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Abstrat. Network programming is notoriously hard to understand:

one has to deal with a variety of protools (IP, ICMP, UDP, TCP et),

onurreny, paket loss, host failure, timeouts, the omplex sokets in-

terfae to the protools, and subtle portability issues. Moreover, the be-

havioural properties of operating systems and the network are not well

doumented.

A few of these issues have been addressed in the proess alulus and

distributed algorithm ommunities, but there remains a wide gulf be-

tween what has been aptured in semanti models and what is required

for a preise understanding of the behaviour of pratial distributed pro-

grams that use these protools.

In this paper we demonstrate (in a preliminary way) that the gulf an

be bridged. We give an operational model for soket programming with

a substantial fration of UDP and ICMP, inluding loss and failure. The

model has been validated by experiment against atual systems. It is not

tied to a partiular programming language, but an be used with any

language equipped with an operational semantis for system alls { here

we give suh a language binding for an OCaml fragment. We illustrate

the model with a few small network programs.

1 Introdution

1.1 Bakground and Problem Distributed appliations onsist of many

onurrently-exeuting systems, interating by network ommuniation. They

are now ubiquitous, but writing reliable ode remains hallenging. Most funda-

mentally, onurreny introdues the lassi (but still problemati) diÆulties of

nondeterminism: large state spaes, deadloks, raes et.. Additional diÆulties

arise from intrinsi properties of networks: ommuniation is asynhronous and

lossy, and hosts are subjet to failure. The ommuniation abstrations provided

by standard protools (IP, ICMP, UDP, TCP et.) are therefore neessarily more

omplex than simple message-passing or streams. Further, the programmer must

understand not only the protools { the inter-mahine ommuniation disiplines

{ but also the library interfae to them. There is a `standard' networking library,



the sokets interfae [CSR83,IEE00℄, lying between appliations and the proto-

ol endpoint ode on a mahine; the programmer must deal with what is visible

through this interfae, whih has a subtle relationship to the underlying proto-

ols. This relationship, and the behaviour of the sokets interfae, has not been

preisely desribed, and varies between implementations.

To provide a rigorous understanding of these issues requires preise mathe-

matial models of the behaviour of distributed systems. Suh models an (1) im-

prove our informal understanding and system-building, (2) underpin proofs of

robustness and seurity properties of partiular programs, and (3) support the

design, proof and implementation of higher-level distributed abstrations.

Previous work on the theories of distributed algorithms and of proess aluli

has developed models and reasoning tehniques for onurreny and failure, but

these models are generally rather abstrat and/or idealised: to our knowledge,

none address the sokets interfae and the behaviour it makes visible, most ignore

interesting aspets of the ore protools, and most do not support reasoning

about exeutable ode. The protools and sokets interfae are worth detailed

attention { they are implemented on almost all mahines, and underlie higher-

level servies, inluding those providing resiliene against failure and attak.

1.2 Contribution We give a model that provides a rigorous understanding

of the sokets interfae and UDP, in realisti networks. To this we add an op-

erational semantis for a programming language (an ML fragment), allowing

reasoning about exeutable distributed programs. We have:

{ arefully hosen a useful fragment of the sokets interfae and built a thin

layer of abstration above it, foussing on UDP as a starting-point;

{ onstruted an experimentally-validated operational semantis that overs

onurreny, asynhrony, failure and loss;

{ developed language-independent semanti idioms for interation between an

appliation thread, its host OS, and the network;

{ instantiated the model with a semantis for an exeutable fragment of OCaml,

MiniCaml ; and

{ exerised our semantis by proving properties of some small example dis-

tributed programs.

Taken together, the above also provide a theorists' introdution to sokets/UDP

programming.

1.3 Experimental Semantis A key goal of our work is to provide a lear

and lose orrespondene between our semantis and the behaviour of atual sys-

tems. To ahieve this, we annot alter the extant widely-deployed OS networking

ode; the most we an do is hoose whih fragment to model, and add a thin

regularising layer above it. Even then, the systems are too omplex to analyse

and hene derive an aurate semantis: onsider the body of mahine ode and

hardware logi embedded in their operating systems, mahines, network ards

and routers. We are fored therefore both to invent an appropriate level of ab-

stration at whih to express our semantis, and to experimentally determine

and validate that semantis. We all this ativity experimental semantis.



In our ase, the semantis is expressed at the level of the system alls used to

ommuniate between the appliation language and the operating system sok-

ets ode. It was initially based on the relevant natural-language doumentation

(man pages, RFCs [Pos80,Pos81,Bra89℄, the Posix standard [IEE00℄, and stan-

dard referenes [Ste98,Ste94℄), and on inspetion of the soures of the Linux

implementation. We validated the semantis by a ombination of ad ho and

automated testing: writing ode that interated with the C sokets interfae in

the desribed ways, and on�rming that the resulting behaviour orresponded

with our model.

To date, the semantis has only been validated against the Linux implemen-

tation (in fat, against the Red Hat 7.0 distribution, kernel version 2.2.16-22,

glib 2.1.92). We intend also to use our automated test sripts to identify dif-

ferenes with BSD and with Windows operating systems, if possible piking out

a useful ommon ore.

1.4 Overview In the remainder of this setion, we give a very brief informal

introdution to networks, the protools IP, UDP, and ICMP, and the sokets

interfae to them. We then disuss our hoie of what to inlude in the model,

and its struture, and highlight some subtleties that must be understood for

reliable programming.

In Setion 2 we desribe the model, making these subtleties preise. Unfor-

tunately the omplete de�nition is too large to inlude { inevitably so, as the

behaviour of even our small (but useful) fragment of the sokets interfae is

large and irregular by the standards of proess aluli and toy languages. Most

details are therefore omitted; they appear in the tehnial report [SSW01℄. Se-

tion 3 outlines the MiniCaml programming language we adopt for expressing

distributed programs, a fragment of OCaml 3.00 [L

+

00℄. Again most details are

omitted { these are routine.

Setion 4 disusses our experimental setup and validation. The semantis is

illustrated with a few small examples in Setion 5. Finally, we disuss related

work and onlude in Setions 6 and 7.

1.5 Bakground: Networks and Protools, Informally At the level of

abstration of our model, a network onsists of a number of mahines onneted

by a ombination of LANs (eg. ethernets) and routers.

1

Eah mahine has one or

more IP addresses i , whih are 32-bit values suh as 192:168:0:11. The Internet

Protool (IP) allows one mahine to send messages (IP datagrams) to another,

speifying the destination by one of its IP addresses. IP datagrams have the form

IP(i

1

; i

2

; body)

where i

1

and i

2

are the soure and destination addresses. The implementation of

IP (onsisting of the routers within the network and the protool endpoint ode

in mahines) is responsible for delivering the datagram to the orret mahine.

