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Abstract

Three simple models of synchronous hardware are given; using linear discrete, branch-

ing discrete and branching real time. A simple notion of abstraction is introduced,

motivated by the need to ultimately view such models as scienti�c theories that make

empirical predictions. It makes the signi�cance of design rules explicit.

Two abstractions from the branching discrete to the linear discrete model are

given. They shed some light on the roles of consistency, deadlock and determinacy.

The stronger of the two depends on a notion of dynamic type for processes which

ensures deadlock freedom.

A reasonably strong abstraction from the branching real to the branching discrete

model is given. This depends on a �ner notion of type which is a reasonably physically

plausible formalisation of the timing properties of certain real components.
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1 Introduction

In this paper we investigate some issues involved in the formal modelling of hardware. It is

widely accepted that models at various levels of abstraction are required. When reasoning

about a system it is desirable to use the most abstract model possible. It is a truism that

actual hardware cannot be formally veri�ed and therefore that our formal models must

be related to the real world by some scienti�c work, enabling empirical predictions to

be con�dently made about the behaviour of actual hardware from the results of formal

reasoning. This appears to be most straightforward for reasonably concrete models. We

de�ne a notion of abstraction between two models that has only enough structure to lift

an empirical understanding of the more concrete to the more abstract.

A model is typically only valid for circuits that satisfy certain design rules. It is often un-

clear, however, exactly what is guaranteed by a particular design rule. This can sometimes

be answered by a precise result in a more concrete model that is more widely valid. The

design rule, together with assumptions on the concrete models of primitive components,

can then be seen as necessary for a particular abstraction to exist.

These general statements are given some precise meaning by considering three models of

simple synchronous circuits and the abstractions between them. In x2 and x3 we give

a syntax suitable for describing circuits at the gate level and a standard linear discrete

time model. In x4 we discuss design rules and abstractions between models in general.
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In x5{7 we give a branching discrete time model and an abstraction that depends on

the design rule `All cycles contain a sequential gate'. This involves a class of deadlock-

free parallel compositions. In x8 we recall the informal timing properties given in the

manufacturer's databook [TI84] for certain 74LS devices. In x9{12 we give a branching

real time model and an abstraction that depends on the design rule `There are no long

sequences of combinational gates' and a physically plausible formalisation of the timing

properties.

It should be noted that we are only attempting to explore a few of the issues involved in

relating abstract formal hardware models to actual hardware. In particular we consider

only very simple synchronous circuits and quite abstract models. Our more concrete

models have not been related to the concrete models in use, although they seem to be

physically plausible. Most proofs are deferred to Appendix A. A short version of this

work appeared at the 3rd Workshop on Designing Correct Circuits (DCC '96) [Sew96].

2 Circuit Syntax

We take a simple syntax of circuits with terms that are either primitive components from

some set prim or the parallel composition of two terms:

circ ::= p

�

�

�

circ k circ p 2 prim :

To each term we associate a pair of disjoint �nite sets of port names, drawn from a

set N , representing the available input and output ports. These are given for primitive

components by a function sort : prim!(P

�n

N)� (P

�n

N) which is lifted to all terms via

a parallel composition of sorts:

sort c k c

0

def

= sort c k sort c

0

where hi; oi khi

0

; o

0

i

def

= h(i� o

0

) [ (i

0

� o); (o� i

0

) [ (o

0

� i)i:

We will consider only terms for which any input (resp. output) port is connected to at

most one other port, which must be an output (resp. input). This condition, of 1:1

directional connection, is captured by D

0

, where

D

0

(c

00

) () if c k c

0

is a subterm of c

00

then sort c and sort c

0

are composable

and sorts hi; oi, hi

0

; o

0

i are composable i� i \ i

0

= o \ o

0

= fg. Set union between

sets of ports will usually be elided. We will often refer to pairs of sorts of the form

hi

1

h

1

; o

1

h

2

i; hh

2

i

2

; h

1

o

2

i, in which the sets are all supposed disjoint. The composition of

terms c; c

0

with these sorts could be depicted as on the left below.

-
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-

-
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For example the primitive components might include gates (parameterised by ports) such

as Not

ab

, Nand

abc

and DType with

sort Fork

abc

def

= hfag; fb; cgi sort Pwr

a

def

= hfg; fagi

sort Nand

abc

def

= hfa; bg; fcgi sortGnd

a

def

= hfg; fagi

sortCheckGnd

a

def

= hfag; fgi

sortNot

ab

def

= hfag; fbgi sortDType

def

= hfd; clr; ckg; fq; qbargi

giving

sort DType kNot

qd

= hfck; clrg; fqbargi

which could be depicted as on the right above.

This syntax is quite an abstract description of the structure of circuits | for certain

problems, e.g. calculating capacitances between points, much more concrete geometrical

descriptions would be required. We will be concerned with abstractions between the

behaviours of terms in various models. We will not in this paper consider abstractions

between di�erent levels of structural description.

Henceforth we identify circuits with terms of the syntax. We will appeal to notions of

the actual instances of a circuit c and of the actual behaviour of these instances. By the

former we mean the physical objects that could be constructed following some `standard

practice' and that correspond to c. We will not attempt to be more precise about what

this `standard practice' is.

The choice of a binary parallel composition enables design rules, properties of ciruits

and proofs of abstraction results to be expressed compositionally in a straightforward

way. Parallel composition will be commutative and associative in all our models (up to a

restriction on sorts), as expected. The choice of 1:1 directional connection is appropriate

for the gate-based circuits we deal with. It would presumably not be appropriate for

circuits with transistor-based structural descriptions. Having explicit sets of port names

associated with each circuit simpli�es our notation and de�nitions.

De�nition A model M of the syntax will be a family of sets M

io

indexed by the sorts

and a sort-respecting function [[ ]]

M

: circ!M. We will generally elide the indexing.

3 L, a Linear Discrete Time Model

Work on formal hardware design commonly uses a linear discrete time model of circuit

behaviour, here denoted by L. In this model signals are modelled by functions from the

naturals (representing time) to a set V of values and a circuit with n inputs andm outputs

is modelled by a predicate over (n+m)-tuples of such functions. Composition is modelled

by existential quanti�cation and conjunction. To avoid a mass of notation port names

and variables over signals will be identi�ed | we suppose given some function [[ ]]

L

which

for each primitive component gives a predicate over the variables in the sort thereof. This

is extended to circuits by

[[c k c

0

]]

L

def

= 9a

1

: : : a

n

: N! V : [[c]]

L

^ [[c

0

]]

L
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where sort c = hi

1

h

1

; o

1

h

2

i, sort c

0

= hi

2

h

2

; o

2

h

1

i and h

1

h

2

= fa

1

: : : a

n

g. For example, we

might have the following, putting V = bool = ft; fg:

[[Fork

abc

]]

L

def

= 8t :N : b(t) = a(t) ^ c(t) = a(t) [[Pwr

a

]]

L

def

= 8t :N : a(t)

[[Nand

abc

]]

L

def

= 8t :N : c(t) = :(a(t) ^ b(t)) [[Gnd

a

]]

L

def

= 8t :N : :a(t)

[[Not

ab

]]

L

def

= 8t :N : b(t) = :a(t) [[CheckGnd

a

]]

L

def

= 8t :N : :a(t)

[[DType]]

L

def

= 8t :N : q(t+ 1) = (clr(t+ 1)) ((:ck(t) ^ ck(t+ 1))) d(t) j q(t)) j f)

^ 8t :N : qbar(t) = :q(t)

Many combinational primitives can be described by a sort hfa

1

: : : a

m

g; fb

1

: : : b

n

gi and

function f :V

m

!V

n

and given linear discrete time semantics

[[Comb

f

~a

~

b

]]

L

def

= 8t :N :

~

b(t) = f(~a(t)):

Many sequential primitives can be described by a sort hfa

1

: : : a

m

g; fb

1

: : : b

n

gi, an l :N

giving the size of the internal state, `next-state' function f :V

m

� V

l

!V

l

and `output'

function g :V

l

!V

n

. Their discrete time semantics is then

[[Seq

fg

~a

~

b

]]

L

def

= 9

~

h : N! V

l

: 8t :N :

~

b(t) = g(

~

h(t)) ^

~

h(t+ 1) = f(~a(t);

~

h(t));

leaving the initial state unspeci�ed.

4 Design Rules and Abstractions

The model L is quite abstract. This simpli�es reasoning about the behaviour of large

circuits but leaves the relationship between the model [[c]]

L

of a circuit c and the actual

behaviour of instances of c somewhat unclear. In particular:

� We would only expect [[c]]

L

to correspond to the actual behaviour of instances of c

for some c, i.e. those that satisfy design rules such as the following.

0. All connections are 1:1 and directional.

1. All cycles contain a sequential gate.

2. There are no long sequences of combinational gates.

3. No output is required to drive too many inputs.

These are informal but easy to make precise (indeed 0 has been as D

0

, 1 will be in

x5 and 2 will be in x9). It is not clear exactly what is ensured by imposing these,

nor whether they are su�cient.

� We have not said how [[c]]

L

corresponds to the actual behaviour of instances of c.

These points can be addressed by considering more concrete models and the abstraction

relationships between them. We envisage a number of models, related to each other by

some mathematical notion of abstraction. We suppose that one of these models is related
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to the actual behaviour of instances of circuits by some scienti�c work, giving us an

`empirical understanding' of it.

Abstract model (e.g. L)

Concrete model

abstraction

Most Concrete model

abstraction

Real world

empirical understanding

We will not discuss the basis or nature of this empirical understanding beyond formulating

it in a way that focuses attention on the properties required of abstractions between

models. We suppose that there is some set Ob of observations that may be made of

the actual behaviour of instances of circuits. (We are not suggesting that it is feasible

to de�ne Ob, but only that it suggests a clear intuition about the desired statements of

abstraction results.)

De�nition An empirical understanding of a model M and design rule D (i.e. a subset

of circ) is a function obs

M

:M!P(Ob) such that if D(c) holds then the observations

in obs

M

([[c]]

M

) may with con�dence (based on scienti�c work) be predicted of the actual

behaviour of any instance of c.

For elements x of a model M we would like obs

M

(x) to be as large as possible, so that

we know as much as possible about the actual behaviour of instances of a circuit c simply

from [[c]]

M

. There is a trivial empirical understanding of any model, taking obs

M

(x) to

be empty.

Abstraction relationships can now be de�ned to enable an empirical understanding of a

concrete model to be lifted to an abstract model.

De�nition For models A and C, design rules D

a

and D

c

, and a relation Q � C �A we

say A;D

a

is an abstraction of C;D

c

along Q i�

8c 2 circ : D

a

(c)) (D

c

(c) ^ [[c]]

C

Q [[c]]

A

)

It is then immediate that if C;D

c

is empirically understood by obs

C

( ) and A;D

a

is an

abstraction of it along Q then A;D

a

is empirically understood by

obs

A

(y)

def

=

\

fobs

C

(x) j x Q yg:

In other words, given the data below (which is not a commuting diagram)

A

�

�

�

�

�

[[ ]]

A

*

circ

H

H

H

H

H

[[ ]]

C

j

C

Q

obs

C

( )

-

P(Ob)
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we can calculate the best empirical understanding obs

A

( ) :A!P(Ob) of A;D

a

.

