
The UDP Cal
ulus:

Rigorous Semanti
s for Real Networking

Andrei Serjantov Peter Sewell Keith Wansbrough

University of Cambridge

fAndrei.Serjantov,Peter.Sewell,Keith.Wansbroughg�
l.
am.a
.uk

http://www.
l.
am.a
.uk/users/pes20/Netsem

Abstra
t. Network programming is notoriously hard to understand:

one has to deal with a variety of proto
ols (IP, ICMP, UDP, TCP et
),

on
urren
y, pa
ket loss, host failure, timeouts, the
omplex so
kets in-

terfa
e to the proto
ols, and subtle portability issues. Moreover, the be-

havioural properties of operating systems and the network are not well

do
umented.

A few of these issues have been addressed in the pro
ess
al
ulus and

distributed algorithm
ommunities, but there remains a wide gulf be-

tween what has been
aptured in semanti
 models and what is required

for a pre
ise understanding of the behaviour of pra
ti
al distributed pro-

grams that use these proto
ols.

In this paper we demonstrate (in a preliminary way) that the gulf
an

be bridged. We give an operational model for so
ket programming with

a substantial fra
tion of UDP and ICMP, in
luding loss and failure. The

model has been validated by experiment against a
tual systems. It is not

tied to a parti
ular programming language, but
an be used with any

language equipped with an operational semanti
s for system
alls { here

we give su
h a language binding for an OCaml fragment. We illustrate

the model with a few small network programs.

1 Introdu
tion

1.1 Ba
kground and Problem Distributed appli
ations
onsist of many

on
urrently-exe
uting systems, intera
ting by network
ommuni
ation. They

are now ubiquitous, but writing reliable
ode remains
hallenging. Most funda-

mentally,
on
urren
y introdu
es the
lassi
 (but still problemati
) diÆ
ulties of

nondeterminism: large state spa
es, deadlo
ks, ra
es et
.. Additional diÆ
ulties

arise from intrinsi
 properties of networks:
ommuni
ation is asyn
hronous and

lossy, and hosts are subje
t to failure. The
ommuni
ation abstra
tions provided

by standard proto
ols (IP, ICMP, UDP, TCP et
.) are therefore ne
essarily more

omplex than simple message-passing or streams. Further, the programmer must

understand not only the proto
ols { the inter-ma
hine
ommuni
ation dis
iplines

{ but also the library interfa
e to them. There is a `standard' networking library,

the so
kets interfa
e [CSR83,IEE00℄, lying between appli
ations and the proto-

ol endpoint
ode on a ma
hine; the programmer must deal with what is visible

through this interfa
e, whi
h has a subtle relationship to the underlying proto-

ols. This relationship, and the behaviour of the so
kets interfa
e, has not been

pre
isely des
ribed, and varies between implementations.

To provide a rigorous understanding of these issues requires pre
ise mathe-

mati
al models of the behaviour of distributed systems. Su
h models
an (1) im-

prove our informal understanding and system-building, (2) underpin proofs of

robustness and se
urity properties of parti
ular programs, and (3) support the

design, proof and implementation of higher-level distributed abstra
tions.

Previous work on the theories of distributed algorithms and of pro
ess
al
uli

has developed models and reasoning te
hniques for
on
urren
y and failure, but

these models are generally rather abstra
t and/or idealised: to our knowledge,

none address the so
kets interfa
e and the behaviour it makes visible, most ignore

interesting aspe
ts of the
ore proto
ols, and most do not support reasoning

about exe
utable
ode. The proto
ols and so
kets interfa
e are worth detailed

attention { they are implemented on almost all ma
hines, and underlie higher-

level servi
es, in
luding those providing resilien
e against failure and atta
k.

1.2 Contribution We give a model that provides a rigorous understanding

of the so
kets interfa
e and UDP, in realisti
 networks. To this we add an op-

erational semanti
s for a programming language (an ML fragment), allowing

reasoning about exe
utable distributed programs. We have:

{
arefully
hosen a useful fragment of the so
kets interfa
e and built a thin

layer of abstra
tion above it, fo
ussing on UDP as a starting-point;

{
onstru
ted an experimentally-validated operational semanti
s that
overs

on
urren
y, asyn
hrony, failure and loss;

{ developed language-independent semanti
 idioms for intera
tion between an

appli
ation thread, its host OS, and the network;

{ instantiated the model with a semanti
s for an exe
utable fragment of OCaml,

MiniCaml ; and

{ exer
ised our semanti
s by proving properties of some small example dis-

tributed programs.

Taken together, the above also provide a theorists' introdu
tion to so
kets/UDP

programming.

1.3 Experimental Semanti
s A key goal of our work is to provide a
lear

and
lose
orresponden
e between our semanti
s and the behaviour of a
tual sys-

tems. To a
hieve this, we
annot alter the extant widely-deployed OS networking

ode; the most we
an do is
hoose whi
h fragment to model, and add a thin

regularising layer above it. Even then, the systems are too
omplex to analyse

and hen
e derive an a

urate semanti
s:
onsider the body of ma
hine
ode and

hardware logi
 embedded in their operating systems, ma
hines, network
ards

and routers. We are for
ed therefore both to invent an appropriate level of ab-

stra
tion at whi
h to express our semanti
s, and to experimentally determine

and validate that semanti
s. We
all this a
tivity experimental semanti
s.

In our
ase, the semanti
s is expressed at the level of the system
alls used to

ommuni
ate between the appli
ation language and the operating system so
k-

ets
ode. It was initially based on the relevant natural-language do
umentation

(man pages, RFCs [Pos80,Pos81,Bra89℄, the Posix standard [IEE00℄, and stan-

dard referen
es [Ste98,Ste94℄), and on inspe
tion of the sour
es of the Linux

implementation. We validated the semanti
s by a
ombination of ad ho
 and

automated testing: writing
ode that intera
ted with the C so
kets interfa
e in

the des
ribed ways, and
on�rming that the resulting behaviour
orresponded

with our model.

To date, the semanti
s has only been validated against the Linux implemen-

tation (in fa
t, against the Red Hat 7.0 distribution, kernel version 2.2.16-22,

glib
 2.1.92). We intend also to use our automated test s
ripts to identify dif-

feren
es with BSD and with Windows operating systems, if possible pi
king out

a useful
ommon
ore.

1.4 Overview In the remainder of this se
tion, we give a very brief informal

introdu
tion to networks, the proto
ols IP, UDP, and ICMP, and the so
kets

interfa
e to them. We then dis
uss our
hoi
e of what to in
lude in the model,

and its stru
ture, and highlight some subtleties that must be understood for

reliable programming.

In Se
tion 2 we des
ribe the model, making these subtleties pre
ise. Unfor-

tunately the
omplete de�nition is too large to in
lude { inevitably so, as the

behaviour of even our small (but useful) fragment of the so
kets interfa
e is

large and irregular by the standards of pro
ess
al
uli and toy languages. Most

details are therefore omitted; they appear in the te
hni
al report [SSW01℄. Se
-

tion 3 outlines the MiniCaml programming language we adopt for expressing

distributed programs, a fragment of OCaml 3.00 [L

+

00℄. Again most details are

omitted { these are routine.

Se
tion 4 dis
usses our experimental setup and validation. The semanti
s is

illustrated with a few small examples in Se
tion 5. Finally, we dis
uss related

work and
on
lude in Se
tions 6 and 7.

1.5 Ba
kground: Networks and Proto
ols, Informally At the level of

abstra
tion of our model, a network
onsists of a number of ma
hines
onne
ted

by a
ombination of LANs (eg. ethernets) and routers.

1

Ea
h ma
hine has one or

more IP addresses i , whi
h are 32-bit values su
h as 192:168:0:11. The Internet

Proto
ol (IP) allows one ma
hine to send messages (IP datagrams) to another,

spe
ifying the destination by one of its IP addresses. IP datagrams have the form

IP(i

1

; i

2

; body)

where i

1

and i

2

are the sour
e and destination addresses. The implementation of

IP (
onsisting of the routers within the network and the proto
ol endpoint
ode

in ma
hines) is responsible for delivering the datagram to the
orre
t ma
hine.

