The UDP Calculus:
Rigorous Semantics for Real Networking

Andrei Serjantov Peter Sewell Keith Wansbrough

University of Cambridge

{Andrei.Serjantov,Peter.Sewell,Keith.Wansbrough}@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/pes20/Netsem

Abstract. Network programming is notoriously hard to understand:
one has to deal with a variety of protocols (IP, ICMP, UDP, TCP etc),
concurrency, packet loss, host failure, timeouts, the complex sockets in-
terface to the protocols, and subtle portability issues. Moreover, the be-
havioural properties of operating systems and the network are not well
documented.

A few of these issues have been addressed in the process calculus and
distributed algorithm communities, but there remains a wide gulf be-
tween what has been captured in semantic models and what is required
for a precise understanding of the behaviour of practical distributed pro-
grams that use these protocols.

In this paper we demonstrate (in a preliminary way) that the gulf can
be bridged. We give an operational model for socket programming with
a substantial fraction of UDP and ICMP, including loss and failure. The
model has been validated by experiment against actual systems. It is not
tied to a particular programming language, but can be used with any
language equipped with an operational semantics for system calls — here
we give such a language binding for an OCaml fragment. We illustrate
the model with a few small network programs.

1 Introduction

1.1 Background and Problem Distributed applications consist of many
concurrently-executing systems, interacting by network communication. They
are now ubiquitous, but writing reliable code remains challenging. Most funda-
mentally, concurrency introduces the classic (but still problematic) difficulties of
nondeterminism: large state spaces, deadlocks, races etc.. Additional difficulties
arise from intrinsic properties of networks: communication is asynchronous and
lossy, and hosts are subject to failure. The communication abstractions provided
by standard protocols (IP, ICMP, UDP, TCP etc.) are therefore necessarily more
complex than simple message-passing or streams. Further, the programmer must
understand not only the protocols — the inter-machine communication disciplines
— but also the library interface to them. There is a ‘standard’ networking library,

the sockets interface [CSR83,IEEQ0], lying between applications and the proto-
col endpoint code on a machine; the programmer must deal with what is visible
through this interface, which has a subtle relationship to the underlying proto-
cols. This relationship, and the behaviour of the sockets interface, has not been
precisely described, and varies between implementations.

To provide a rigorous understanding of these issues requires precise mathe-
matical models of the behaviour of distributed systems. Such models can (1) im-
prove our informal understanding and system-building, (2) underpin proofs of
robustness and security properties of particular programs, and (3) support the
design, proof and implementation of higher-level distributed abstractions.

Previous work on the theories of distributed algorithms and of process calculi
has developed models and reasoning techniques for concurrency and failure, but
these models are generally rather abstract and/or idealised: to our knowledge,
none address the sockets interface and the behaviour it makes visible, most ignore
interesting aspects of the core protocols, and most do not support reasoning
about executable code. The protocols and sockets interface are worth detailed
attention — they are implemented on almost all machines, and underlie higher-
level services, including those providing resilience against failure and attack.

1.2 Contribution We give a model that provides a rigorous understanding
of the sockets interface and UDP, in realistic networks. To this we add an op-
erational semantics for a programming language (an ML fragment), allowing
reasoning about executable distributed programs. We have:

— carefully chosen a useful fragment of the sockets interface and built a thin
layer of abstraction above it, focussing on UDP as a starting-point;

— constructed an experimentally-validated operational semantics that covers
concurrency, asynchrony, failure and loss;

— developed language-independent, semantic idioms for interaction between an
application thread, its host OS, and the network;

— instantiated the model with a semantics for an executable fragment of OCaml,
MiniCaml; and

— exercised our semantics by proving properties of some small example dis-
tributed programs.

Taken together, the above also provide a theorists’ introduction to sockets/UDP
programming.

1.3 Experimental Semantics A key goal of our work is to provide a clear
and close correspondence between our semantics and the behaviour of actual sys-
tems. To achieve this, we cannot alter the extant widely-deployed OS networking
code; the most we can do is choose which fragment to model, and add a thin
regularising layer above it. Even then, the systems are too complex to analyse
and hence derive an accurate semantics: consider the body of machine code and
hardware logic embedded in their operating systems, machines, network cards
and routers. We are forced therefore both to invent an appropriate level of ab-
straction at which to express our semantics, and to experimentally determine
and wvalidate that semantics. We call this activity ezperimental semantics.

In our case, the semantics is expressed at the level of the system calls used to
communicate between the application language and the operating system sock-
ets code. It was initially based on the relevant natural-language documentation
(man pages, RFCs [P0s80,Pos81,Bra89], the Posix standard [IEE00Q], and stan-
dard references [Ste98,Ste94]), and on inspection of the sources of the Linux
implementation. We validated the semantics by a combination of ad hoc and
automated testing: writing code that interacted with the C sockets interface in
the described ways, and confirming that the resulting behaviour corresponded
with our model.