An abstraction result thus reduces the question of how [[c]]

A

corresponds to the actual

behaviour of instances of c to the (presumably better understood) question of how [[c]]

C

does. It lets us work only at the abstract level | typically [[c]]

A

will be easier to calculate

than [[c]]

C

and having done so we know [[c]]

C

2 fx 2 C j x Q [[c]]

A

g. Note that there may

be many abstraction relations between two models. In general one would be preferred if

for c such that D

a

(c) the set fx 2 C j x Q [[c]]

A

g is small and/or easy to describe.

In the remainder of this paper we give two abstractions from a branching discrete time

model B to L and one from a branching real time model R to B.

L, a linear discrete time model

B, a branching discrete time model

�

�

nt

requiring `All cycles contain a sequential gate.'

R, a branching real time model

< requiring `There are no long sequences of combinational gates.'

One of the former (�) is trivial. The others have similar developments. In each case we

formalise a design rule (1 and 2 respectively) and recall the informal reason why imposing

it ensures that circuits behave correctly. This involves properties of the behaviour of

primitive components. We introduce more concrete models (B and R respectively) in

which these properties can be expressed. The desired abstraction relations are stated and

the proofs that they are indeed abstraction relations make the informal reasoning precise.

We thus give a precise understanding of what is ensured by imposing design rules 1 and

2.

5 Design Rule 1: `All cycles contain a sequential gate.'

Simple gates can be divided into two groups, the combinational (e.g. Nand

abc

, Not

ab

) and

the sequential (e.g. a latch or a DType in certain environments). The behaviours of these

gates have the following informal property:

In any clock period any values may be applied to the inputs of a gate.

Further, for sequential gates the values on outputs in a given clock period

are independent of the inputs in that clock period.

(1)

Consider the circuits below.

c

def

= DType kNot

qd

c

0

def

= Not

bd

kNot

da

kFork

abc

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

--

-

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

-

�

-

clr qbar

ck

- -

�

-
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The �rst, c, obeys Design Rule 1, as the only cycle contains a sequential gate | the

DType. This, together with property (1), suggests that in each clock period there can be

consistent values on the internal ports q and d. We would thus expect [[c]]

L

to correspond

to the actual behaviour of instances of c. On the other hand the actual behaviour of

instances of c

0

may not correspond to any element of L, let alone [[c

0

]]

L

, as c

0

does not

obey Design Rule 1.

In the rest of this section we make Design Rule 1 precise. In x6 and x7 we formalise

property (1) and make the above informal reasoning precise.

The informal statement of Design Rule 1 is global, referring to all cycles within a circuit.

It is more convenient to have a de�nition that is inductive on the structure of circuits. To

state this we introduce a simple notion of type. The types of a circuit with sort hi; oi will

be relations T � i� o, thought of as giving the admissible direct (i.e., via combinational

gates) connectivity within the circuit. More precisely, for a circuit c and a 2 i, b 2 o, if c

has type T and :(a T b) then there will be no direct connection from a to b within c. The

types i�o and fg correspond to purely combinational and sequential circuits respectively.

We write T

+

for the transitive closure of a relation T .

De�nition If T; T

0

are types for sorts hi

1

h

1

; o

1

h

2

i; hi

2

h

2

; o

2

h

1

i then they are composable

if :9a : a (T [ T

0

)

+

a, in which case T k T

0

def

= (T [ T

0

)

+

\ (i

1

i

2

� o

1

o

2

).

We suppose that each primitive component is given some type. The rules for typing

circuits are those below.

p :T

p :T given

c : T c

0

: T

0

c k c

0

: T kT

0

T; T

0

composable

For example if Not

ab

:fha; big and DType :fhclr; qi; hclr; qbari; hck; qi; hck; qbari are given

then DType kNot

qd

:fhck; qbari; hclr; qbarig .

Design Rule 1, `All cycles contain a sequential gate', can now be expressed:

D

1

(c) () D

0

(c) and c is typable.

For example D

1

(DType kNot

qd

) holds whereas D

1

(Not

bd

kNot

da

kFork

abc

) does not.

We will use the following fact about composable types.

Lemma 1 If types T; T

0

for sorts hi

1

h

1

; o

1

h

2

i; hi

2

h

2

; o

2

h

1

i are composable then the set of

ports h

1

h

2

o

1

o

2

can be ordered c

1

: : : c

n

such that 8p; q 2 1 : : : n : p < q ) :(c

q

(T [ T

0

)

+

c

p

).

Proof Trivial. 2

6 B, a Branching Discrete Time Model

In order to express property (1) we introduce a more concrete model.

The model L abstracts from many aspects of circuit behaviour | real time, voltages,

impedances etc. In particular it abstracts from the internal states of circuits. This might
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be contrasted with the behaviour of a simulator which maintains a state, calculating a/the

state for a succeeding time step from the current state and inputs. Work on concurrency

has considered a variety of models that abstract from internal state to di�erent extents,

from linear time (or trace based) to branching time (or bisimulation) | see [Gla90] for

an overview. In this section a branching time model is given. We assume familiarity with

transition systems, bisimulation and SCCS [Mil83, Mil89].

De�nition A transition system S over labels L is a pair of a set S (of states) and a

family of relations

l

�! � S � S j l 2 L. We write �! for [

l2L

l

�!. Strong bisimulation

� over S is the largest equivalence relation over S such that if s � t and s

l

�!s

0

then

9t

0

: t

l

�!t

0

� s

0

.

De�nition For a set V the model BR(V) consists of the transition systems BR(V)

io

,

where these are the strong bisimulation quotients of su�ciently large

1

transition systems

over the labels io!V. Parallel composition is basically SCCS synchronisation and hiding,

i.e. for s; s

0

of sorts hi

1

h

1

; o

1

h

2

i, hi

2

h

2

; o

2

h

1

i the transitions of s k s

0

are given by

s

�

�!ŝ s

0

�

�!ŝ

0

s k s

0

� k�

�!ŝ k ŝ

0

8a 2 h

1

h

2

: �(a) = �(a);

where the composition � k� : i

1

i

2

o

1

o

2

!V of � : i

1

h

1

o

1

h

2

!V and � : i

2

h

2

o

2

h

1

!V is de-

�ned by

(� k�)(a) = �(a) for a 2 i

1

o

1

(� k�)(a) = �(a) for a 2 i

2

o

2

:

Given � : j!V and � : j

0

!V for disjoint sets of names j; j

0

we write �� for their source

tupling.

De�nition The branching discrete time model is B

def

= BR(V ) with a sort-respecting

semantic function [[ ]]

B

supposed given for primitive components. B

io

is thus a transition

system with labels that give a value for each port in i [ o. The transition labels will be

ranged over by �; �; 
; �; �.

SCCS notation will be used for examples, taking hAct ;�; 1; i to be the free abelian group

over N � V and writing states with sort hi; oi as processes with sort (in the sense of

[Mil83]) In

i

�Out

o

, where

In

~a

def

= f(a

1

)

v

1

� : : :� (a

n

)

v

n

j ~v 2 V

n

g

Out

~

b

def

= f(b

1

)

v

1

� : : :� (b

m

)

v

m

j ~v 2 V

m

g:

Parallel composition is just s k s

0

= (s� s

0

) � In

i

1

i

2

�Out

o

1

o

2

. The isomorphisms between

In

~a

(resp. Out

~

b

) and the set of functions from ~a to V (resp.

~

b to V ) will be elided.

1

i.e., containing the denotations of all primitive components and closed under parallel composition
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For example we might have

[[Fork

abc

]]

B

def

= �x X:

P

x2bool

a

x

b

x

c

x

: X [[Pwr

a

]]

B

def

= �x X:a

t

: X

[[Nand

abc

]]

B

def

= �x X:

P

x;y2bool

a

x

b

y

c

:(x^y)

: X [[Gnd

a

]]

B

def

= �x X:a

f

: X

[[Not

ab

]]

B

def

= �x X:

P

x2bool

a

x

b

:x

: X [[CheckGnd

a

]]

B

def

= �x X:a

f

: X

[[DType]]

B

def

=

P

xyz

D

xyz

where D

xyz

def

=

P

w

0

;x

0

;y

0

2bool

clr

w

0

ck

x

0

d

y

0

q

z

0

qbar

:z

0

: D

x

0

y

0

z

0

and z

0

= (w

0

) ((:x ^ x

0

)) y j z) j f):

The transition system [[Not

ab

]]

B

could be depicted as below.

a

t

b

f

a

f

b

t

For the general combinational and sequential primitives we take

[[Comb

f

~a

~

b

]]

B

def

= �x X:

X

v2V

m

~a

v

~

b

f(v)

: X

[[Seq

fg

~a

~

b

]]

B

def

=

X

s2V

l

P

s

where P

s

def

=

X

v2V

m

~a

v

~

b

g(s)

: P

f(v;s)

:

This [[Seq

fg

~a

~

b

]]

B

is only nondeterministic at the �rst state so we are not using much of the

expressive power of the branching time model. Modelling arbiters or faulty components

would make more use of the expressiveness of the model.

The set of in�nite traces of a state s will be written itr(s). We elide the isomorphism

between the sets of in�nite traces for sort hi; oi (i.e. subsets of N! io!V ) and the

predicates on the variables (of type N! V ) in io. For the above examples of primitive

components itr([[p]]

B

) = [[p]]

L

.

It is well known that it is not necessary to use as �ne an equivalence as bisimulation in

order to be sensitive to deadlock and be a congruence for parallel composition. Bisimu-

lation is chosen to make the de�nitions in the next section and the relationship with the

real time model simple. We will give abstractions from B all the way to the linear time L,

skipping over intermediates such as failure equivalence classes of transition systems. One

can argue that B is closer than L to the behaviour that might be exhibited by a stochas-

tic circuit simulator. L abstracts from the internal states of circuits, whereas we might

expect a simulator to maintain them | in a given state, (perhaps randomly) choosing a

succeeding state and valuation for ports from those allowed by the primitive components

in that state. Such a simulator would therefore detect (probabilistically) the deadlocks of

the example in x7.4. One might also argue that a proper treatment of nondeterminism

will be essential when we get to very concrete physical models.

7 Abstraction from B to L

There may be many abstraction relations between two models, with di�ering strengths

10



and requiring di�erent design rules. For example there are the following natural ones

between B and L.

De�nition For s 2 B and x 2 L of the same sort

s � x i� itr (s) = x

s �

nt

x i� itr (s) = x and s is nonterminating.

For an abstraction result along � no design rules or properties of primitive components

are required.

Theorem 1 If for all primitive components p we have [[p]]

B

� [[p]]

L

then L;D

0

is an

abstraction of B;D

0

along �.

Proof Trivial induction on circuits using the fact that for states s; s

0

of composable

sorts in B we have itr(s k s

0

) = itr(s) k itr (s

0

). 2

For an abstraction result along �

nt

we impose Design Rule 1 and a formalisation of

property (1).

7.1 Interpretation of types in B

Types can be interpreted in the branching time model, formalising property (1) and

generalising it to arbitrary circuits:

De�nition If T � i� o we say a state s 2 B

io

inhabits T if for all a 2 i, if

s�!