1

We dis
uss in x1.7 and x4 how the model relates to a
tual systems.

We
an therefore abstra
t from routing and network topology, and depi
t a

network as below (in fa
t this is our test network).

LinuxWin2K

kurt

Linux Win2K

192:168:0:12

alan

emil

192:168:0:13 192:168:0:14

astro
yte

john

Linux

192:168:0:1

IP(192:168:0:14; 192:168:0:11; ICMP PORT UNREACH(::))

IP(192:168:0:11; 192:168:0:14;UDP(::))

192:168:0:21

192:168:0:11

Delivery is asyn
hronous and unreliable { IP does not provide a
knowledgments

that datagrams are re
eived, or retransmit lost messages.

UDP (the User Datagram Proto
ol) is a thin layer above IP that provides

multiplexing. It asso
iates a set f1; ::; 65535g of ports to ea
h ma
hine; a UDP

datagram

IP(i

1

; i

2

;UDP(ps

1

; ps

2

; data))

is an IP datagram with a body of the form UDP(ps

1

; ps

2

; data),
ontaining a

sour
e and destination port and a short sequen
e of bytes of data .

ICMP (the Internet Control Message Proto
ol) is another thin layer above

IP dealing with some
ontrol and error messages. Here we are
on
erned only

with two, relating to UDP:

IP(i

1

; i

2

; ICMP PORT UNREACH(i

3

; ps

3

; i

4

; ps

4

)); and

IP(i

1

; i

2

; ICMP HOST UNREACH(i

3

; ps

3

; i

4

; ps

4

)):

The �rst may be generated by a ma
hine re
eiving a UDP datagram for an

unexpe
ted port; the se
ond is sometimes generated by routers on re
eiving

unroutable datagrams.

TCP (the Transmission Control Proto
ol) is a rather thi
ker layer above

IP that provides bidire
tional stream
ommuni
ation, with
ow
ontrol and re-

transmission of lost data. Most networked appli
ations are built above TCP,

with some use of UDP, but we do not yet
onsider it.

The proto
ol endpoint
ode on a ma
hine, implementing the above, is de-

pi
ted below (together with LIB, whi
h we de�ne in x2.1.3).

UDPICMP TCP

IP

LIB

interfa
e

Devi
e

interfa
e

C so
kets

1.6 Ba
kground: The So
kets Interfa
e, Informally To show how ap-

pli
ation programs
an intera
t with the UDP endpoint
ode on their ma
hines,

we give the simplest possible example of two programs
ommuni
ating a single

UDP datagram. We des
ribe a small part of the so
kets interfa
e informally,

presenting only a
rude intuition of the behaviour. The sender and re
eiver pro-

grams, e

s

and e

r

respe
tively, are below. They are written in MiniCaml (with

some typographi

onventions automati
ally applied to the exe
utable
ode).

e

s

= e

r

=

let p = port_of_int 7654 in

let i = ip_of_string "192:168:0:11" in

let fd = socket() in

let = connect(fd ; i ; "p) in

let = print_endline_flush "sending" in

sendto(fd ; �; "hello"; false)

let p

0

= port_of_int 7654 in

let i

0

= ip_of_string "192:168:0:11" in

let fd

0

= socket() in

let = bind(fd 0; "i 0; "p0) in

let = print_endline_flush "ready" in

let (; ; v) = recvfrom(fd

0

; false) in

print_endline_flush v

Here the � and " are the
onstru
tors of option types T". The types of the

library
alls are as in Figure 3, but without the `err', as in MiniCaml an error

return raises an ex
eption. The example involves types fd of �le des
riptors, ip

of IP addresses, and port of ports 1::65535.

The sender program e

s

, whi
h should be run on alan, de�nes a port p and an

IP address i (in fa
t one of ma
hine kurt) and
reates a new so
ket. A so
ket

onsists of assorted data maintained by the OS, in
luding an identi�er (a �le

des
riptor, whi
h here will be bound to fd) and a pair of `lo
al' and `remote' pairs

of an IP address and a port. These are used for mat
hing in
oming datagrams

and addressing outgoing datagrams. Program e

s

then sets the remote pair of the

so
ket to i and p using connect, and sends a UDP datagram via fd with body

"hello".

The re
eiver e

r

, whi
h should be run on kurt, de�nes i

0

and p

0

to be the

same IP address and port,
reates a new so
ket fd

0

, sets the lo
al pair of fd

0

to

permit re
eption of datagrams sent to (i

0

; p

0

), and prints "ready". It then blo
ks,

waiting for a datagram to be re
eived by the so
ket, after whi
h it prints the

datagram body.

If e

s

and e

r

are run on alan and kurt respe
tively (but e

r

is started �rst),

and there is no failure in either ma
hine or the network, a single UDP datagram

will be sent from one ma
hine to the other.

1.7 Choi
es: What to Model? To address the issues of x1.1, and support

the desired rigorous understanding, the model must satisfy several
riteria.

1. It must have a
lear relationship (albeit ne
essarily informal) to what goes

on in a
tual systems; it must be suÆ
iently a

urate for reasoning in the

model to provide assuran
es about the behaviour of those systems. For this,

it is essential to in
lude the various failures that
an o

ur.

2. It must
over a large enough fragment of the network proto
ols and so
kets

interfa
e to allow interesting distributed algorithms to be expressed. In par-

ti
ular, we want to provide as mu
h information about failure as possible to

the programmer, to support failure-aware algorithms.

3. In tension with both of these, the model must be as simple as possible, for

reasoning to be tra
table.

The full range of network proto
ols and OS intera
tions is very large by the

standards of semanti
 de�nitions. As a starting point, in this paper we
hoose

to address (uni
ast) UDP and the asso
iated part of ICMP, with a single thread

of
ontrol per ma
hine, in a
at network. We
hoose the fragment of the so
kets

interfa
e that is most useful for programming in these
ir
umstan
es, and deal

with the so
kets interfa
e view of message loss, host failure and various lo
al

errors. For simpli
ity, we do not as yet deal with any of the following, despite

their importan
e.

{ TCP, and asso
iated ICMP messages

{ broad
ast and multi
ast UDP
ommuni
ation

{ multithreaded ma
hines and inter-thread
ommuni
ation

{ other IO primitives (in this paper we
hoose, minimally, `print' and `exit')

{ persistent storage

{ network partition (espe
ially for ma
hines with intermittent
onne
tions)

{ DNS

{ IPv6 proto
ols

{ ma
hine re
on�guration and other privileged operations

We are not modelling the implementation of IP (routing, fragmentation et
.)

or lower levels (Ethernet, ARP, et
.), as we aim to support reasoning about

distributed appli
ations and algorithms above IP, rather than implementations

of low-level network proto
ols.

The standard so
kets interfa
e is a C language library. To avoid dealing

with irrelevant
omplexities of a C interfa
e (weak typing and expli
it memory

management) we introdu
e a thin abstra
tion layer, providing a
lean strongly-

typed view (we also
lean up the interfa
e by omitting redundan
y). This LIB

interfa
e is de�ned in Figure 3; it was shown in the diagram at the end of x1.5.

In this paper we des
ribe only an interleaving semanti
s. We anti
ipate that

it will be straightforward to add fairness
onstraints, whi
h are required for rea-

soning about non-trivial examples, and intend to investigate lightweight timing

annotations, for more pre
ise properties about examples involving time-outs.

The model is not intended for quantitative probabilisti
 reasoning, eg. for qual-

ity of servi
e issues. It may, however, provide a useful model for reasoning about

some forms of mali
ious atta
k { eg. for networks with some mali
ious hosts,

though with our
at network topology we do not deal with �rewalls.

Blo
king system
alls are a key aspe
t of so
kets programming, so it is natural

to deal with sequential threads, rather than a
on
urrent programming language

with language-level parallelism (for whi
h blo
king system
alls would blo
k the

entire runtime).