1

We disuss in x1.7 and x4 how the model relates to atual systems.



We an therefore abstrat from routing and network topology, and depit a

network as below (in fat this is our test network).

LinuxWin2K

kurt

Linux Win2K

192:168:0:12

alan

emil

192:168:0:13 192:168:0:14

astroyte

john

Linux

192:168:0:1

IP(192:168:0:14; 192:168:0:11; ICMP PORT UNREACH(::))

IP(192:168:0:11; 192:168:0:14;UDP(::))

192:168:0:21

192:168:0:11

Delivery is asynhronous and unreliable { IP does not provide aknowledgments

that datagrams are reeived, or retransmit lost messages.

UDP (the User Datagram Protool) is a thin layer above IP that provides

multiplexing. It assoiates a set f1; ::; 65535g of ports to eah mahine; a UDP

datagram

IP(i

1

; i

2

;UDP(ps

1

; ps

2

; data))

is an IP datagram with a body of the form UDP(ps

1

; ps

2

; data), ontaining a

soure and destination port and a short sequene of bytes of data .

ICMP (the Internet Control Message Protool) is another thin layer above

IP dealing with some ontrol and error messages. Here we are onerned only

with two, relating to UDP:

IP(i

1

; i

2

; ICMP PORT UNREACH(i

3

; ps

3

; i

4

; ps

4

)); and

IP(i

1

; i

2

; ICMP HOST UNREACH(i

3

; ps

3

; i

4

; ps

4

)):

The �rst may be generated by a mahine reeiving a UDP datagram for an

unexpeted port; the seond is sometimes generated by routers on reeiving

unroutable datagrams.

TCP (the Transmission Control Protool) is a rather thiker layer above

IP that provides bidiretional stream ommuniation, with ow ontrol and re-

transmission of lost data. Most networked appliations are built above TCP,

with some use of UDP, but we do not yet onsider it.



The protool endpoint ode on a mahine, implementing the above, is de-

pited below (together with LIB, whih we de�ne in x2.1.3).

UDPICMP TCP

IP

LIB

interfae

Devie

interfae

C sokets

1.6 Bakground: The Sokets Interfae, Informally To show how ap-

pliation programs an interat with the UDP endpoint ode on their mahines,

we give the simplest possible example of two programs ommuniating a single

UDP datagram. We desribe a small part of the sokets interfae informally,

presenting only a rude intuition of the behaviour. The sender and reeiver pro-

grams, e

s

and e

r

respetively, are below. They are written in MiniCaml (with

some typographi onventions automatially applied to the exeutable ode).

e

s

= e

r

=

let p = port_of_int 7654 in

let i = ip_of_string "192:168:0:11" in

let fd = socket() in

let = connect(fd ; i ; "p) in

let = print_endline_flush "sending" in

sendto(fd ; �; "hello"; false)

let p

0

= port_of_int 7654 in

let i

0

= ip_of_string "192:168:0:11" in

let fd

0

= socket() in

let = bind(fd 0; "i 0; "p0) in

let = print_endline_flush "ready" in

let ( ; ; v) = recvfrom(fd

0

; false) in

print_endline_flush v

Here the � and " are the onstrutors of option types T". The types of the

library alls are as in Figure 3, but without the `err', as in MiniCaml an error

return raises an exeption. The example involves types fd of �le desriptors, ip

of IP addresses, and port of ports 1::65535.

The sender program e

s

, whih should be run on alan, de�nes a port p and an

IP address i (in fat one of mahine kurt) and reates a new soket. A soket

onsists of assorted data maintained by the OS, inluding an identi�er (a �le

desriptor, whih here will be bound to fd ) and a pair of `loal' and `remote' pairs

of an IP address and a port. These are used for mathing inoming datagrams

and addressing outgoing datagrams. Program e

s

then sets the remote pair of the

soket to i and p using connect, and sends a UDP datagram via fd with body

"hello".

The reeiver e

r

, whih should be run on kurt, de�nes i

0

and p

0

to be the

same IP address and port, reates a new soket fd

0

, sets the loal pair of fd

0

to

permit reeption of datagrams sent to (i

0

; p

0

), and prints "ready". It then bloks,

waiting for a datagram to be reeived by the soket, after whih it prints the

datagram body.

If e

s

and e

r

are run on alan and kurt respetively (but e

r

is started �rst),

and there is no failure in either mahine or the network, a single UDP datagram

will be sent from one mahine to the other.



1.7 Choies: What to Model? To address the issues of x1.1, and support

the desired rigorous understanding, the model must satisfy several riteria.

1. It must have a lear relationship (albeit neessarily informal) to what goes

on in atual systems; it must be suÆiently aurate for reasoning in the

model to provide assuranes about the behaviour of those systems. For this,

it is essential to inlude the various failures that an our.

2. It must over a large enough fragment of the network protools and sokets

interfae to allow interesting distributed algorithms to be expressed. In par-

tiular, we want to provide as muh information about failure as possible to

the programmer, to support failure-aware algorithms.

3. In tension with both of these, the model must be as simple as possible, for

reasoning to be tratable.

The full range of network protools and OS interations is very large by the

standards of semanti de�nitions. As a starting point, in this paper we hoose

to address (uniast) UDP and the assoiated part of ICMP, with a single thread

of ontrol per mahine, in a at network. We hoose the fragment of the sokets

interfae that is most useful for programming in these irumstanes, and deal

with the sokets interfae view of message loss, host failure and various loal

errors. For simpliity, we do not as yet deal with any of the following, despite

their importane.

{ TCP, and assoiated ICMP messages

{ broadast and multiast UDP ommuniation

{ multithreaded mahines and inter-thread ommuniation

{ other IO primitives (in this paper we hoose, minimally, `print' and `exit')

{ persistent storage

{ network partition (espeially for mahines with intermittent onnetions)

{ DNS

{ IPv6 protools

{ mahine reon�guration and other privileged operations

We are not modelling the implementation of IP (routing, fragmentation et.)

or lower levels (Ethernet, ARP, et.), as we aim to support reasoning about

distributed appliations and algorithms above IP, rather than implementations

of low-level network protools.

The standard sokets interfae is a C language library. To avoid dealing

with irrelevant omplexities of a C interfae (weak typing and expliit memory

management) we introdue a thin abstration layer, providing a lean strongly-

typed view (we also lean up the interfae by omitting redundany). This LIB

interfae is de�ned in Figure 3; it was shown in the diagram at the end of x1.5.

In this paper we desribe only an interleaving semantis. We antiipate that

it will be straightforward to add fairness onstraints, whih are required for rea-

soning about non-trivial examples, and intend to investigate lightweight timing

annotations, for more preise properties about examples involving time-outs.