�

s

0

��

2

�

1

�

2

�!

where � :fag! V �

1

:fb j :(a T b)g! V

�

2

:(i� fag)! V �

2

:fb j a T bg! V

then for all �

0

:fag! V there exists �

0

2

:fb j a T bg! V such that s

0

�

0

�

2

�

1

�

0

2

�! . This could

be depicted as below, in which o

1

= fb j :(a T b)g and o

2

= fb j a T bg.

-
.
-

- -

-
. . . . . . . . . . . . . . . . . . . . . . . .

i� a o

2

8

9

fag o

1

For combinational circuits with type i� o this de�nition is similar to strong consistency,

saying that for all inputs there is an output. For sequential circuits with type fg it is a

form of receptivity, saying that for any output that can occur all inputs are permitted.

More precisely, suppose s�!

�

s

0

��

�!. If s inhabits i � o then 8�

0

: 9�

0

: s

0

�

0

�

0

�! and if s

inhabits fg then 8�

0

: s

0

�

0

�

�!.

Note that if T � T

0

� i� o and a nonterminating state s inhabits T then it also inhabits

T

0

but that states may not inhabit unique minimal types. For example the state with

sort hfag; fb; cgi de�ned by

�x X:

X

x;y2bool

a

x

b

y

c

(x xor y)

: X

11



inhabits fha; big and fha; cig but not fg. Note also that determinacy (in any of the senses

of x7.5) and nontermination are not implied by inhabitation.

The formalisation of property (1) for a primitive component p :T is that [[p]]

B

inhabits T

and is nonterminating. This holds for the examples given.

In this de�nition and henceforth we implicitly identify the units of discrete time with the

period of some global clock.

Remark This notion of type does not seem to �t into the interaction category frame-

work of Abramsky [Abr94], essentially because the interpretations of types are all dis-

tinct and composability is not an involution on types. Consider compositions of sorts

hi

1

h

1

; o

1

h

2

i; hi

2

h

2

; o

2

h

1

i. If A is a set of types for one of these we de�ne A

?

to be

fT

0

j 8T 2 A : T; T

0

are composableg and note that for a type T the set fTg

?

may

not be a singleton.

7.2 Abstraction Result

The important property of states inhabiting certain types is the following.

Lemma 2 If states s; s

0

of sorts hi

1

h

1

; o

1

h

2

i; hi

2

h

2

; o

2

h

1

i inhabit composable types T; T

0

then s k s

0

inhabits T k T

0

. Further, if s and s

0

are nonterminating then so is s k s

0

.

Proof Sketch: consider a 2 i

1

i

2

. By Lemma 1 the set fc 2 h

1

h

2

j a (T [ T

0

)

+

cg can be

linearly ordered c

1

: : : c

n

such that p < q ) :c

q

(T [ T

0

)

+

c

p

. For any particular transition

s k s

0

�!

�

ŝ k ŝ

0




�! and new value at a the values at c

1

: : : c

n

can be chosen successively. 2

Theorem 2 If for all primitive components p : T we have [[p]]

B

�

nt

[[p]]

L

and [[p]]

B

inhabits

T then L;D

1

is an abstraction of B;D

0

along �

nt

.

Proof An easy induction on the structure of c using Lemma 2 shows that for all circuits

c, if c : T (so D

1

(c) holds), then [[c]]

B

is nonterminating, inhabits T and has the in�nite

traces [[c]]

L

. 2

7.3 Consistency

Design rules D

0

and D

1

are expressed almost directly on circuits. An alternative is to

express design rules as conditions on the models of circuits. It has been noted (in e.g.

[CGM87, BNWV92]) that some circuits have `inconsistent' denotations in L. For example

[[Pwr

a

kCheckGnd

a

]]

L

= f

(the more usual Pwr

a

kGnd

a

is outlawed by D

0

).This is particularly problematic when

using logical implication as an implementation relation, all speci�cations being satis�ed

by such a circuit. Accordingly it has been suggested (in [Mel93, x4.2.2]) that a �ner

implementation relation that requires `consistency' is used, i.e. c implements Spec i�

([[c]]

L

6= f) ^ ([[c]]

L

) Spec). This can be equivalently viewed as imposing a design rule

D

con

(c) () [[c]]

L

6= f

12



| the model is only regarded as valid for circuits c such that D

con

(c). In our setting with

distinguished inputs and outputs it is more natural to use, for c of sort h~a;

~

bi, the stronger

condition (suggested by Fourman)

D

dcon

(c) () 8~a : 9

~

b : [[c]]

L

:

This is strictly weaker than D

1

(assuming for all primitives p :T that [[p]]

L

= itr ([[p]]

B

),

[[p]]

B

inhabits T and [[p]]

B

is nonterminating). It does not rule out all pathologies, for

example D

dcon

holds of Not

bd

kNot

da

kFork

abc

.

7.4 Deadlock

We give another pathological example circuit to illustrate the di�erence between L and

B. Take a primitive component Q with sort hfag; fbgi and semantics

[[Q]]

B

def

= �x X:a

t

b

t

: X + a

f

b

f

: (�x Y:a

t

b

f

: Y + a

f

b

t

: Y )

[[Q]]

L

def

= itr ([[Q]]

B

)

Intuitively Q behaves like a wire from a to b until it receives a value f, thereafter behaving

like an inverter. Consider a circuit Q kFork

bac

. Then

[[Q kFork

bac

]]

B

= �x Z:c

t

: Z + c

f

: 0

[[Q kFork

bac

]]

L

= 8t :N : c(t)

the �rst of which could be depicted as

	

	

	 R

R

R

	

.

.

.

.

.

w

.

.

.

.

c

f

c

f

c

f

c

t

c

t

c

t

Note that D

dcon

(Q kFork

bac

) holds, however D

1

(Q kFork

bac

) cannot | the only types

inhabited by [[Q]]

B

,[[Fork

bac

]]

B

are fha; big, fhb; ai; hb; cig respectively and compositions of

components with these types do not satisfy D

1

.

The deadlocks of behaviours such as [[Q kFork

bac

]]

B

can be interpreted in two ways. In

one they are regarded as symptoms of the fact that this is not a circuit that we expect the

model B to be valid for, so [[Q kFork

bac

]]

B

may be nonsense. This is the view we adopted

for the abstraction result, where deadlocks were viewed as arising from the existence of

feedback loops containing no delay elements. In the other view the model is taken to

be valid until the occurrence of a deadlock. This allows the failure of the validity of the

model (perhaps due to some violation of constraints on the environment of a component)

to be encoded within [[ ]]

B

.

Note that D

1

is not a necessary condition for deadlock freedom, e.g. [[Not

ab

kNot

ba

]]

B

is

nonterminating. We surmise that it is necessary in the following sense.

Conjecture 3 If :D

1

(c) then there is some choice of [[ ]]

B

for the primitive components

such that for each p : T [[p]]

B

inhabits T and is nonterminating but [[c]]

B

is terminating.

13



7.5 Determinacy

The branching time model admits various intuitive de�nitions of determinacy. These

di�er widely so it seems worthwhile to discuss them brie
y for reference.

De�nition A state s

0

with sort hi; oi is:

1. SCCS-determinate i� s

0

�!

�

s




�!s

0

^ s




�!s

00

) s

0

= s

00

, i.e. if the state after a

transition is determined by the state before and the values on inputs and outputs.

This is the standard concurrency-theoretic de�nition. (Recall that we are working

up to strong bisimulation.)

2. early-determinate i� s

0

�!

�

s ) 9!� : o!V : 9� : i!V : s

��

�!, i.e. if in any state

there is a unique tuple of values that can appear on the outputs.

3. late-determinate i� s

0

�!

�

s) 8� : i!V : 9!� : o! V : s

��

�!, i.e. if in any state, for

any values on the inputs, there is a unique tuple of values that can appear on the

outputs.

4. !-late-determinate i� 8~a :N! V : 9!

~

b :N! V : s

0

~a

0

~

b

0

�!

~a

1

~

b

1

�!� � �, taking i = ~a and o =

~

b.

I.e., if for any in�nite sequence of values on the inputs there is a unique in�nite

sequence of values that can appear on the outputs. This is purely a property of

the in�nite traces of s

0

. A slightly weaker determinacy property, 8~a : 9

�1

~

b :

s

0

~a

0

~

b

0

�!

~a

1

~

b

1

�!� � �, is introduced in [BNWV92].

Proposition 4 The only implications between the above, assuming that s

0

is nontermi-

nating and inhabits type i� o, are 1( 4) 3( 2.

Proof Straightforward. 2

For example, [[Q]]

B

, [[Fork

bac

]]

B

and [[Q kFork

bac

]]

B

are SCCS-determinate and !-late-

determinate. [[Q]]

B

and [[Fork

bac

]]

B

are also late-determinate. [[Comb

f

~a

~

b

]]

B

is SCCS-

determinate, late-determinate and !-late-determinate; depending on f it may also be

early-determinate. [[Seq

fg

~a

~

b

]]

B

may not be determinate by any of the de�nitions, depending

on f and g, although after the �rst transition it will be determinate by all four.

We expect that for any typable circuit c composed of standard components (e.g. instances

of Comb

f

~a

~

b

and Seq

fg

~a

~

b

) with standard branching time models (e.g. [[Comb

f

~a

~

b

]]

B

and [[Seq

fg

~a

~

b

]]

B

)

[[c]]

B

will be SCCS-, late- and !-late- determinate after its �rst transition. For these circuits

the only source of nondeterminacy is under-initialisation. More interesting components,

e.g. arbiters, and/or more interesting models of standard components, e.g. models of

components that may fail, would introduce nondeterminacy at all transitions.

Given nonterminating SCCS-determinate states s and s

0

it is standard that itr (s) = itr(s

0

)

i� s = s

0

. It follows that for nonterminating SCCS- (or !-late-) determinate states

the predicate `inhabits T ' can be expressed simply in terms of their in�nite trace sets.

However, none of the above notions of determinacy are preserved by parallel composition.
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8 Informal Timing Properties

In the remainder of this paper we consider Design Rule 2: `There are no long sequences of

combinational gates'. Imposing this ensures that, loosely speaking, the timing behaviour

of actual circuits will be correct, e.g. that setup and hold times will be met. To obtain

a convincing abstraction result depending on Design Rule 2 we must, therefore, consider

the timing properties of primitive components. The basic problem is to state properties

of the real-time behaviour of circuits that:

� For primitive components are expected to hold of standard device physics models,

and are loose enough to admit manufacturing variations.

� Are strong enough to admit a strong abstraction result to a discrete-time model.

� Are composable (for circuits satisfying the design rule).

The abstraction result given below (Theorem 3) should be regarded only as an approx-

imation to the kind of result desired | as will be discussed in the conclusion, the �rst

condition has been relaxed slightly in order to obtain a reasonably tractable proof.

For simplicity we suppose that primitive components are either purely combinational, of

the form Comb

f

~a

~

b

, or purely sequential, of the form Seq

fg

~a

~

b

. We will give these timing

properties based on those informally speci�ed in the databook [TI84] for two particular

TTL devices, a 74LS00 NAND gate and a 74LS171 D-type (with `clear' input tied to V

cc

and `clock' tied to a global square-wave clock). In this section we recall these informal

speci�cations.

