concrete data between programs written in a hetero-
genous collection of languages. Acute, by contrast, only supports communication between
homogeneous runtimes (all executing code compiled by Acute), but has much more am-
bitious support for the content of communicated data, including values of abstract types,
fragments of executable code (modules), etc., and less heavyweight machinery. However,
we would hope that much of the higher-level functionality of CORBA (name and trader
services, messaging, fault-tolerance, etc.) could be elegantly written in an Acute-like lan-
guage.

We do not discuss the design of the concrete wire format for marshalled values — the
Acute semantics presupposes just a partial raw unmarshal function from strings to ab-
stract syntax of configurations, including module definitions and store fragments; the pro-
totype implementation simply uses canonical pretty-prints of abstract syntax. A production
language would need an efficient and standardised internal wire format, and for some pur-
poses (and for simple types) a canonical ASN.1 or XML representation would be useful for
interoperation. In the untrusted case XML is now widely used and good language support
for (b) is clearly important.

Marshalling can be done on values of any type, including polymorphic values (Acute has
System F style explicit polymorphism). Elsewhere we discuss in depth the issues involved
in handling implicit polymorphism, in our work on HashCaml (Billings et al., 2006).

Rather than a polymorphic marshal, that can be used uniformly on values of arbit-
rary types, one could provide machinery for user-defined marshalling functions, integrating
marshalling with datastructure traversal. In Acute we factor the two out.

4 Dynamic linking and rebinding to local resources

4.1 References to local resources

Marshalling closed values, such as the 5 and "five" above, is conceptually straightfor-
ward. The design space becomes more interesting when we consider marshalling a value



Acute: High-Level Programming Language Design for Distributed Computation 9

that refers to some local resources. For example, the source code of a function (it may be
useful to think of a large plug-in software component) might mention identifiers for:

(1) ubiquitous standard library calls, e.g., print int;
(2) application-specific library calls with location-dependent semantics, e.g., routing

functions;
(3) application code that is not location-dependent but is known to be present at all

relevant sites; and
(4) other let-bound application values.

In (1–3) the function should be rebound to the local resource where and when it is
unmarshalled, whereas in (4) the definitions of resources must be copied and sent along
before their usages can be evaluated.

There is another possibility: a local resource could be converted into a distributed ref-
erence when the function is marshalled, and usages of it indirected via further network
communication. In some scenarios this may be desirable, but in others it is not, where one
cannot pay the performance cost for those future invocations, or cannot depend on future
reliable communication (and do not want to make each invocation of the resource separ-
ately subject to communication failures). Most sharply, where the function is marshalled
to persistent store, and unmarshalled after the original process has terminated, distributed
references are nonsensical. Following the design rationale of §2, we do not support dis-
tributed references directly, aiming rather to ensure our language is expressive enough to
allow libraries of ‘remotable’ resources to be written above our lower-level marshalling
primitives.

4.2 What to ship and what to rebind

Which definitions fall into (2–3) (to be rebound) and (4) (to be shipped) must be specified
by the programmer at the sender site; there is usually no way for an implementation to infer
the correct behaviour. We adapt the mechanism proposed by Bierman et al. (2003) (from
a lambda-calculus setting to an ML-style module language) to indicate which resources
should be rebound and which shipped for any marshal operation. An Acute program con-
sists roughly of a sequence of module definitions, interspersed with marks, followed by
running processes; those module definitions, together with implicit module definitions for
standard libraries, are the resources. Marks essentially name the sequence of module defin-
itions preceding them. Marshal operations are each with respect to a mark; the modules
below that mark are shipped and references to modules above that mark are rebound, to
whatever local definitions may be present at the receiver. The mark "StdLib" used in
§3 is declared at the end of the standard library; this mark and library are in scope in all
examples.

In the following example the sender declares a module M with a y field of type int

and value 6. It then marshals and sends the value fun ()->M.y. This marshal is with
respect to mark "StdLib", which lies above the definition of module M, so a copy of the
M definition is marshalled up with the value fun ()->M.y. Hence, when this function is
applied to () in the receiver, the evaluation of M.y can use that copy, resulting in 6.
module M : sig val y:int end = struct let y=6 end
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IO.send( marshal "StdLib" (fun ()->M.y))

—
(unmarshal (IO.receive ()) as unit -> int) ()

On the other hand, references to modules above the specified mark can be rebound. In the
simplest case, one can rebind to an identical copy of a module that is already present on
the receiver (for (3) or (1)). In the example below, the M1.y reference to M1 is rebound,
whereas the first definition of M2 is copied and sent with the marshalled value. This results
in () and ((6,3),4) for the two programs, with the 6 taken from the M2 module in the
second program and the 3 taken from a copy of the M1 module shipped with the marshalled
value.

module M1:sig val y:int end = struct let y=6 end

mark "MK"

module M2:sig val z:int end = struct let z=3 end

IO.send( marshal "MK" (fun ()-> (M1.y,M2.z))

: unit->int*int)

—
module M1:sig val y:int end = struct let y=6 end

module M2:sig val z:int end = struct let z=4 end

((unmarshal(IO.receive()) as unit->int*int)(),M2.z)

Note that we must permit running programs to contain multiple modules with the same
source-code name and interface but with different definitions (avoiding “DLL hell”) —
here, after the unmarshal, the receiver has two versions of M2 present, one used by the
unmarshalled code and the other by the original receiver code.

In more interesting examples one may want to rebind to a local definition of M1 even if
it is not identical, to pick up some truly location-dependent library. The code below shows
this, terminating with () and (7,3).

module M1:sig val y:int end = struct let y=6 end

import M1:sig val y:int end version * = M1

mark "MK"

module M2:sig val z:int end = struct let z=3 end

IO.send( marshal "MK" (fun ()-> (M1.y,M2.z))

: unit->int*int )

—
module M1:sig val y:int end = struct let y=7 end

module M2:sig val z:int end = struct let z=4 end

(unmarshal (IO.receive ()) as unit->int*int) ()

The sender has two modules, M1 and M2, with M1 above the mark MK. It marshals a value
fun ()-> (M1.y,M2.z), that refers to both of them, with respect to that mark. This treats
M2.z statically and M1.y dynamically at the marshal/unmarshal point: a copy of M2 is sent
along, and on unmarshalling at the receiver the value is rebound to the local definition of
M1, in which y=7. To permit this rebinding we use an explicit import

import M1 : sig val y:int end version * = M1

An import introduces a module identifier (the left M1) with a signature; it may or may not
be linked to an earlier module or import (this one is, to the M1 module definition earlier
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in the example). The version * allows rebinding to any version of M1. This overrides
the default behaviour, which would permit rebinding only to identical copies of the local
M1. Marks are simply string constants, not binders subject to alpha equivalence, as they
themselves need to be dynamically rebound. For example, if one marshals a function that
has an embedded marshal with respect to "StdLib", and then unmarshals and executes it
elsewere, one typically wants the embedded marshal to act with respect to the now-local
"StdLib".

4.3 Evaluation strategy: the relative timing of variable instantiation and marshalling

A language with rebinding cannot use a standard call-by-value operational semantics,
which substitutes out identifier definitions as it comes to them, as some definitions may
need to be rebound later. We developed two alternative CBV reduction strategies, in (Bier-
man et al., 2003), in a simple lambda-calculus setting: redex-time, in which one instan-
tiates an identifier with its value only when the identifier occurs in redex-position, and
destruct-time where instantiation occurs even later, when the identifier appears in a context
which needs to destruct the outermost structure of the value. Both of these are, in the ab-
sence of marshalling, observationally equivalent to call-by-value reduction (Stoyle, 2006).
The destruct-time semantics permits more rebinding, but is also rather complex. We there-
fore use the redex-time strategy for module references (local expression reduction remains
standard CBV).

For example, the first occurrence of M.y in the first program below will be instantiated by
6 before the marshal happens, whereas the second occurrence would not appear in redex-
position until a subsequent unmarshal and application of the function to (); the second
occurrence is thus subject to rebinding. The results are () and (6,2).

module M:sig val y:int end = struct let y=6 end

import M:sig val y:int end version * = M

mark "MK"

IO.send( marshal "MK" (M.y, fun ()-> M.y)

: int * (unit->int) )

—
module M:sig val y:int end = struct let y=2 end

let ((x:int),(f:unit->int)) =

(unmarshal(IO.receive()) as int*(unit->int)) in

(x, f ())

4.4 Controlling when rebinding happens

We have to choose whether or not to allow execution of partial programs, which are those
in which some imports are not linked to any earlier module definition (or import). Partial
programs can arise in two ways. First, they can be written as such, as in conventional
programs that use dynamic linking, where a library is omitted from the statically linked
code, to be discovered and loaded at run time. For example:

import M : sig val y:int end version * = unlinked

fun () -> M.y
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Secondly, they can be generated by marshalling, when one marshals a value that depends
on a module above the mark (intending to rebind it on unmarshalling). For example, the
final state of the receiver in

module M:sig val y:int end = struct let y=6 end

import M:sig val y:int end version * = M

mark "MK"

IO.send( marshal "MK" (fun ()->M.y) : unit->int )

—
unmarshal (IO.receive ()) as unit->int

is roughly the program below, with an unlinked import of M.

import M : sig val y:int end version * = unlinked

fun ()-> M.y

If we disallow execution of partial programs then, when we unmarshal, all the unlinked
imports that were sent with the marshalled value must be linked in to locally available
definitions; the unmarshal should fail if this is not possible.

Alternatively, if we allow execution of partial programs, we must be prepared to deal
with an M.x in redex position where M is declared by an unlinked import. For any particular
unmarshal, one might wish to force linking to occur at unmarshal time (to make any errors
show up as early as possible) or defer it until the imported modules are actually used.
The latter allows successful execution of a program where one happens not to use any
functionality that requires libraries which are not present locally. Moreover, the ‘usage
point’ could be expressed either explicitly (as with a call to the Unix dlopen dynamic
loader) or implicitly, when a module field appears in redex-position.

A full language should support this per-marshal choice, but for simplicity Acute supports
only one of the alternatives: it allows execution of partial programs, and no linking is forced
at unmarshal time. Instead, when an unlinked M.x appears in redex position we look for an
M to link the import to.

4.5 Controlling what to rebind to

How to look for such an M is specified by a resolvespec that can (optionally) be included
in the import. By default it will be looked for just in the running program, in the sequence
of modules defined above the import. Sometimes, though, one may wish to search in the
local filesystem (e.g. for conventional shared-object names such as libc.so.6), or even
at a web URI. In Acute we make an ad-hoc choice of a simple resolvespec language: a
resolvespec is a finite list of atomic resolvespecs, each of which is either Static Link,
Here Already or a URI. Lookup attempts proceed down the list, with Static Link in-
dicating the import should already be linked, Here Already prompting a search for a
suitable module (with the right name, signature and version) in the running program, and
a URI prompting a file to be fetched and examined for the presence of a suitable module.

There is a tension between a restricted and a general resolvespec language. Sometimes
one may need the generality of arbitrary computation (as in Java classloaders), e.g. in
browsers that dynamically discover where to obtain a newly required plugin. On the other
hand, a restricted language makes it possible to analyse a program to discover an upper
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bound on the set of modules it may require — necessary if one is marshalling it to a
disconnected device, say. A full language should support both, though the majority of
programs might only need the analysable sublanguage.

This resolvespec data is added to imports, for example:

import M : sig val y:int end version * by

"http://www.cl.cam.ac.uk/users/pes20/acute/M.ac"

= unlinked

M.y + 3

Here the M.y is in redex-position, so the runtime examines the resolvespec list
associated with the import of M. That list has just a single element, the URI
http://www.cl.cam.ac.uk/users/pes20/acute/M.ac. The file there will be fetched
and (if it contains a definition of M with the right signature) the modules it contains will be
added to the running program just before the import, which will be linked to the definition
of M. The M.y can then be instantiated with its value. URI resolvespecs are, of course, a
limited form of distributed reference.

Note that this mechanism is not an exception — after M is loaded, the M.y is instantiated
in its original evaluation context ( + 3). It could perhaps be encoded (with exceptions
and affine continuations, or by encoding imports as option references) but here we focus
on the user language.

4.6 The structure of marks and modules

A running Acute program has a linear sequence of evaluated definitions (marks, module
definitions and imports) scoping over the running processes. Imports may be linked only
to module definitions (or imports) that precede them in this sequence. When a value is
unmarshalled, any additional module definitions carried with it are added to the end of the
sequence.

This linear structure suffices as a setting to explore the typing and naming issues in the
remainder of the paper, but it is probably not ideal. For example, one might want cyclic
linking (involving the complexities of recursive modules or mixins); or support for two
endpoints to negotiate about what modules are already shared and what need to be shipped;
or explicit control over what must not be shipped, e.g. due to license restrictions or security
concerns. We leave these for future work.

4.7 The relationship between modules and the filesystem

Programs are decomposed not just into modules, but into separate source files. We have to
choose whether (1) source files correspond to modules (as in OCaml, where a file named
foo.ml implicitly defines a module Foo), or (2) source files contain sequences of mod-
ule definitions, and are logically concatenated together in the build process, or (3) both
are possible. As we shall see in the following sections, to deal with version change we
sometimes need to refer to the results of previous builds. For Acute we take the simplest
possible structure that supports this, following (2) with files containing compilation units:

compilationunit ::=
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empty

e

sourcedefinition ;; compilationunit

includesource sourcefilename ;; compilationunit

includecompiled compiledfilename ;; compilationunit

In this grammar, e is an expression; includesource specifies a source file to statically
include at the program point where it appears; and includecompiled does the same but
for object files.

The result of compilation is a compiled unit which is just a sequence of compiled module
definitions followed by an optional expression.

compiledunit ::=

empty

e

definition ;; compiledunit

This means that the decomposition of a program into files does not affect its semantics,
except that when code is loaded by a URI resolvespec an entire compiled unit is loaded.

In Acute any modules shipped with a marshalled value are loaded into the local runtime,
but are not saved to local persistent store to be available to future runtime instances. One
could envisage a closer integration of communication and package installation.

4.8 Module initialisation

In ML, module evaluation can involve arbitrary computation. For example, in
module fresh M : sig val x: int ref val y:unit end

= struct let x=ref 3 let y=IO.print_int !x end

the structure associates non-value expressions to both x and y; its evaluation to a structure
value involves expression evaluation which has both store and IO effects. The store effect
enables per-module state to be created.

This is also possible in Acute, though as we shall see in §5 it is necessary to distin-
guish between modules that have such initialisation effects and modules that do not. The
evaluation order for a single sequential program is straightforward: a program is roughly a
sequence of module definitions followed by an expression; the definitions are evaluated in
that order, followed by the expression.

New module definitions can be introduced dynamically, both by unmarshalling and
fetched via resolvespecs. The evaluation order ensures that any modules that must be mar-
shalled have already been evaluated, and so unmarshalling only ever adds module value
definitions to the program.

Consider now the definitions fetched via a resolvespec. As we do not have cyclic linking,
these definitions must be added before the import that demanded them. One could allow
such definitions to be compiled units of unevaluated definitions. In the sequential case this
would be straightforward: simply by evaluating the extant definition list in order, any newly
added definitions would be evaluated before control returns to the program below. With
concurrency, however, there may be multiple threads referring to an import that triggers
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the addition of new definitions, and some mechanism would be required to block linking
of that import until they are fully evaluated (or, equivalently, block instantiation from each
new definition until it is evaluated). This flow of control seems complex both from the
programmer’s point of view and to express in the semantics; we therefore do not allow non-
evaluated definitions to be fetched via a resolvespec. We return to the interaction between
module initialisation and concurrency in §9.8.