The model is not intended for quantitative probabilisti reasoning, eg. for qual-

ity of servie issues. It may, however, provide a useful model for reasoning about



some forms of maliious attak { eg. for networks with some maliious hosts,

though with our at network topology we do not deal with �rewalls.

Bloking system alls are a key aspet of sokets programming, so it is natural

to deal with sequential threads, rather than a onurrent programming language

with language-level parallelism (for whih bloking system alls would blok the

entire runtime).

1.8 Struturing the Model (and Language Independene) We want to

reason about exeutable implementations of distributed algorithms, expressed

in some programming language(s), not in a modelling language. We do not wish

to �x on a single language, however, as the behaviour of the sokets interfae

and network is orthogonal to the programming language used to express the

omputation on eah mahine. We therefore fator the model, allowing threads to

be arbitrary labelled transition systems (LTSs) of a ertain form. One an extend

the operational semantis of a variety of languages with labelled transitions, for

library alls and returns, so that programs denote these LTSs (values used by

the sokets interfae are all of rather simple types, not involving allbaks, so

this is straightforward). In this paper we do so for a fragment of OCaml, with

funtions, referenes and exeptions. This allows our example programs to be

exeuted without hange, by linking them with a module providing our thin layer

of abstration, LIB, above the OCaml sokets library (in turn implemented above

the C library).

It will be onvenient to be able to desribe partial systems, for example to

onsider the interations between the olletion of all threads and the rest of

the system, so we allow hosts and their threads to be syntatially separated.

Networks therefore onsist of a parallel omposition of IP datagrams, hosts (eah

with a state v , giving the host's IP addresses, states of sokets et.), and threads

(eah with a state e of an LTS). The preise de�nition is in x2.1.4, whih uses

the grammar below.

N ::= 0 empty

N j N parallel omposition

IP v IP datagram in transit

n�Host v host n, with state v

n�e thread of host n, with state e

The host semantis { the heart of the model { is outlined in x2.3. The behaviour

of networks is de�ned in x2.2.2 by a strutural operational semantis (SOS),

ombining the LTSs of hosts and threads, using proess-alulus tehniques (we

give a diret operational semantis, rather than a omplex enoding into an

existing alulus).

1.9 It's Not Really So Easy The informal introdutions to the protools

and sokets interfae in xx1.5,1.6 above give a deeptively simple view. Real



network programming must take into aount the following, all of whih are

aptured in our model:

1. IP addresses and ports with zero values have speial meanings, being treated

roughly as wildards, both in the arguments to bind; connect; et. and in the

soket states. Our ip and port are types of non-zero IP addresses and ports;

we use option types ip" and port" where the zero values (�) may our.

2. The system-all interations between a thread and its host are weakly ou-

pled to the interations between a host and the network. Messages may arrive

at a mahine, and be proessed (and bu�ered) by the network hardware and

OS, at almost any time. The sendto and recvfrom alls an blok, until there

is queue spae to send a message or until a message arrives, respetively.

Further, select allows bloking until one of a number of �le desriptors is

ready for reading or writing, or a spei�ed time has elapsed. Communia-

tion between hosts is asynhronous, due both to bu�ering and the physial

media.

3. Mahines an fail; messages an be lost, reordered, or dupliated. There is

bu�ering (and potential loss) at many points: in the operating system, in the

network ards, and in the network routers. UDP provides very little error

detetion and no reovery. UDP datagrams typially ontain a heksum

(here we idealise, assuming that the heksum is perfet and hene that

all orrupted datagrams are disarded). More interestingly, remote failure

an sometimes be deteted: a mahine reeiving a UDP datagram addressed

to a port that does not have an assoiated soket may send bak an ICMP

message. These an asynhronously set an error ag in the originating soket,

giving rise to an error from a bloked or future library all.

4. Many loal errors are possible, for example (just onsidering bind): a port

may be already in use or in a privileged range; an IP address may not belong

to the mahine; the OS may run out of resoures; the �le desriptor may not

identify a soket. In MiniCaml, these are reported via exeptions, whih may

be aught and handled.

5. Mahines an have more than one IP address { in fat, a mahine may

have several interfaes, eah of whih has a primary IP address and possibly

also other alias IP addresses. Typially eah interfae will orrespond to a

hardware devie, but a mahine will also have a loopbak interfae whih

ehoes messages bak.

6. The sokets interfae inludes assorted other funtionality { further library

alls, soket options et.

2 UDP { The Model

We now present the UDP Calulus, our model of the network and of the sokets

interfae to UDP. As the de�nition is far too large to inlude here, we give only

the basi struture and seleted highlights, leaving the full details to the tehnial

report [SSW01℄. Setion 2.1 presents the stati struture of the model, Setion 2.2

explains the interations between parts of the model, Setion 2.3 illustrates the



T ::= int

bool

string

() unit type

T

1

� :: � T

n

tuple (n � 2)

T list list

T" optional type

T err T or error

void empty type

fd �le desriptor

ip IP address

port port

error OS error

netmask netmask

i�d interfae desriptor

sokopt soket options

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

TL

T set �nite set

ipBody body of IP datagram

msg IP datagram

ifd interfae desriptor table entry

ags ags from soket desriptor table entry

soket soket desriptor table entry

hostid unique identi�er of a host

hostThreadState the OS view of a thread

host a single host

The lauses annotated by TL form a subgrammar of T , the language types. All values

passed between a thread and its host OS are of a language type.

Fig. 1. Types

host semantis by means of some key rules, and Setion 2.4 disusses some sanity

results.

2.1 Statis: Types, Values, and Judgements

The model is largely built from the types T shown in Figure 1, whih have values

v omposed of the onstrutors  2 Con given in Figure 2; onstrutors an be

polymorphi. Eah onstrutor has a natural number arity and a non-empty set

of sequenes (of length one plus that arity) of types; the sequenes are written

with arrows ! . The obvious typing judgement for values is written ` v :T .

A number of invariants are aptured by additional judgements, omitted here.

Notation: We typially let i ; p; e range over values of types ip; port; error, and

is ; ps ; es over values of types ip"; port"; error".