8.1 Combinational Primitives

We assume that combinational primitives have a maximum propagation delay of t

p

> 0ns

and a minimum propagation delay of 0ns. Informally:

If the inputs of a combinational primitive are stable for an interval of

length t

p

or more then its outputs will be stable, and have the correct

values, for the subinterval starting t

p

later.

(2)

This can be depicted by the timing diagram below, for a primitive with sort h~a;

~

bi. In

these diagrams a double line denotes a requirement or guarantee of a stable signal, hatched

lines denote `don't care'.

~a

~

b

t

p

For a 74LS00 NAND the databook [TI84] speci�es maximum propagation delays t

PLH

=

15ns, t

PHL

= 15ns for low-to-high and high-to-low input transitions. For our results to

be relevant to actual circuits constructed using these devices we would therefore require

t

p

� max (t

PLH

; t

PHL

) = 15ns. [TI84] does not specify a minimum propagation delay.

Our choice of 0ns is uncontroversial.
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8.2 Sequential Primitives

We assume that sequential primitives have minimum setup and hold times t

su

and t

h

(for

the data inputs w.r.t. clock edges) and maximum and minimum propagation delays t

pseq

and t

pminseq

(from clock edges to data outputs). We take a clock period t

c

and suppose

that these quantities are non-negative and satisfy t

pminseq

< t

pseq

, t

pseq

+ t

p

+ t

su

� t

c

and

0 < t

h

� t

pminseq

. Informally:

If the inputs of a sequential primitive are stable from t

su

before to t

h

after a clock tick (and similarly for all preceding clock ticks) then the

outputs will be stable, and have the correct values, from t

pseq

after to

t

c

+ t

pminseq

after that clock tick. Moreover, the values on the outputs in

a given clock period are independent of the values on the inputs in that

clock period.

(3)

The �rst clause can be depicted by the timing diagram below, for a primitive with sort

h~a;

~

bi.

� t

su

� t

h

~a

� t

pminseq

~

b

� t

pseq

This is based on the speci�cation in [TI84] of an edge triggered D-type from a 74LS171

device, tying the `clear' input to V

cc

and the `clock' input to a global clock with period

t

c

. There t

su

= 20ns and t

h

= 5ns. Two propagation delays t

PLH

= 25ns, t

PHL

= 30ns

are given so we could take t

pseq

= 30ns. The minimum propagation delay t

pminseq

is not

speci�ed. We require t

h

� t

pminseq

, for example t

pminseq

= 5ns, which seems reasonably

plausible. We take for example a clock period t

c

= 100ns. We take such a D-type to be a

new primitive component DType

0

, with sort hfdg; fq; qbargi and discrete time semantics

[[DType

0

]]

L

def

= 8t :N : q(t+ 1) = d(t) ^ qbar(t+ 1) = :d(t)

[[DType

0

]]

B

def

=

X

y

D

y

where D

y

def

=

X

y

0

2bool

d

y

0

q

y

qbar

:y

: D

y

0

(i.e. DType

0

= Seq

fg

fdg;fq;qbarg

for f(y; y

0

)

def

= y

0

and g(y

0

)

def

= y

0

). We draw a DType

0

as

below.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

-

-

-

d

ck

clr qbar

q
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8.3 Informal Timing Reasoning

Intuitively, circuits built from these primitives will work correctly if the total propagation

delay between any sequential component output and input is small enough. There are

no edge-triggered primitive components so no edges or hazards can be signi�cant. The

timing for an example circuit for a single clock period is shown below.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

-

-

- - -

-

-

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

a b

k times

t

pseq

t

pminseq

provided at a

� 0

kt

p

required at a

t

su

t

h

� 0

required at b

t

c

From this we need k � (t

c

� t

pseq

� t

su

)=t

p

and expect that any circuit with no path of

more than this many combinational primitives will operate correctly. We take some K :N

satisfying 1 � K � (t

c

� t

pseq

� t

su

)=t

p

(for example 1 � K � 3) and another condition

given later.

9 Design Rule 2: `There are no long sequences of combina-

tional gates.'

To express Design Rule 2: `There are no long sequences of combinational gates.' (where

a sequence is long if it contains more than K gates) precisely we use a �ner notion of

type that records the maximum lengths of sequences of combinational primitives. It is

again de�ned inductively on circuit structure, making the de�nition a little complex but

easy to reason about. For checking the design rule a direct characterization on a graph

representation of circuits might be more appropriate.

De�nition N

�

;+;t is the naturals extended by a negative in�nite element � with addi-

tion and maximum operations de�ned by

+ � n

� � �

m � m+ n

t � n

� � n

m m max (m;n)

:
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The operations + and t are both associative and commutative. They have units 0 and

� respectively and + distributes over t. We extend t to a partial function from subsets

of N

�

to N

�

in the obvious way. It is convenient to use matrices over N

�

, de�ning +;t

pointwise and a matrix product � by (A � B)

ac

= t

b

A

ab

+B

bc

.

De�nition The re�ned types associated with a sort hi; oi are functions

R :(i� o [ i [ o)!f�; 0 : : : Kg

with, for a 2 i and b 2 o,

� R

ab

encoding the maximum path lengths of combinational primitives between input

a and output b

� R

a

encoding the maximum length from input a to anywhere

� R

b

encoding the maximum length from anywhere to output b.

These must satisfy R

ab

6= 0 and R

a

6= � 6= R

b

.

De�nition The re�ned type of a combinational primitive is R

comb

, where

R

comb

ab

= 1; R

comb

a

= 1 and R

comb

b

= 1:

The re�ned type of a sequential primitive is R

seq

, where

R

seq

ab

= �; R

seq

a

= 0 and R

seq

b

= 0:

For compositions c k c

0

we �rst say what it means for two re�ned types to be composable

| intuitively that the composition of any circuits with those re�ned types will contain no

path of combinational primitives of length > K. Consider sorts hi

1

h

1

; o

1

h

2

i, hi

2

h

2

; o

2

h

1

i

and re�ned types R;R

0

for them. Let j = i

1

i

2

o

1

o

2

h

1

h

2

and de�ne G;O : j � j!N

�

;

H;J : j!N

�

by

G

ab

= R

ab

, if a 2 i

1

h

1

^ b 2 o

1

h

2

R

0

ab

, if a 2 i

2

h

2

^ b 2 o

2

h

1

� , otherwise

H

a

= R

a

, if a 2 i

1

h

1

R

0

a

, if a 2 i

2

h

2

� , otherwise

J

b

= R

b

, if b 2 o

1

h

2

R

0

b

, if b 2 o

2

h

1

� , otherwise

O

ab

= 0 , if a = b

� , otherwise

Let C

def

= t

n�1

n times

z }| {

G � : : : �G, A

def

= (C tO) �H and B

def

= J � (C tO). We say that R;R

0

are

composable if C exists, C;A;B contain no element > K and 8c 2 h

1

h

2

: A

c

+ B

c

� K.

The re�ned type R k R

0

is then given by

(R kR

0

)

ab

def

= C

ab

; (R kR

0

)

a

def

= A

a

and (R kR

0

)

b

def

= B

b

:

The rules for typing circuits are below.

p :R

comb

p combinational

p :R

seq

p sequential

c :R c

0

:R

0

c k c

0

:R kR

0

R;R

0

composable

18



Design Rule 2: `There are no long sequences of combinational gates', can now be expressed:

De�nition D

2

(c) () D

0

(c) and c is typable in the system above.

For simplicity this is slightly stronger than necessary | it forbids all long paths of com-

binational primitives, not just those which feed to sequential primitives. These re�ned

types above are related to the types of x5 as follows.

De�nition If R is a re�ned type for sort hi; oi then T (R) � i� o is given by

a T (R) b () R

ab

6= �:

Proposition 5 If re�ned types R;R

0

are composable then types T (R); T (R

0

) are compos-

able and T (R kR

0

) = T (R) k T (R

0

).

10 Timing Disciplines

In this section we discuss the timing disciplines that a circuit may be required to obey.

This simply generalises the informal calculation of x8.3 to arbitrary circuits. We have not

yet given a real time model and so cannot yet state what it means for a real time model

of a circuit to obey a timing discipline.

De�nition A timing discipline � is a function from the port names N to non-empty

subsets of the interval [0; t

c

) (for our simple circuits we will only use open sub-intervals

of [0; t

c

)).

Intuitively such a � de�nes, for each port a, a part �(a) of each clock period for which the

value on that port will be or must be constant. If we were using a richer model of values

this would have to be replaced by a more interesting condition, e.g. that the value on a is

above or below certain thresholds in each interval, rather than simply constant. For later

convenience we take clock ticks to be at f(k + 1)t

c

� t

h

j k :Ng. A timing discipline may

thus refer to intervals containing clock ticks.

A circuit may be placed in contexts that require it to obey di�erent, indeed incomparable,

timing disciplines. For example, supposeK = 3 and consider the circuit c = Not

ad

kNot

db

in the two contexts on the left below. In these, c must obey the timing disciplines depicted

on the right.
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t

p

t

p

t

p

t

su

t

h

provided at a

required at b

t

c

De�nition For 0 � k � K let �

k

be the interval (t

c

� t

h

� t

su

� (K � k)t

p

; t

c

). If R is a

re�ned type for sort s = hi; oi then td (R) is a set of timing disciplines given by � 2 td(R)

if 8a 2 i : 8b 2 o :

�

a

2 f�

k

j 0 � k � K �R

a

g

^ �

b

2 f�

k

j R

b

� k � Kg

^ R

ab

6= � ^ �

a

= �

k

^ �

b

= �

k

0

) k +R

ab

� k

0

The example c above has sort hfag; fbgi and re�ned type R, where

R

ab

= 2; R

a

= 2 and R

b

= 2:

We have td(R) = f�

1

;�

2

;�

3

g where

�

1

a

= �

0

�

2

a

= �

1

�

3

a

= �

0

�

1

b

= �

2

�

2

b

= �

3

�

3

b

= �

3

:

For any typable compositions we can �nd a timing discipline that can be agreed upon by

both components.

Proposition 6 If R;R

0

are composable re�ned types and � 2 td(R k R

0

) then there exists

�

0

2 td(R) \ td(R

0

) such that 8d 2 i

1

i

2

o

1

o

2

: �

0

d

= �

d

:

Proposition 7 For any re�ned type R the set td (R) is a non-empty set of timing disci-

plines.

11 R, a Branching Real Time Model

In order to express timing properties (2) and (3) of primitive components we must use

a real time model. We take R to be BR([0; t

c

)! V ), recalling the de�nition of BR( )

from x6. Thus R

io

is again a transition system quotiented by strong bisimulation but now

with labels from io![0; t

c

)!V instead of io! V , giving the values on ports at each time

in a clock period. It is a hybrid of linear real and discrete branching time. This makes

20



it easy to formalise a clean abstraction result and the required properties of primitive

components. It is, however, rather ad-hoc. In principle we would prefer a continuously

branching model. We will not make essential use of the reals (although we should note

that we do not use induction over time). Using `small-step' discrete time, with many units

per clock cycle, would make little di�erence to the results given here although it would

be more awkward to relate to yet more concrete models.