In a language with finer-grain control of linking (for the negotiation discussed in
§4.2) one might want more control over initialisation, allowing clients to demand their
own freshly initialised occurrences of modules. Further, if one has a nested marshalling,
i.e. marshalled functions that marshal functions, in combination with a non-trivial mark
structure, then the linear order will often not be satisfactory. We leave these issues for
future work.

4.9 Marshalling references

Acute contains ML-style references, so we have to deal with marshalling of values that
include store locations. For example:
let (x:int ref) = ref %[int] 5 in IO.send( marshal "StdLib" x : int ref)

—
IO.print_int ( ! %[int] (unmarshal (IO.receive ()) as int ref ))

(The %[int] is an explicit System F type application; later we will also use %[] as place-
holders for inferred types.) Here the best choice for the core language semantics seems
to be for the marshalled value to include a copy of the reachable part of the store, to be
disjointly added to the store of any unmarshaller. Just as in §4.1 we reject the alternative of
building in automatic conversion of local references to distributed references, as no single
distributed semantics (which here should include distributed garbage collection) will be
satisfactory for all applications. A full language must be rich enough to express distributed
store libraries above this, of course, and perhaps also other constructs such as those of
(Sekiguchi & Yonezawa, 1997; Boudol, 2003).

Some applications would demand distributed references together with distributed
garbage collection (as JoCaml provides (Fessant, 2001)). We leave investigation of this,
and of the type-theoretic support it requires, to future work.

One might well add more structure to the store to support more refined marshalling. In
particular, one can envisage nested regions of local and of distributed store, perhaps related
to the mark structure. We leave the development of this to future work also.

5 Naming: global module and type names

We now turn to marshalling and unmarshalling of values of abstract types. In ML, and in
Acute, abstract types can be introduced by modules. For example, the module
module EvenCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x
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val up:t->t let up = fun (x:int)->2+x

end end

provides an abstract type EvenCounter.t with representation type int; this represent-
ation type is not revealed in the signature above. The programmer might intend that all
values of this type satisfy the ‘even’ invariant; they can ensure this, no matter how the
module is used, simply by checking that the start and up operations preserve evenness.

Now, for values of type EvenCounter.t, what should the unmarshal-time dynamic type
equality check of §3 be? It should ensure not just type safety with respect to the represent-
ation type, but also abstraction safety — respecting the invariants of the module. Within a
single program, and for communication between programs with identical sources, one can
compare such abstract types by their source-code paths, with EvenCounter.t having the
same meaning in all copies (this is roughly what the manifest type and singleton kind static
type systems of Leroy (1994) and Harper and Lillibridge (1994) do).

For distributed programming we need a notion of type equality that makes sense at run
time across the entire distributed system. This should respect abstraction: two abstract types
with the same representation type but completely different operations will have different
invariants, and should not be compatible. Moreover, we want common cases of interoper-
ation to ‘just work’: if two programs share an (effect-free) module that defines an abstract
type (and share its dependencies) but differ elsewhere, they should be able to exchange
values of that type.

We see three cases, with corresponding ways of constructing globally meaningful type
names.

Case 1 For a module such as EvenCounter above that is effect-free (i.e. evaluation
of the structure body involves no effects) we can use module hashes as global names for
abstract types, generalising our earlier work (Leifer et al., 2003a) to dependent-record
modules. The type EvenCounter.t is compiled to h.t, where the hash h is (roughly)

hash(

module EvenCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up = fun(x:int)->2+x

end end

)

i.e. the hash of the module definition (in fact, of the abstract syntax of the module defini-
tion, up to alpha equivalence and type equality, together with some additional data). If one
unmarshals a pair of type EvenCounter.t * EvenCounter.t the unmarshal type equal-
ity check will compare with h.t*h.t. This allows interoperation to just work between
programs that share the EvenCounter source code, without further ado.

In constructing the hash for a module M we have to take into account any dependencies
it has on other modules M’, replacing any type and term references M’.t and M’.x. In
our earlier work we did so by substituting out the definitions of all manifest types and
terms (replacing abstract types by their hash type name). Now, to avoid doing that term



Acute: High-Level Programming Language Design for Distributed Computation 17

substitution in the implementation, we replace M’.x by h ’.x, where h ’ is the hash of
the definition of M’. This gives a slightly finer, but we think more intuitive, notion of type
equality. We still substitute out the definitions of manifest types from earlier modules.
This is forced: in a context where M.t is manifestly equal to int, it should not make any
difference to subsequent types which is used.

Case 2 Now consider effect-full modules such as the NCounter module below, where
evaluating the up expression to a value involves an IO effect.
module fresh NCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up =

let step=IO.read_int() in

fun (x:int)->step+x

end end

This reads an int from standard input at module initialisation time, and the invariant —
that all values of type NCounter.t are a multiple of that int — depends on that effect.
For such effect-full modules a fresh type name should be generated each time the module
is initialised, at run time, to ensure abstraction safety.

Case 3 Returning to effect-free modules, the programmer may wish to force a fresh type
name to be generated, to avoid accidental type equalities between different but overlapping
runs of the distributed system. A fresh name could be generated each time the module is
initialised, as in the second case, or each time the module is compiled. This latter pos-
sibility, as in our earlier work (Sewell, 2001), enables interoperation between programs
linked against the same compiled module, while forbidding interoperation between differ-
ent builds.

For abstract types associated with modules it suffices to generate hashes or fresh names
h per module, using the various h.t as the global type names for the abstract types of that
module.

We let the programmer specify which of the three behaviours is required with a
hash, fresh, or cfresh mode in the module definition, writing e.g. module hash

EvenCounter. In general it would be abstraction-breaking to specify hash or cfresh
for an effect-full module. To prevent this requires some kind of effect analysis, for which
we use coarse but simple notions of valuability, following (Harper & Stone, 2000), and of
compile-time valuability.

We say a module is valuable if all of the expressions in its structure are and if its types
are hash-generated. The set of valuable expressions is intermediate between the syntactic
values and the expressions that a type-and-effect system could identify as effect-free, which
in turn are a subset of the semantically effect-free expressions. They can include, e.g.,
applications of basic operators such as 2+2, providing useful flexibility.

The compile-time valuable, or cvaluable, modules can also include cfresh but other-
wise are similar to the valuable modules. The non-valuable modules are those that are
neither valuable nor cvaluable. If none of the fresh, hash or cfresh keywords are spe-
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cified then a valuable module defaults to hash; a cvaluable module defaults to cfresh;
and a non-valuable module must be fresh. On occasion it seems necessary to override
the valuability checks, which we make possible with hash! and cfresh! modes. This is
discussed in §8.3.

Acute also provides first-class System F existentials, as the experience with Pict (Pierce
& Turner, 2000) and Nomadic Pict (Sewell et al., 1999; Unyapoth & Sewell, 2001) demon-
strates these are important for expressing messaging infrastructures. For these a fresh type
name will be constructed at each unpack, to correspond with the static type system.

The constructs described in this section provide, we believe, a good level of abstrac-
tion safety. In Acute, abstract types are not compatible (either statically or dynamically)
with their representation types, and we give the programmer enough control to tune the
dynamic type equality for various scenarios. It seems impossible, however, to prevent all
information about the implementation of an abstract type leaking out. Most obviously, an
equality comparison on the byte sequences of marshalled values of two implementations
of an abstract type could reveal that they they have different representations.

Additionally, there are several points at which it seems that programmers writing dis-
tributed multi-version programs involving abstract types would need to actively break ab-
stractions (see §8.2) or to indirectly break abstraction by overriding valuability checks (see
§8.3). Dynamic rebinding to modules that provide abstract types intrinsically requires some
representation information (see the likespecs of §8.1), and the polytypic name operations
of §6.3 are also intrinsically abstraction-breaking (though the usefulness of these may be
debatable).

Accordingly, abstract types in Acute, as in other languages such as OCaml, should be
viewed as mechanisms to reduce a class of accidental programmer errors, not as providing
guarantees of parametricity.

6 Naming: expression names

Globally meaningful expression-level names are also needed, primarily as interaction
handles — dispatch keys for high-level interaction constructs such as asynchronous chan-
nels, location-independent communication, reliable messaging, multicast groups, or re-
mote procedure (or function/method) calls. For any of these an interaction involves the
communication of a pair of a handle and a value. Taking asynchronous channels as a simple
example, these pairs comprise a channel name and a value sent on that channel. A receiver
dispatches on the handle, using it to identify a local data structure for the channel (a queue
of pending messages or of blocked readers). For type safety, the handle should be associ-
ated with a type: the type of values carried by the channel. (RPC is similar except that an
additional affine handle must also be communicated for the return value.)

In Acute we build in support for the generation and typing of name expressions, leaving
the various and complex dynamics of interaction constructs to be coded up above mar-
shalling and byte-string interaction. As in FreshOCaml, for any type T we have a type

T name

of names associated with it. Values of these types (like type names) can be generated
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freshly at run time, freshly at compile time, or deterministically by hashing, with ex-
pression forms fresh, cfresh, hash(M.x), hash(T,e ), and hash(T,e,e ). We explain
these forms below, showing how they support several important scenarios. In each, the ba-
sic question is how one establishes a name shared between sender and receiver code such
that testing equality of the name ensures the type correctness of communicated values (and
hence that there will be no unmarshal failures in the communication library).

The expression fresh evaluates to a fresh name at run time. The expression cfresh

evaluates to a fresh name at compile time. It is subject to the syntactic restriction that it can
only appear in a compile-time valuable context. The expression hash(M.x) compiles to the
hash of the pair of n and the label x, where n is the (hash- or fresh-)name associated with
module M, which must have an x component. The expression hash(T,e ) evaluates e to a
string and then computes the hash of that string paired with the run-time representation of
T . (Recall that a string can be injectively generated from an arbitrary value by marshalling).
The expression hash(T,e2,e1 ) evaluates e1 to a T’ name and e2 to a string, then
hashes the triple of the two and T .

Each name form generates T names that are associated with a type T . For fresh and
cfresh it is the type annotation; for hash(M.x) it is the type of the x component of
module M; for hash(T,e ) it is T itself; and for hash(T,e2,e1 ) it is T . Of these, fresh
is non-valuable; cfresh is compile-time valuable; hash(M.x) has the same status as M;
and hash(T,e ) and hash(T,e2,e1 ) have the join of the status of their component parts.

(A purer collection of hash constructs, equally expressive, would be hash(T),
hash(e1,e2 ) (of a name and a string) and hash(e1,T ) (of a name and a type). We
chose the set above instead as they seem to be the combinations that one would commonly
wish to use.)

6.1 Establishing shared names

For clarity we focus on distributed asynchronous messaging, supposing a module DChan

which implements a distributed DChan.send by sending a marshalled pair of a channel
name and a value across the network.

module hash DChan :

sig

val send : forall t. t name * t -> unit

val recv : forall t. t name * (t -> unit) -> unit

end

This uses names of type T name as channel names to communicate values of type T .
(Acute does not support user-definable type constructors. If it did we would define an
abstract type constructor Chan.c:Type->Type and have send : forall t. t Chan.c

name * t -> unit.)

Scenario 1 The sender and receiver both arise from a single execution of a single build
of a single program. The execution was initiated on machine A, and the receiver is present
there, but the sender was earlier transmitted to machine B (e.g. within a marshalled lambda
abstraction).

Here the sender and receiver can originate from a single lexical scope and a channel
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name can be generated at run time with a fresh expression. This might be at the expression
level, e.g.
let (c : int name) = fresh in

with sender code DChan.send %[int] (c,v) and receiver DChan.recv %[int]

(c,f), for some v:int and f:int->unit, or a module-level binder
module M : sig val c : int name end

= struct let c = fresh end

These generate the fresh name when the let is evaluated or the module is initialised re-
spectively. This first scenario is basically that supported by JoCaml and Nomadic Pict.

Commonly one might have a single receiver function for a name, and tie together the
generation of the name and the definition of the function, with an additional DChan field
val fresh_recv : forall t. (t -> unit) -> t name

implemented simply as
Function t -> fun f ->

let c=fresh in DChan.recv %[t] (c,f); c

and used as below.
module M : sig val c : int name end

= struct let c = DChan.fresh_recv %[int]

(fun x -> IO.print_int x+1) end

Note that this M is an effect-full module, creating the name for c at module initialisation
time.

Scenario 2 The sender and receiver are in different programs, but both are statically
linked to a structure of names that was built previously, with expression cfresh for
compile-time fresh generation.

Here one has a repository containing a compiled instance of a module such as
module cfresh M : sig val c : int name end

= struct let c = cfresh end

in a file m.aco, which is included by the two programs containing the sender and receiver:
includecompiled "m.aco"

DChan.send %[int] (M.c,v)

—
includecompiled "m.aco"

DChan.recv %[int] (M.c,f)

Different builds of the sender and receiver programs will be able to interact, but rebuilding
M creates a fresh channel name for c, so builds of the sender using one build of M will not
interact with builds of the receiver using another build of M.

This can be regarded as a more disciplined alternative to the programmer making use
of an explicit off-line name (or GUID) generator and pasting the results into their source
code.

Scenario 3 The sender and receiver are in different programs, but both share the source
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code of a module that defines the function f used by the receiver; the hash of that module
(and the identifier f) is used to generate the name used for communication.

This covers the case in which the sender and receiver are different execution instances
of the same program (or minor variants thereof), and one wishes typed communication to
work without any (awkward) prior exchange of names via the build process or at run time.
The shared code might be

module hash N : sig val f : int -> unit end

= struct let f = fun x->IO.print_int (x+100) end

module hash M : sig val c : int name end

= struct let c = hash(int,"",hash(N.f) %[]) %[] end

in a file nm.ac, included by the two programs containing the sender and receiver:

includesource "nm.ac"

DChan.send %[int] (M.c,v)

—
includesource "nm.ac"

DChan.recv %[int] (M.c,N.f)

The hash(N.f) gives a T name where T = int->unit is the type of N.f; the surround-
ing hash coercion hash(int,"", ) constructs an int name from this. (Such coercions
support Chan.c type constructors too, e.g. to construct an int Chan.c name from an
(int->unit) name.) This involves a certain amount of boiler-plate, with separate struc-
tures of functions and of the names used to access them, but it is unclear how that could be
improved. It might be preferable to regard the hash coercion as a family of polymorphic
operators, indexed by pairs of type constructors Λ~t.T 1 and Λ~t.T 2 (of the same arity), of
type ∀~t.T 1 name→ T 2 name.

Scenario 4 The sender and receiver are in different programs, sharing no source code
except a type and a string; the hash of the pair of those is used to generate the name used
for communication.

let c = hash(int,"foo") %[] in

DChan.send %[int] (c,v)

—
let c = hash(int,"foo") %[] in

DChan.recv %[int] (c,f)

This idiom requires the minimum shared information between the two programs. It can be
seen as a disciplined, typed, form of the use of untyped “traders” to establish interaction
media between separate distributed programs.