2.1.1 Hosts and Threads We separate a running mahine into two parts: the

host, representing the mahine itself and its operating system; and the thread,



Partition Con into the language onstrutors:

::;�1; 0; 1; 2; :: : int

true; false : bool

otet-sequene : string

() : ()

( ; :: ; ) (mix�x) : T

1

! ::!T

n

!T

1

� :: � T

n

n � 2

nil : T list

:: (in�x) : T!T list!T list

� : T"

" : T!T"

OK : T!T err

Fail : error!T err

1::2

32

� 1 : ip

1::65535 : port

fd

3

; fd

4

; : : : : fd

lo; eth0; eth1; : : : : i�d

P

i2j::31

2

i

: netmask for 0 � j � 31

SO BSDCOMPAT;SO REUSEADDR : sokopt

EACCES; EADDRINUSE; EADDRNOTAVAIL; EAGAIN; EBADF;

ECONNREFUSED; EHOSTUNREACH; EINTR; EINVAL; EMFILE;

EMSGSIZE; ENFILE; ENOBUFS; ENOMEM; ENOTCONN;

ENOTSOCK : error

and the non-language onstrutors:

IP : ip � ip � ipBody ! msg

UDP : port" � port" � string ! ipBody

ICMP HOST UNREACH : ip � port" � ip � port" ! ipBody

ICMP PORT UNREACH : ip � port" � ip � port" ! ipBody

Host : ifd set � hostThreadState � soket list �msg list � bool ! host

Sok : fd � ip" � port" � ip" � port" � error" � ags � (msg � i�d) list! soket

IF : i�d � ip set � ip � netmask ! ifd

Run : hostThreadState

Term : hostThreadState

Ret

TL

: TL ! hostThreadState

Sendto2 : fd � (ip � port)" � string ! hostThreadState

Revfrom2 : fd ! hostThreadState

Selet2 : fd list � fd list � int" ! hostThreadState

Print2 : string ! hostThreadState

Flags : bool � bool ! ags

alan; kurt; astroyte; : : : : hostid

Elements of T set are written fv

1

; :: ; v

n

g. The TL subsript of Ret

TL

will usually

be elided.

Fig. 2. Construtors



representing the appliation program ontrolling it. Threads are explained in

x2.2.1. A host is of the form:

Host(ifds ; t ; s ; oq ; oqf )

A host has a set ifds : ifd set of interfaes, eah with a set of IP addresses and

other data. We assume all hosts have at least a loopbak interfae and one

other. We sometimes write i 2 ifds to mean `i is an IP address of one of the

interfaes in ifds '. The operating system's view of the thread state is stored

in t : hostThreadState: the thread may be running (Run), terminated (Term),

or waiting for the OS to return from a all. In the last ase, the OS may be

about to return a value from a fast system all (Ret v) or the thread may be

bloked waiting for a slow system all to omplete (Sendto2 v , Revfrom2 v ,

Selet2 v , Print2 v). The host's urrent list of sokets is given by s : soket list.

The outqueue, a queue of outbound IP messages, is given by oq :msg list and

oqf : bool, where oq is the list of messages and oqf is set when the queue is full.

2.1.2 Sokets The entral abstration of the sokets interfae is the soket. It

represents a ommuniation endpoint, speifying a loal and a remote pair of an

IP address and UDP port, along with other parts of the protool implementation

state. It is of the form

Sok(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq)

A soket is uniquely identi�ed within the host by its �le desriptor fd : fd. The lo-

al and remote address/port pairs are is

1

: ip"; ps

1

: port" and is

2

: ip"; ps

2

: port"

respetively; wildards may our. Asynhronous error onditions store the

pending error in the error ag es : error". An assortment of soket parameters are

stored in f : ags. Finally, mq : (msg � i�d) list is a queue of inoming messages

that have been delivered to this soket but not yet reeived by the appliation.

2.1.3 The Sokets Interfae A library interfae de�nes the form of the

interations between a thread and a host, speifying the system alls that the

thread an make. A library interfae onsists of a set of alls, eah with a pair of

language types. We take a library interfae LIB, shown in Figure 3, onsisting

of the sokets interfae together with some basi OS operations.

All of the sokets interfae alls return a value of some type T err to the

thread, whih an be either OK v for v :T or Fail e for a Unix error e : error. A

language binding may map these error returns into exeptions, as the MiniCaml

binding of x3 does.

2.1.4 Networks A network N (a term of the grammar in x1.8) is a parallel

omposition of IP datagrams IP v , hosts n�Host v , and their threads n�e. To

desribe partial systems, we allow hosts and their threads to be split apart.

The assoiation between them is expressed by shared names n : hostid, whih are

purely semanti devies, not to be onfused with IP addresses or DNS names.

A well-formed network must ontain at most one host and at most one thread



The sokets interfae:

socket : () ! fd err

bind : fd � ip" � port" ! () err

connect : fd � ip � port" ! () err

disconnect : fd ! () err

getsockname : fd ! (ip" � port") err

getpeername : fd ! (ip" � port") err

sendto : fd � (ip � port)" � string � bool ! () err

recvfrom : fd � bool ! (ip � port" � string) err

geterr : fd ! error" err

getsockopt : fd � sokopt ! bool err

setsockopt : fd � sokopt � bool ! () err

close : fd ! () err

select : fd list � fd list � int" ! (fd list � fd list) err

port_of_int : int ! port err

ip_of_string : string ! ip err

getifaddrs : () ! (i�d � ip � ip list � netmask) list err

Basi operating system operations:

print_endline_flush : string ! () err

exit : () ! void

Fig. 3. The library interfae LIB

�

alan�Host(::)

Host

Thread

alan�e

�

alan�OK()

alan�onsole "hello"

alan�IP(::)

alan�sendto(::)
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IP(i

alan

; i
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;UDP(1024; 7654; "hello"))

IP(i

kurt

; i

alan

; ICMP PORT UNREACH(::))

Network

Fig. 4. Thread, Host and Network



LTS for eah name. Hosts and messages must be well-formed, and no two hosts

may share an IP address.

2.2 Dynamis: Interation

The threads, hosts, and the network itself are all labelled transition systems; they

interat by means of CCS-style synhronisations. Figure 4 shows the network

N = alan�e j alan�Host(::)

j IP(i

alan

; i

kurt

;UDP(1024; 7654; "hello"))

j IP(i

kurt

; i

alan

; ICMP PORT UNREACH(::)) j : : :

along with some of its possible interations (showing the host LTS labels). Host

and thread are linked by the hostid pre�x on their transitions, but messages

on the network are bare { messages are not tied to any partiular host, other

than by the IP addresses ontained in their soure and destination �elds. As we

shall see, the host and thread LTSs are de�ned without these pre�xes, whih are

added when they are lifted to the network SOS.

The only interation between a thread and its assoiated host is via system

alls { a all and its return are both modelled by CCS-style synhronisations.

A thread an make a system all f v for any f :TL!TL

0

in LIB and argument

v :TL, for example sendto(::). The operating system may then return a value

r :TL

0

, for example OK(). In the above diagram, the host's alan�sendto(::) and

alan�OK() are part of all and return synhronisations respetively.

Invoations of system alls may be fast or slow [Ste98, p124℄. Fast alls return

quikly, whereas slow alls blok, perhaps inde�nitely { for example, until a

message arrives. The labelled transitions have the same form for both, but the

host states di�er (as in x2.1.1). (In the absene of slow alls, one ould model

system alls as single transitions, arrying both argument and return values,

rather than pairs.)

A host interats with the network by sending and reeiving IP datagrams:

alan�IP(::) and alan�IP(::) in the �gure, respetively.