1.8 Stru
turing the Model (and Language Independen
e) We want to

reason about exe
utable implementations of distributed algorithms, expressed

in some programming language(s), not in a modelling language. We do not wish

to �x on a single language, however, as the behaviour of the so
kets interfa
e

and network is orthogonal to the programming language used to express the

omputation on ea
h ma
hine. We therefore fa
tor the model, allowing threads to

be arbitrary labelled transition systems (LTSs) of a
ertain form. One
an extend

the operational semanti
s of a variety of languages with labelled transitions, for

library
alls and returns, so that programs denote these LTSs (values used by

the so
kets interfa
e are all of rather simple types, not involving
allba
ks, so

this is straightforward). In this paper we do so for a fragment of OCaml, with

fun
tions, referen
es and ex
eptions. This allows our example programs to be

exe
uted without
hange, by linking them with a module providing our thin layer

of abstra
tion, LIB, above the OCaml so
kets library (in turn implemented above

the C library).

It will be
onvenient to be able to des
ribe partial systems, for example to

onsider the intera
tions between the
olle
tion of all threads and the rest of

the system, so we allow hosts and their threads to be synta
ti
ally separated.

Networks therefore
onsist of a parallel
omposition of IP datagrams, hosts (ea
h

with a state v , giving the host's IP addresses, states of so
kets et
.), and threads

(ea
h with a state e of an LTS). The pre
ise de�nition is in x2.1.4, whi
h uses

the grammar below.

N ::= 0 empty

N j N parallel
omposition

IP v IP datagram in transit

n�Host v host n, with state v

n�e thread of host n, with state e

The host semanti
s { the heart of the model { is outlined in x2.3. The behaviour

of networks is de�ned in x2.2.2 by a stru
tural operational semanti
s (SOS),

ombining the LTSs of hosts and threads, using pro
ess-
al
ulus te
hniques (we

give a dire
t operational semanti
s, rather than a
omplex en
oding into an

existing
al
ulus).

1.9 It's Not Really So Easy The informal introdu
tions to the proto
ols

and so
kets interfa
e in xx1.5,1.6 above give a de
eptively simple view. Real

network programming must take into a

ount the following, all of whi
h are

aptured in our model:

1. IP addresses and ports with zero values have spe
ial meanings, being treated

roughly as wild
ards, both in the arguments to bind; connect; et
. and in the

so
ket states. Our ip and port are types of non-zero IP addresses and ports;

we use option types ip" and port" where the zero values (�) may o

ur.

2. The system-
all intera
tions between a thread and its host are weakly
ou-

pled to the intera
tions between a host and the network. Messages may arrive

at a ma
hine, and be pro
essed (and bu�ered) by the network hardware and

OS, at almost any time. The sendto and recvfrom
alls
an blo
k, until there

is queue spa
e to send a message or until a message arrives, respe
tively.

Further, select allows blo
king until one of a number of �le des
riptors is

ready for reading or writing, or a spe
i�ed time has elapsed. Communi
a-

tion between hosts is asyn
hronous, due both to bu�ering and the physi
al

media.

3. Ma
hines
an fail; messages
an be lost, reordered, or dupli
ated. There is

bu�ering (and potential loss) at many points: in the operating system, in the

network
ards, and in the network routers. UDP provides very little error

dete
tion and no re
overy. UDP datagrams typi
ally
ontain a
he
ksum

(here we idealise, assuming that the
he
ksum is perfe
t and hen
e that

all
orrupted datagrams are dis
arded). More interestingly, remote failure

an sometimes be dete
ted: a ma
hine re
eiving a UDP datagram addressed

to a port that does not have an asso
iated so
ket may send ba
k an ICMP

message. These
an asyn
hronously set an error
ag in the originating so
ket,

giving rise to an error from a blo
ked or future library
all.

4. Many lo
al errors are possible, for example (just
onsidering bind): a port

may be already in use or in a privileged range; an IP address may not belong

to the ma
hine; the OS may run out of resour
es; the �le des
riptor may not

identify a so
ket. In MiniCaml, these are reported via ex
eptions, whi
h may

be
aught and handled.

5. Ma
hines
an have more than one IP address { in fa
t, a ma
hine may

have several interfa
es, ea
h of whi
h has a primary IP address and possibly

also other alias IP addresses. Typi
ally ea
h interfa
e will
orrespond to a

hardware devi
e, but a ma
hine will also have a loopba
k interfa
e whi
h

e
hoes messages ba
k.

6. The so
kets interfa
e in
ludes assorted other fun
tionality { further library

alls, so
ket options et
.

2 UDP { The Model

We now present the UDP Cal
ulus, our model of the network and of the so
kets

interfa
e to UDP. As the de�nition is far too large to in
lude here, we give only

the basi
 stru
ture and sele
ted highlights, leaving the full details to the te
hni
al

report [SSW01℄. Se
tion 2.1 presents the stati
 stru
ture of the model, Se
tion 2.2

explains the intera
tions between parts of the model, Se
tion 2.3 illustrates the

T ::= int

bool

string

() unit type

T

1

� :: � T

n

tuple (n � 2)

T list list

T" optional type

T err T or error

void empty type

fd �le des
riptor

ip IP address

port port

error OS error

netmask netmask

i�d interfa
e des
riptor

so
kopt so
ket options

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

TL

T set �nite set

ipBody body of IP datagram

msg IP datagram

ifd interfa
e des
riptor table entry

ags
ags from so
ket des
riptor table entry

so
ket so
ket des
riptor table entry

hostid unique identi�er of a host

hostThreadState the OS view of a thread

host a single host

The
lauses annotated by TL form a subgrammar of T , the language types. All values

passed between a thread and its host OS are of a language type.

Fig. 1. Types

host semanti
s by means of some key rules, and Se
tion 2.4 dis
usses some sanity

results.

2.1 Stati
s: Types, Values, and Judgements

The model is largely built from the types T shown in Figure 1, whi
h have values

v
omposed of the
onstru
tors
 2 Con given in Figure 2;
onstru
tors
an be

polymorphi
. Ea
h
onstru
tor has a natural number arity and a non-empty set

of sequen
es (of length one plus that arity) of types; the sequen
es are written

with arrows ! . The obvious typing judgement for values is written ` v :T .

A number of invariants are
aptured by additional judgements, omitted here.

Notation: We typi
ally let i ; p; e range over values of types ip; port; error, and

is ; ps ; es over values of types ip"; port"; error".

2.1.1 Hosts and Threads We separate a running ma
hine into two parts: the

host, representing the ma
hine itself and its operating system; and the thread,

Partition Con into the language
onstru
tors:

::;�1; 0; 1; 2; :: : int

true; false : bool

o
tet-sequen
e : string

() : ()

(; :: ;) (mix�x) : T

1

! ::!T

n

!T

1

� :: � T

n

n � 2

nil : T list

:: (in�x) : T!T list!T list

� : T"

" : T!T"

OK : T!T err

Fail : error!T err

1::2

32

� 1 : ip

1::65535 : port

fd

3

; fd

4

; : : : : fd

lo; eth0; eth1; : : : : i�d

P

i2j::31

2

i

: netmask for 0 � j � 31

SO BSDCOMPAT;SO REUSEADDR : so
kopt

EACCES; EADDRINUSE; EADDRNOTAVAIL; EAGAIN; EBADF;

ECONNREFUSED; EHOSTUNREACH; EINTR; EINVAL; EMFILE;

EMSGSIZE; ENFILE; ENOBUFS; ENOMEM; ENOTCONN;

ENOTSOCK : error

and the non-language
onstru
tors:

IP : ip � ip � ipBody ! msg

UDP : port" � port" � string ! ipBody

ICMP HOST UNREACH : ip � port" � ip � port" ! ipBody

ICMP PORT UNREACH : ip � port" � ip � port" ! ipBody

Host : ifd set � hostThreadState � so
ket list �msg list � bool ! host

So
k : fd � ip" � port" � ip" � port" � error" �
ags � (msg � i�d) list! so
ket

IF : i�d � ip set � ip � netmask ! ifd

Run : hostThreadState

Term : hostThreadState

Ret

TL

: TL ! hostThreadState

Sendto2 : fd � (ip � port)" � string ! hostThreadState

Re
vfrom2 : fd ! hostThreadState

Sele
t2 : fd list � fd list � int" ! hostThreadState

Print2 : string ! hostThreadState

Flags : bool � bool !
ags

alan; kurt; astro
yte; : : : : hostid

Elements of T set are written fv

1

; :: ; v

n

g. The TL subs
ript of Ret

TL

will usually

be elided.