Scenario 5 The sender and receiver have established by some means a single typed
shared name c, but need to construct many shared names for different communication
channels. The hash coercion can be used for this also, constructing new typed names from
old names, new types, and arbitrary strings. Whether this will be a common idiom is un-
clear, but it is easy to provide and seems interesting to explore. For example:

let c1 = hash(int,"one",c)

let c2 = hash(int,"two",c)
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let c3 = hash(bool,"",c)

DChan.send %[int](c1,v1);DChan.send %[int](c2,v2);DChan.send %[bool](c3,v3);

—
let c1 = hash(int,"one",c)

let c2 = hash(int,"two",c)

let c3 = hash(bool,"",c)

DChan.recv %[int](c1,f1);DChan.recv %[int](c2,f2);DChan.recv %[bool](c3,f3);

Whether this will be a common idiom is unclear, but it is easy to provide and seems inter-
esting to explore.

6.2 A refinement: ties

Scenario 3 of §6.1 above used a hash(N.f) as part of the construction of a name M.c

used to access the N.f function remotely, linking the name and function together with a
call DChan.recv (M.c,N.f). It may be desirable to provide stronger language support
for establishing this linkage, making it harder to accidentally use an unrelated name and
function pair. For this, we propose a built-in abstract type

T tie

of those pairs, with an expression form M@x that constructs the pair of hash(M.x) and the
value of M.x (of type T tie where M.x : T ), and projections from the abstraction type
name of tie and val of tie.

6.3 Polytypic name operations

We include the basic polytypic FreshOCaml expressions for manipulating names:

swap e1 and e2 in e3

e1 freshfor e2

support %[T ] e

Here swap interchanges two names in an arbitrary value, freshfor determines whether a
name does not occur free in an arbitrary value, and support calculates the set of names
that do occur free in an arbitrary value (returning them as a duplicate-free list, at present).

We anticipate using these operations in the implementation of distributed communic-
ation abstractions. For example, when working with certain kinds of distributed channel
one must send routing information along with every value, describing how any distributed
channels mentioned in that value can be accessed.

We do not include the FreshOCaml name abstraction and pattern matching constructs
just for simplicity — we foresee no difficulty in adding them.

In contrast to FreshOCaml, when one has values that mention store locations, the poly-
typic operations have effect over the reachable part of the Acute heap. This seems forced
if we are to both (a) implement distributed abstractions, as above, and (b) exchange values
of imperative data type implementations.

For constructing efficient datastructures over names, such as finite maps, we provide
access to the underlying order relation, with a comparison between any two names of the
same type.
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compare_name %[T ] : T name -> T name -> int

This cannot be preserved by name swapping, obviously, and so it would be an error to use
it under any name abstraction, and in any other place subject to swapping. Nonetheless, the
performance cost of not including it is so great we believe it is required. To ameliorate the
problem slightly one might add a type

T nonswap

with a single constructor Nonswap that can be used to protect structures that depend on the
ordering, with swap either stopping recursing or raising an exception if it encounters the
Nonswap constructor. For the time being, however, T nonswap is not included in Acute.

6.4 Implementing names

In the implementation, all names are represented as fixed-length bit-strings (e.g. from 2160)
— both module-level and expression-level names, generated both by hashes and freshly.
The representations of fresh names are generated randomly. More specifically: we do not
want to require that the implementation generates each individual name randomly, as that
would be too costly — we regard it as acceptable to generate a random start point at the
initialisation of each compilation and the initialisation of each language runtime instance,
and thereafter use a cheap pseudo-random number function for compile-time fresh and
run-time fresh (the successor function would lead to poor behaviour in hash tables). This
means that a low-level attacker would often be able to tell whether two names originated
from the same point, and that (for making real nonces etc) a more aggressively random
fresh would be required.

There is a possible optimisation which could be worthwhile if many names are used
only locally: the bit-string representations could be generated lazily, when they are first
marshalled, with a finite map associating local representations (just pointers) to the external
names which have been exported or imported. This could be garbage-collected as normal.
Whether the optimisation would gain very much is unclear, so we propose not to implement
it now (but bear in mind that local channel communication should be made very cheap).

In order to implement the polytypic name operations the expression-level names must
be implemented with explicit types.

7 Versions and version constraints

In a single-executable development process, one ensures the executable is built from a
coherent set of versions of its component modules by choosing what to link together —
in simple cases, by working with a single code directory tree. In the distributed world,
one could do the same: take sufficient care about which modules one links and/or rebinds
to. Without any additional support, however, this is an error-prone approach, liable to end
up with semantically incoherent versions of components interoperating. Typechecking can
provide some basic sanity guarantees, but cannot capture these semantic differences.

One alternative is to permit rebinding only to identical copies of modules that the code
was initially linked to. Usually, though, more flexibility will be required — to permit re-
binding to modules with “small” or “backwards-compatible” changes to their semantics,
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and to pick up intentionally location-dependent modules. It is impractical to specify the
semantics that one depends upon in interfaces (in general, theorem proving would be re-
quired at link time, though there are intermediate behavioural type systems). We therefore
introduce versions as crude approximations to semantic module specifications. We need a
language of versions, which will be attached to modules; a language of version constraints,
which will be attached to imports; a satisfaction relation, checked at static and dynamic
link times; and an implication relation between constraints, for chains of imports.

Now, how expressive should these languages be? Analogously to the situation for re-
solvespecs, there is a tension between allowing arbitrary computation in defining the re-
lations and supporting compile-time analysis. Ultimately, it seems desirable to make the
basic module primitives parametric on abstract types of version and constraint languages
— in a particular distributed code environment, one may want a particular local choice
for these. For Acute once again we choose not the most general alternative, but instead
one which should be expressive enough for many examples, and which exposes some key
design points.

Scenario 1 It is common to use version numbers which are supplied by the programmer,
with no checked relationship to the code. As an arbitrary starting point, we take version
numbers to be nonempty lists of natural numbers, and version constraints to be similar
lists possibly ending in a wildcard * or an interval; satisfaction is what one would expect,
with a * matching any (possibly empty) suffix. Many minor enhancements are possible
and straightforward. Arbitrarily, we enhance version constraints with closed, left-open and
right-open intervals, e.g. 1.5-7, 1.8.-7, and 2.4.7-. These are certainly not exactly
what one wants (they cannot express, for example, the set of all versions greater than
2.3.1) but are indicative. The meanings of these numbers and constraints is dependent
on some social process: within a single distributed development environment one needs a
shared understanding that new versions of a module will be given new version numbers
commensurate with their semantic changes.

Scenario 2 To support tighter version control than this, we can make use of the global
module names (hash or freshly generated) introduced in §5: equality testing of these names
is an implementable check for module semantic identity. We let version numbers include
myname and version constraints include module identifiers M (those in scope, obviously).
In each case the compiler or runtime writes in the appropriate module name. This sup-
ports a useful idiom in which code producers declare their exact identity as the least-
significant component of their version number, and consumers can choose whether or not
to be that particular. For example, a module M might specify it is version 2.3.myname,
compiled to 2.3.0xA564C8F3; an import in that scope might require 2.3.M, compiled to
2.3.0xA564C8F3, or simply 2.3.*; both would match it.

A key point is the balance of power between code producers and code consumers. The
above leaves the code producer in control, who can “lie” about which version a module
is — instead of writing myname they might write a name from a previous build. This is
desirable if they know there are clients out there with an exact-name constraint but also
know that their semantic change from that previous build will not break any of the clients.

Scenario 3 Finally, to give the code consumer more control, we allow constraints not
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only on the version field of a module but also on its actual name (which is unforgeable
within the language). Typically one would have a definition of the desired version avail-
able in the filesystem (in Acute bringing it into scope as M with an include) and write
name=M. (These exact-name constraints are also used to construct default imports when
marshalling.) One could also cut-and-paste a name in explicitly: name=0xA564C8F3. To
guarantee that only mutually tested collections of modules will be executed together, e.g.
when writing safety-critical software, this would be the desired idiom everywhere, perhaps
with development-environment support.

The current Acute version numbers and constraints, including all the above, are as
follows.

avne ::= Atomic version number expression
n natural number literal
N numeric hash literal
myname name of this module

vne ::= Version number expression
avne | avne .vne

avce ::= Atomic version constraint expression
n natural number literal
N numeric hash literal
M name of module M

dvce ::= Dotted version constraint
avce | n-n ’ | -n | n- | * | avce .dvce

vce ::= Version constraint
dvce dotted version constraint
name = M exact-name version constraint

Version number and constraint expressions appear in modules and imports as below.

definition ::= ...

module M :Sig version vne = Str ...

| import M :Sig version vce ... by resolvespec = Mo

In constructing hashes for modules we also take into account their version expressions, to
prevent any accidental equalities. That version expression can mention myname, and, as we
do not wish to introduce recursive hashes, the hash must be calculated before compilation
replaces myname with the hash.

It turns out that one needs exact-name version constraints not just for user-specified tight
version constraints, as in the idiom above, but also during marshalling, when one may have
to generate imports for module bindings that cross a mark. Exact-name constraints seem
to be the only reasonable default to use there.

One might wish to extend the version language further with conjunctive version num-
ber expressions and disjunctive constraints. One might also wish to support cryptographic
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signatures on version numbers. Both would affect the balance of power between code pro-
ducer and consumer, and further experience is needed to discover what is most usable.

Finally, we have had to choose whether version numbers are hereditary or not. A hered-
itary version number for a module M would include the version numbers of all the mod-
ules it depends on (and the version constraints of all the imports it uses), whereas a non-
hereditary version number is just a single entity, as in the grammar above. The hereditary
option clearly provides more data to users of M, but, concomitantly, requires those users to
understand the dependency structure — which usually one would like a module system to
insulate them from. If one really needs hereditary numbers, perhaps the best solution would
be to support version number expressions that can calculate a number for M in terms of the
numbers of its immediate dependencies, e.g. adding tuples and version(M) expressions
to the avne grammar.

Just as for withspecs (see §8.2) one might need rich development-environment support.
Local specifications of version constraints, spread over the imports in the source files of a
large software system, could be very inconvenient. One might want to refer to the version
numbers of a source-control system such as CVS, for example.

8 Interplay between abstract types, rebinding and versions

8.1 Definite and indefinite references

With conventional static linking, module references such as M.t are definite, in the termin-
ology of (Harper & Pierce, 2005): in any fully linked executable there is just a single such
M, though (with separate compilation) it may be unknown at compile time which module
definition for M it will be linked to. In contrast, the possibility of rebinding makes some ref-
erences indefinite — during a single distributed execution, they may be bound to different
modules.

For example, consider a module that declares an abstract type that depends on the term
fields of some other module:
module M : sig val f:int->int end

= struct let f=fun(x:int)->x+2 end

module EvenCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up = fun (x:int)->M.f x

end end

In the absence of any rebinding, the run-time type name for the abstract type
EvenCounter.t would be the hash of the EvenCounter abstract syntax with M.f re-
placed by h.f, where h is the hash of the abstract syntax of M. This dependence on the M

operations guarantees type- and abstraction-preservation.
Now, however, if there is a mark between the two module definitions, a marshal can cut

and rebind to any other module with the same signature, perhaps breaking the invariant
of EvenCounter.t that its values are always even. The M.f module reference below is
indefinite, and indeed is rebound to a plus-three function.
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module M : sig val f:int->int end

= struct let f=fun (x:int)->x+2 end

import M : sig val f:int->int end version * = M

mark "MK"

module EvenCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up = fun (x:int)->M.f x

end end

IO.send(marshal "MK" (fun ()->EvenCounter.get

(EvenCounter.up EvenCounter.start)):unit->int)

—
module M : sig val f:int->int end

= struct let f=fun (x:int)->x+3 end

(unmarshal (IO.receive ()) as unit->int) ()

To prevent this kind of error one can use a more restrictive version constraint in the import
of M that EvenCounter uses, either by using an exact-name constraint name=M to allow
linking only to definitions of M that are identical to the definition in the sender, or by using
some conventional numbering. If no import is given explicitly, an exact-name constraint is
assumed.

The version constraint should be understood as an assertion by the code author that
whatever EvenCounter is linked with, so long as it satisfies that constraint (and also has
an appropriate signature, and is obtained following any resolvespec present), the intended
invariants of EvenCounter.t will be preserved.

Now, what should the global type name for EvenCounter.t be here? Note that the ori-
ginal author might not have had any M module to hand, and even if they did (as above),
that module is not privileged in any way: EvenCounter may be rebound during compu-
tation to other M matching the signature and version constraint. In generating the hash for
EvenCounter, analogously to our replacement of definite references M’.x by the hash of
the definition of M’, we replace indefinite import-bound references such as M.f by the hash
of the import. This names the set of all M implementations that match that signature and
version constraint.

In the case above this hash would be roughly
hash(import M:sig val f:int->int end version * )

and where one imports a module with an abstract type field
import M : sig type t val x:t end

version 2.4.7- ...

the hash h =

hash(import M : sig type t val x:t end

version 2.4.7- ...)

provides a global name h.t for that type.
In the EvenCounter example, the imported module had no abstract type fields. In cases

where there are such, for type soundness we have to restrict the modules that the import can



28 Sewell et al.

be linked to, to ensure that they all have the same representation types for these abstract
type fields. We do so by requiring imports with abstract type fields to have a likespec
(in place of the ... above), giving that information. A compiled likespec is essentially a
structure with a type field for each of the abstract type fields of the import.

At first sight this is quite unpleasant, requiring the importers of a module to ‘know’ rep-
resentation types which one might expect should be hidden. With indefinite references to
modules with abstract types, however, some such mechanism seems to be forced, otherwise
no rebinding is possible. Moreover, in practice one would often have available a version
of the imported library from which the information can be drawn. For example, one might
be importing a graphics library that exists in many versions, but for which all versions that
share a major version number also have common representations of the abstract types of
point, window, etc. A typical import might have the form

import Graphics:sig type t end version 2.3.*

like Graphics2_0

(with more types and operations) where Graphics2 0 is the name of a graphics module
implementation, which is present at the development site, and which can be used by the
compiler to construct a structure with a representation for each of the abstract types of the
signature.

While the abstraction boundaries are not as rigid as in ML, this should provide a work-
able idiom for dealing with large modular evolving systems, supporting rebinding but also
allowing one to restrict type representation information to particular layers. The only al-
ternative seems to be to make all types fully concrete at interfaces where rebinding may
occur.

To correctly deal with abstract types defined by modules following an import, which
use abstract type fields of the imported module in their representation types, compiled
likespecs must be included in the hashes of imports. On the other hand, we choose not to
include resolvespecs in import hashes. This is debatable — the argument against including
them is that it is useful to be able to change the location of code without affecting types,
and so without breaking interoperation (e.g. to have a local code mirror, to change a web
code repository to avoid a denial-of-service attack etc.).

Note that the indefinite character of our imports makes them quite different from mod-
ule imports that are resolved by static linking, where typing can simply use module paths
to name any abstract types and no likespec machinery is required. Both mechanisms are
needed.

8.2 Breaking abstractions

In ongoing software evolution, implementations of an abstract type may need to be
changed, to fix bugs or add functionality, while values of that type exist on other machines
or in a persistent store. It is often impractical to simultaneously upgrade all machines to a
new implementation version.

A simple case is that in which the representation of the abstract type is unchanged and
where the programmer asserts that the two versions have compatible invariants, so it is le-
gitimate to exchange values in both directions. This may be the case even if the two are not
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identical, e.g. for an efficiency improvement or bug fix. Here there should be some mech-
anism for forcing the old and new types to be identical, breaking the normal abstraction
barrier.