By choosing clock ticks at f(k + 1)t

c

� t

h

j k : Ng we can treat successive clock periods

almost independently. Below we depict the intervals of the �rst two transitions, together

with two of the time intervals of the form �

k

. Dotted vertical lines indicate clock ticks,

which occur t

h

before the end of each transition.

Kt

p

t

su

t

h

�

K

�

0

t

pseq

t

pminseq

�t

h

0

t

c

� t

h

t

c

2t

c

Transition labels, i.e. functions j![0; t

c

)! V for sets of ports j � N , will be ranged over

by U; V;W;A;B. The resolution of the overloaded V will hopefully be clear from context.

We say what it means for transitions U; V : io![0; t

c

)!V to obey a timing discipline �

on certain ports j � io, be equal on j and be abstractly equal on j:

De�nition U obeys � on j, written U#

�

j

, if there exists some abs

�

j

(U) : j!V such that

8c 2 j : 8t 2 �(c) : U(c)(t) = abs

�

j

(U)(c).

U =

j

V

def

= 8c 2 j : U(c) = V (c)

U '

�

j

V

def

= U#

�

j

^ V #

�

j

^ abs

�

j

(U) = abs

�

j

(V )

Subscripts and superscripts will be omitted when clear from context.

12 Abstraction from R to B

An abstraction relation betweenR and B must satisfy two criteria | it must be reasonably

strong, to enable us to make interesting predictions about the behaviour of a circuit from

[[c]]

B

, and the abstraction result must be derivable from physically plausible assumptions

on primitive components. In the �rst subsection we de�ne a relation <

�

between R

and B, parameterised by a timing discipline �. The relation < between R and B, for

which we shall give an abstraction result, is de�ned in terms of <

�

and a notion of

a `resonable' timing discipline. An alternative characterization of <

�

is given using a

partial equivalence relation

�

=

�

over R and a function abs

�

( ) from R to B. In the

second subsection we brie
y consider a linear real time model LR, giving some linear
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time consequences of <

�

. In the last two subsections we give an interpretation of the

re�ned types in R, formalising some plausible timing properties of primitives, and prove

an abstraction result along < that depends on them.

12.1 Abstraction Relations

The relation <

�

is de�ned as follows.

De�nition If Q is a sort-respecting relation between R and B, s 2 R

io

and t 2 B

io

then

s E

�

(Q) t i� for all AB : io![0; t

c

)! V

1. s

AB

�! ^ A# ) B#

2. AB# ^ s

AB

�!s

0

) 9t

0

: t

abs (AB)

�! t

0

^ s

0

Q t

0

3. AB# ^ t

abs (AB)

�! t

0

) 9B

0

; s

0

: s

AB

0

�!s

0

^ B

0

' B ^ s

0

Q t

0

De�nition <

�

is the greatest �xed point of E

�

. It contains all pre-�xed points of E

�

.

Proposition 8 <

�

is well de�ned and contains all pre-�xed points of E

�

.

Loosely, in any state accessible by supplying inputs obeying �, any real transition can

be matched by the unique corresponding discrete one and any discrete transition can, for

any corresponding real inputs, be matched by a real one. More precisely, s <

�

t if for the

�rst clock period:

1. If s has a behaviour with input signals A : i![0; t

c

)!V and output signals

B : o![0; t

c

)! V and, for each input a 2 i, A(a) is stable during �(a), then for

each output b 2 o B(b) is stable during �(b).

2. If s has a behaviour with signals AB : io![0; t

c

)!V leaving it in state s

0

and, for

each port c 2 io, (AB)(c) is stable during �(c), then t has a behaviour with values

abs (AB) : io! V leaving it in a state t

0

. Moreover, s

0

<

�

t

0

.

3. If t has a behaviour with values �� : io!V leaving it in a state t

0

then, for any input

signals A : i![0; t

c

)!V that are stable during � and satisfy abs (A) = � there are

output signals B

0

: o![0; t

c

)! V that are stable during � and satisfy abs (B) = �

such that s has a behaviour with signals AB

0

leaving it in a state s

0

. Moreover

s

0

<

�

t

0

.

In the proof of the abstraction result we will show that if c is a circuit with re�ned type

R and � is a timing discipline associated with a context in which such a circuit may be

placed (i.e. � 2 td(R)) then [[c]]

R

<

�

[[c]]

B

. This statement is a little heavy, requiring the

de�nitions of re�ned types and td( ). When working with a discrete time model, say [[c]]

B

,

of a circuit c it will often su�ce to show that there is some timing discipline for which

the real time model [[c]]

R

has well de�ned abstract behaviour that is equal to [[c]]

B

. We

therefore pick out a large class of timing disciplines and de�ne the abstraction relation <

as the union over these of <

�

.

Consider the (pathological) timing disciplines depicted below for sort h~a;

~

bi. The left is

unresonable in that the input signal is not realisable | there is insu�cient switching time
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allowed. The right is unreasonable in that the output signal is not observable | it is not

required to stay constant for long enough to observe.

provided at ~a

required at

~

b

t

c

provided at ~a

required at

~

b

t

c

Accordingly:

De�nition A timing discipline � is reasonable for sort hi; oi if it allows a signi�cant

switching time t

sw

between clock periods for inputs and ensures that outputs are constant

for at least a noticeable time t

small

, i.e. taking for simplicity each �

a

to be an open subset

of [0; t

c

):

8a 2 i : �

a

= (t; t

0

) for some t; t

0

such that t

0

� t � t

c

� t

sw

8b 2 o : �

b

= (t; t

0

) for some t; t

0

such that t

0

� t � t

small

For the following proposition we require t

c

� (t

h

+ t

su

+Kt

p

) � t

sw

and t

h

+ t

su

� t

small

,

e.g. t

sw

� 30ns; t

small

� 25ns.

Proposition 9 For any re�ned type R the set td(R) contains only reasonable timing

disciplines.

Finally we can state the abstraction relation.

De�nition For s 2 R and t 2 B of the same sort

s < t i� 9 reasonable � : s <

�

t:

The abstraction result will thus be of the form 8c 2 circ : D

2

(c) ) [[c]]

R

< [[c]]

B

under

some restrictions on [[p]]

R

for primitives p.

We conclude this subsection by giving a di�erent characterization of <

�

, showing that

s <

�

t if the behaviour of s is closed under small variations of input signals (up to small

variations of output signals and resulting states) and moreover a discretization of the

behaviour of s is bisimilar to t.

De�nition If Q is a sort-respecting relation on R and s; s

0

2 R

io

then s F

�

(Q) s

0

i� for

all AB : io![0; t

c

)!V

1. s

AB

�!ŝ ^ A# ) B# ^ 8A

0

' A : 9B

0

' B; ŝ

0

: s

0

A

0

B

0

�!ŝ

0

^ ŝ Q ŝ

0

2. s

0

AB

�!ŝ

0

^ A# ) B# ^ 8A

0

' A : 9B

0

' B; ŝ : s

A

0

B

0

�!ŝ ^ ŝ Q ŝ

0

De�nition

�

=

�

is the greatest �xed point of F

�

. It is a partial equivalence relation

containing all pre-�xed points of F

�

.

De�nition We de�ne abs

�

( ) :R!B by

abs

�

(s)

�

�!abs

�

(s

0

) i� 9U : s

U

�!s

0

^ U# ^ abs (U) = �
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Proposition 10

�

=

�

is well de�ned and is a partial equivalence relation containing all

pre-�xed points of F

�

.

Proposition 11 s

�

=

�

s

0

) abs

�

(s) = abs

�

(s

0

)

Proposition 12 s <

�

t () s

�

=

�

s ^ abs

�

(s) = t

12.2 LR, a Linear Real Time Model

When considering the real time behaviour of circuits one might naturally consider a linear

real time model LR, modelling signals by functions from the non-negative reals to V and

circuits by predicates over such functions, i.e. with [[c]]

LR

� io!R

�0

!V for c of sort

hi; oi. The set itr(s) of in�nite traces of a state s 2 R

io

can be considered as such a

predicate, eliding the isomorphism between N! io![0; t

c

)! V and io!R

�0

!V that

`glues together' the signals in each clock period. We can thus give linear time consequences

of the relation <

�

. This will lend support to our claim that < is a suitable abstraction

relation.

It is straightforward to give plausible naive linear real time semantics to the components

Comb

f

~a

~

b

and Seq

fg

~a

~

b

:

[[Comb

f

~a

~

b

]]

LR

def

= 8t; t

00

:R

�0

: 8~v :V

m

: ((t

00

� t � t

p

) ^ (8t

0

2 (t; t

00

) : ~a(t

0

) = ~v))

)

(8t

0

2 (t+ t

p

; t

00

) :

~

b(t

0

) = f(~v)):

De�nition A signal a :R

�0

!V obeys a timing discipline � if it is constant within �(a)

in all clock periods, i.e. if there is some function f :N! V such that 8n :N : 8t :R

�0

:

t� nt

c

2 �(a)) a(t) = f(n). When it exists, f will be unique and denoted abs

�

(a).

The linear real time semantics of Seq

fg

~a

~

b

can now be stated in terms of a timing discipline

�, where

8p 2 1::m : �

a

p

= (t

c

� t

h

� t

su

; t

c

)

8q 2 1::n : �

b

q

= (t

pseq

� t

h

; t

c

)

[[Seq

fg

~a

~

b

]]

LR

def

= (~a obeys �)

~

b obeys �)

^ (~a

~

b obeys �) 9

~

h :N! V

l

: 8n :N :

abs

�

(

~

b)(n) = g(

~

h(n)) ^

~

h(n+ 1) = f(abs

�

(~a)(n);

~

h(n))):

These seem, however, to be too weak to obtain a useful abstraction result, for example

one based on the following linear time analogue of <

�

.

De�nition Suppose P 2 LR

io

andQ 2 L

io

, i.e. P � io!R

�0

!V andQ � io! N! V .

We say P <

lin

�

Q i�:

1. 8ab : io!R

�0

!V : (a obeys � ^ P (ab))) b obeys �.

2. 8a : i!R

�0

!V : 8� : o! N! V : a obeys �)

(9b : P (ab) ^ abs

�

(b) = � ^ b obeys � () Q(abs

�

(a)�)).

Proposition 13 If s 2 R

io

and t 2 B

io

then s <

�

t implies itr(s) <

lin

�

itr (t).
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The branching time models and relation <

�

have an additional advantage in that they

give a direct understanding of the behaviour of circuits for �nite durations, i.e. where

they are supplied with input signals that only obey the relevant timing disciplines for a

�nite number of clock periods. Further, they appear to be technically simpler to work

with. The author initially attempted to give a good abstraction result between LR and

L. It turned out to be much more natural to formalise the required real-time properties

of components in R rather than in LR.

12.3 Interpretation of Re�ned Types in R

For an abstraction result along < we need to �nd conditions on the real time behaviours of

circuits (i.e., an interpretation of the re�ned types in R) under which <

�

is a conguence

for (re�ned-typable) parallel composition. Equivalently, by Proposition 12, under which

�

=

�

and abs

�

( ) are congruences. There are two problems. Firstly, consider a composition

of circuits as below. For its real time model to satisfy the �rst clause of the de�nition of

<

�

we must show that, if � is obeyed during a clock period on a and a

0

, then � must

be obeyed on b and b

0

. However, from the �rst clause of the de�nition applied to the

subcircuits we cannot infer that � is obeyed on c and c

0

.