Fig. 2. Constru
tors

representing the appli
ation program
ontrolling it. Threads are explained in

x2.2.1. A host is of the form:

Host(ifds ; t ; s ; oq ; oqf)

A host has a set ifds : ifd set of interfa
es, ea
h with a set of IP addresses and

other data. We assume all hosts have at least a loopba
k interfa
e and one

other. We sometimes write i 2 ifds to mean `i is an IP address of one of the

interfa
es in ifds '. The operating system's view of the thread state is stored

in t : hostThreadState: the thread may be running (Run), terminated (Term),

or waiting for the OS to return from a
all. In the last
ase, the OS may be

about to return a value from a fast system
all (Ret v) or the thread may be

blo
ked waiting for a slow system
all to
omplete (Sendto2 v , Re
vfrom2 v ,

Sele
t2 v , Print2 v). The host's
urrent list of so
kets is given by s : so
ket list.

The outqueue, a queue of outbound IP messages, is given by oq :msg list and

oqf : bool, where oq is the list of messages and oqf is set when the queue is full.

2.1.2 So
kets The
entral abstra
tion of the so
kets interfa
e is the so
ket. It

represents a
ommuni
ation endpoint, spe
ifying a lo
al and a remote pair of an

IP address and UDP port, along with other parts of the proto
ol implementation

state. It is of the form

So
k(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq)

A so
ket is uniquely identi�ed within the host by its �le des
riptor fd : fd. The lo-

al and remote address/port pairs are is

1

: ip"; ps

1

: port" and is

2

: ip"; ps

2

: port"

respe
tively; wild
ards may o

ur. Asyn
hronous error
onditions store the

pending error in the error
ag es : error". An assortment of so
ket parameters are

stored in f :
ags. Finally, mq : (msg � i�d) list is a queue of in
oming messages

that have been delivered to this so
ket but not yet re
eived by the appli
ation.

2.1.3 The So
kets Interfa
e A library interfa
e de�nes the form of the

intera
tions between a thread and a host, spe
ifying the system
alls that the

thread
an make. A library interfa
e
onsists of a set of
alls, ea
h with a pair of

language types. We take a library interfa
e LIB, shown in Figure 3,
onsisting

of the so
kets interfa
e together with some basi
 OS operations.

All of the so
kets interfa
e
alls return a value of some type T err to the

thread, whi
h
an be either OK v for v :T or Fail e for a Unix error e : error. A

language binding may map these error returns into ex
eptions, as the MiniCaml

binding of x3 does.

2.1.4 Networks A network N (a term of the grammar in x1.8) is a parallel

omposition of IP datagrams IP v , hosts n�Host v , and their threads n�e. To

des
ribe partial systems, we allow hosts and their threads to be split apart.

The asso
iation between them is expressed by shared names n : hostid, whi
h are

purely semanti
 devi
es, not to be
onfused with IP addresses or DNS names.

A well-formed network must
ontain at most one host and at most one thread

The so
kets interfa
e:

socket : () ! fd err

bind : fd � ip" � port" ! () err

connect : fd � ip � port" ! () err

disconnect : fd ! () err

getsockname : fd ! (ip" � port") err

getpeername : fd ! (ip" � port") err

sendto : fd � (ip � port)" � string � bool ! () err

recvfrom : fd � bool ! (ip � port" � string) err

geterr : fd ! error" err

getsockopt : fd � so
kopt ! bool err

setsockopt : fd � so
kopt � bool ! () err

close : fd ! () err

select : fd list � fd list � int" ! (fd list � fd list) err

port_of_int : int ! port err

ip_of_string : string ! ip err

getifaddrs : () ! (i�d � ip � ip list � netmask) list err

Basi
 operating system operations:

print_endline_flush : string ! () err

exit : () ! void

Fig. 3. The library interfa
e LIB

�

alan�Host(::)

Host

Thread

alan�e

�

alan�OK()

alan�
onsole "hello"

alan�IP(::)

alan�sendto(::)

alan�IP(::)

IP(i

alan

; i

kurt

;UDP(1024; 7654; "hello"))

IP(i

kurt

; i

alan

; ICMP PORT UNREACH(::))

Network

Fig. 4. Thread, Host and Network

LTS for ea
h name. Hosts and messages must be well-formed, and no two hosts

may share an IP address.

2.2 Dynami
s: Intera
tion

The threads, hosts, and the network itself are all labelled transition systems; they

intera
t by means of CCS-style syn
hronisations. Figure 4 shows the network

N = alan�e j alan�Host(::)

j IP(i

alan

; i

kurt

;UDP(1024; 7654; "hello"))

j IP(i

kurt

; i

alan

; ICMP PORT UNREACH(::)) j : : :

along with some of its possible intera
tions (showing the host LTS labels). Host

and thread are linked by the hostid pre�x on their transitions, but messages

on the network are bare { messages are not tied to any parti
ular host, other

than by the IP addresses
ontained in their sour
e and destination �elds. As we

shall see, the host and thread LTSs are de�ned without these pre�xes, whi
h are

added when they are lifted to the network SOS.

The only intera
tion between a thread and its asso
iated host is via system

alls { a
all and its return are both modelled by CCS-style syn
hronisations.

A thread
an make a system
all f v for any f :TL!TL

0

in LIB and argument

v :TL, for example sendto(::). The operating system may then return a value

r :TL

0

, for example OK(). In the above diagram, the host's alan�sendto(::) and

alan�OK() are part of
all and return syn
hronisations respe
tively.

Invo
ations of system
alls may be fast or slow [Ste98, p124℄. Fast
alls return

qui
kly, whereas slow
alls blo
k, perhaps inde�nitely { for example, until a

message arrives. The labelled transitions have the same form for both, but the

host states di�er (as in x2.1.1). (In the absen
e of slow
alls, one
ould model

system
alls as single transitions,
arrying both argument and return values,

rather than pairs.)

A host intera
ts with the network by sending and re
eiving IP datagrams:

alan�IP(::) and alan�IP(::) in the �gure, respe
tively.

A host may also emit strings to its
onsole with transitions of the form

alan�
onsole "hello". This provides a minimal way to observe the behaviour of

a network, namely by examining the output on ea
h
onsole.

2.2.1 Thread LTSs and Language Independen
e The intera
tions be-

tween a thread and the OS are essentially independent of the programming

language the thread is written in { they ex
hange only values of simple types,

the language types of Figure 1. Instead of taking a thread to be a synta
ti
 pro-

gram in some parti
ular language, we
an therefore take an arbitrary labelled

transition system, with labels f v , r and � . It is then straightforward to extend

an operational semanti
s for a variety of languages to de�ne su
h an LTS, as we

do for MiniCaml in x3.

Take a thread LTS e to be (Lthread; S; �!; s

0

) where S is a set of states,

s

0

2 S is the initial state, �! � S � Lthread� S is the transition relation, and

the labels are

Lthread = f f v j f :TL!TL

0

2 LIB ^ ` v :TL g [f r j 9TL : ` r :TL g [f�g

Some axioms must be imposed to give an a

urate model, as in [Sew97℄. System

alls are deterministi
 { a thread
annot o�er to invoke multiple system
alls si-

multaneously. Moreover, after making a system
all, the thread must be prepared

to input any of the possible return values, and its subsequent behaviour will be

a fun
tion of the value. Threads may however have internal nondeterminism. A

thread
an always make progress, unless it has been terminated by invoking exit

(the only system
all with return type void). The pre
ise statements of these

properties are given in [SSW01℄.

2.2.2 Network Operational Semanti
s The transitions of a network are

de�ned by the rules below, together with a stru
tural
ongruen
e de�ned by

asso
iativity,
ommutativity and identity axioms for j and 0. Here we let x be

either a host (with ` x host-ok) or a thread LTS, ` n : hostid, and ` N

i

network.

x

l

�! x

0

l 6= �

n�x

n�l

��! n�x

0

x

�

�!
x

0

n�x

�

�! n�x

0

0

n�IP v

����! IP v

IP v

n�IP v

����! 0

N

1

n�l

��! N

0

1

N

2

n�l

��! N

0

2

N

1

j N

2

�

�!
N

0

1

j N

0

2

par.1

N

1

n�l

��! N

0

1

l 2 Lthread [Crash =) n�Host v =2 N

2

l 2 Lthread [Crash =) n�e =2 N

2

N

1

j N

2

n�l

��! N

0

1

j N

2

par.2

0

n�IP v

����! 0

drop.1

k � 2

0

n�IP v

����!