We proposed (Sewell, 2001; Leifer et al., 2003a) a strong coercion with! to do so,
and Acute includes a variant of this. By analogy with ML sharing specifications, we allow
a module definition to have a withspec, a list of equalities between abstract types and
representations of modules constructed earlier (often this will be of previous builds of the
same module).

definition ::= ... | module M : Sig version vne = Str withspec

withspec ::= empty | with! withspecbody

withspecbody ::= empty | M.t =T ,withspecbody

The compiler checks the representation type of these M.t are equal to the types specified
(respecting any internal abstraction boundaries); if they are, the type equalities can be used
in typechecking this definition.

For example, suppose the EvenCounter module definition of §5 was compiled to a file
p11 even.aco and is widely deployed in a distributed system, and that later one needs
a revised EvenCounter module, adding an operation or fixing a bug without making an
incompatible type. A new module with an added down operation can be written as follows.

includecompiled "p11_even.aco"

module EvenCounter

: sig

type t = EvenCounter.t

val start:t

val get:t->int

val up:t->t

val down:t->t

end

= struct

type t=int

let start = 0

let get = fun (x:int)->x

let up = fun (x:int)->2+x

let down = fun (x:int)-> x-2

end

with! EvenCounter.t = int

In the interface here the type t of the new module is manifestly equal to the abstract type
t of the previously built module, and the with! enables the type equality between that
abstract type and int to be used when typing the new module. The new type is compiled
to be manifestly equal to (the internal hash-name of) the old type. (For this example, where
the previous EvenCounter had a hash-generated type, one could include the source of
the previous module rather than the compiled file, but if it were cfresh-generated the
compiled file is obviously needed.)

The withspec is, in effect, a declaration by the programmer that the old and new imple-
mentations respect the same important invariants — here, that values of the representation
type will always be even. In general they will not respect exactly the same invariants. For
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example, here the new module allows negative ints, but the programmer implicitly asserts
that the clients of the old module will not be broken by this.

It would not suffice to check only that the new module respects at least the important
invariants of the old, as if the types are made identical then values produced by either
module can be acted upon by operations of the other.

In the more complex case where the old and new invariants are not compatible, or where
the two representation types differ, the programmer will have to write an upgrade function.
The same strong coercion can be used to make this possible, with a module that contains
two types, one coerced to each. An example is given in Leifer et al. (2003a).

There are several design options for withspecs. In our earlier proposals with! coerced
an abstract type of the module being defined to be equal to an earlier abstract type. Here in-
stead the with! simply introduces a type equality to the typechecking environment; mani-
fest types in the signature of the new module can be used to make the type field of the
compiled signature equal to the old. This simplifies the semantics slightly and may be con-
ceptually clearer. We allow the withspec type equalities to be used both for typechecking
the body of the new module and for checking that it does have the interface specified. One
might instead only allow them to be used for the latter; it is unclear whether this would
always be expressive enough. The programmer has to specify the representation type in
a withspec explicitly. This is fine for small examples, e.g. the int above, but if the rep-
resentation type is complex then it would be preferable to simply write with! M.t. That
requires a somewhat more intricate semantics (as typechecking of modules with withspecs
then depends on the representation types of earlier modules) and so we omit it for the time
being. Finally, one might well want development-environment support, allowing collec-
tions of modules to be ‘pinned’ to the types in a particular earlier build without having to
edit each module to add a withspec and make the types manifestly equal to the earlier ones.

8.3 Overriding valuability checks

The semantics for abstract type names outlined in §5 ensures that two instances of an
effect-full module give rise to distinct abstract types. In general this is the only correct be-
haviour, as (as explained there) they may have very different invariants. In practice, how-
ever, one may often want to permit rebinding to modules which have some internal state.
For example, in the communication library described in §11 the Distributed channel

module stores a Tcp string messaging.handle option which is set by calls to
Distributed channel.init : Tcp.port -> unit. One has to keep this as module
state rather than threading a handle through the Distributed channel interface calls
so that those calls can be correctly rebound if (say) one marshals a function mentioning
them. Despite the initialisation effect (evaluating ref None) we need the module name
for Distributed channel to be hash-generated, not fresh-generated, so that the abstract
types in the interface are the same in different instance, so that rebinding can take place.
The desired behaviour really is for the conceptually distinct abstract types of different in-
stances to be compatible. This could be expressed either

1. with module annotations hash! and cfresh!, which override the valuability check
but otherwise are like hash and cfresh; or
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2. with an expression form ignore effect(e ), transparent at run time but concealing
arbitrary effects as far as valuability goes.

We choose the former, to make the coercion clearer in the module source and to avoid
polluting the expression grammar, but the latter has the advantage of localising the coercion
to where it is really needed.

8.4 Exact matching or version flexibility?

In §6 we focussed on name-based dispatch, delivering an incoming message by demulti-
plexing on a name it contains. An alternative idiom for remote invocation simply makes
use of the dynamic rebinding facilities provided in Acute, e.g. as in the code below where
a thunk mentioning N.f is shipped from one machine to another.

module N:sig val f:int->unit end

= struct let f=fun x-> IO.print_int (x+1) end

mark "MARK-N"

IO.send (marshal "MARK-N" ((fun ()->N.f), 9))

—
module N:sig val f:int->unit end

= struct let f=fun x-> IO.print_int (x+1) end

mark "MARK-N"

let (g,(y:int))=unmarshal(IO.receive()) in g () y

As the marshal is with respect to a mark ("MARK-N") below the definition of N, the pair of
the thunk and v will be shipped together with an unlinked import for N; when the unmar-
shalled thunk is applied that import will become linked to the local definition of N on the
receiver machine.

In the code as written the import will have an exact-name version constraint, but this
could be liberalised by writing an explicit import in the sender, with an arbitrary version
constraint.

This is quite different from the name-based dispatch of §6, where a simple name equality
is checked for each communication. Here, a full link-ok check is involved, checking a
subsignature relationship and a version constraint. It is therefore much more costly, but
also allows much more flexible linking.

Another difference between the two schemes is that with name-based dispatch the re-
ceiver can express access-control checks by testing name equality, whereas here one would
need to test equality of arbitrary incoming functions (against fun ()->N.f thunks), which
we do not admit.

A common idiom may be to establish a shared structure of names by dynamic link-
ing (including a version check) at the start of a lengthy interaction and thereafter to use
name-based dispatch. Acute does not provide the low-level linking machinery needed for
explicitly sending such a structure (see the discussion of negotiation elsewhere), so we do
not explore this further here.
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8.5 Marshalling inside abstraction boundaries

If one has a module defining an abstract type, and within that module marshals a value of
that type, one has to choose whether it is marshalled abstractly or concretely. For example,
in

module EvenCounter

: sig

type t

val start:t

val get:t->int

val up:t->t

val send : t -> unit

val recv : unit -> t

end

= struct

type t=int

let start = 0

let get = fun (x:int)->x

let up = fun (x:int)->2+x

let send = fun (x:t) -> IO.send( marshal "StdLib" x : t)

let recv = fun () -> (unmarshal(IO.receive()) as t)

end

EvenCounter.send (EvenCounter.start)

is the communicated value compatible with int or with EvenCounter.t? For Acute we
take the former option: all types (in the absence of polymorphism) are fully normalised
with respect to the ambient type equations before execution. Running the above in parallel
with

IO.print_int(3+(unmarshal(IO.receive()) as int))

will therefore succeed.
One might well want more source-language control here, allowing the programmer to

specify that such a marshal should be at the abstract type, but we leave this for future work.
In general, with nested modules and with with! specifications, there may be a complex
type equation set structure to select from.

9 Concurrency, mobility, and thunkify

Distributed programming requires support for local concurrency: some form of threads and
constructs for interaction between them.

9.1 Language-level concurrency vs OS threads

The first question here is whether to fix a direct relationship to the underlying OS threads
or take language-level threads to be conceptually distinct, which might or might not be
implemented with one OS thread each. The former has the advantages of a simple rela-
tionship with the OS scheduler (which may provide rich facilities, e.g. for QoS, that some
programs need) and the potential to exploit multiple processors. It has the disadvantages
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of different concurrency models on different OSs, and of a nontrivial relationship between
threading and the language garbage collector. The latter gives the language implementor
much more freedom. In particular, to support lightweight concurrency (as in Erlang, Pict,
JoCaml etc.), in which many parallel components simply send a message or two, it is de-
sirable for parallel composition to not require the (costly) construction of a new OS thread.
For Acute we adopt language-level concurrency.

9.2 Interaction primitives

There are two main styles of interaction between threads: shared memory and message
passing. The latter is a better fit to large-scale distributed programming and, we believe,
often leads to more transparent code. The former, however, is needed when dealing with
large mutable datastructures, and suits the imperative nature of ML/OCaml programming.
In large programs we expect both to be required. In Acute we initially provide shared-
memory interaction, as OCaml does: references can be accessed from multiple threads,
with atomic dereferencing and assignment, and mutexes and condition variables can be
used for synchronization. These enable certain forms of message-passing interaction to be
expressed as library modules, which suffices for the time being. In future we expect to
build in support for message-passing. Indeed, some forms require direct language support
(or a preprocessor-based implementation), e.g. Join patterns with their multi-way binding
construct.

9.3 Thunkification

We want to make it possible to checkpoint and move running computations — for fault-
tolerance, for working with intermittently connected devices, and for system management.
Several calculi and languages (JoCaml, Nomadic Pict, Ambients,etc.) provided a linear
migration construct, which moved a computation between locations.

It is more generally useful to support marshalling of computations, which can then be
communicated, checkpointed etc. using whatever communication and persistent store con-
structs are in use. Taking a step further, as we have marshalling of arbitrary values, mar-
shalling of computations requires only the addition of a primitive for converting a running
computation into a value. We call this thunkification. Checkpointing a computation can
then be implemented by thunkifying it, marshalling the resulting value, and writing it to
disk. Migration can be implemented by thunkification, marshalling, and communication.
Note that these are not in general linear operations — if a computation has been check-
pointed to disk it may be restarted multiple times.

There are many possible forms of thunkification. The simplest is to be both subjective
and synchronous: executing thunkify in a single thread gives a thunk of that thread,
essentially capturing the (single-thread) continuation of the thunkify. Typically, though,
the computation which one wishes to thunkify will be composed of a group of threads. The
programmer would then have to manually ensure that all the threads synchronize and then
thunkify themselves, and collect together the results. This would be very heavy, requiring
substantial rewriting of applications to make them amenable to checkpointing or migration.
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Accordingly, we think it preferable to have an objective and asynchronous thunkify,
freezing a group of threads irrespective of their current behaviour.

A group of threads may be intertwined with interaction primitives (i.e. mutexes and
condition variables) used for internal communication and synchronization. Accordingly,
thunkify should also be applicable to those interaction primitives. Thunkification is de-
structive, removing the threads, mutexes and condition variables that are thunkified.

Thunkification of a group must be atomic. To see the inadequacy of a thunkify that
operates only on a single thread, consider thunkifying a pair of threads, the first of which
is performing a thread operation (e.g. kill) on the second. If the second is thunkified
before the first then the kill will fail, whereas with an atomic multi-thread thunkify it
will always succeed, either before the thunkify happens or after the group is unthunkified
later.

9.4 Naming and grouping

Threads must be structured in some fashion. The simplest option, taken by many process
calculi, is to have a running system be a flat parallel composition of anonymous threads. In
contrast, operating system threads are typically named, with names provided by the system
at thread creation time; these names may be reused over time and between runtimes.

For Acute some naming structure is required, to allow threads to be manipulated (thunk-
ified, killed, etc.). We see two main possibilities:

1. globally unique names, created freshly by the system at thread creation time; or
2. locally unique names, provided by the programmer at thread creation time, with an

exception if they are already in use on this runtime.

The other two possibilities are not useful or not implementable: if names are being created
freshly by the system they might as well be globally unique, with the same representation
as we use for other names; if names are being provided by the programmer then it is not in
general possible to check whether they are in use on any runtime.

We expect (1) to be the most commonly desired semantics. Nonetheless, in Acute we
choose (2). Firstly, given (2) the programmer can implement (1) simply by providing a
fresh name at each thread creation point. The difference between the two shows up when
one moves a group of threads, which internally record and manipulate the thread names of
the group, from one machine to another. With (1) they necessarily receive new names at
the destination, so to maintain correctness all records of their old names must be permuted
with the new — which may be awkward if there are external records of these names. With
(2), if this movement is known to be linear then the original names can be reused without
further ado.

The same two possibilities exist for the naming of interaction primitives for synchroniza-
tion and communication between threads, i.e. (at present) mutexes and condition variables,
and we make the same choice of (2) for them.

Many distributed process calculi have exploited a hierarchical group structure over pro-
cesses, with boundaries delimiting units of migration, units of failure, synchronization re-
gions, secure encapsulation boundaries, and administrative domains. There is a basic ten-
sion between the need for communication across boundaries and the need for encapsulation
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and control over untrusted components, giving rise to a complex design space which is not
well-understood. The tutorial (Sewell, 2000) gives a very preliminary overview. How this
tension should be resolved and what group structure should be provided as primitive is a
very interesting question for future work. Our examples demonstrate that groups for mi-
gration and synchronization units can be expressed rather easily in Acute with flat parallel
compositions of named threads, and that is what the language currently provides.

Any group structure should — presumably — also structure the interaction primitives
(mutexes, channels, etc.) but here there are additional complications, as these are neces-
sarily going to be used for interaction across a boundary, so the interactands may be split
apart by thunkification.

A further motivation for richer group structure comes from performance requirements.
When programming in a message-passing style (as in the π-calculus and in the derived
languages JoCaml, Pict, and Nomadic Pict) one may have many threads which contain
only a single asynchronous output. For performance it may be necessary to optimise these,
not always creating thread names and scheduler entries for them. If threads can discover
their own names, e.g. by a

self : unit -> thread name

primitive, then this optimisation is nontrivial: a thread which outputs the value of an ex-
pression involving self must have been created with a name, whereas outputs of other
values need not. This led us to explore grouping structures of named groups containing an-
onymous threads. Ultimately we rejected them, returning to the flat parallel compositions
of named threads, as they seemed excessively complex and it seemed likely that a rather
simple static analysis would be able to identify most non-self outputs.

9.5 Thread termination

Acute threads do not return values, and their termination cannot by synchronized upon.
We have no strong opinion about these choices, making them for simplicity for the time
being. Thread termination is observable indirectly, as thunkify and kill raise exceptions
if called on non-existent threads.

9.6 Nonexistent threads, mutexes, and condition variables

In conventional single-machine programming it is straightforward to ensure that any mu-
texes and condition variables used must already exist — in OCaml, for example, the type
system guarantees this. In Acute, however, this is no longer possible.

Firstly, mutex names may be marshalled (either alone or in a function such as function
() -> unlock m) and then unmarshalled on another machine. In the absence of thunkific-
ation it is debatable whether this is useful: one might imagine forbidding such examples,
either with a dynamic check at marshal-time or a rich type system that identifies non-
marshallable types. With thunkification, however, one may certainly need to marshal a
thunkified group of threads together with their internal mutexes. Secondly, thunkification
can remove a mutex, leaving active threads that refer to it. This scenario seems inescap-
able: if one moves some threads, they typically are going to have been interacting, in some
fashion, with other threads at the source.
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Accordingly, the mutex and condition variable operations may fail dynamically, giving
Nonexistent mutex and Nonexistent cvar exceptions. One would expect high-level
communication libraries, e.g. of distributed communication channels and migration, to en-
sure such errors never occur.