A host may also emit strings to its onsole with transitions of the form

alan�onsole "hello". This provides a minimal way to observe the behaviour of

a network, namely by examining the output on eah onsole.

2.2.1 Thread LTSs and Language Independene The interations be-

tween a thread and the OS are essentially independent of the programming

language the thread is written in { they exhange only values of simple types,

the language types of Figure 1. Instead of taking a thread to be a syntati pro-

gram in some partiular language, we an therefore take an arbitrary labelled

transition system, with labels f v , r and � . It is then straightforward to extend

an operational semantis for a variety of languages to de�ne suh an LTS, as we

do for MiniCaml in x3.



Take a thread LTS e to be (Lthread; S; �!; s

0

) where S is a set of states,

s

0

2 S is the initial state, �! � S � Lthread� S is the transition relation, and

the labels are

Lthread = f f v j f :TL!TL

0

2 LIB ^ ` v :TL g [ f r j 9TL : ` r :TL g [ f�g

Some axioms must be imposed to give an aurate model, as in [Sew97℄. System

alls are deterministi { a thread annot o�er to invoke multiple system alls si-

multaneously. Moreover, after making a system all, the thread must be prepared

to input any of the possible return values, and its subsequent behaviour will be

a funtion of the value. Threads may however have internal nondeterminism. A

thread an always make progress, unless it has been terminated by invoking exit

(the only system all with return type void). The preise statements of these

properties are given in [SSW01℄.

2.2.2 Network Operational Semantis The transitions of a network are

de�ned by the rules below, together with a strutural ongruene de�ned by

assoiativity, ommutativity and identity axioms for j and 0. Here we let x be

either a host (with ` x host-ok) or a thread LTS, ` n : hostid, and ` N

i

network.

x

l

�! x

0

l 6= �

n�x

n�l

��! n�x

0

x

�

�!
x

0

n�x

�

�! n�x

0

0

n�IP v

����! IP v

IP v

n�IP v

����! 0

N

1

n�l

��! N

0

1

N

2

n�l

��! N

0

2

N

1

j N

2

�

�!
N

0

1

j N

0

2

par.1

N

1

n�l

��! N

0

1

l 2 Lthread [ Crash =) n�Host v =2 N

2

l 2 Lthread [ Crash =) n�e =2 N

2

N

1

j N

2

n�l

��! N

0

1

j N

2

par.2

0

n�IP v

����! 0

drop.1

k � 2

0

n�IP v

����!

Q

j21::k

IP v

dup.1

n�Host v

n�rash

����! 0

host.rash.1

n�e

n�rash

����! 0

host.rash.2

IP datagrams an arrive out of order, be lost or be (�nitely) dupliated. Re-

ordering is built into the rules above, but for the other kinds of failure we add

the rules drop:1 and dup:1 . These are most interesting when onstrained, eg. by

fairness or timing assumptions. Hosts an also fail in a variety of ways. In this

paper we onsider only the simplest, `rash' failure [Mul93, x2.4℄.

Our network has no interesting topologial struture. It an always reeive

a new datagram, and an always deliver any datagram it has, with rules similar

to those of Honda and Tokoro's asynhronous �-alulus [HT91℄.



2.3 Highlights of the Host Semantis

We now highlight a few of the most interesting parts of the host semantis, il-

lustrating some (10 out of 72) of the host transition axioms. The de�nitions of

several auxiliary funtions are omitted. We aim to give some feeling for the intri-

aies of UDP sokets and to demonstrate that a rigorous treatment is feasible,

without (for lak of spae) fully explaining our semantis.

2.3.1 Ports: Privileged, Ephemeral, and Unused, and Autobinding

The ports 1::65535 of a host are partitioned into the privileged = f1; ::; 1023g,

the ephemeral = f1024; ::; 4999g, and the rest (these sets are implementation-

dependent; we �x on the Linux defaults). The unused ports of a host are the

subset of f1; ::; 65535g that do not our as the loal port of any of its sokets.

One an bind the loal port of a soket either to an expliit non-privileged

value, eg. the p

0

= 7654 of the e

r

example in x1.6, or request the OS to hoose

a unused port from the set of ephemeral ports. The latter autobinding an be

done by invoking bind with a � in its port" argument, as in the bind :2 rule:

bind.2 ("i ; �) sueed, autobinding

F (ifds ;Run;Sok(fd ; �; �; �; �; es; f ;mq))

bind(fd;"i;�)
�������!F (ifds ;Ret (OK());Sok(fd ; "i ; "p

0

1

; �; �; es; f ;mq))

p

0

1

2 unused(F ) \ ephemeral and i 2 ifds

To redue the syntati lutter in rules, we de�ne several lasses of ontexts that

build a host. Here F ranges over ontexts of the form Host(

1

;

2

; S(

3

); oq ; oqf ),

where S is a soket list ontext, of the form s

1

�[ ℄�s

2

. The rule also requires

the IP address i to be one of those of this host. Autobinding an also our

in connect (if one onnets a soket that does not have a loal port bound), in

disconnect, in sendto, and in recvfrom.

2.3.2 Message Delivery to the Net In the simplest ase, sending a UDP

datagram involves two host transitions: one that onstruts the datagram and

adds it to the host outqueue, and one that takes it from the outqueue and outputs

it to the network. These are given by the host transition axioms below.

sendto.1 sueed

Host(ifds ;Run; S(Sok(fd ; is

1

; ps

1

; is

2

; ps

2

; �; f ;mq)); oq ; oqf )

sendto(fd;ips;data ;nb)
�������������!

Host(ifds ;Ret (OK()); S(Sok(fd ; is

1

; "p

0

1

; is

2

; ps

2

; �; f ;mq)); oq

0

; oqf

0

)

p

0

1

2 autobind(ps

1

; S)

and (oq

0

; oqf

0

;true) 2 dosend(ifds ; (ips; data); (is

1

; "p

0

1

; is

2

; ps

2

); oq ; oqf )

and size(data) � UDPpayloadMax and (ips 6= � or is

2

6= �):

In sendto:1 : S is a soket list ontext, allowing the fd soket to be piked out;

the autobind funtion provides a nondeterministi hoie of an unused ephemeral

port, if the loal port of this soket has not yet been bound; the dosend funtion



onstruts a datagram, using the ips argument to sendto and the IP addresses

and ports from the soket, and adds it to the outqueue (or fails, if the queue is

full); the length of data must be less than UDPpayloadMax; and at least one of

the ips argument and the soket must speify a destination IP address.

delivery.out.1 put UDP or ICMP to the network from oq

Host(ifds ; t ; s ; oq; oqf )

IP(i

3

;i

4

;body)

���������!Host(ifds ; t ; s ; oq

0

; oqf

0

)

((IP(i

3

; i

4

; body)); oq

0

; oqf

0

) 2 dequeue(oq ; oqf )

and i

4

=2 LOOPBACK[MARTIAN and i

3

=2 MARTIAN

In delivery :out :1 : the dequeue funtion piks a datagram o� the outqueue

(nondeterministially resetting the oqf ag), and heks the datagram has non-

martian soure and destination addresses [Bak95, x5.3.7℄. It outputs the data-

gram to the network.