Q

j21::k

IP v

dup.1

n�Host v

n�
rash

����! 0

host.
rash.1

n�e

n�
rash

����! 0

host.
rash.2

IP datagrams
an arrive out of order, be lost or be (�nitely) dupli
ated. Re-

ordering is built into the rules above, but for the other kinds of failure we add

the rules drop:1 and dup:1 . These are most interesting when
onstrained, eg. by

fairness or timing assumptions. Hosts
an also fail in a variety of ways. In this

paper we
onsider only the simplest, `
rash' failure [Mul93, x2.4℄.

Our network has no interesting topologi
al stru
ture. It
an always re
eive

a new datagram, and
an always deliver any datagram it has, with rules similar

to those of Honda and Tokoro's asyn
hronous �-
al
ulus [HT91℄.

2.3 Highlights of the Host Semanti
s

We now highlight a few of the most interesting parts of the host semanti
s, il-

lustrating some (10 out of 72) of the host transition axioms. The de�nitions of

several auxiliary fun
tions are omitted. We aim to give some feeling for the intri-

a
ies of UDP so
kets and to demonstrate that a rigorous treatment is feasible,

without (for la
k of spa
e) fully explaining our semanti
s.

2.3.1 Ports: Privileged, Ephemeral, and Unused, and Autobinding

The ports 1::65535 of a host are partitioned into the privileged = f1; ::; 1023g,

the ephemeral = f1024; ::; 4999g, and the rest (these sets are implementation-

dependent; we �x on the Linux defaults). The unused ports of a host are the

subset of f1; ::; 65535g that do not o

ur as the lo
al port of any of its so
kets.

One
an bind the lo
al port of a so
ket either to an expli
it non-privileged

value, eg. the p

0

= 7654 of the e

r

example in x1.6, or request the OS to
hoose

a unused port from the set of ephemeral ports. The latter autobinding
an be

done by invoking bind with a � in its port" argument, as in the bind :2 rule:

bind.2 ("i ; �) su

eed, autobinding

F (ifds ;Run;So
k(fd ; �; �; �; �; es; f ;mq))

bind(fd;"i;�)
�������!F (ifds ;Ret (OK());So
k(fd ; "i ; "p

0

1

; �; �; es; f ;mq))

p

0

1

2 unused(F) \ ephemeral and i 2 ifds

To redu
e the synta
ti

lutter in rules, we de�ne several
lasses of
ontexts that

build a host. Here F ranges over
ontexts of the form Host(

1

;

2

; S(

3

); oq ; oqf),

where S is a so
ket list
ontext, of the form s

1

�[℄�s

2

. The rule also requires

the IP address i to be one of those of this host. Autobinding
an also o

ur

in connect (if one
onne
ts a so
ket that does not have a lo
al port bound), in

disconnect, in sendto, and in recvfrom.

2.3.2 Message Delivery to the Net In the simplest
ase, sending a UDP

datagram involves two host transitions: one that
onstru
ts the datagram and

adds it to the host outqueue, and one that takes it from the outqueue and outputs

it to the network. These are given by the host transition axioms below.

sendto.1 su

eed

Host(ifds ;Run; S(So
k(fd ; is

1

; ps

1

; is

2

; ps

2

; �; f ;mq)); oq ; oqf)

sendto(fd;ips;data ;nb)
�������������!

Host(ifds ;Ret (OK()); S(So
k(fd ; is

1

; "p

0

1

; is

2

; ps

2

; �; f ;mq)); oq

0

; oqf

0

)

p

0

1

2 autobind(ps

1

; S)

and (oq

0

; oqf

0

;true) 2 dosend(ifds ; (ips; data); (is

1

; "p

0

1

; is

2

; ps

2

); oq ; oqf)

and size(data) � UDPpayloadMax and (ips 6= � or is

2

6= �):

In sendto:1 : S is a so
ket list
ontext, allowing the fd so
ket to be pi
ked out;

the autobind fun
tion provides a nondeterministi

hoi
e of an unused ephemeral

port, if the lo
al port of this so
ket has not yet been bound; the dosend fun
tion

onstru
ts a datagram, using the ips argument to sendto and the IP addresses

and ports from the so
ket, and adds it to the outqueue (or fails, if the queue is

full); the length of data must be less than UDPpayloadMax; and at least one of

the ips argument and the so
ket must spe
ify a destination IP address.

delivery.out.1 put UDP or ICMP to the network from oq

Host(ifds ; t ; s ; oq; oqf)

IP(i

3

;i

4

;body)

���������!Host(ifds ; t ; s ; oq

0

; oqf

0

)

((IP(i

3

; i

4

; body)); oq

0

; oqf

0

) 2 dequeue(oq ; oqf)

and i

4

=2 LOOPBACK[MARTIAN and i

3

=2 MARTIAN

In delivery :out :1 : the dequeue fun
tion pi
ks a datagram o� the outqueue

(nondeterministi
ally resetting the oqf
ag), and
he
ks the datagram has non-

martian sour
e and destination addresses [Bak95, x5.3.7℄. It outputs the data-

gram to the network.

2.3.3 Return From a Fast Call After the invo
ation of a fast
all, eg. an

instan
e of the sendto:1 rule above, the host thread state is of the form Ret v ,

re
ording the value v to be returned to the thread by ret :1 below.

ret.1 return value v from fast system
all to thread

Host(ifds ;Ret v ; s ; oq ; oqf)

v

�!Host(ifds ;Run; s ; oq ; oqf)

2.3.4 Message Delivery from the Net If the thread invokes recvfrom on a

so
ket fd that does not have any queued messages, with the `non-blo
king'
ag

argument false, the thread will blo
k until a message arrives (or until an error

of some kind o

urs).

re
vfrom.2 blo
k, entering Re
vfrom2 state

F (ifds ;Run;So
k(fd ; is

1

; ps

1

; is

2

; ps

2

; �; f ;nil))

recvfrom(fd;false)

�����������!F (ifds ;Re
vfrom2 fd ;So
k(fd ; is

1

; "p

0

1

; is

2

; ps

2

; �; f ;nil))

p

0

1

2 autobind(ps

1

; so
ks(F))

As in bind :2 and sendto:1 , the lo
al port of the so
ket will be automati
ally

bound (to an unused ephemeral port) if it is not already bound.

When a UDP datagram, eg. IP(i

3

; i

4

;UDP(ps

3

; ps

4

; data)), arrives at a host,

the 4-tuple (i

3

; ps

3

; i

4

; ps

4

) is mat
hed against ea
h of the host's so
kets, to

determine whi
h (if any) the datagram should be delivered to. This mat
hing

ompares the 4-tuple with ea
h So
k(::; is

1

; ps

1

; is

2

; ps

2

; ::), giving a s
ore from

0 to 4 of how many elements mat
h, treating a � in the so
ket elements as a

wild
ard. The lookup fun
tion takes a list s of so
kets and a datagram 4-tuple

(i

3

; ps

3

; i

4

; ps

4

), returning the set of so
kets with maximal non-zero s
ores. The

datagram is delivered to one of these so
kets, by adding it to the end of the

so
ket's message queue mq . This is expressed in the basi
 delivery :in:udp:1 rule

below.

delivery.in.udp.1 get UDP from network and deliver to a mat
hing

so
ket

Host(ifds ; t ; s ; oq; oqf)

IP(i

3

;i

4

;UDP(ps

3

;ps

4

;data))

������������������!Host(ifds ; t ; S(So
k(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;

mq :: (IP(i

3

; i

4

;UDP(ps

3

; ps

4

; data)); i�d))); oq ; oqf)