9.7 References, names, marshalling, and thunkify

Semantically, it is tempting to treat store locations as another variety of name, similar to
thread and mutex names. In Acute we do not make this identification as the cost seems
under-motivated. A naive implementation, indirecting all access via a name lookup, would
obviously be absurd. Even an optimised version, using local pointers but keeping a name
with every store value, would be rather expensive — in a typical program there are many
more store locations than mutexes or threads (it would be necessary to keep a name for
each explicitly, as garbage collection can relocate pointers but the name order must be
preserved).

Further, the dynamic semantics is rather different: marshalling copies the reachable frag-
ment of the store, whereas names are simply marshalled as the values that they are. Thunki-
fying threads and mutexes is destructive, removing them from the running system. Copying
the reachable fragment of the store ensures that dereferencing and assignment can never
fail dynamically (which we think would be unacceptable) whereas the implicit marshalling
of entire threads seems unlikely to be desirable. Further practical experience is required to
assess these choices.

9.8 Module initialisation, concurrency, and thunkify

Without module initialisation all threads are simply executing an expression. With initial-
isation, however, at least one thread might be executing a sequence of definitions (followed
by an expression), evaluating expressions on the right-hand-side of structures in programs
as below.

module fresh M : sig val x: int ref val y:unit end

= struct let x=ref 3 let y=IO.print_int !x end

M.x := 7

These expressions may spawn other threads, which may interact (via the store, mutexes
etc.) with the first. In fact, as discussed in §4.8, no uninitialised definitions can be dy-
namically added to the system, so it is an invariant that at most one thread is executing in
definitions (though the semantics actually allows definitions in all threads, for uniformity).
The initial thread has no other special status.

Now, what should thunkify do if invoked on such a thread? Acute has a second-class
module system, so there is (unfortunately) no way to represent a suspended module-level
computation in the expression language. The thunkify must therefore either abort or
block until module initialisation is complete. For the time being we take the former choice,
raising a Thunkify thread in definition exception.
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9.9 Thunkify and blocking calls

With any form of thread migration or (more generally) with our thunkification one has to
deal with threads that are blocked in system calls. There are two possibilities:

1. have the thunkify block until the target thread returns, thunkifying its state just
after the return; or

2. have the thunkify return immediately, thunkifying the state of the target thread with
a raise of a Thunkify EINTR exception replacing the blocked call, and discarding
the eventual return value of the call. This is analogous to the Unix EINTR error,
returned when a system call is interrupted by a signal, which applications must be
prepared to deal with.

Both are desirable, in different circumstances, and so we allow a per-thread choice, as
expressed through the sum type thunkifymode defined below.

Note that this applies only to blocking (or “slow”) system calls such as read(), not to
the many non-blocking system calls which return quickly. The language semantics must
distinguish the two classes.

Taking this further, it is unpleasant for the system interface to be special in this way. For
example, suppose one has a user library module that provides a wrapper around the system
interface; one might want to identify some of the user module entry points as blocking and
have similar thunkify behaviour. This would be conceptually straightforward if the func-
tions provided by the module are all first-order and cannot be partially applied, in which
case there is a straightforward notion of a thread executing ‘in’ the module. A thunkify

could behave as (2) as far as the calling thread is concerned and raise an asynchronous ex-
ception in the user library code. We believe this kind of mechanism is desirable, but have
not explored it in detail.

9.10 Concurrency: the constructs

Putting these choices together, we have types thread, mutex, cvar, thunkifymode,
and thunkkey. The first three types are empty (phantom types); they are introduced
to form types thread name, mutex name, and cvar name. A thunkifymode is either
Interrupting or Blocking; and type thunkkey has three constructors, Thread, Mutex
and CVar, each taking a name of the associated type; the first takes also a thunkifymode.

We have operations for threads, mutexes, condition variables and thunkification as be-
low.
create_thread : thread name -> (T ->unit) -> T -> unit

self : unit -> thread name

kill : thread name -> unit

create_mutex : mutex name->unit create_cvar : cvar name->unit

lock : mutex name->unit wait : cvar name->mutex name->unit

try_lock : mutex name->bool signal : cvar name->unit

unlock : mutex name->unit broadcast : cvar name->unit

thunkify : thunkkey list -> thunkkey list -> unit
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exit : int -> T

In addition, we have a control operator

e1 ||| e2

that spawns its first argument, as syntactic sugar for

create_thread fresh (function () -> e1 ); e2

Here thunkify takes a list of thunkkeys specifying which threads, mutexes and con-
dition variables to thunkify; it returns a function which takes a list of the same shape
specifying the names to give these entities and then atomically re-creates them.

9.11 Example

Below is a simple use of thunkify, capturing the state of a single running thread and an
(unused) mutex.

let rec delay x = if x=0 then () else delay (x-1) in

let rec f x = IO.print_int x; IO.print_newline (); f (x+1) in

let t1 = fresh in

let m1 = fresh in

let _ = create_thread t1 f 0 in

let _ = create_mutex m1 in

let _ = delay 15 in

let v = thunkify ((Thread (t1,Blocking))::(Mutex m1)::[]) in

IO.send( marshal "StdLib" v : thunkkey list -> unit )

—
let rec delay x = if x=0 then () else delay (x-1) in

let exit_soon = create_thread fresh (fun () -> delay 15 ; exit 0) () in

let v = (unmarshal(IO.receive()) as thunkkey list -> unit) in

v ((Thread (fresh,Blocking))::(Mutex fresh)::[])

When run the first program prints 0 1 2 3 4 and then thunkifies, marshals, and sends
thread t1; the second then receives that and applies it, creating a freshly named thread
(and mutex) locally that prints 5 6 7 8.

10 Polymorphism

Ultimately, both subtype and parametric polymorphism should be included. Many version
changes involve subtyping, e.g. the addition of fields to a manifest record type argument
of a remote function; it should be possible to make these transparent to the callers. Para-
metric polymorphism is of course needed in some form for ML-style programming. In the
distributed setting it seems to be particularly useful to have first-class universals, allowing
polymorphic functions to be communicated, and first-class existentials. (An alternate ap-
proach to universals and existentials, which we do not consider here, is to add first-class
modules to the language (Peskine, 2007).)

The latter support an idiom, common in Pict and Nomadic Pict, in which one packages a
channel name and a value that can be sent on that channel, as a value of type ∃ t . t name ∗
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t . This lets one express communication infrastructure libraries that can uniformly forward
messages of arbitrary types.

There are two substantial difficulties here. Firstly, type inference is challenging for such
combinations of subtyping and parametric polymorphism. A partial type inference al-
gorithm will be required, and it must be pragmatically satisfactory — inferring enough
annotations, and unsurprising to the programmer. This is the subject of recent research on
local type inference (Pierce & Turner, 1998; Hosoya & Pierce, 1999) and coloured local
type inference (Odersky et al., 2001). Without subtyping, the MLF of Le Botlan and Rémy
(2003) allows full System F but can infer types for all ML-typable programs.

Secondly, the interaction between subtyping and hash types requires further work — for
instance, using a subhash order derived from subtype and subversion relationships, which
is dynamically propagated (Deniélou & Leifer, 2006).

In Acute we sidestep both of these issues for the time being, making an interim choice
that suffices for writing non-trivial examples, e.g. of polymorphic communication infra-
structure modules. Acute has no subtyping. The basic scheme is monomorphic, but with
type inference. The definition of the internal language has explicit type annotations, on pat-
tern variables and on built-in constructors such as [] and None. In the external language
these annotations can all be inferred by a unification-based algorithm. To this we add first
class System F universals and existentials, with types forall t.T and exists t.T and
explicit type abstractions, applications, packs and unpacks, with expression forms

Function t -> e

e %[T ]

{T ,e } as T ’

let {t ,x } = e1 in e2

There is no automatic generalisation, and the subsignature relation remains, as in the mono-
morphic case, without generalisation. We also have no user-definable type constructors.
The expression forms could easily be more tightly integrated with the other pattern match-
ing and function forms.

Traditional ML implementations can erase all types before execution. In contrast, an
Acute runtime needs type representations at marshal and unmarshal points, to execute the
expressions marshal e : T and unmarshal e as T . (These types can often be in-
ferred). Type representations are also needed at fresh, cfresh and hash(...) points.
Our prototype implementation keeps all type information, throughout execution, so that
we can do run-time typechecking between reduction steps. A production implementation
would probably do a flow analysis to determine where types are required, adding type rep-
resentation parameters to functions as needed. The only operations that a production im-
plementation needs to do on these type representations are (1) compare them for syntactic
equality, (2) construct them when a polymorphic function is applied to its type parameter,
and (3) take hashes of them. It is therefore not necessary to keep all the type structure. In-
deed, one could (with a small probabilistic reduction in safety) work with hashes of types
at run time. Alternatively, if one keeps the structure it would be possible to add some form
of run-time type analysis (Weirich, 2002) at little extra cost, at least for non-abstract types.
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10.1 A refinement: marshal keys and name equality

In the implementation of distributed communication libraries one may often be communic-
ating values of types such as exists t. t name * T (with the t potentially occurring
in T ) where the t name is used as a demultiplexing/dispatch key at the receiver.

To statically type the receiver code an enhanced conditional or matching form is needed:
having compared that t name with the locally stored name associated with (say) a channel
data structure, typing the true branch must be in an environment where the two are known
to be of the same type.

The enhanced form could be either an explicit type equality test or a name equality
test. At present we do not see a strong argument either way. A type equality test is per-
haps cleaner, but would lead to run-time type information being required at more program
points. A general name equality test, if e1 =e2 then e3 else e4 , where e1 and e2

are of arbitrary T1 name and T2 name types, is the most obvious alternative, but this re-
quires a slightly intricate treatment of multiple type equalities in the semantics. For the
time being we combine name equality testing with existential unpacks, with

namecase e1 with {t ,(x1 ,x2 )} when x1 =e

-> e2

otherwise -> e3

where e1 :exists t. t name * T , the e :T’ name is evaluated first and used to build
an equality pattern, and in the e2 branch it is known that t=T’ . Obviously such existentials
are not uniformly parametric in Acute.

If one is communicating values of type exists t. t name * t, and is demultiplex-
ing on the t name, the explicit type in the marshalled value (and the unmarshal-time type
equality check) could be omitted; name equality gives an equally strong guarantee. If com-
municating many small values the performance gain of this could be worth direct language
support for such ‘marshal keys’.

11 Pulling it all together: examples

We have written three example distributed communication libraries in Acute: a distributed
message-passing library; an implementation of the Nomadic Pict constructs for migration
of mobile computations and communication between them; and an implementation of the
Ambient calculus primitives. There are also two games that mostly exercise local compu-
tation, blockhead and minesweeper; the latter using marshalling to save and restore the
game state. The distributed message-passing library shows how many of the Acute features
are needed and used. It has the following modules:
Tcp connection management maintains TCP connections to TCP addresses (IP ad-

dress/port pairs), creating them on demand. Tcp string messaging uses that to provide
asynchronous messaging of strings to TCP addresses. These are both hash modules, with
abstract types of handles; they spawn daemons to deal with incoming communications.

Separately, a module Local channel provides local (within a runtime) asynchron-
ous messaging, again with an abstract type of channel management handles and
with polymorphic send:forall t. t name * t -> unit and recv:forall t. t
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name*(t->unit) -> unit (to register a handler). Channel states are stored as existential
packages of lists of pending messages or receptors; a namecase operation is used to un-
pack existential name/value packages, allowing a new type equality to be used in the ‘true’
branch of a name equality test. Mutexes are needed for protection.
Distributed channel pulls these together, with send:forall

t.string->(Tcp.addr*t name)->t-> unit (and a similar recv) for distributed
asynchronous messaging to TCP addresses. The string names the mark to marshal with
respect to. For a local address this simply uses Local channel. For a remote address the
send marshals its t argument and uses Tcp string messaging; the recv unmarshals
and generates a local asynchronous output. This deals with the non-mobile case — active
receivers cannot be moved from one runtime to another. However, code that uses this
module, e.g. functions that invoke send and recv, can be marshalled and shipped between
runtimes; the module initialisation state includes the TCP messaging handles and so
rebinding to different instances of send and recv works correctly. Finally, a simple RFI

module implements remote function invocation above distributed channels.
Clients of this library can use any of the various ways of creating shared typed names

discussed in §6 and §8.4. Moreover, the use of first-class marks means that clients have the
same flexible control over the marshalling that goes on as direct users of marshal.

The Nomadic Pict library supports mobility of running computations, with named
groups of threads, each with a local channel manager, that can migrate between machines.
Migration uses thunkify to capture the group’s channel and thread state. Threads within
a group can interact via local channels; groups can interact with a location-dependent
send remote that sends a message to a channel of a group assumed to be at a particu-
lar TCP address. The location-independent messaging algorithms of JoCaml or high-level
Nomadic Pict should be easy to express above this (the former requiring the polytypic
support and swap operations to manipulate the free channel names of a communicated
value).

The Ambient library implements the mobility primitives of the Ambient calculus. An
ambient is a collection of running threads and resources (including other ambients) that
migrates as a unit: mobility amounts to restructuring the nesting tree of the ambients.
In a distributed world, this nested structure is shared among different runtimes. Interac-
tions between ambients in the same run-time are resolved using local concurrency, mu-
texes and cvars. Interaction between remote machines may cause an ambient to migrate to
another runtime: this is implemented using thunkification and marshalling, on top of the
TCP string messaging library.

It is worth noting that these libraries provide coherent abstractions above the combined
low-level concurrency and thunkification features of the language, and clients of the lib-
raries should not also directly use those low-level features. For example, the Nomadic

Pict library provides an API including message-passing concurrency and thread creation
within a group. The implementation of this thread creation function invokes the low-level
create thread but also updates metadata associated with the group, all protected by
locking calls, which direct, client usage of the low-level create thread would not do.
Similarly, clients should not directly use mutex operations or thunkification. Language
support for enforcing such constraints is an interesting problem for future work on module
systems.
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Each of these libraries is around 1000 lines of Acute code, including comments and
utility functions. They took a few days or weeks to write, in sharp contrast to the many
months required for the original Nomadic Pict implementation. Much of the remaining
complexity is related to local concurrency and locking. The distributed aspects were rather
straightforward, with the Acute rebinding semantics used to ensure that communicated
code is correctly rebound to the local state of the libraries at the receiver.

The code for these examples is available on the Acute web page (Acute team, n.d.). A
related (but simpler) example is given in our later HashCaml paper (Billings et al., 2006).

12 Semantics

The Acute definition, Part III of (Sewell et al., 2004), defines the language syntax, type
system, typed desugaring, compilation (abstractly, dealing with issues such as the compile-
time construction of type names), operational semantics, and the errors that can arise during
compilation and execution.

The definition is written in rigorous but informal (not machine-processed) mathematics,
and we state precise type preservation and progress conjectures. We have not attempted
to prove these results. Any proof on this scale is a daunting prospect, be it informal or
machine-checked — the definition alone is around 80 pages, roughly the size of that of
SML (Milner et al., 1990). Indeed, we know of few other high-level languages of sim-
ilar size with a complete and rigorous definition, and none with fully proven metatheory.1
Further, the value of informal proofs at this scale is questionable: one might well discover
problems in the semantics by carrying out such proof, but it would be hard to have con-
fidence that the proof did not contain errors. Ideally, then, we would have both a machine-
processed definition and machine-checked proofs of soundness, but at present our (partial)
confidence in the soundness of the definition is based only on a combination of weaker
evidence: metatheoretic proofs about small calculi with some of the key features (Sewell,
2001; Bierman et al., 2003; Leifer et al., 2003a), and experience with the implementation
(which closely follows the semantics and which can optionally re-typecheck each config-
uration that is reached).