-

- -

-

-

-

a

a

0

b

b

0

c c

0

c

0

c

Our proof that it is obeyed will be based on the following property of a state s 2 R

io

in

the branching real time model, taking U : io![0; t

c

)! V and a type T � i� o.

If s has a transition s

U

�!s

0

that obeys the timing discipline on all inputs

that are directly connected to an output b (i.e. on f a 2 i j a T b g) then

U obeys the timing discipline on b.

(4)

(See Lemma 19, Corollary 20 and Corollary 21 in Appendix A.)This is essentially the

combination of property (2) and the �rst sentence of property (3), generalised to arbitrary

circuits and without the part dealt with by the de�nition of td ( ). Secondly, consider

s <

�

t, s

0

<

�

t

0

and a discrete transition of t k t

0

, i.e. t

�

�!

^

t, t

0

�

�!

^

t

0

and � =

h

1

h

2

�. By

the de�nition of <

�

we have s

U

�!ŝ and s

0

V

�!ŝ

0

with U '

h

1

h

2

V . To show s k s

0

<

�

t k t

0

,

however, there must be a transition s k s

0

U kV

�! ŝ k ŝ

0

so we need U =

h

1

h

2

V . Our proof of

this will be based on the property:

If s has a transition s

U

�!s

0

that obeys the timing discipline then, for any

input a, the signal on amay be changed slightly without doing more than

slightly change the signals on the outputs that are directly connected to

a (i.e. on f b 2 o j a T b g) and slightly change the resulting state.

(5)

(See Lemma 22, Corollary 23 and Corollary 24 in Appendix A.)This is an ampli�cation

of the second sentence of property (3), generalised to arbitrary circuits. In the rest of
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this subsection we make these precise, giving an interpretation of the re�ned types in the

branching real time model B. We �rst state the properties for a single clock period and

�xed timing discipline �. We then de�ne a modi�ed form of bisimulation, strengthening

�

=

�

by incorporating these properties at every clock period. This will be a congruence for

parallel composition.

De�nition If � is a relation on R

io

and T � i� o then s 2 R

io

inhabits 1-step type T

for � if

1: 8b 2 o : s

U

�!s

0

^ U#

fa2ijaTbg

) U#

fbg

2: 8a 2 i : 8U;U

0

: io![0; t

c

)!V : s

U

�!s

0

^ U# ^ U '

fag

U

0

)

9U

00

; s

00

: s

U

00

�!s

00

� s

0

^ U

00

=

fag

U

0

^

U

00

=

i

B

o

A

U ^

U

00

'

o

B

U

where i

B

def

= i� fag; o

A

def

= fb 2 o j :a T bg and o

B

def

= o� o

A

:

3: 8U : io![0; t

c

)! V : s

U

�!s

0

^ U# ) s

0

� s

0

Clauses 1 and 2 formalize properties (4) and (5) respectively. Clause 3 ensures that

inhabitation of re�ned types will be preserved by all transitions that obey the timing

discipline.

The interpretation of re�ned types in R and the relation �, which will turn out to be a

partial equivalence relation, used above must be de�ned simultaneously. We need a partial

equivalence which is �ner than the bisimulation

�

=

�

de�ned above and also preserves

re�ned types.

De�nition If � is a relation on R

io

, T � i� o and s; s

0

2 R

io

then s G

T;�

(�) s

0

i�

1. s F

�

(�) s

0

2. s; s

0

both inhabit 1-step type T for �.

De�nition �

T�

is the greatest �xed point of G

T;�

. It is a partial equivalence relation

containing all pre-�xed points of G

T;�

.

Proposition 14 �

T�

is well de�ned and is a partial equivalence relation containing all

pre-�xed points of G

T;�

.

These relations are congruences for parallel composition in the following sense.

Proposition 15 If s �

T�

ŝ, s

0

�

T

0

�

ŝ

0

and T; T

0

are composable in the sense of x5 then

(s k s

0

) �

(T kT

0

)�

(ŝ k ŝ

0

). Further, abs

�

(s k s

0

) = abs

�

(ŝ) k abs

�

(ŝ

0

).

Proof Sketch: Both parts are proved by coinduction, making use of some composability

results for states inhabiting 1-step types. These results are proved by induction along the

internal and output ports, ordered using Lemma 1. 2

Corollary 16 If s �

T�

s <

�

t; s

0

�

T

0

�

s

0

<

�

t

0

and T; T

0

are composable then

(s k s

0

) �

(T kT

0

)�

(s k s

0

) <

�

(t k t

0

).
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Proof By Proposition 12 s

�

=

�

s; s

0

�

=

�

s

0

; abs

�

(s) = t and abs

�

(s

0

) = t

0

. By

Proposition 15 abs

�

(s k s

0

) = t k t

0

and s k s

0

�

(T kT

0

)�

s k s

0

. It then su�ces to note that

8T;� :�

T�

�

�

=

�

. 2

Finally we can interpret the re�ned types in R.

De�nition If s 2 R

io

and R is a re�ned type for hi; oi then s inhabits R i� 8� 2 td(R) :

s �

T (R);�

s.

12.4 Abstraction Result

The following proposition is used only implicitly, within the proof of the abstraction result.

We state it anyway.

Proposition 17 If s; s

0

inhabit composable re�ned types R;R

0

then s k s

0

inhabits R kR

0

.

Proof Consider � 2 td(R kR

0

). By Proposition 6 w.l.g. � 2 td(R) \ td(R

0

). By

Proposition 5 T (R); T (R

0

) are composable and T (R kR

0

) = T (R) k T (R

0

). As s; s

0

inhabit

R;R

0

we have s �

T (R) �

s and s

0

�

T (R

0

) �

s

0

. By Corollary 16 s k s

0

�

T (R) k T (R

0

) �

s k s

0

hence s k s

0

inhabits R kR

0

. 2

And state the abstraction theorem.

Theorem 3 If for all primitive components p :R we have 8� 2 td(R) : [[p]]

R

<

�

[[p]]

B

and [[p]]

R

inhabits R then B;D

2

is an abstraction of R;D

2

along <.

Proof We �rst show by induction on circuits that if c :R then 8� 2 td(R) : [[c]]

R

<

�

[[c]]

B

and [[c]]

R

inhabits R. The base case is trivial. For c k c

0

suppose that c :R and c

0

:R

0

. By

assumption R;R

0

are composable so by Proposition 5 T (R) and T (R

0

) are composable and

T (R kR

0

) = T (R) k T (R

0

). Consider � 2 td(R kR

0

). By Proposition 6 w.l.g. � 2 td(R)\

td(R

0

). By induction [[c]]

R

�

T (R) �

[[c]]

R

<

�

[[c]]

B

and [[c

0

]]

R

�

T (R

0

) �

[[c

0

]]

R

<

�

[[c

0

]]

B

. By

Corollary 16

[[c k c

0

]]

R

�

T (R kR

0

) �

[[c k c

0

]]

R

<

�

[[c k c

0

]]

B

:

It then su�ces to note that, by Propositions 7 and 9, <

�

�<. 2

This can be composed with the earlier result to give an abstraction from the real branching

time model to the discrete linear time model.

Corollary 18 Given [[ ]]

L

and [[ ]]

R

, if there exists [[ ]]

B

such that for all primitive com-

ponents p :R

� [[p]]

B

�

nt

[[p]]

L

� [[p]]

B

inhabits T (R)

� 8� 2 td(R) : [[p]]

R

<

�

[[p]]

B

� [[p]]

R

inhabits R

then L;D

2

is an abstraction of R;D

2

along < � �

nt

.

Proof Immediate from Theorem 2, Theorem 3 and Proposition 5 (which entails that

D

2

(c) implies D

1

(c)). 2
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13 Conclusion

We have given a simple framework for understanding the signi�cance of abstract hardware

models and design rules in terms of abstraction results to more concrete models, in which

important properties of component behaviour can be expressed. This was instantiated

by two abstraction results for models of some synchronous circuits, making use of two

natural design rules.

From the concurrency-theoretic point of view the abstraction results can be seen as inter-

esting uses of bisimulation-based semantics and as uses of two notions of type (capturing

some properties of dynamic behaviour) supported by delicate rely-guarantee condition

reasoning. Expressing properties such as our inhabitation of re�ned types in R would

perhaps be a useful test example for real-time process calculi and logics over them.

There are some obvious defects in the work. In particular:

� The required real time properties of primitive components (i.e. that [[p]]

B

inhabits

R

comb

or R

seq

for combinational or sequential p) have not been shown to hold of

accepted component models. In fact, requirements such as

The values on the outputs of a sequential primitive in a given clock

period are independent of the values on the inputs in that clock period.

(part of property (3)) might not be expected to hold exactly in a real time/voltage

model. More subtle formalised properties than our interpretations of re�ned types

would then be needed for an abstraction result. It is not clear whether the proof of

this result could follow the same form as the one given, particularly for the analogue

of (the key) Proposition 15.

� The model R is rather ad-hoc. The hybrid of linear real time (in each clock cycle)

and branching discrete time (with branching only at the ends of clock cycles) was

chosen to simplify the statement and proof of the abstraction result. We would

prefer a model that allows branching at all times.

� The circuits considered have been extremely simple and the primitive components

rather complex (and not heavily used in current VLSI design).

We conclude by mentioning some related work, pointing out some di�erences without

attempting a full survey or discussion.

In [Win87] Winskel considers abstraction between two models of the steady state be-

haviour of transistors. An abstraction result is given in terms of an adjunction between

partial orders of speci�cations. Related work is presented in [Mel93, Chapter 7], where

Melham shows that for circuits satisfying a design ruleWb (de�ned inductively on circuits

but also using the more concrete semantic function) two steady state transistor models

agree. When we get to more concrete timed models, such as the R de�ned here, it is not

clear what a good class of speci�cations of circuits should be. It seems more straightfor-

ward, therefore, to work only with the models of circuits, whose signi�cance is given by

abstraction results along particular relations, as we have done.

In [Her88, Her89] Herbert takes a linear small-step discrete time model and considers the

implementation of certain 
ip-
ops using gates. The timing properties of components
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di�er from those expressed by inhabitation of re�ned types | the latter are composable,

even for cyclic networks of sequential primitives, but would not su�ce to show correctness

of a 
ip-
op implementation using combinational primitives. Related work by Hanna and

Daeche is presented in [HD86], where the authors consider a speci�cation of a D-type


ip
op and show that it can be implemented using NAND gates. The D-type speci�cation

seems to be similar to the linear real time models [[Seq

fg

~a

~

b

]]

LR

of x12.2 (albeit with a more

sophisticated treatment of the clock input, i.e. not assuming a global clock).

In [Fou95] Fourman considers a discrete time model of sequential circuits. Starting with

a lattice B of four values that may appear on a wire (1, 0, under-driven and over-driven)

circuits are modelled by functions of type (N! B)!(N! B) satisfying certain conditions.

This allows a property of `non-zero delay' to be stated. It would be interesting to have a

precise connection between this and the inhabitation of types in B.