So
k(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq) 2 lookup s (i

3

; ps

3

; i

4

; ps

4

)

and S(So
k(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq)) = s

and (i�d ; iset ; ;) 2 ifds and i

4

2 iset

and i

4

=2 LOOPBACK and i

3

=2 MARTIAN [LOOPBACK

After this, a blo
ked recvfrom will be able to
omplete, using the re
vfrom:6

rule.

re
vfrom.6 slow su

eed

F (ifds ;Re
vfrom2 fd ;So
k(fd ; is

1

; "p

1

; is

2

; ps

2

; �; f ;

(IP(i

3

; i

4

;UDP(ps

3

; ps

4

; data)); i�d) ::mq))

OK(i

3

;ps

3

;data)

����������!F (ifds ;Run;So
k(fd ; is

1

; "p

1

; is

2

; ps

2

; �; f ;mq))

2.3.5 ICMP Generation If a UDP datagram arrives at a host (so its des-

tination IP address is one of the host's) but no so
ket mat
hes its 4-tuple

(i

3

; ps

3

; i

4

; ps

4

) then the host may or may not send an ICMP PORT UNREACH

message ba
k to the sender. This is dealt with by the rule below (in the non-

loopba
k
ase). Note that the ICMP message is added to the host's outqueue oq ,

not put dire
tly on the network. This uses an auxiliary fun
tion enqueue whi
h

is also used by dosend.

delivery.in.udp.2 get UDP from network but generate ICMP, as no

mat
hing so
ket

Host(ifds ; t ; s ; oq ; oqf)

IP(i

3

;i

4

;UDP(ps

3

;ps

4

;data))

������������������!Host(ifds ; t ; s ; oq

0

; oqf

0

)

i

4

2 ifds and lookup s (i

3

; ps

3

; i

4

; ps

4

) = ;

and (oq

0

; oqf

0

; ok) 2 f(oq ; oqf ;true)g [

enqueue(IP(i

4

; i

3

; ICMP PORT UNREACH(i

3

; ps

3

; i

4

; ps

4

)); oq ; oqf)

and i

4

=2 LOOPBACK and i

3

=2 MARTIAN [LOOPBACK

2.3.6 Asyn
hronous Errors When an ICMP PORT UNREACHmessage

arrives at a host, it is mat
hed against the so
kets, in roughly the same way that

UDP datagrams are. If it mat
hes a so
ket (whi
h typi
ally will be the one used

to send the UDP datagram that generated this ICMP) then the error should

be reported to the thread. The arrival and pro
essing of the ICMP message is

asyn
hronous w.r.t. the thread a
tivity, though, so what happens is simply that

the error
ag es

0

of the so
ket is set, in this
ase to "ECONNREFUSED.

delivery.in.i
mp.1 get ICMP from the network, setting error in a

mat
hing so
ket

Host(ifds ; t ; s ; oq ; oqf)

IP(i

0

4

;i

0

3

;ICMP X UNREACH(i

3

;ps

3

;i

4

;ps

4

))

���������������������������!

Host(ifds ; t ; S(So
k(fd ; is

1

; ps

1

; is

2

; ps

2

; es

0

; f ;mq)); oq ; oqf)

S(So
k(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq)) = s

and So
k(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq) 2 lookup s(i

3

; ps

3

; i

4

; ps

4

)

and m = IP(i

0

4

; i

0

3

; ICMP X UNREACH(i

3

; ps

3

; i

4

; ps

4

))

and i

0

3

2 ifds and :(loopba
k(m) _ martian(m))

and es

0

= if (is

2

6= �) or :(bsd
ompat f) then "ECONNREFUSED else es

Here X is either HOST or PORT. There are sanity
onstraints on the IP ad-

dresses involved, and the behaviour di�ers a

ording to whether the bsd
ompat

so
ket
ag is set. Note also that unmat
hed ICMPs do not themselves generate

new ICMPs { there is no analogue of delivery :in:udp:2 for ICMPs.

The error
ag may
ause subsequent sendtos or recvfroms to fail, returning

the error and
learing the
ag, for example in the rule below.

sendto.5 fail, as so
ket in an error state

F (ifds ;Run;So
k(fd ; is

1

; "p

1

; is

2

; ps

2

; "e; f ;mq))

sendto(fd;ips;data;nb)
�������������!F (ifds ;Ret (Fail e);So
k(fd ; is

1

; "p

1

; is

2

; ps

2

; �; f ;mq))

2.3.7 Lo
al Errors A number of other sour
es of error must be dealt with.

Firstly, there are straightforward erroneous parameters. Any
all that takes an

fd
an return ENOTSOCK or EBADF if given a �le des
riptor that is not a

so
ket. For bind we also have errors for a privileged port, a port already in use

(modulo the reuseaddr
ags), an IP address that is not one of the host's, and

a so
ket whi
h already has a non-� lo
al port. For sendto we have errors if the

destination is � and the so
ket is un
onne
ted, and if the data is bigger than

UDPpayloadMax. Both sendto and recvfrom return EAGAIN if the non-blo
king

ag argument is set but the
all would blo
k.

Se
ondly, any of the slow
alls (sendto, recvfrom, select)
an return EINTR

from the blo
ked state if the system
all is interrupted. Our model does not
on-

tain the sour
es of su
h interrupts, so all we
an do is in
lude a nondeterministi

rule allowing the error to o

ur.

Thirdly, there are pathologi
al
ases in whi
h the OS has exhausted some

resour
e. A
all to socket
an return EMFILE or ENFILE, if there are too

many open �les or the �le table over
ows, and all
alls
an return ENOMEM or

ENOBUFS if the OS has run out of spa
e or bu�ers. Again, these are modelled

by purely nondeterministi
 rules. We must also deal with the possibility that all

the ephemeral ports are exhausted.

2.3.8 Loopba
k A datagram sent to a loopba
k address, typi
ally 127:0:0:1,

will be e
hoed ba
k { without rea
hing the network. To model loopba
k, we use

a number of additional delivery rules whi
h are essentially the
ompositions of

delivery :out :� and delivery :in:� rules. For example, a rule delivery :loopba
k :udp:1

removes a loopba
k UDP from a host's outqueue and delivers in to a mat
hing

so
ket, in a single step.

2.4 Sanity Properties

We have proved type preservation and progress theorems for the model, and a

semidetermina
y result. The latter states roughly that for a given system
all

and host state, either the
all su

eeds (and exa
tly one rule applies) or it fails

(several error rules may be in
ompetition). The
ombination of the progress

result, the thread LTS axioms and the network SOS rules ex
lude pathologi
al

deadlo
ks.

3 MiniCaml

MiniCaml is designed to be a sublanguage of OCaml 3.00 [L

+

00℄. Its types (with

orresponding
onstru
tors) are given by the grammar marked TL in Figure 1

(ex
ept T err), together with:

T ::= � � � j T !T

0

j T ref j exn

The syntax, typing rules and redu
tion rules are standard, with additions to

de�ne an LTS satisfying the axioms of x2.2.1. We also prove theorems stating

type preservation and absen
e of runtime errors.

We have written an OCaml module Udplang whi
h implements almost all

of LIB (together with the required types and
onstru
tors). The example pro-

grams in this paper are automati
ally typeset from working
ode, omitting an

open Udplang;; at the beginning of ea
h program and using mathematized
on-

rete syntax, writing ();T"; "e; �;! for unit, T lift, Lift e, Star and ->.

4 Validation

To develop and validate our host semanti
s, we set up a test network: a non-

routed subnet with four dedi
ated ma
hines (two Linux and two Win2K), a
-

essible via an additional interfa
e on one of our Linux workstations. In a few

ases we ran tests further a�eld. Tests were written in C, using the glib
 so
k-

ets library. Initially we wrote a large number of ad ho
 tests, C programs that

display the results of short sequen
es of so
ket
alls, and also observed the re-

sulting network traÆ
 with the t
pdump utility. Certain hard-to-test issues were

resolved by inspe
ting the Linux kernel sour
e
ode.

Later, to more thoroughly validate the semanti
s as a whole, we translated

the host operational semanti
s into C; we wrote an automati
 tool, udpautotest,

that simulates the model in parallel with the real so
ket
alls. This tests repre-

sentatives of most
ases of the semanti
 rules, giving us a high level of
on�den
e

in our model. It helped us greatly in
orre
tly stating the more subtle
orners

of the semanti
s, and will hopefully make determining the semanti
s of other

implementations (su
h as Win2K or BSD) relatively routine.