In this section we give an overview of the key novel features in the definition, illustrated
with selected rules and examples.

12.1 Type and term names

The main issue dealt with in the Acute semantics is that of run-time type names. In SML
and OCaml types can be erased at run time. In Acute, on the other hand, some run-time
representation of types is needed, both at marshal points (to include with the marshalled
value), and at unmarshal points (to do a type equality check between the expected type
and that of the marshalled value). For a language with simple types these run-time repres-
entations would be conceptually straightforward, isomorphic to the type expressions that

1 There is ongoing work on Twelf formalisation of a Harper-Stone semantics for SML, with metatheory for an
internal language (Lee et al., 2007), and several authors have formalised large foundational Proof-Carrying
Code and Typed Assembly Language systems.
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occur in source programs. (One might choose to use cryptographic hashes of those instead,
gaining performance at the cost of a small probability of error.) In Acute, however, we
have abstract types, just as SML and OCaml do. In the absence of marshalling, abstraction
is enforced by a combination of statically scoped type names and a type system based on
singleton kinds. With marshalling, we need to be able to compare abstract types that may
be from partially or completely different programs, so we need run-time representations
for these types that make sense globally, not just in some particular scope.

Singleton-kind type system Much of the Acute type system for source-language programs
is standard, following the manifest-type system of (Leroy, 1994) and the singleton-kind
system of (Harper & Lillibridge, 1994). The type system is over fully type-annotated syntax
– our implementation includes a partial type inference algorithm, but that is not formally
defined. There is a core language (with System F style polymorphism) and a second-class
module language of named structure definitions. Modules can contain type fields which
can either be abstract or manifest. For example, the concrete source-language program

module EvenCounter’

: sig = struct

type t (* abstract *) type t=int

type t’=string (* concrete/manifest *) type t’=string

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

end end

is formally treated as a definition with a signature

module EvenCounter’

: sig

type t : Type

type t’ : Eq(string)

val start:t

val get:t->int

end

in which both type fields have kind assumptions. The t field is simply of kind Type, reveal-
ing no information, whereas the t’ field is of kind Eq(string) — the kind of all types
that are provably equal to string — revealing its implementation. The type system uses
paths M.t to name abstract types, with static selfification rules that permit the signature of
a module identifier (but not of an arbitrary structure) to be strengthened with an equality to
the relevant path, as below.

module EvenCounter’

: sig

type t : Eq(Evencounter’.t)

type t’ : Eq(string)

val start:t

val get:t->int

end
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Hashes and names in the type grammar Our run-time type representations for abstract
types are a dynamic analogue of these paths, and they are introduced by dynamic analogues
of the selfification type rules. Hashes and abstract names appear in the type grammar

T ::= ...

MM .t t field of module MM

h.t t field of hash or name h

where h is either a module or import hash, or a pure name:

h ::= hash(hmoduleeqs M : Sig0 version vne = Str)

hash(himport M : Sig0 version vc like Str)

n

Compilation and module initialisation replace paths MM .t by the h.t form, which is not
permitted in source programs. (Here M is a module external identifier, which does not
alpha-vary, and M is an alpha-varying internal identifier.)

As the grammar above shows, the semantics preserves the internal structure of hashes,
with the hash(...) in the semantics treated as a formal constructor. This is needed to state
type preservation, to define typing for the expressions that can arise at run time. However,
we take care to ensure that an implementation can use numeric hashes, without depend-
ing on their internal structure. The current Acute implementation can do either, using the
internal structure only when the optional per-step typechecking is enabled.

The typing rules for hashes and names are similar to those for module identifiers. For
example, the two rules for type formation are below.

E ` K ok
E `eqs MM : Sig
(tt : K ) ∈ Sig

E `eqs MM .t : K

E ` K ok
E `eqs h : Sig
(tt : K ) ∈ Sig
t abstract innamepart(E) h

E `eqs h.t : K

(we return later to the role of the eqs subscripts). The rule for h.t has an additional premise
that permits use of h.t only when t really is abstract in the signature of h . The assumption
E `eqs h : Sig indirectly ensures that h is well-formed, for which the module-hash rule is
below.

h = hash(hmoduleeqs M : Sig0 version vne = Str)
En,Econst `eqs Str : Sig0

` Str flat
` Sig0 flat

En ` h ok

This checks that the hashed structure Str matches the signature Sig0, but in a globally
meaningful type environment En,Econst rather than the type environment of any particular
program context. The Econst is a fixed type environment of special constants for the stand-
ard library. The En is a global environment of assumptions on the pure names that have
been created so far, of the form below. It associates names n (taken from a fixed infinite
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set) with types (for term-level names), kind TYPE (for type names of opened existentials),
or module/import data (for fresh and cfresh modules and imports).

En ::= empty

En,n : T name

En,n : TYPE
En,n : nmoduleeqs M : Sig0 version vne = Str

En,n : nimport M : Sig0 version vc like Str

We construct hashes ‘up to provable type equality’. Part of this is captured by the flat

premises of the type rule above, which ensure that the structure is normalised w.r.t. any
type definitions tt = T within it (by substituting T for t), and similarly for manifest type
assumptions in the signature.

There is a further subtlety concerning hashes that might be pasted into version expres-
sions and constraints by the programmer. For these, the system cannot ensure that they are
hashes of well-formed modules, but in this context soundness does not depend on that, so
they can be treated semantically simply as numeric constants.

Construction of module hashes and names Hashes and names h are constructed per-
module (and per-import), rather than per-abstract-type. How and when they are constructed
depends on whether the module (or import) is annotated hash, cfresh or fresh (which
will generally depend on whether it is valuable, cvaluable or non-valuable):

• hash: compute module hash h at compile time
• cfresh: generate module name h fresh at compile time
• fresh: generate module name h fresh at module initialisation time

The Acute compilation semantics specifies how the first two are done, of which the most
interesting is the hash case. In outline:

1. All types are normalised as far as possible, replacing any types M′M ′ .t defined in
earlier modules by either the corresponding h ′.t (if they are abstract) or the corres-
ponding T (if they are manifest).

2. any withspec is checked, and the resulting set of type equations, normalised, is re-
corded.

3. the hash of this module is constructed, first replacing any other-module expression
dependencies M′M ′ .x by the corresponding h ′.x.

4. that hash is used to selfify the remaining abstract type fields of the signature, repla-
cing type tt : TYPE by type tt : EQ(h.t).

5. the version number expression of the module is evaluated, replacing myname by
the hash h . This must be done after calculation of the hash as otherwise recursive
hashes would be needed.

The result has the form

cmoduleh; eqs; Sig0
MM : Sig1 version vn = Str
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where h is this module’s hash, eqs are any extra equations added by the withspec, Sig 0

is the normalised but non-selfified signature, Sig1 is the normalised and selfified signature
(computable from Sig0 and h), vn is the version number, and Str is the normalised struc-
ture. Syntactic equality on normalised types corresponds to provable static type equality.

Compilation: simple hash modules For example, the EvenCounter example from §5 is
compiled to the cmodule below (generated by our implementation).

cmodule EvenCounter[M0] h0 EvenCounter : {} (* id, name, eqs *)

sig type t[t0] : Type (* abstract sig *)

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end (valuable, valuable) (* valuability *)

sig type t[t0] : Eq(h0 EvenCounter.t) (* selfified sig *)

val start[start0] : h0 EvenCounter.t

val get[get0] : h0 EvenCounter.t -> int

val up[up0] : h0 EvenCounter.t -> h0 EvenCounter.t

end version h0 EvenCounter (* version *)

= struct (* struct *)

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> 2 + x0

end

where

h0 EvenCounter =

hash(hmodule EvenCounter : {}
sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end

version myname

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> 2 + x0

end)

= 0#E09083A42C03366FA0698C81E0063682

Scope resolution has introduced internal identifiers M0, t0, start0, x0 etc. Compilation
has calculated a module name h0 EvenCounter as a hash of an hmodule form, contain-
ing the external module identifier, signature, version expression, and structure. This hash
is taken up to alpha equivalence by choosing canonical strings for bound identifiers (the
semantics is up to alpha throughout, so there the formal hash(...) constructor is applied
to an alpha equivalence class) and up to type equality by substituting out earlier mod-
ule names for identifiers and substituting out internal type dependencies. (The hash body
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shown is pretty-printed in a different mode to that used to build the actual hash to make it
more readable, with identifiers based on the source language strings.) Both the symbolic
and numeric hash forms are shown. The compiled cmodule EvenCounter has two sig-
natures, one in which source abstract types are still abstract (used for type-checking later
modules) and one in which they have been selfified using the module name and substituted
through, e.g. the type t[t0] : Eq(h0 EvenCounter.t) and val start[start0] :

h0 EvenCounter.t (used for type normalisation of later modules). The version of the
compiled module has defaulted to its hash-generated name.

Compilation: hash module dependencies The result of compiling modules M and
EvenCounter from §8 is below, showing how the construction of hashes captures any
semantic dependencies between the modules. Two hashes are constructed to use as the
names of the two modules, h0 M and h1 EvenCounter . Note that the up field of the
cmodule EvenCounter structure refers to M[M0].f x0, whereas the up field of the
hmodule EvenCounter in the body of its hash refers to h0 M.f x0, using the earlier
hash.

cmodule M[M0] h0 M : {}
sig val f[f0] : int -> int end (valuable, valuable)

sig val f[f0] : int -> int end

version h0 M

= struct let f[f0] = function (x0 : int) -> x0 + 2

end

cmodule EvenCounter[M0] h1 EvenCounter : {}
sig type t[t0] : Type [...]

val up[up0] : t0 -> t0
end (valuable, valuable)

sig type t[t0] : Eq(h1 EvenCounter.t) [...]

val up[up0] : h1 EvenCounter.t -> h1 EvenCounter.t

end

version h1 EvenCounter

= struct type t[t0] = int [...]

let up[up0] = function (x0 : int) -> M[M0].f x0
end

where

h0 M =

hash(hmodule M : {}
sig val f[f0] : int -> int end

version myname

= struct

let f[f0] = function (x0 : int) -> x0 + 2

end)

= 0#FBCF6A65CCD4F06635C5188503EA9B72

and

h1 EvenCounter =

hash(hmodule EvenCounter : {}
sig type t[t0] : Type [...]

val up[up0] : t0 -> t0
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end version myname

= struct

type t[t0] = int [...]

let up[up0] = function (x0 : int) -> h0 M.f x0
end)

= 0#F5EF4DE7D2DCB9E8D56EE8AAD19AE3E9

Compilation: fresh and cfresh modules, and imports In the cfresh case compilation con-
structs an h for the module randomly instead of by hashing, but is otherwise similar. In
the fresh case the h for the module is constructed randomly at the start of its execution,
whereupon it can be used to selfify and normalise types just as in compilation.

Imports are treated broadly similarly, with a likespec rather than a withspec, resulting in
a compiled form

cimporth;Sig0
MM : Sig1 version vc like Str by resolvespec = Mo

Term names Supporting the various term-name cases of §6 is basically straightforward:
the expression grammar for executing programs (though not for source programs) permits
hash(h.x)T ′ , for a name created based on a module value field; nT , for a pure name; and
the various other hash forms. (There are complications w.r.t. coloured brackets for names
which we do not go in to here.)

12.2 Run-time configurations

The operational semantics is defined as a labelled transition system over configurations of
a single machine. These have the form

En ; 〈Es , s, definitions , P〉

where En is a global type environment for fresh names, s and Es are the store and its
typing environment, definitions is a list of module values, imports, and marks, and P

is a multiset of named running threads (n : definitions e), mutexes (n : MX(b)) and
condition variables (n : CV). The type environments En and Es are not required in a
production implementation. The En is not regarded as binding in the configuration body
(in contrast to π-calculus new-binders) to avoid the need to consider alpha conversion of
names occuring within hashes and marshalled values.

Compiling a program generates a configuration En ; 〈empty, ∅, empty, n :

definitions e〉, where En contains cfresh names created during compilation, and n is
the name of the initial thread. When this is executed the module definitions in definitions

are initialised sequentially, producing module values which are moved to the global defin-
itions of the configuration. Only when definitions is empty is the expression e executed.
New threads might be created during module initialisation or during execution of e; in
either case they are created without per-thread module definitions, but must be in the scope
of the previously initialised global definitions.

Labels on transitions are used to record OS calls and returns, and also requests for code
at a URI (needed when evaluating resolve specs). The operational semantics is defined
using various classes of evaluation context and reduction (or labelled transition) axioms.
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12.3 Module field instantiation

By keeping the global module definitions (rather that substituting them away) we can per-
form redex-time instantiation as in §4.3. The simplest case is that of a module field refer-
ence MM .x that is in redex position, with a module value for MM

definition = cmoduleh;eqs0;Sig0
vubs MM : Sig1 = Str

in the global definitions (suppose also that no type abstraction is involved). There will be
a value field (let xx = v∅) ∈ Str and we can simply instantiate MM .x by v∅. More
generally, MM may be bound indirectly, via a chain of linked imports.

Otherwise, MM may be bound to an unlinked import (again, possibly via a chain of
linked imports) and the resolvespec of that import must be examined. This may involve
local linking or attempts to fetch new definitions from URIs; in either case a linkok check is
performed between the import and any module (or import) it might be linkable to, involving
checks that (1) the external identifiers match; (2) the interfaces match (we check a syntactic
subsignature relation that coincides with the full relation on flattened signatures); (3) the
versions match; and (4) the representations of types mentioned in the import’s likespec

match.

12.4 Marshalling

Marshalled values are strings that represent 5-tuples

marshalled(En, Es , s, definitions , v∅, T )

where v∅ is the value itself, T is its (normalised) type, for use in the unmarshal type
equality check, definitions is a sequence of module definitions and imports, s and Es

are a location-closed store and store typing that are reachable from locations in v∅ and
definitions , and En is the fragment of the global name type environment needed for the
other components. The semantics does not specify in detail how these are represented as
strings; it is simply parameterised on a raw unmarshal function from strings to such 5-
tuples that includes all marshalled values in its range. A production implementation would
not need En or Es .

The interesting question in defining the marshalling semantics is what definitions are
shipped. Broadly, for a marshal“MK”(v∅)T with respect to a mark “MK”, either there
is no mark “MK” in the global definitions (in which case an exception is raised) or we
have some

definitions = definitions1 ;; mark “MK” ;; definitions2

and mark “MK” /∈ definitions2. We prune definitions2, omitting any modules that are
not needed, but including all marks, to give definitions ′2. We also calculate which modules
from definitions1 are refered to by these or by the value v∅ (taking care that these can
also contain store locations and store locations can contain functions refering to modules).
For each of these modules (which must be in definitions1) we construct an import; the
final marshalled definitions ′ is makeimports(definitions1) ;; definitions ′2. The import
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constructed for a structure is a default form with a signature taken from that of the structure
and an exact-name version constraint. The import constructed for an import is essentially
an unlinked copy of the original import.