2.3.3 Return From a Fast Call After the invoation of a fast all, eg. an

instane of the sendto:1 rule above, the host thread state is of the form Ret v ,

reording the value v to be returned to the thread by ret :1 below.

ret.1 return value v from fast system all to thread

Host(ifds ;Ret v ; s ; oq ; oqf )

v

�!Host(ifds ;Run; s ; oq ; oqf )

2.3.4 Message Delivery from the Net If the thread invokes recvfrom on a

soket fd that does not have any queued messages, with the `non-bloking' ag

argument false, the thread will blok until a message arrives (or until an error

of some kind ours).

revfrom.2 blok, entering Revfrom2 state

F (ifds ;Run;Sok(fd ; is

1

; ps

1

; is

2

; ps

2

; �; f ;nil))

recvfrom(fd;false)

�����������!F (ifds ;Revfrom2 fd ;Sok(fd ; is

1

; "p

0

1

; is

2

; ps

2

; �; f ;nil))

p

0

1

2 autobind(ps

1

; soks(F ))

As in bind :2 and sendto:1 , the loal port of the soket will be automatially

bound (to an unused ephemeral port) if it is not already bound.

When a UDP datagram, eg. IP(i

3

; i

4

;UDP(ps

3

; ps

4

; data)), arrives at a host,

the 4-tuple (i

3

; ps

3

; i

4

; ps

4

) is mathed against eah of the host's sokets, to

determine whih (if any) the datagram should be delivered to. This mathing

ompares the 4-tuple with eah Sok(::; is

1

; ps

1

; is

2

; ps

2

; ::), giving a sore from

0 to 4 of how many elements math, treating a � in the soket elements as a

wildard. The lookup funtion takes a list s of sokets and a datagram 4-tuple

(i

3

; ps

3

; i

4

; ps

4

), returning the set of sokets with maximal non-zero sores. The

datagram is delivered to one of these sokets, by adding it to the end of the



soket's message queue mq . This is expressed in the basi delivery :in:udp:1 rule

below.

delivery.in.udp.1 get UDP from network and deliver to a mathing

soket

Host(ifds ; t ; s ; oq; oqf )

IP(i

3

;i

4

;UDP(ps

3

;ps

4

;data))

������������������!Host(ifds ; t ; S(Sok(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;

mq :: (IP(i

3

; i

4

;UDP(ps

3

; ps

4

; data)); i�d ))); oq ; oqf )

Sok(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq) 2 lookup s (i

3

; ps

3

; i

4

; ps

4

)

and S(Sok(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq)) = s

and (i�d ; iset ; ; ) 2 ifds and i

4

2 iset

and i

4

=2 LOOPBACK and i

3

=2 MARTIAN [ LOOPBACK

After this, a bloked recvfrom will be able to omplete, using the revfrom:6

rule.

revfrom.6 slow sueed

F (ifds ;Revfrom2 fd ;Sok(fd ; is

1

; "p

1

; is

2

; ps

2

; �; f ;

(IP(i

3

; i

4

;UDP(ps

3

; ps

4

; data)); i�d) ::mq))

OK(i

3

;ps

3

;data)

����������!F (ifds ;Run;Sok(fd ; is

1

; "p

1

; is

2

; ps

2

; �; f ;mq))

2.3.5 ICMP Generation If a UDP datagram arrives at a host (so its des-

tination IP address is one of the host's) but no soket mathes its 4-tuple

(i

3

; ps

3

; i

4

; ps

4

) then the host may or may not send an ICMP PORT UNREACH

message bak to the sender. This is dealt with by the rule below (in the non-

loopbak ase). Note that the ICMP message is added to the host's outqueue oq ,

not put diretly on the network. This uses an auxiliary funtion enqueue whih

is also used by dosend.

delivery.in.udp.2 get UDP from network but generate ICMP, as no

mathing soket

Host(ifds ; t ; s ; oq ; oqf )

IP(i

3

;i

4

;UDP(ps

3

;ps

4

;data))

������������������!Host(ifds ; t ; s ; oq

0

; oqf

0

)

i

4

2 ifds and lookup s (i

3

; ps

3

; i

4

; ps

4

) = ;

and (oq

0

; oqf

0

; ok) 2 f(oq ; oqf ;true)g [

enqueue(IP(i

4

; i

3

; ICMP PORT UNREACH(i

3

; ps

3

; i

4

; ps

4

)); oq ; oqf )

and i

4

=2 LOOPBACK and i

3

=2 MARTIAN [ LOOPBACK

2.3.6 Asynhronous Errors When an ICMP PORT UNREACHmessage

arrives at a host, it is mathed against the sokets, in roughly the same way that

UDP datagrams are. If it mathes a soket (whih typially will be the one used

to send the UDP datagram that generated this ICMP) then the error should

be reported to the thread. The arrival and proessing of the ICMP message is



asynhronous w.r.t. the thread ativity, though, so what happens is simply that

the error ag es

0

of the soket is set, in this ase to "ECONNREFUSED.

delivery.in.imp.1 get ICMP from the network, setting error in a

mathing soket

Host(ifds ; t ; s ; oq ; oqf )

IP(i

0

4

;i

0

3

;ICMP X UNREACH(i

3

;ps

3

;i

4

;ps

4

))

���������������������������!

Host(ifds ; t ; S(Sok(fd ; is

1

; ps

1

; is

2

; ps

2

; es

0

; f ;mq)); oq ; oqf )

S(Sok(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq)) = s

and Sok(fd ; is

1

; ps

1

; is

2

; ps

2

; es ; f ;mq) 2 lookup s(i

3

; ps

3

; i

4

; ps

4

)

and m = IP(i

0

4

; i

0

3

; ICMP X UNREACH(i

3

; ps

3

; i

4

; ps

4

))

and i

0

3

2 ifds and :(loopbak(m) _ martian(m))

and es

0

= if (is

2

6= �) or :(bsdompat f ) then "ECONNREFUSED else es

Here X is either HOST or PORT. There are sanity onstraints on the IP ad-

dresses involved, and the behaviour di�ers aording to whether the bsdompat

soket ag is set. Note also that unmathed ICMPs do not themselves generate

new ICMPs { there is no analogue of delivery :in:udp:2 for ICMPs.