In [Han94] Hanna considers the steady state analogue behaviour of devices, giving a ver-

i�cation of a transistor implementation of a Not gate. He also mentions the possibility of

proving design rules correct. This notion of correctness is given in terms of the commuta-

tion of certain behavioural abstraction and structure rei�cation functions. The proof of

Theorem 3 essentially shows such a result, where the behavioural abstraction function is

the abs

�

( ) :R!B de�ned in x12.1 and the structure rei�cation function is the identity

(we have considered analogue and digital behaviour of a single representation of circuit

structure).
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A Deferred Proofs

This appendix contains the proofs of propositions required for the abstraction from R to

B. It is divided into two parts. The �rst contains composability results for 1-step types

and so also for the relations �

T�

, giving a proof of Proposition 15. This is the larger

part of the formalisation in R of the informal timing reasoning. The second contains

the remainder | the proofs that the various coinductive relations used are well de�ned,

results about the timing disciplines associated with re�ned types, the characterisation of

<

�

using

�

=

�

and abs

�

( ) and the relationship between <

�

and <

lin

�

.

A.1 Proofs of 1-step type composability results

In order to prove Proposition 15 (the composition result for the interpretation of re�ned

types in the real time model) it is convenient to use slightly more abstract de�nitions.

In this subsection we take an arbitrary set V of values and a branching time model

S

def

= BR(V). We suppose that for each port name a 2 N there is a partial equivalence

relation '

a

over V. This is lifted to functions from sets of ports to values as follows. If
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A;B;C � N and U :A!V; V :B!V then

U '

C

V i� 8c 2 C \A \B : U(c) '

c

V (c)

U#

C

i� U '

C

U

U =

C

V i� 8c 2 C \A \B : U(c) = V (c):

In each case if the subscript is omitted (and A = B) then it is taken to be A.

De�nition If � is a partial equivalence relation on S

io

and T � i � o then s 2 S

io

inhabits 1-step type T for � if

1: 8b 2 o : s

U

�!s

0

^ U#

fa2ijaTbg

) U#

fbg

2: 8a 2 i : 8U;U

0

: io!V : s

U

�!s

0

^ U# ^ U '

fag

U

0

)

9U

00

; s

00

: s

U

00

�!s

00

� s

0

^ U

00

=

fag

U

0

^

U

00

=

i

B

o

A

U ^

U

00

' U

where i

B

def

= i� fag; o

A

def

= fb 2 o j :a T bg; o

B

def

= o� o

A

:

3: 8U : io!V : s

U

�!s

0

^ U# ) s

0

� s

0

In the following we consider states s 2 S

hi

1

h

1

;o

1

h

2

i

; t 2 S

hi

2

h

2

;o

2

h

1

i

that inhabit 1-step types

T; T

0

for �;�

0

respectively. We suppose that T and T

0

are composable.

Two lemmas (19 and 22) are shown using the 1-step type assumptions (using clauses 1 and

2 respectively). They are shown by induction along the hidden ports of a composition,

ordered as in Lemma 1. For each there are two immediate corollaries. These are used to

show a composability result for 1-step types and thereby prove Proposition 15.

Lemma 19 If s

U

�!s

0

; t

V

�!t

0

; U =

h

1

h

2

V; i

11

� i

1

; i

21

� i

2

; U#

i

11

and V #

i

21

then U#

D

and V #

D

, where D

def

= fd 2 h

1

h

2

o

1

o

2

j 8a 2 i

1

i

2

: a (T [ T

0

)

+

d) a 2 i

11

i

21

g.

Proof By Lemma 1 D can be ordered as d

0

; : : : ; d

n

such that p < q ) :d

q

(T [ T

0

)

+

d

p

.

We show by induction on k 2 0 : : : n that U#

i

11

[fd

0

:::d

k

g

and V #

i

11

[fd

0

:::d

k

g

. The base case

k = 0 is immediate. For k+1 suppose that d

k+1

2 h

2

o

1

(the reasoning for d

k+1

2 h

1

o

2

is

symmetric). It follows from the de�nition of D that

fa 2 i

1

h

1

j a T d

k+1

g � i

11

[ fd

0

: : : d

k

g

so by induction U#

fa2i

1

h

1

jaTd

k+1

g

. By clause 1 of the de�nition of 1-step types U#

fd

k+1

g

so U#

i

11

[fd

0

:::d

k+1

g

. For V , if d

k+1

2 h

2

then V =

fd

k+1

g

U so V #

fd

k+1

g

. If d

k+1

2 o

1

then

vacuously V #

fd

k+1

g

. In either case V #

i

21

[fd

0

:::d

k+1

g

. 2

Corollary 20 If s

U

�!s

0

; t

V

�!t

0

; U =

h

1

h

2

V; U#

i

1

and V #

i

2

then U# and V #.

Proof Take i

11

= i

1

and i

21

= i

2

, giving D = h

1

h

2

o

1

o

2

. 2

Corollary 21 If s

U

�!s

0

, t

V

�!t

0

, U =

h

1

h

2

V , b 2 o

1

, U#

fa2i

1

ja(T[T

0

)

+

bg

and

V #

fa2i

2

ja(T[T

0

)

+

bg

then U#

fbg

.
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Proof Take i

11

= fa 2 i

1

j a (T [ T

0

)

+

bg and i

21

= fa 2 i

2

j a (T [ T

0

)

+

bg and note

that this ensures b 2 D. 2

Lemma 22 If

� s

U

�!s

0

; t

V

�!t

0

; U# and V #

� i

11

� i

1

is empty or a singleton

� U

0

: i

11

!V and U

0

'

i

11

U

� h

<

� fc 2 h

1

h

2

j 8a 2 i

11

: :a (T [ T

0

)

+

cg is such that if c 2 h

<

and d 2 h

1

h

2

�h

<

then :d (T [ T

0

)

+

c

� U =

h

<

V

� U '

h

1

h

2

V

then with additional notation

� h

>

= fc

1

: : : c

n

g

def

= h

1

h

2

� h

<

. By Lemma 1 w.l.g. p < q ) :c

q

(T [ T

0

)

+

c

p

.

� i

12

def

= i

1

� i

11

� o

11

def

= fb 2 o

1

j 8a 2 i

11

h

>

: :a (T [ T

0

)

+

bg and o

12

def

= o

1

� o

11

� o

21

def

= fb 2 o

2

j 8a 2 i

11

h

>

: :a (T [ T

0

)

+

bg and o

22

def

= o

2

� o

21

it follows that for all k 2 0 : : : n there exist U

k

; V

k

; s

k

; t

k

such that

� s

U

k

�!s

k

� s

0

and t

V

k

�!t

k

�

0

t

0

� U

k

=

i

12

h

<

o

11

U; U

k

=

i

11

U

0

and V

k

=

i

2

h

<

o

21

V

� U

k

' U and V

k

' V

� U

k

=

h

<

[fc

1

;:::;c

k

g

V

k

.

Proof By induction on k.

Base case k = 0: Case i

11

= fg: take U

0

def

= U; s

0

def

= s

0

; V

0

def

= V and t

0

def

= t

0

.

Case i

11

= fag: by the de�nition of 1-step type (clause 2) for s there exist U

0

; s

0

such

that

� s

U

0

�!s

0

� s

0

� U

0

=

i

11

U

0

� U

0

=

i

12

h

1

fb2o

1

h

2

j:aTbg

U

� U

0

' U .

By the assumption on h

<

and the de�nition of o

11

(i

12

h

<

o

11

) \ (i

1

h

1

o

1

h

2

) � i

12

h

1

fb 2 o

1

h

2

j :a T bg

so U

0

=

i

12

h

<

o

11

U . Taking V

0

def

= V and t

0

def

= t

0

the remaining conclusions are trivial.
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Inductive step k + 1:

Suppose c

k+1

2 h

1

. We apply the de�nition of 1-step type (clause 2) for s with premises

� c

k+1

2 i

1

h

1

� s

U

k

�!s

k

� U

k

#

� U

k

'

fc

k+1

g

V

k

giving the existence of U

k+1

; s

k+1

such that

� s

U

k+1

�!s

k+1

� s

k

� U

k+1

=

fc

k+1

g

V

k

� U

k+1

=

i

1

[(h

1

�c

k+1

)[fb2h

2

o

1

j:c

k+1

Tbg

U

k

� U

k+1

' U

k

.

Taking V

k+1

def

= V

k

and t

k+1

def

= t

k

the conclusions are straightforward from the above and

the observation that

i

12

h

<

o

11

� i

1

[ (h

1

� c

k+1

) [ fb 2 h

2

o

1

j :c

k+1

T bg:

For c

k+1

2 h

2

the reasoning is similar. 2

Corollary 23 If

� s

U

�!s

0

; t

V

�!t

0

; U# and V #

� U '

h

1

h

2

V

then there exist U

0

; V

0

; s

0

; t

0

such that

� s

U

0

�!s

0

� s

0

and t

V

0

�!t

0

�

0

t

0

� U

0

=

h

1

h

2

V

0

� U

0

=

i

1

U and V

0

=

i

2

V

� U

0

' U and V

0

' V .

Proof Take i

11

= fg; h

<

= fg and k = n. 2

Corollary 24 If

� s

U

�!s

0

; t

V

�!t

0

; U#

i

1

and V #

i

2

� U =

h

1

h

2

V

� a 2 i

1

; U

0

: i

1

h

1

o

1

h

2

!V and U '

fag

U

0

then with additional notation

� o

11

def

= fb 2 o

1

j :a (T [ T

0

)

+

bg and o

12

def

= o

1

� o

11
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� o

21

def

= fb 2 o

2

j :a (T [ T

0

)

+

bg and o

22

def

= o

2

� o

21

there exist U

00

; V

00

; s

00

; t

00

such that

� s

U

00

�!s

00

; t

V

00

�!t

00

; s

00

� s

0

and t

00

�

0

t

0

� U

00

=

h

1

h

2

V

00

� U

00

=

fag

U

0

� U

00

=

(i

1

�a)[o

11

U

� V

00

=

i

2

o

21

V

� U

00

' U and V

00

' V

Proof By Corollary 20 U# and V #. The result follows from Lemma 22 taking i

11

= fag

and h

<

= fc j :a (T [ T

0

)

+

cg. 2

Lemma 25 If in addition �

00

is a partial equivalence relation over S

hi

1

i

2

;o

1

o

2

i

such that

s

1

� s

2

^ t

1

�

0

t

2

) s

1

k t

1

�

00

s

2

k t

2

then s k t has 1-step type T kT

0

for �

00

.

Proof Clause 1 follows from Corollary 21, clause 2 follows from Corollary 24 and clause

3 from Corollary 20. 2

Finally we return to the concrete de�nitions to re-state and prove the proposition.

Proposition 15 If s �

T�

s

0

; t �

T

0

�

t

0

and T; T

0

are composable then

1. s k t �

(T kT

0

)�

s

0

k t

0

2. abs

�

(s k t) = abs

�

(s

0

) k abs

�

(t

0

).

Proof Part 1: Let Q

def

= fs k t; s

0

k t

0

j s �

T�

s

0

; t �

T

0

�

t

0

g. We show below that

Q � F

�

(Q). Lemma 25 entails that if r Q r

0

then r; r

0

both have 1-step type T k T

0

for Q

so then Q � G

T k T

0

;�

(Q), which su�ces.