For example, recall the program from §4.2 that marshals a thunk referring to one module
above a mark and one below.
module M1:sig val y:int end = struct let y=6 end

mark "MK"

module M2:sig val z:int end = struct let z=3 end

IO.send( marshal "MK" (fun ()-> (M1.y,M2.z)) : unit->int*int)

The marshalled value is below. This includes an import for M1 and the module for M2, and a
function that refers to both. The former is automatically generated for the module binding
of M1 that is cut by the mark. It is constructed with an exact-name version constraint, here to
the hash-generated name h0 M1 of M1. The likespec of the import is also constructed based
on the original module, though here that had no abstract types so the resulting likespec is
empty.
marshalled (

{ },
{cimport M1[M0] h0_M1

: sig val y[x] : int end (valuable, valuable)

sig val y[x] : int end

version name = h0_M1

like struct end

by Here_Already

= unlinked

cmodule M2[M0] h1_M2 : {}
sig val z[x] : int end (valuable, valuable)

sig val z[x] : int end

version h1_M2

= struct let z[x] = 3 end

}, {},
{},
(function (x : unit) -> match x with () -> (M1[M0].y, M2[M0].z)),

unit -> int * int)

When a value of a type involving an abstract type is marshalled, type normalisation ensures
that a type involving a hash or name is included in the marshalled value, e.g. for the value
of type unit->M1.t marshalled below the run-time type in the marshalled value is unit
-> h0 M1.t.
module M1:sig type t val y:t end = struct type t=int let y=6 end

mark "MK"

marshal "MK" (fun ()-> M1.y : unit->M1.t )

Here that value also refers to the code of M1, which is defined above the mark "MK" re-
ferred to in the marshal, so an import of that module is also generated and included in the
marshalled value. In this case the import has a nontrivial likespec.
marshalled ({}, {
cimport M1[M0] h0_M1 :

sig type t[t] : Type val y[x] : t end (valuable, valuable)
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sig type t[t] : Eq(h0_M1.t) val y[x] : h0_M1.t end

version name = h0_M1

like struct type t[t] = int end

by Here_Already = unlinked }, {}, {},
(function (x : unit) -> match x with () -> M1[M0].y),

unit -> h0_M1.t)

12.5 Coloured brackets

Most calculi and languages with type abstraction (existentials or ML-style modules) either
have no operational semantics or have reduction rules that forget abstraction boundaries,
e.g. with this rule for opening an existential package

let {t , x} = ({T , e} as T ′) in e2 −→ {T/t , e/x}e2

or analogous rules for modules that replace abstract type paths by their representation.
This style of semantics suffices for soundness, ensuring that values are not used dur-

ing execution at inappropriate concrete types (e.g. that integers are not used as functions).
However, there is a stronger property that interests us, namely abstraction preservation: for
example, that values of type EvenCounter.t (see §5) are not manipulated at run time ex-
cept by code from the EvenCounter module. While abstraction preservation does indeed
hold for the executions of well-typed source programs thanks to static typing and scoping
rules, this cannot be seen by looking that the execution states once the reductions have
deleted all abstraction.

The Acute design involves many subtle issues relating to abstraction boundaries — when
a value marshalled within one abstraction boundary can be unmarshalled in another, the se-
mantics of withspec and likespec, etc.. Accordingly, to establish greater confidence in the
internal coherence of the semantics we arrange to preserve abstraction boundaries through-
out execution. Building on our previous work (Leifer et al., 2003a), which in turn drew on
(Grossman et al., 2000), we use coloured brackets to delimit subexpressions in which sets
eqs of type equalities between abstract types and their representations can be used. Ad-
ditionally, most type judgements, and the operational relations, are stated with respect to
such sets of equalities eqs , reflecting which abstract types may be considered transparent.

Coloured bracket expressions take the form [e]Teqs , where the type equations, generated
by the grammar,

eqs ::= ∅|MM .t ≈ T |h.t ≈ T |eqs , eqs

record the representation types of abstract types (source-language projections from a mod-
ule identifier MM .t and compiled-language projections from a module name h.t). From
the outside [e]Teqs is of type T ; inside, the type equations eqs can be used in typechecking
e, as formalised by the associated type rule:

E ` eqs ok

E `∅ T : TYPE
E `eqs′ e : T

E `eqs [e]Teqs′ : T
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Note that brackets are not additive — the inner expression is typed with respect to eqs ′, not
the union of the ambient eqs and the eqs ′: thus the type equalities available when evaluating
code from a module are determined by the module itself, not the chain of modules traversed
on the call stack.

Brackets and non-empty equation sets do not occur in user source language programs,
and brackets could be erased in a production implementation. (Indeed, maintaining them
at run time would likely be very expensive, and even in our prototype implementation we
added a ‘vacuous-bracket’ optimisation that greedily suppresses semantically superfluous
brackets rather than have them be eliminated lazily, as defined in Sec. 16.11 of (Sewell
et al., 2004).) In the semantics, brackets are introduced primarily when instantiating a
module field reference MM .x from a module MM that introduced some abstract types, as
we illustrate in the following example.

Consider the EvenCounter of §5, with fields start : EvenCounter.t and get :

EvenCounter.t->int:

module EvenCounter :

sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

[...] [...]

end end

Expressions EvenCounter.start and EvenCounter.get will be instantiated, when they
appear in redex-position, to [0]h.th.t=int and [fun (x:int)->x]h.t->inth.t=int respectively,
where h = h0 EvenCounter.t is the hash-generated module name of EvenCounter as
in §12.1.

The behaviour of brackets could be expressed either with a structural congruence or with
reductions. The former might be conceptually clearer, but the latter is easier to implement,
and so we adopt it to simplify our prototype implementation (in which we do keep brackets
at run time, to support the optional run-time type checking of reachable configurations). A
further disadvantage of structural congruence is that it would complicate progress and de-
terminacy proofs by adding that obligation to show confluence with respect to the directed
reductions, something we were pleased to avoid in Leifer et al. (2003b).

Bracket reduction rules push brackets through values in cases where the outermost value
structure and the outermost type structure of the bracket type coincide, e.g.

[veqs′

1 :: veqs′

2 ]T list
eqs′ −→eqs [veqs′

1 ]Teqs′ :: [veqs′

2 ]T list
eqs′

[(veqs′

1 , .., veqs′
n )]T1∗..∗Tn

eqs′ −→eqs ([veqs′

1 ]T1

eqs′ , .., [v
eqs′
n ]Tn

eqs′) n ≥ 2

[Cn veqs′

1 ... veqs′
n ]T0

eqs′ −→eqs Cn [veqs′

1 ]T1

eqs′ ... [veqs′
n ]Tneqs′

for other contructors Cn : T1 → ...→ Tn → T0

As reduction can occur inside brackets, we index the reduction relation by a colour eqs (as
seen above), which represents the equations provided by the innermost coloured bracket
in the surrounding evaluation context. The bracket reduction rules depend on the ambi-
ent equations, as we see below, and so the notion of value is also dependent on a set of
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equations: veqs′ ranges over the expressions that are values at eqs ′, and v∅ ranges over
expressions that are values at the empty equation set.

Bracket type revelation permits an abstract type that is transparent both inside and out-
side coloured brackets to be replaced by its concrete representation:

[veqs′ ]h.teqs′ −→eqs [veqs′ ]Teqs′ (h.t ≈ T ) ∈ eqs ∧ h.t ∈ dom(eqs ′)

while bracket elimination removes redundant nested brackets

[[veqs′′ ]h.teqs′′ ]
h.t
eqs′ −→eqs [veqs′′ ]h.teqs′′ h.t /∈ dom(eqs ′)

(The side condition ensures that this rule does not form a critical pair with others, in par-
ticular the revelation rule just above it.)

The semantics must also suitably bracket expressions used in substitutions to ensure they
retain their original type equations. One sees this in the rule for pushing brackets through
lambdas:

[function (x : T )→ e]T
′→T ′′

eqs′ −→eqs function (x : T ′)→ [{[x ]Teqs′/x}e]T
′′

eqs′

In order to understand the extra brackets added in the substitution, consider any type deriv-
ation of the LHS. The binder would be placed in the environment as x : T . On the RHS,
it appears as x : T ′, thus breaking type preservation if x were to be used in a subexpres-
sion of e for which T and T ′ were not equivalent. The brackets in the substition prevent
this by giving [x ]Teqs′ the type T , since T and T ′ are indeed equivalent in eqs ′. (Our col-
league Gilles Peskine has proposed a different strategy (Peskine, 2007), involving adding
colours to the bindings in type environments; at the expense of some added complexity in
the typing judgements, he can simplify some of the reduction rules, in particular function
application, for which he can dispense with the extra brackets present in our system.)

In the reduction axiom for function application

(function (x : T )→ e) v eqs −→eqs {[veqs ]Teqs/x}e

(and similarly for recursive functions) the value v eqs is well-typed in eqs but not necessar-
ily in other colour contexts where x is used in e, so v eqs is protected by brackets in the
substitution on the RHS.

At several points it is necessary to take a value at some equations eqs and construct a
value that makes sense at the empty set of equations ∅, e.g. when marshalling a value,
passing a value to a primitive operator or an OS call, etc.

Example Below we show an example reduction sequence for the expression
EvenCounter.get EvenCounter.start. This is a top-level reduction sequence, with
reduction steps at the empty equation set ∅, but the derivations of several reductions in-
volve reductions at {h.t = int} where h is the hash of EvenCounter.
EvenCounter[M0].get EvenCounter[M0].start

−→∅ instantiate EvenCounter[M0].get
[(function (x : int) -> x) ]h.t -> int

{h.t = int} EvenCounter[M0].start
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−→∅ push brackets through lambda
(function (x:h.t) -> [[x]int{h.t = int}]

int
{h.t = int}) EvenCounter[M0].start

−→∅ instantiate EvenCounter[M0].start
(function (x:h.t) -> [[x]int{h.t = int}]

int
{h.t = int}) [0]h.t{h.t = int}

−→∅ substitute the value into the body of the function, rebracketing it to preserve its colour
{ [ [ 0 ]h.t{h.t = int} ]h.t∅ / x } [[x]int{h.t = int}]

int
{h.t = int}

= substitution
[[ [ [ 0 ]h.t{h.t = int} ]h.t∅ ]int{h.t = int}]

int
{h.t = int}

−→∅ bracket elimination for the inner two brackets
[[ [ 0 ]h.t{h.t = int} ]int{h.t = int}]

int
{h.t = int}

−→∅ bracket type revelation for the inner brackets
[[ [ 0 ] int

{h.t = int} ]int{h.t = int}]
int
{h.t = int}

−→∅ bracket pushing for the inner brackets through the constructor 0
[[ 0 ]int{h.t = int}]

int
{h.t = int}

−→∅ bracket pushing for the inner brackets through the constructor 0
[ 0 ]int{h.t = int}

−→∅ bracket pushing for the inner brackets through the constructor 0
0

Store- and name-related bracket dynamics Bracket handling for store and name operations
is subtle. Notice, for example, that a module may return a location to its caller at an abstract
type, and allow the caller to store abstract values in it, and then internally pull them out at
the concrete one. Worse, a module may create a ref cell, and return its location twice, once
at an abstract type and once at a concrete type. There seems no good reason to prohibit
this arbitrary aliasing of pointers, where each alias may have different type transparency
depending on the locally available eqs . In this respect we differ from Grossman et al.
(c.f. §4.2 of (Grossman et al., 2000)).

In the value grammar we allow names and locations to be wrapped in brackets in order
to express the variety of type transparency that aliases of the name or location may have.
Thus, if we have a bracketted (!) or (:=), we pull the brackets outside, changing the type
annotations accordingly. The goal is to peel away the brackets surrounding a location so as
to expose the location itself to dereference or assignment:

!T [veqs′ ]T
′ ref

eqs′ −→eqs [!T ′ veqs′ ]T
′

eqs′

[v ′eqs′ ]T
′ ref

eqs′ :=T veqs −→eqs [v ′eqs′ :=T ′ [veqs ]T
′

eqs ]unit
eqs′

When bracket pulling through !T it may not be immediately obvious why the bracket on
the RHS is at T ′ and not T . The rule as written is correct (even though the type of the
whole expression must be T ) because we may deduce from the LHS that E `eqs T ≈ T ′,
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and it is necessary because we cannot deduce E `eqs′ T ≈ T ′, which would be needed in
order to type the alternative.

Values in the store are always with respect to the empty equation set (v∅). When we
have exposed a raw location, !T can dereference it:

En ; 〈Es , (s, l 7→ v∅), definitions, !T l〉 −→eqs En ; 〈Es , (s, l 7→ v∅), definitions, v∅〉

(Note that the correctness of this rule relies on the fact that typing is monotonic with
respect to the eqs set. By hypothesis, En,Es `∅ v∅ : T0 where Es(l) = T0 and En,Es `
eqs ok and En,Es `eqs T0 ≈ T . This implies En,Es `eqs v∅ : T0, hence En,Es `eqs

v∅ : T as desired.)
For assignment, when we have exposed a raw location, :=T prepares the value to be put

in the store by wrapping it in ambient-equation-set brackets; when that becomes a value
with respect to ∅, perhaps involving several bracket reductions, we can install it in the
store:

l :=T veqs −→eqs l :=′T [veqs ]Teqs

En ; 〈Es , (s, l 7→ v ′∅), definitions, l :=′T v∅〉−→eqs En ; 〈Es , (s, l 7→ v∅), definitions, ()〉

For names there is no other argument to which the brackets must be transferred; in-
stead, we define all operators which operate on names to ignore brackets surrounding those
names. It is unclear whether this is truly satisfactory, but in any case there is a basic ten-
sion: the polytypic name operations can intrinsically be used to partially see through some
abstraction boundaries.

Type normalisation An abstraction-preserving semantics sheds light on type normalisation
and marshalling within abstraction boundaries (c.f. §8.5). In any given type environment E

and colour eqs , each semantic type may be represented by any member of an equivalence
class of syntactic types defined by the provable-type-equivalence relation E `eqs T ≈ T ′.
Our compilation ensures that the syntactic type chosen is always the canonical type from
the relevant equivalence class. The canonical type is the one that is most concrete: it is
the normal form under the rewrites {X .t  T |(X .t ≈ T ) ∈ eqs}, M .t  T |M :

Sig ∈ E ∧ t : EQ(T ) ∈ Sig , and t  T |t : EQ(T ) ∈ E . This is important because in
certain circumstances the syntactic representative chosen for a semantic type is significant:
especially, our marshal/unmarshal type equality check is a check of equality of normalised
types, not of provable equality, so that type equations and brackets need not be maintained
at run time.

Reflections on brackets The bracket machinery required to make the semantics abstraction-
preserving was non-trivial, so one may ask whether the benefits were worth the complexity.
On the whole we believe they were: the semantics makes clear, at all syntactic points in
all configurations reachable by reduction, what type equations are in scope. Further, the
type preservation property for an abstraction-preserving semantics is a much stronger test
that it is internally coherent than it would be for an abstraction-erasing semantics. This
(as realised by our run-time configuration typechecking) brought several misconceptions
to light during development of the language.



56 Sewell et al.

13 Implementation

The implementation is written in FreshOCaml (Shinwell et al., 2003), currently around
25 000 lines of code (we later also ported it to OCaml). It has been developed together with
the language definition. By and large the definition has led, with extensions and changes to
the definition being followed by implementation work to match. This exposed many am-
biguities and errors in the semantics. In a few cases the implementation led, with changes
propagated back into the definition afterwards. An automated testing framework helped
ensure the two are in sync, with tests of compilation and execution that can be re-run auto-
matically.