The
losed-box testing has a number of limitations, however (whi
h we dis-

uss further in [SSW01℄). We do not dire
tly observe the internal so
ket state

(of whi
h our So
k stru
tures are an abstra
tion), some pathologi
al
ases are

hard to set up, and it is
learly impossible to exhaust all
ases. Loss is very

rare on our single subnet, and as far as we are aware reordering and dupli
ation

never o

ur. We therefore
annot regard the semanti
s as de�nitive, and would

be interested to hear of dis
repan
ies between it and real system behaviour.

We have endeavoured to make the model as a

urate as possible, for the

fragment of so
ket programming and the level of abstra
tion
hosen in x1.7, and

as far as one
an with an untimed interleaving semanti
s. Nonetheless, it is in

some respe
ts idealised. Some of these are resour
e issues { we do not bound

the MiniCaml spa
e usage, and have a purely nondeterministi
 semanti
s for

OS allo
ation failures. We simplify the real full-outqueue behaviour, and use

an approximation to the treatment of `martian' datagrams. We also assume

unbounded integers and perfe
t UDP
he
ksums, and have atomi
 transitions

that have a subtle relationship to the detailed OS pro
ess s
heduling.

No attempt was made to validate either the language semanti
s for MiniCaml

(other than to
he
k the evaluation order, whi
h di�ers between the native-
ode

generator and the byte
ode interpreter), or the UdplangOCaml binding we used

to test our examples. In the latter
ase, we assume the OCaml Unix module is a

trivial binding to the C so
kets interfa
e; our Udplang module does little more.

5 Examples

5.1 The Single Sender We �rst show the possible tra
es of the single sender

and single re
eiver from x1.6. Consider

N = alan�e

s

j alan�Host(ifds

alan

;Run; [℄; [℄; false)

j kurt�e

r

j kurt�Host(ifds

kurt

;Run; [℄; [℄; false)

and dis
ount rules modelling interrupted system
alls or the OS running out of

�le des
riptors or kernel memory. Suppose loss (drop:1) may o

ur, but dupli-

ation (dup:1) and host failure (host :
rash:�) do not.

One behaviour involves messagem = IP(i

alan

; i

kurt

;UDP("p

1

; "7654; "hello"))

(for p

1

2 ephemeral) being su

essfully sent, with observable tra
e

N

kurt�
onsole "ready"

�������������!

alan�
onsole "sending"

��������������!

kurt�
onsole "hello"

������������! N

0

and resulting state

N

0

= alan�RET

void

j alan�Host(ifds

alan

;Term; [℄; [℄; false)

j kurt�RET

void

j kurt�Host(ifds

kurt

;Term; [℄; [℄; false)

It is also possible for the "hello" to be re
eived and printed with the message

m arriving at kurt after kurt's bind but before the output of "ready", giving

tra
e

N

alan�
onsole "sending"

��������������!

kurt�
onsole "ready"

�������������!

kurt�
onsole "hello"

������������! N

0

ending in the same state. If message m arrives at kurt before kurt's bind,

however, it will be dis
arded, giving a tra
e

N

alan�
onsole "sending"

��������������!

kurt�
onsole "ready"

�������������! N

00

ending with alan's state terminated as before but kurt in a blo
kedRe
vfrom2

state. Here kurt may or may not generate an ICMP, whi
h may or may not be

delivered to alan in time to set the so
ket error
ag, but as the so
ket is not

used again and is removed on exit this is not visible.

Finally, there are two observable tra
es if message m is lost: the tra
e above

and its permutation. In both alan runs to
ompletion and kurt remains blo
ked;

no ICMPs are generated.

5.2 The Single Heartbeat As a more realisti
 example, we present
ode for

a simple heartbeat algorithm, a program e

A

that
he
ks the status of another

program e

B

(whi
h one might think of running as part of a large appli
ation):

e

A

= e

B

=

let p = port_of_int (7655) in

let i = ip_of_string ("192:168:0:11") in

let fd = socket() in

let = bind(fd ; �; "p) in

let = connect(fd ; i ; "p) in

let = print_endline_flush "pinging" in

let = sendto(fd ; �; "ping"; false) in

let (fds;) = select([fd ℄; [℄; "5000000) in

if fds = [℄ then

print_endline_flush "dead"

else

try

let (; ; v) = recvfrom(fd ; false) in

print_endline_flush v

with

UDP(ECONNREFUSED)

! print_endline_flush "down"

let p = port_of_int (7655) in

let i = ip_of_string ("192:168:0:14") in

let fd = socket() in

let = bind(fd ; �; "p) in

let = connect(fd ; i ; "p) in

let = print_endline_flush "ready" in

let = recvfrom(fd ; false) in

let = sendto(fd ; �; "a
k"; false) in

print_endline_flush "done"

Program e

B

, whi
h should be run on kurt, displays "ready" on the
onsole,

waits for a message from alan on a known port, and responds with an "a
k"

message when the message arrives.

Program e

A

, whi
h should be run on alan, displays "pinging" and
he
ks

the status of the remote ma
hine kurt by sending a message on the known port.

It then waits up to �ve se
onds for a response (either a UDP reply datagram

or an ICMP PORT UNREACH error). If there is none, it displays "dead";

if the response is a UDP datagram it displays its
ontents to indi
ate kurt is

alive; and if the response is an ICMP it displays "down" to indi
ate that kurt

is running but the responder thread e

B

is down. Note that e

A

will print "dead"

if kurt is really dead, but it may also do so if the initial datagram is lost, or if

the reply datagram or ICMP is lost, or if the reply ICMP is not generated.

Again dis
ount rules modelling interrupted system
alls or the OS running

out of resour
es, but now allow loss, dupli
ation and failure. Assuming further

that only e

A

and e

B

run, on an otherwise-quiet network, we
an prove that no

un
aught ex
eptions arise during the exe
ution of e

A

. No errors
an arise from

any line of e

A

apart from the recvfrom
all, and the only error this may return is

ECONNREFUSED. This means we are justi�ed in omitting all error handling

from the
ode of e

A

. Further, we
an show that the sendto and recvfrom
alls

in e

A

will never blo
k. On the other hand, the message dupli
ation rule dup:1

means that e

B

might blo
k temporarily in the sendto
all, if the output queue

has been �lled with ICMP PORT UNREACH messages generated by "ping"

messages arriving before the bind
all, but at least one "ping" arrives after the

bind. It is still guaranteed that no system
all in e

B

will fail.

6 Related Work

Work on the mathemati
al underpinnings of distributed systems has been
ar-

ried out in the �elds of distributed algorithms, pro
ess
al
uli, and program-

ming language semanti
s. Distributed algorithms resear
h has developed sophis-

ti
ated algorithms, often dealing with failure, and proofs of their properties,

for example using the IO automata of Lyn
h et al. [Lyn96℄ and the TLA of

Lamport [Lam94℄. Work on pro
ess
al
uli has emphasised operational equiv-

alen
es and
ompositional des
riptions of pro
esses, and re
ently systems with

dynami
 lo
al name generation { with
al
uli based on the �-
al
ulus of Milner,

Parrow and Walker [MPW92℄. A few
al
uli have dealt with failure, in
luding

[AP94,FGL

+

96,RH97,BH00℄. Building on pro
ess
al
uli, a number of
on
ur-

rent or distributed programming languages have been designed, with asso
iated

semanti
 work, in
luding among others O

am, Fa
ile, CML, Pi
t, JoCaml, and

Nomadi
 Pi
t [INM87,TLK96,Rep91,PT00,FGL

+

96,WS00℄. Little of this work,

however, deals with the
ore network proto
ols, and as far as we are aware none

addresses the level of abstra
tion of the so
kets interfa
e. Further, most does

not support reasoning about exe
utable
ode (or adopts a mu
h higher level of

abstra
tion). The most relevant work is dis
ussed below.