The error ag may ause subsequent sendtos or recvfroms to fail, returning

the error and learing the ag, for example in the rule below.

sendto.5 fail, as soket in an error state

F (ifds ;Run;Sok(fd ; is

1

; "p

1

; is

2

; ps

2

; "e; f ;mq))

sendto(fd;ips;data;nb)
�������������!F (ifds ;Ret (Fail e);Sok(fd ; is

1

; "p

1

; is

2

; ps

2

; �; f ;mq))

2.3.7 Loal Errors A number of other soures of error must be dealt with.

Firstly, there are straightforward erroneous parameters. Any all that takes an

fd an return ENOTSOCK or EBADF if given a �le desriptor that is not a

soket. For bind we also have errors for a privileged port, a port already in use

(modulo the reuseaddr ags), an IP address that is not one of the host's, and

a soket whih already has a non-� loal port. For sendto we have errors if the

destination is � and the soket is unonneted, and if the data is bigger than

UDPpayloadMax. Both sendto and recvfrom return EAGAIN if the non-bloking

ag argument is set but the all would blok.

Seondly, any of the slow alls (sendto, recvfrom, select) an return EINTR

from the bloked state if the system all is interrupted. Our model does not on-

tain the soures of suh interrupts, so all we an do is inlude a nondeterministi

rule allowing the error to our.

Thirdly, there are pathologial ases in whih the OS has exhausted some

resoure. A all to socket an return EMFILE or ENFILE, if there are too

many open �les or the �le table overows, and all alls an return ENOMEM or

ENOBUFS if the OS has run out of spae or bu�ers. Again, these are modelled

by purely nondeterministi rules. We must also deal with the possibility that all

the ephemeral ports are exhausted.



2.3.8 Loopbak A datagram sent to a loopbak address, typially 127:0:0:1,

will be ehoed bak { without reahing the network. To model loopbak, we use

a number of additional delivery rules whih are essentially the ompositions of

delivery :out :� and delivery :in:� rules. For example, a rule delivery :loopbak :udp:1

removes a loopbak UDP from a host's outqueue and delivers in to a mathing

soket, in a single step.

2.4 Sanity Properties

We have proved type preservation and progress theorems for the model, and a

semideterminay result. The latter states roughly that for a given system all

and host state, either the all sueeds (and exatly one rule applies) or it fails

(several error rules may be in ompetition). The ombination of the progress

result, the thread LTS axioms and the network SOS rules exlude pathologial

deadloks.

3 MiniCaml

MiniCaml is designed to be a sublanguage of OCaml 3.00 [L

+

00℄. Its types (with

orresponding onstrutors) are given by the grammar marked TL in Figure 1

(exept T err), together with:

T ::= � � � j T !T

0

j T ref j exn

The syntax, typing rules and redution rules are standard, with additions to

de�ne an LTS satisfying the axioms of x2.2.1. We also prove theorems stating

type preservation and absene of runtime errors.

We have written an OCaml module Udplang whih implements almost all

of LIB (together with the required types and onstrutors). The example pro-

grams in this paper are automatially typeset from working ode, omitting an

open Udplang;; at the beginning of eah program and using mathematized on-

rete syntax, writing ();T"; "e; �;! for unit, T lift, Lift e, Star and ->.

4 Validation

To develop and validate our host semantis, we set up a test network: a non-

routed subnet with four dediated mahines (two Linux and two Win2K), a-

essible via an additional interfae on one of our Linux workstations. In a few

ases we ran tests further a�eld. Tests were written in C, using the glib sok-

ets library. Initially we wrote a large number of ad ho tests, C programs that

display the results of short sequenes of soket alls, and also observed the re-

sulting network traÆ with the tpdump utility. Certain hard-to-test issues were

resolved by inspeting the Linux kernel soure ode.

Later, to more thoroughly validate the semantis as a whole, we translated

the host operational semantis into C; we wrote an automati tool, udpautotest,



that simulates the model in parallel with the real soket alls. This tests repre-

sentatives of most ases of the semanti rules, giving us a high level of on�dene

in our model. It helped us greatly in orretly stating the more subtle orners

of the semantis, and will hopefully make determining the semantis of other

implementations (suh as Win2K or BSD) relatively routine.

The losed-box testing has a number of limitations, however (whih we dis-

uss further in [SSW01℄). We do not diretly observe the internal soket state

(of whih our Sok strutures are an abstration), some pathologial ases are

hard to set up, and it is learly impossible to exhaust all ases. Loss is very

rare on our single subnet, and as far as we are aware reordering and dupliation

never our. We therefore annot regard the semantis as de�nitive, and would

be interested to hear of disrepanies between it and real system behaviour.

We have endeavoured to make the model as aurate as possible, for the

fragment of soket programming and the level of abstration hosen in x1.7, and

as far as one an with an untimed interleaving semantis. Nonetheless, it is in

some respets idealised. Some of these are resoure issues { we do not bound

the MiniCaml spae usage, and have a purely nondeterministi semantis for

OS alloation failures. We simplify the real full-outqueue behaviour, and use

an approximation to the treatment of `martian' datagrams. We also assume

unbounded integers and perfet UDP heksums, and have atomi transitions

that have a subtle relationship to the detailed OS proess sheduling.

No attempt was made to validate either the language semantis for MiniCaml

(other than to hek the evaluation order, whih di�ers between the native-ode

generator and the byteode interpreter), or the UdplangOCaml binding we used

to test our examples. In the latter ase, we assume the OCaml Unix module is a

trivial binding to the C sokets interfae; our Udplang module does little more.

5 Examples

5.1 The Single Sender We �rst show the possible traes of the single sender

and single reeiver from x1.6. Consider

N = alan�e

s

j alan�Host(ifds

alan

;Run; [ ℄; [ ℄; false)

j kurt�e

r

j kurt�Host(ifds

kurt

;Run; [ ℄; [ ℄; false)

and disount rules modelling interrupted system alls or the OS running out of

�le desriptors or kernel memory. Suppose loss (drop:1 ) may our, but dupli-

ation (dup:1 ) and host failure (host :rash:�) do not.

One behaviour involves messagem = IP(i

alan

; i

kurt

;UDP("p

1

; "7654; "hello"))

(for p

1

2 ephemeral) being suessfully sent, with observable trae

N

kurt�onsole "ready"

�������������!

alan�onsole "sending"

��������������!

kurt�onsole "hello"

������������! N

0

and resulting state

N

0

= alan�RET

void

j alan�Host(ifds

alan

;Term; [ ℄; [ ℄; false)

j kurt�RET

void

j kurt�Host(ifds

kurt

;Term; [ ℄; [ ℄; false)



It is also possible for the "hello" to be reeived and printed with the message

m arriving at kurt after kurt's bind but before the output of "ready", giving

trae

N

alan�onsole "sending"

��������������!

kurt�onsole "ready"

�������������!

kurt�onsole "hello"

������������! N

0

ending in the same state. If message m arrives at kurt before kurt's bind,

however, it will be disarded, giving a trae

N

alan�onsole "sending"

��������������!

kurt�onsole "ready"

�������������! N

00

ending with alan's state terminated as before but kurt in a blokedRevfrom2

state. Here kurt may or may not generate an ICMP, whih may or may not be

delivered to alan in time to set the soket error ag, but as the soket is not

used again and is removed on exit this is not visible.