The main priority for the implementation was to be rather close to the semantics, to
make it easy to change as the definition changed (and easy to have reasonable confidence
that the two agree), while being efficient enough to run moderate examples. The runtime is
essentially an interpreter over the abstract syntax, finding redexes and performing reduc-
tion steps as in the semantics. For efficiency it uses closures and represents terms as pairs
of an explicit evaluation context and the enclosed term (roughly as in §1.3.1, Ex. 1 of Rémy
(2002)) to avoid having to re-traverse the whole term when finding redexes. Marshalled val-
ues marshalled(En, Es , s, definitions , e, T ) are represented simply by a pretty-print
of their abstract syntax. Numeric hashes use a hash function applied to a pretty-print of
their body; it is thus important for this pretty-print to be canonical, choosing bound iden-
tifiers appropriately. Acute threads are reduced in turn, round-robin. A pool of OS threads
is maintained for making blocking system calls. A genlib tool makes it easy to import
(restricted versions of) OCaml libraries, taking OCaml .mli interface files and generat-
ing embeddings and projections between the OCaml and internal Acute representations.
It does not support higher-order functions, which would be challenging in the presence of
concurrency.

To give a very crude idea of performance, the initialisation phase of the blockhead.ac
game performs about 220000 steps (roughly corresponding to reduction steps) in 4.5
seconds, without run-time typechecking and with the vacuous bracket optimisation. The
naive Fibonacci function of 25 involves about 1.6 million steps and takes 18 seconds,
again without run-time typechecking and with vacuous bracket optimisation. Running
the same code in the OCaml toplevel takes 0.0056 seconds, so the Acute implementa-
tion is around 3000 times slower. Turning on run-time typechecking in Acute (and using
definitions lib small.ac) for Fibonacci of 15 takes the execution time from 0.16
seconds to 495 seconds (11000 steps), a slowdown of another factor of 3000. These figures
are all for a 3.20GHz Pentium 4. In practice this level of performance has been reasonable
for the examples we have considered to date. The blockhead and minesweeper games are
playable, and three sample communication infrastructures, based on Nomadic Pict, Dis-
tributed Join Calculus, and Ambients, all execute tolerably well. While it would be good
if run-time typechecking were feasible for these larger examples, it is in fact mostly useful
for more focussed test cases — for which one wishes to observe the individual reduction
steps in any case.
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14 Related work

There is extensive related work on module systems, dynamic binding, dynamic type tests,
and distributed process calculi. For most of this we refer the reader to the discussion in
our earlier papers (Sewell, 2001; Leifer et al., 2003a; Bierman et al., 2003), confining
our attention here to some of the most relevant distributed programming language devel-
opments. Many address distributed execution, with type-safe interaction within a single
program that forks across the network, but there has been little work on distributed devel-
opment, on typed interaction between programs, or on version change. (Several languages,
including JoCaml and Nomadic Pict, have ad-hoc ‘traders’ for establishing initial connec-
tions between programs.)

Early work on adding local concurrency to ML resulted in Concurrent ML (Reppy, 1999)
and the initial Facile, both based on the SML/NJ implementation. Facile was later extended
with rich support for distributed execution, including a notion of location and computation
mobility (Thomsen et al., 1996). dML (Ohori & Kato, 1993) was another distributed ex-
tension of ML, implementable by translation into remote procedure calls without requiring
communication at higher types. Erlang (Armstrong et al., 1996) supports concurrency,
messaging and distribution, but without static typing.

The Pict experiment (Pierce & Turner, 2000) investigated how one could base a us-
able programming language purely on local concurrency, with a π-calculus core instead
of primitive functions or objects. The Distributed Join Calculus (Fournet et al., 1996) and
subsequent JoCaml implementation (Conchon & Fessant, 1999) modified the π primitives
with a view to distribution, and added location hierarchies and location migration. The
runtime involved a complex forwarding-pointer distributed infrastructure to ensure that, in
the absence of failure, communication was location-independent. (Polyphonic C] (Benton
et al., 2002) adds the Join Calculus local concurrency primitives to a class-based language.)
Other work in the 1990s was also aimed at providing distribution transparency, notably Ob-

liq (Cardelli, 1995), with network-transparent remote object references above Modula3’s
network objects.

Distribution transparency, while perhaps desirable in tightly coupled, reliable networks,
cannot be provided in systems that are unreliable or span administrative boundaries. Work
on Nomadic Pict (Sewell et al., 1999; Unyapoth & Sewell, 2001) adopted a lower level
of abstraction, showing how a wide variety of distributed infrastructure algorithms, includ-
ing one similar to that of the JoCaml implementation, could be expressed in a high-level
language; one was proved correct. The low level of abstraction means the core language
can have a clean and easily understood failure semantics; the work is a step towards the
argument of §2.

A distinct line of work has focussed on typing the entire distributed system to prevent
resource access failures, for Dπ (Hennessy et al., 2004) and with modal types (Murphy
et al., 2004). Even where this is possible, however, one must still deal with low-level net-
work failure.

Work on Alice (Rossberg et al., 2006; Rossberg, 2003) is perhaps closest to ours, with
ML modules, support for marshalling (‘pickling’) arbitrary values, and run-time fresh gen-
eration of abstract type names, but without rebinding, our distributed type and term naming,
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or version control. Furuse and Weis support type-safe, but not abstraction-safe, marshalling
of non-functional values in OCaml (Furuse & Weis, 2000).

Both Java and .NET have some versioning support, though neither is integrated with
the type system. Java serialisation, used in RMI, includes serialVersionUIDs for classes of
any serialised objects. These default to (roughly) hashes of the method names and types,
not including the implementation. Class authors can override them with hashes of previ-
ous versions. Linking for Java, and in particular binary compatibility, has been studied
by Drossopoulou et al. (1999). The .NET framework supports versioning of assemblies
(Dot03, 2003). Sharable assemblies must have strong names, which include a public key,
file hashes, and a major.minor.build.revision version. Compile-time assembly references
can be modified before use by XML policy files of the application, code publisher, and
machine administrator; the semantics is complex (Buckley et al., 2005).

Explicit versioning is common in package management, however. For example, both
RedHat and Debian packages can contain version constraints on their dependencies, with
numeric inequalities and capability-set membership. ELF shared objects express certain
version constraints using pathname and symlink conventions. Vesta (Heydon et al., 2006)
provides a rich configuration language.

As discussed in §3 Acute addresses the case in which complex values must be com-
municated and the interacting runtimes are not malicious. Much other work applies to the
untrusted case, with various forms of proof-carrying code and wire-format ASN.1 and
XML typing.

15 Conclusions and future work

We have addressed key issues in the design of high-level programming languages for dis-
tributed computation, discussing the language design space and presenting the Acute lan-
guage. Acute is a synthesis of an OCaml core with several novel features: dynamic rebind-
ing, global fresh and hash-based type and term naming, versions, type- and abstraction-
safe marshalling, etc. It is not intended as a proposal for a production language, but rather
a vehicle for experimentation and a starting point for debate — several necessary but re-
latively straightforward features have been omitted, and substantial problems remain for
future work (especially some of the questions of §4). Nonetheless, we believe that our ex-
amples demonstrate that the combination of the above features is much of what is needed
to bring the benefits of ML-like languages to the programming of large-scale distributed
systems, supporting typed, higher-order, distributed computation.

The new constructs should also admit an efficient implementation. The two main points
are the tracking of run-time type information, and the implementation of redex-time re-
duction and rebinding. For the first, note that an implementation does not need to have
types for all run-time values, but only (hashes of) the types that reach marshal and un-
marshal points. The second would be a smooth extension of OCaml’s existing CBV im-
plementation: OCaml currently maintains each field reference M.x as a pointer until it is
in redex position, whereupon it is dereferenced. Since field references inside a thunk re-
main as pointers, they could easily be rebound with only modest changes to the runtime. A
preliminary experiment has confirmed that this is feasible (Billings, 2005). This involved
adapting the OCaml bytecode runtime to support marshalling of closures and simple re-
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binding, and replacing the Acute runtime by a simple compiler from a fragment of Acute

to this bytecode. Performance for local computation was roughly 2–3 times slower than
OCaml bytecode, and there is doubtless much scope for optimisation. Of course compile-
time inlining optimisations between parts of code separated by a mark would no longer be
straightforward. Our more recent work on HashCaml (Billings et al., 2006) integrated core
features of Acute into the OCaml implementation, with encouraging results.

A great deal of future work remains. In the short term, more practical experience in pro-
gramming in Acute is needed, and there are unresolved semantic issues in the interaction
between explicit polymorphism, coloured brackets, and marshalling. Straightforward ex-
tensions would ease programming: user definable type operators and recursive datatypes,
first-order functors, and richer version languages. A more efficient implementation runtime
may be needed for larger examples. Improved tool support for the semantics would be of
great value, for meta-typechecking, for conformance testing, and for proofs of soundness.
More fundamentally:

• We must study more refined low-level linking, for negotiation and for access control
(escaping the linear mark/module structure). This may demand recursive modules.

• The Acute operational semantics is rather complex, as is the definition of compila-
tion. In part this seems inevitable — the semantics deals with dynamic linking, mar-
shalling, concurrency, thunkify, and coloured brackets, all of which are dynamically
intricate (and few of which are covered by existing large-scale definitions). Addi-
tionally, our focus has been on a direct semantics of the user language, rather than a
combination of a simpler core and a translation, and Acute has evolved through sev-
eral phases. It should be possible to make the compilation semantics less algorithmic
by appealing explicitly to type canonicalisation. The operational semantics for a
language with lower-level linking might well be simpler than that presented here,
factoring out the algorithmic issues of resolvespecs, for example.

• Subtyping is needed for many version-change scenarios, perhaps with corresponding
subhash relations (Deniélou & Leifer, 2006). As mentioned in §10, the proper integ-
ration of this with polymorphism is challenging, as is the question of what subtype
information needs to be propagated at run time.

• The Acute constructs for local concurrency are very low level, and it is unclear
what should be added. Join patterns, CML-style events, π-style channels, explicit
automata, and software transactional memory; all are useful idioms.

• Some distributed abstractions, such as libraries of distributed references with distrib-
uted garbage collection, may challenge the type system.

• The constructs we have presented should be integrated with support for untrusted
interaction.

A combination of what has been presented in Acute with solutions to these problems would
support a wide range of distributed programming well.
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A Acute syntax summary
This appendix gives most of the Acute syntax for reference. This is the fully type-annotated source
language, including sugared forms, together with other non-source constructs that are needed to
express the semantics. The implementation can infer many of the type annotations, and the mode ,
withspec, likespec, vce , vne , and resolvespec annotations on module and import default to
reasonable values if omitted. The internal parts M , t and x of identifiers MM , tt and xx are inferred
by scope resolution. Novel source features are highlighted in a green frame and light background
and novel non-source constructs are highlighted in a red frame and dark background .

Abstract names n Store locations l Standard library constants (with arity) x n

Kinds

K ::= TYPE|EQ(T )

Types

T ::= int|bool|string|unit|char|void|T1 ∗ .. ∗ Tn|T1 + ..+ Tn|T → T ′|T list|T option|
T ref|exn|MM .t|t |∀ t .T |∃ t .T |
T name|T tie|thread|mutex|cvar|thunkifymode|thunkkey| thunklet|h.t|n

Constructors C0 ::= ... C1 ::= ...

Expressions

e ::= C0|C1 e|e1 :: e2|(e1, .., en)|function mtch|fun mtch|l |opn e1 ... en|x n e1 ... en|
x |MM .x|if e1 then e2 else e3|while e1 do e2 done|e1 && e2|e1 || e2|e1 ; e2|
e1 e2|!T e|e1 :=T e2|match e with mtch|let p = e ′ in e ′′|
let x : T p1..pn = e ′ in e ′′|let rec x : T = function mtch in e|
let rec x : T p1..pn = e ′ in e ′′|raise e|try e with mtch|
Λ t → e|e T |{T , e} as T ′|let {t , x} = e1 in e2|
marshal e1 e2 : T |unmarshal e as T |
freshT |cfreshT |hash(X .x)T |hash(T , e2)T ′ |hash(T , e2, e1)T ′ |
swap e1 and e2 in e3|e1 freshfor e2|supportT e|
MM @x|name of tie e|val of tie e|
namecase e1 with {t , (x1, x2)}when x1 = e → e2 otherwise → e3|e1|||e2|
nT |h.x|e1 :=′T e2|marshalz s e : T |RETT |SLOWRETT |TERM|
op(opn)n e1 .. en |op(x n)n e1 .. en |[e]Teqs |
resolve(MM .x,M

′
M ′ , resolvespec)|resolve blocked(MM .x,M

′
M ′ , resolvespec)
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Operators

op ::= refT |(=T )|(<)|(≤)|(>)|(≥)|(+)|(−)|(∗)|(/)| − |(@T )|(b)|
mod|land|lor|lxor|lsl|lsr|asr|
create threadT |self |kill|create mutex|lock|try lock|unlock|
create cvar|wait|signal|broadcast|exit T |
compare nameT |thunkify| unthunkify

Matches and Patterns

mtch ::= p → e|(p → e|mtch)
p ::= ( : T )|(x : T )|C0|C1 p|p1 :: p2|(p1, .., pn)|(p : T )

Signatures and Structures

sig ::= empty |val xx : T sig |type tt : K sig Sig ::= sig sig end
str ::= empty |let xx : T p1..pn = e str |type tt = T str Str ::= struct str end

Version and version constraint expressions

avne ::= n|N |h|myname avce ::= ahvce|n
vne ::= avne|avne.vne dvce ::= avce|n–n′|–n|n–| ∗ |avce.dvce
ahvce ::= N |h|MM vce ::= dvce|name = ahvce

Source definitions and Compilation Units

sourcedefinition ::= module mode MM : Sig version vne = Str withspec
import mode MM : Sig version vce likespec by resolvespec = Mo
mark MK
module MM : Sig = M′M ′

mode ::= hash|cfresh|fresh|hash!|cfresh!
withspec ::= empty | with !eqs
likespec ::= empty | like MM | like Str

resolvespec ::= empty |
STATIC LINK, resolvespec|
HERE ALREADY, resolvespec|
URI , resolvespec

Mo ::= MM |UNLINKED

compilationunit ::= empty |e|sourcedefinition ;; compilationunit |
includesource sourcefilename ;; compilationunit |
includecompiled compiledfilename ;; compilationunit

Compiled Definitions and Compiled Units

definition ::= cmodule...|cimport...|module fresh...|import fresh...|mark MK
compiledunit ::= empty |e|definition ;; compiledunit

Marshalled value contents (marshalled values are strings that unmarshal to these)

mv ::= marshalled(En, Es , s, definitions, e, T )
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Module names (hashes and abstract names)

h ::= hash(hmoduleeqs M : Sig0 version vne = Str)|
hash(himport M : Sig0 version vc like Str)|
n

X ::= MM |h

Expression name values

n ::= nT |hash(h.x)T |hash(T ′, s)T |hash(T ′, s,n)T

(In the implementation all h and n forms can be represented by a long bitstring taken from H,
ranged over by N .)

Type equation sets (the MM forms occur in the source language)

eqs ::= ∅|eqs,X .t ≈ T

Type Environments (for identifiers and store locations — not required at run time in the implement-
ation)

E ::= empty |E , x : T |E , l : T ref|E , t : K |E ,MM : Sig

Type Environments (for global names — not required in the implementation)

En ::= empty |En, n : TYPE|En, n : T name|
En, n : nmoduleeqs M : Sig0 version vne = Str |
En, n : nimport M : Sig0 version vc like Str

Processes

P ::= 0|(P1|P2)|n : definitions e|n : MX(b)|n : CV

Single-Machine Configurations

config ::= En ; 〈Es , s, definitions, P〉
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