The IOA Language [GLV00℄ is a language for expressing IO automata di-

re
tly. Work on proof tools and
ompilation is ongoing. This will allow reasoning

about exe
utable sophisti
ated distributed algorithms that intera
t with the net-

work using higher-level abstra
tions than the so
kets library, modulo
orre
tness

of the
ompiler. Using IOA rather than
onventional programming languages aids

reasoning, but may redu
e the appli
ability of the method.

The approa
h of Arts and Dam [AD99℄ is similar to ours: they aim to prove

properties of real
on
urrent programs written in Erlang. They des
ribe an oper-

ational semanti
s for a subset of Erlang, a logi
 for reasoning about this subset,

and use an automated tool to verify that a program satis�es properties expressed

in the logi
.

Less
losely related, Biagioni implemented TCP/IP in ML [Bia94℄ as part of

the Fox proje
t, and the Ensemble system of [Hay98℄ provides group
ommuni
a-

tion fa
ilities above UDP. The latter is implemented in OCaml; some veri�
ation

of optimisations to the Ensemble proto
ol endpoint
ode has been
arried out.

Neither involve a semanti
s of the network (or, for Ensemble, the underlying

so
kets implementation), however. At a lower level, work on the semanti
s of a
-

tive networks [Swi01℄ has developed proofs of routing algorithms. Related work

on monitoring proto
ol implementations { TCP in parti
ular { from outside the

hosts is presented in [BCMG01℄.

7 Con
lusion

We have des
ribed a model that gives a rigorous understanding of programming

with so
kets and UDP, validated against a
tual systems. This demonstrates that

an operational treatment of this level of network programming { traditionally

regarded as beyond the s
ope of formal semanti
s { is feasible.

The model provides a basis for two dire
tions of future work. Firstly, we plan

to investigate the veri�
ation of more interesting examples, developing proof

te
hniques that build on those of both the distributed algorithm and pro
ess

al
ulus
ommunities. Se
ondly, we plan to extend the model to
over a larger

fragment of network programming, in a number of ways; we are
onsidering

ma
hine support for managing the large de�nitions that will
ertainly result. We

intend to de�ne other language bindings, eg. for a Java fragment. In
orporating

fairness and time is required to
apture interesting properties of algorithms. As

dis
ussed in x4, we plan to apply our validation tools to other operating systems,

to identify a
ommon semanti

ore. Finally, we would like to address more of

the points listed in x1.7, espe
ially aspe
ts of TCP and multi-threaded hosts.

A
knowledgements Sewell is funded by a Royal So
iety University Resear
h

Fellowship. Serjantov and Wansbrough are funded by EPSRC resear
h grant

GRN24872 Wide-area programming: Language, Semanti
s and Infrastru
ture

Design.

Referen
es

[AD99℄ T. Arts and M. Dam. Verifying a distributed database lookup manager written

in Erlang. In World Congress on Formal Methods (1), pages 682{700, 1999.

[AP94℄ R. Amadio and S. Prasad. Lo
alities and failures. In Foundations of Software

Te
hnology and Theoreti
al Computer S
ien
e, LNCS 880. Springer, 1994.

[Bak95℄ F. Baker. Requirements for IP version 4 routers. Internet Engineering Task

For
e, June 1995. http://www.ietf.org/rf
.html.

[BCMG01℄ K. Bhargavan, S. Chandra, P. J. M
Cann, and C. A. Gunter. What pa
kets

may
ome: Automata for network monitoring. In Pro
. POPL 2001, January

2001.

[BH00℄ M. Berger and K. Honda. The two-phase
ommit proto
ol in an extended �-

al
ulus. In Pro
eedings of the 7th International Workshop on Expressiveness

in Con
urren
y, EXPRESS '00, 2000.

[Bia94℄ E. Biagioni. A stru
tured TCP in standard ML. In Pro
. SIGCOMM, 1994.

[Bra89℄ R. Braden. Requirements for internet hosts {
ommuni
ation layers, STD 3,

RFC 1122. IETF, O
tober 1989. http://www.ietf.org/rf
.html.

[CSR83℄ University of California at Berkeley CSRG. 4.2BSD, 1983.

[FGL

+

96℄ C. Fournet, G. Gonthier, J.-J. L�evy, L. Maranget, and D. R�emy. A
al
ulus

of mobile agents. In Pro
. CONCUR '96, LNCS 1119. Springer, August 1996.

[GLV00℄ S. J. Garland, N. Lyn
h, and M. Vaziri. IOA referen
e guide, De
ember 2000.

http://nms.l
s.mit.edu/~garland/IOA/.

[Hay98℄ M. Hayden. The Ensemble System. PhD thesis, Cornell University, January

1998. Te
hni
al Report TR98-1662.

[HT91℄ K. Honda and M. Tokoro. An obje
t
al
ulus for asyn
hronous
ommuni
a-

tion. In Pro
eedings of ECOOP '91, LNCS 512, pages 133{147, July 1991.

[IEE00℄ IEEE. Information Te
hnology { Portable Operating System Interfa
e

(POSIX) { Part xx: Proto
ol Independent Interfa
es (PII), P1003.1g. 2000.

[INM87℄ INMOS. O

am2 Referen
e Manual. Prenti
e-Hall, 1987.

[L

+

00℄ X. Leroy et al. The Obje
tive-Caml System, Release 3.00. INRIA, April 27

2000. http://
aml.inria.fr/o
aml/.

[Lam94℄ L. Lamport. The temporal logi
 of a
tions. ACM Transa
tions on Program-

ming Languages and Systems, 16(3):872{923, May 1994.

[Lyn96℄ N. A. Lyn
h. Distributed algorithms. Morgan Kaufmann, 1996.

[MPW92℄ R. Milner, J. Parrow, and D. Walker. A
al
ulus of mobile pro
esses, Parts

I + II. Information and Computation, 100(1):1{77, 1992.

[Mul93℄ S. J. Mullender. Distributed Systems. ACM Press, 1993.

[Pos80℄ J. Postel. User Datagram Proto
ol, STD 6, RFC 768. Internet Engineering

Task For
e, August 1980. http://www.ietf.org/rf
.html.

[Pos81℄ J. Postel. Internet Proto
ol, STD 6, RFC 791. Internet Engineering Task

For
e, September 1981. http://www.ietf.org/rf
.html.

[PT00℄ B. C. Pier
e and D. N. Turner. Pi
t: A programming language based on the

pi-
al
ulus. In Proof, Language and Intera
tion: Essays in Honour of Robin

Milner. MIT Press, 2000.

[Rep91℄ J. Reppy. CML: A higher-order
on
urrent language. In Pro
. Programming

Language Design and Implementation (PLDI), pages 293{259, June 1991.

[RH97℄ J. Riely and M. Hennessy. Distributed pro
esses and lo
ation failures. In

Automata, Languages and Programming, LNCS 1256. Springer, 1997.

[Sew97℄ P. Sewell. On implementations and semanti
s of a
on
urrent programming

language. In Pro
eedings of CONCUR '97, LNCS 1243, pages 391{405, 1997.

[SSW01℄ A. Serjantov, P. Sewell, and K. Wansbrough. The UDP
al
ulus: Rigorous se-

manti
s for real networking. Te
hni
al Report 515, Computer Laboratory, Uni-

versity of Cambridge, 2001. http://www.
l.
am.a
.uk/users/pes20/Netsem.

[Ste94℄ W. R. Stevens. TCP/IP Illustrated: The Proto
ols, volume 1 of Addison{

Wesley Professional Computing Series. Addison{Wesley, 1994.

[Ste98℄ W. R. Stevens. UNIX Network Programming, Networking APIs: So
kets and

XTI, volume 1. Prenti
e Hall, se
ond edition, 1998.

[Swi01℄ The Swit
hWare proje
t. http://www.
is.upenn.edu/~swit
hware, 2001.

[TLK96℄ B. Thomsen, L. Leth, and T.-M. Kuo. A Fa
ile tutorial. In Pro
eedings of

CONCUR '96, LNCS 1119, pages 278{298. Springer-Verlag, August 1996.

[WS00℄ P. T. Woj
ie
howski and P. Sewell. Nomadi
 Pi
t: Language and infrastru
ture

design for mobile agents. IEEE Con
urren
y, 8(2):42{52, April{June 2000.