Finally, there are two observable traes if message m is lost: the trae above

and its permutation. In both alan runs to ompletion and kurt remains bloked;

no ICMPs are generated.

5.2 The Single Heartbeat As a more realisti example, we present ode for

a simple heartbeat algorithm, a program e

A

that heks the status of another

program e

B

(whih one might think of running as part of a large appliation):

e

A

= e

B

=

let p = port_of_int (7655) in

let i = ip_of_string ("192:168:0:11") in

let fd = socket() in

let = bind(fd ; �; "p) in

let = connect(fd ; i ; "p) in

let = print_endline_flush "pinging" in

let = sendto(fd ; �; "ping"; false) in

let (fds; ) = select([fd ℄; [ ℄; "5000000) in

if fds = [ ℄ then

print_endline_flush "dead"

else

try

let ( ; ; v) = recvfrom(fd ; false) in

print_endline_flush v

with

UDP(ECONNREFUSED)

! print_endline_flush "down"

let p = port_of_int (7655) in

let i = ip_of_string ("192:168:0:14") in

let fd = socket() in

let = bind(fd ; �; "p) in

let = connect(fd ; i ; "p) in

let = print_endline_flush "ready" in

let = recvfrom(fd ; false) in

let = sendto(fd ; �; "ak"; false) in

print_endline_flush "done"

Program e

B

, whih should be run on kurt, displays "ready" on the onsole,

waits for a message from alan on a known port, and responds with an "ak"

message when the message arrives.

Program e

A

, whih should be run on alan, displays "pinging" and heks

the status of the remote mahine kurt by sending a message on the known port.

It then waits up to �ve seonds for a response (either a UDP reply datagram



or an ICMP PORT UNREACH error). If there is none, it displays "dead";

if the response is a UDP datagram it displays its ontents to indiate kurt is

alive; and if the response is an ICMP it displays "down" to indiate that kurt

is running but the responder thread e

B

is down. Note that e

A

will print "dead"

if kurt is really dead, but it may also do so if the initial datagram is lost, or if

the reply datagram or ICMP is lost, or if the reply ICMP is not generated.

Again disount rules modelling interrupted system alls or the OS running

out of resoures, but now allow loss, dupliation and failure. Assuming further

that only e

A

and e

B

run, on an otherwise-quiet network, we an prove that no

unaught exeptions arise during the exeution of e

A

. No errors an arise from

any line of e

A

apart from the recvfrom all, and the only error this may return is

ECONNREFUSED. This means we are justi�ed in omitting all error handling

from the ode of e

A

. Further, we an show that the sendto and recvfrom alls

in e

A

will never blok. On the other hand, the message dupliation rule dup:1

means that e

B

might blok temporarily in the sendto all, if the output queue

has been �lled with ICMP PORT UNREACH messages generated by "ping"

messages arriving before the bind all, but at least one "ping" arrives after the

bind. It is still guaranteed that no system all in e

B

will fail.

6 Related Work

Work on the mathematial underpinnings of distributed systems has been ar-

ried out in the �elds of distributed algorithms, proess aluli, and program-

ming language semantis. Distributed algorithms researh has developed sophis-

tiated algorithms, often dealing with failure, and proofs of their properties,

for example using the IO automata of Lynh et al. [Lyn96℄ and the TLA of

Lamport [Lam94℄. Work on proess aluli has emphasised operational equiv-

alenes and ompositional desriptions of proesses, and reently systems with

dynami loal name generation { with aluli based on the �-alulus of Milner,

Parrow and Walker [MPW92℄. A few aluli have dealt with failure, inluding

[AP94,FGL

+

96,RH97,BH00℄. Building on proess aluli, a number of onur-

rent or distributed programming languages have been designed, with assoiated

semanti work, inluding among others Oam, Faile, CML, Pit, JoCaml, and

Nomadi Pit [INM87,TLK96,Rep91,PT00,FGL

+

96,WS00℄. Little of this work,

however, deals with the ore network protools, and as far as we are aware none

addresses the level of abstration of the sokets interfae. Further, most does

not support reasoning about exeutable ode (or adopts a muh higher level of

abstration). The most relevant work is disussed below.

The IOA Language [GLV00℄ is a language for expressing IO automata di-

retly. Work on proof tools and ompilation is ongoing. This will allow reasoning

about exeutable sophistiated distributed algorithms that interat with the net-

work using higher-level abstrations than the sokets library, modulo orretness

of the ompiler. Using IOA rather than onventional programming languages aids

reasoning, but may redue the appliability of the method.

The approah of Arts and Dam [AD99℄ is similar to ours: they aim to prove

properties of real onurrent programs written in Erlang. They desribe an oper-



ational semantis for a subset of Erlang, a logi for reasoning about this subset,

and use an automated tool to verify that a program satis�es properties expressed

in the logi.

Less losely related, Biagioni implemented TCP/IP in ML [Bia94℄ as part of

the Fox projet, and the Ensemble system of [Hay98℄ provides group ommunia-

tion failities above UDP. The latter is implemented in OCaml; some veri�ation

of optimisations to the Ensemble protool endpoint ode has been arried out.

Neither involve a semantis of the network (or, for Ensemble, the underlying

sokets implementation), however. At a lower level, work on the semantis of a-

tive networks [Swi01℄ has developed proofs of routing algorithms. Related work

on monitoring protool implementations { TCP in partiular { from outside the

hosts is presented in [BCMG01℄.

7 Conlusion

We have desribed a model that gives a rigorous understanding of programming

with sokets and UDP, validated against atual systems. This demonstrates that

an operational treatment of this level of network programming { traditionally

regarded as beyond the sope of formal semantis { is feasible.

The model provides a basis for two diretions of future work. Firstly, we plan

to investigate the veri�ation of more interesting examples, developing proof

tehniques that build on those of both the distributed algorithm and proess

alulus ommunities. Seondly, we plan to extend the model to over a larger

fragment of network programming, in a number of ways; we are onsidering

mahine support for managing the large de�nitions that will ertainly result. We

intend to de�ne other language bindings, eg. for a Java fragment. Inorporating

fairness and time is required to apture interesting properties of algorithms. As

disussed in x4, we plan to apply our validation tools to other operating systems,

to identify a ommon semanti ore. Finally, we would like to address more of

the points listed in x1.7, espeially aspets of TCP and multi-threaded hosts.
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