Consider s k t Q s

0

k t

0

and a transition s k t

W

�!s

1

k t

1

with W#

i

1

i

2

. Suppose W

0

'

i

1

i

2

W .

By the de�nition of parallel composition there exist U; V such that

s

U

�!s

1

; t

V

�!t

1

; U =

h

1

h

2

V and U k V = W . By Corollary 20 U# and V #. By

s �

T�

s

0

and t �

T

0

�

t

0

there exist U

0

; V

0

; s

0

1

; t

0

1

such that

� s

0

U

0

�!s

0

1

�

T�

s

1

and t

0

V

0

�!t

0

1

�

T

0

�

t

1

� U

0

=

i

1

W

0

and V

0

=

i

2

W

0

� U

0

=

h

1

U and V

0

=

h

2

V

� U

0

' U and V

0

' V .

It follows that U

0

'

h

1

h

2

V

0

; U

0

# and V

0

# so Corollary 23 can be applied to give the

existence of U

0

1

; V

0

1

; s

0

2

; t

0

2

such that

� s

0

U

0

1

�!s

0

2

�

T�

s

0

1

and t

0

V

0

1

�!t

0

2

�

T

0

�

t

0

1
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� U

0

1

=

h

1

h

2

V

0

1

� U

0

1

=

i

1

U

0

and V

0

1

=

i

2

V

0

� U

0

1

'

o

1

U and V

0

1

'

o

2

V

so s

0

k t

0

U

0

1

kV

0

1

�! s

0

2

k t

0

2

with U

0

1

k V

0

1

=

i

1

i

2

W

0

and U

0

1

kV

0

1

'

o

1

o

2

W . By Proposition 14

s

1

k t

1

Q s

0

2

k t

0

2

.

Part 2: Let Q

def

= fabs

�

(s k t); abs

�

(s

0

) k abs

�

(t

0

) j s �

T�

s

0

; t �

T

0

�

t

0

g. We check that

Q is a strong bisimulation.

Consider abs

�

(s k t) Q abs

�

(s

0

) k abs

�

(t

0

) and a transition

abs

�

(s

0

) k abs

�

(t

0

)

�

�!abs

�

(s

0

1

) k abs

�

(t

0

1

):

By the de�nition of abs

�

( ) there exist U

0

; V

0

; s

0

1

; t

0

1

such that

� s

0

U

0

�!s

0

1

; t

0

V

0

�!t

0

1

; U

0

# and V

0

#

� U

0

'

h

1

h

2

V

0

� abs

�

(U

0

k V

0

) = �.

By s �

T�

s

0

and t �

T

0

�

t

0

there exist U; V; s

1

; t

1

such that

� s

U

�!s

1

�

T�

s

0

1

and t

V

�!t

1

�

T

0

�

t

0

1

� U =

i

1

h

1

U

0

and V =

i

2

h

2

V

0

� U ' U

0

and V ' V

0

It follows that U#; V # and U '

h

1

h

2

V so by Corollary 23 there exist U

1

; V

1

; s

2

; t

2

such

that

� s

U

1

�!s

2

�

T�

s

1

and t

V

1

�!t

2

�

T

0

�

t

1

� U

1

=

h

1

h

2

V

1

� U

1

=

i

1

U and V

1

=

i

2

V

� U

1

' U and V

1

' V

so abs

�

(U

1

kV

1

) = � and abs

�

(s k t)

�

�!abs

�

(s

2

k t

2

) Q abs

�

(s

0

1

) k abs

�

(t

0

1

).

Now consider a transition

abs

�

(s k t)

�

�!abs

�

(s

1

k t

1

):

By the de�nition of abs

�

( ) there exist U; V such that

� s

U

�!s

1

; t

V

�!t

1

� U =

h

1

h

2

V

� (U kV )# and abs

�

(U kV ) = �.

By Corollary 20 U# and V # so by s �

T�

s

0

and t �

T

0

�

t

0

there exist U

0

; V

0

; s

0

1

; t

0

1

such

that
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� s

0

U

0

�!s

0

1

�

T�

s

1

and t

0

V

0

�!t

0

1

�

T

0

�

t

1

� U

0

=

i

1

h

1

U and V

0

=

i

2

h

2

V

� U

0

' U and V

0

' V .

It follows that U

0

#; V

0

# and U

0

'

h

1

h

2

V

0

so by Corollary 23 there exist U

0

1

; V

0

1

; s

0

2

; t

0

2

such

that

� s

0

U

0

1

�!s

0

2

�

T�

s

0

1

and t

0

V

0

1

�!t

0

2

�

T

0

�

t

0

1

� U

0

1

=

h

1

h

2

V

0

1

� U

0

1

=

i

1

U

0

and V

0

1

=

i

2

V

0

� U

0

1

' U

0

and V

0

1

' V

0

so abs

�

(U

0

1

kV

0

1

) = � and

abs

�

(s

0

) k abs

�

(t

0

)

�

�!abs

�

(s

0

2

) k abs

�

(t

0

2

) Q

�1

abs

�

(s

1

k t

1

):

2

A.2 Proofs of other propositions

Proposition 8 <

�

is well de�ned and contains all pre-�xed points of E

�

.

Proposition 10

�

=

�

is well de�ned and is a partial equivalence relation containing all

pre-�xed points of F

�

.

Proposition 14 �

T�

is well de�ned and is a partial equivalence relation containing all

pre-�xed points of G

T;�

.

Proof (of Propositions 8, 10 and 14) It is immediate that E

�

, F

�

, the functional I

T�

de�ned by

I

T�

(�)

def

= f s j s inhabits 1-step type T for �g

and G

T�

are all monotone. It follows that <

�

,

�

=

�

and �

T�

are well-de�ned and contain

all pre-�xed points of E

�

, F

�

and G

T�

respectively. Moreover it is straightforward to

show

F

�

(Q

�1

) = F

�

(Q)

�1

Q � F

�

(Q) ) Q �Q � F

�

(Q �Q)

Q � G

T�

(Q) ) Q

�1

� G

T�

(Q [Q

�1

)

Q � G

T�

(Q) ) Q �Q � G

T�

(Q [Q �Q)

from which it follows that

�

=

�

and �

T�

are symmetric and transitive. 2

Proposition 5 If R;R

0

are composable then T (R); T (R

0

) are composable and T (R kR

0

) =

T (R) k T (R

0

).
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Proof For any matrix A : i� j!N

�

we de�ne a relation T (A) � i� j by

a T (A) b i� A

ab

6= �:

It is straightforward to check for matrices A, B that T (A�B) = T (A)T (B) and T (AtB) =

T (A)[T (B). Furthermore, if A

m

j m 2M is a family of matrices and t

m2M

A

m

is de�ned

then T (t

m2M

A

m

) = [

m2M

T (A

m

). Now suppose that C

def

= t

n�1

G

n

is de�ned. By the

above observations T (R kR

0

) = T (R) k T (R

0

). Now suppose that T (R) and T (R

0

) are not

composable, i.e. for some a

a (T (R) [ T (R

0

))

+

a:

It follows that for some n (G

n

)

aa

6= �. Now, no element of G is equal to 0 so no element of

G

n

can be. Hence (G

n

)

aa

� 1 and the set f (G

n

)

m

aa

j m 2 N g is unbounded, contradicting

the assumption that t

n�1

G

n

is de�ned. 2

Proposition 6 If R;R

0

are composable re�ned types and � 2 td(R k R

0

) then there exist

�

0

2 td(R) \ td(R

0

) such that

8d 2 i

1

i

2

o

1

o

2

: �

0

d

= �

d

Proof We confuse the interval �

k

and the natural number k, regarding timing disciplines

as functions from N to N

�

. We de�ne �

0

by

�

0

c

def

= J

c

t

G

a2i

1

i

2

(�

a

+ C

ac

) t

G

d2h

1

h

2

(J

d

+ C

dc

); if c 2 h

1

h

2

�

c

; if c 2 i

1

i

2

o

1

o

2

:

This sets the starts of the timing disciplines on internal ports to the earliest possible

times. As R;R

0

are composable we know:

0. 8c 2 h

1

h

2

: A

c

+B

c

� K.

From � 2 td(R k R

0

) we know:

1. 8a 2 i

1

i

2

: 0 � �

a

� K �A

a

2. 8b 2 o

1

o

2

: B

b

� �

b

� K

3. 8a 2 i

1

i

2

: 8b 2 o

1

o

2

: C

ab

6= � ) �

a

+ C

ab

� �

b

We check �

0

2 td(R), for which we need:

4. 8c 2 h

1

: 0 � J

c

t

G

a2i

1

i

2

(�

a

+ C

ac

) t

G

d2h

1

h

2

(J

d

+ C

dc

) � K �R

c

5. 8c 2 h

2

: R

c

� J

c

t

G

a2i

1

i

2

(�

a

+ C

ac

) t

G

d2h

1

h

2

(J

d

+ C

dc

) � K

6. 8a 2 i

1

h

1

: 8b 2 o

1

h

2

: R

ab

6= � ) �

0

a

+R

ab

� �

0

b

From the de�nitions of A and B, using the fact that, as R;R

0

are composable 8c : C

cc

= �,

one can show

7. 8c 2 j : A

c

= H

c

t

G

d6=c

C

cd

+H

d
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8. 8c 2 j : B

c

= J

c

t

G

e 6=c

J

e

+ C

ec

4 and 5 follow from 0,1,7,8 by simple inequational reasoning. For 6 we consider cases of

a and b. If a 2 i

1

it is trivial, noting that R

ab

� C

ab

. If a 2 h

1

and b 2 h

2

it is trivial,

noting that C

ca

+ C

ab

� C

cb

. The remaining case, a 2 h

1

and b 2 h

2

, follows from 2,3,8

by simple inequational reasoning. 2

Proposition 7 For any re�ned type R the set td (R) is a non-empty set of timing disci-

plines.

Proof If R is a re�ned type for sort hi; oi de�ne a timing discipline � by

�

c

def

= �

0

; if c 2 i

�

K

; if c 2 o

�

0

; otherwise.

It is clear that � 2 td(R). 2

Proposition 9 For any re�ned type R the set td(R) contains only reasonable timing

disciplines.

Proof Immediate from the de�nitions of td( ) and reasonableness. 2

Proposition 11 s

�

=

�

s

0

) abs

�

(s) = abs

�

(s

0

)

Proof It su�ces, and is straightforward, to check that f abs

�

(s); abs

�

(s

0

) j s

�

=

�

s

0

g is

a strong bisimulation. 2

Proposition 12 s <

�

t () s

�

=

�

s ^ abs

�

(s) = t

Proof For the implication s <

�

t) s

�

=

�

s it su�ces to check that f s; s

0

j 9t : s <

�

t ^

s

0

<

�

t g is a pre-�xed point of F

�

. For the implication s <

�

t) abs

�

(s) = t it su�ces

to check that f abs

�

(s); t j s <

�

t g is a strong bisimulation. For s

�

=

�

s ^ abs

�

(s) = t)

s <

�

t it su�ces to check that f s; abs

�

(s) j s

�

=

�

s g is a pre-�xed point of E

�

. These

are all straghtforward. 2

Proposition 13 If s 2 R

io

and t 2 B

io

then s <

�

t implies itr(s) <

lin

�

itr (t).

Proof Straightforward. 2
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