To date, the semantics has only been validated against the Linux implemen-
tation (in fact, against the Red Hat 7.0 distribution, kernel version 2.2.16-22,
glibc 2.1.92). We intend also to use our automated test scripts to identify dif-
ferences with BSD and with Windows operating systems, if possible picking out
a useful common core.

1.4 Overview In the remainder of this section, we give a very brief informal
introduction to networks, the protocols IP, UDP, and ICMP, and the sockets
interface to them. We then discuss our choice of what to include in the model,
and its structure, and highlight some subtleties that must be understood for
reliable programming.

In Section 2 we describe the model, making these subtleties precise. Unfor-
tunately the complete definition is too large to include — inevitably so, as the
behaviour of even our small (but useful) fragment of the sockets interface is
large and irregular by the standards of process calculi and toy languages. Most
details are therefore omitted; they appear in the technical report [SSWO01]. Sec-
tion 3 outlines the MiniCaml programming language we adopt for expressing
distributed programs, a fragment of OCaml 3.00 [LT00]. Again most details are
omitted — these are routine.

Section 4 discusses our experimental setup and validation. The semantics is
illustrated with a few small examples in Section 5. Finally, we discuss related
work and conclude in Sections 6 and 7.

1.5 Background: Networks and Protocols, Informally At the level of
abstraction of our model, a network consists of a number of machines connected
by a combination of LANs (eg. ethernets) and routers.! Each machine has one or
more IP addresses i, which are 32-bit values such as 192.168.0.11. The Internet
Protocol (IP) allows one machine to send messages (IP datagrams) to another,
specifying the destination by one of its IP addresses. IP datagrams have the form

IP(ZI) i?a bOdy)

where i; and ie are the source and destination addresses. The implementation of
IP (consisting of the routers within the network and the protocol endpoint code
in machines) is responsible for delivering the datagram to the correct machine.

1 'We discuss in §1.7 and §4 how the model relates to actual systems.

We can therefore abstract from routing and network topology, and depict a
network as below (in fact this is our test network).

Linux Win2K Linux

KURT JOHN ASTROCYTE

192.168.0.12

192.168.0.11

192.168.0.21 192.168.0.1

1P(192.168.0.11,192.168.0.14, UDP(..))

IP(192.168.0.14,192.168.0.11, ICMP_PORT_UNREACH(..))

192.168.0.13 192.168.0.14

EMIL ALAN

Win2K Linux

Delivery is asynchronous and unreliable — IP does not provide acknowledgments
that datagrams are received, or retransmit lost messages.

UDP (the User Datagram Protocol) is a thin layer above IP that provides
multiplexing. It associates a set {1, ..,65535} of ports to each machine; a UDP
datagram

IP(is,i2, UDP(ps;, pse, data))

is an IP datagram with a body of the form UDP(ps;, pse, data), containing a
source and destination port and a short sequence of bytes of data.

ICMP (the Internet Control Message Protocol) is another thin layer above
IP dealing with some control and error messages. Here we are concerned only
with two, relating to UDP:

IP(iy,i2, ICMP_PORT_UNREACH(is, pss, i;,ps;)), and
IP(i1 s iQ, ICMP_HOST_UNREACH(ig,p83, 14 ,p54)).

The first may be generated by a machine receiving a UDP datagram for an
unexpected port; the second is sometimes generated by routers on receiving
unroutable datagrams.

TCP (the Transmission Control Protocol) is a rather thicker layer above
IP that provides bidirectional stream communication, with flow control and re-
transmission of lost data. Most networked applications are built above TCP,
with some use of UDP, but we do not yet consider it.

The protocol endpoint code on a machine, implementing the above, is de-
picted below (together with LIB, which we define in §2.1.3).

LIB

C sockets —
interface

Device .

1.6 Background: The Sockets Interface, Informally To show how ap-
plication programs can interact with the UDP endpoint code on their machines,
we give the simplest possible example of two programs communicating a single
UDP datagram. We describe a small part of the sockets interface informally,
presenting only a crude intuition of the behaviour. The sender and receiver pro-
grams, e; and e, respectively, are below. They are written in MiniCaml (with
some typographic conventions automatically applied to the executable code).

es = er =
let p’ = port_of_int 7654 in

let i' = ip of string "192.168.0.11" in
let fd' = socket() in

let _ = bind(fd’, 14',1p’) in

let _ = print_endline flush "ready" in
let (_,,v) = recvfrom(fd’, FALSE) in

print_endline flush v

let p = port_of int 7654 in

let + = ip_of string "192.168.0.11" in
let fd = socket() in

let - = connect(fd, 1,1p) in

let _ = print_endline_flush "sending" in
sendto(fd, *, "hello", FALSE)

Here the * and 1 are the constructors of option types T1. The types of the
library calls are as in Figure 3, but without the ‘err’; as in MiniCaml an error
return raises an exception. The example involves types fd of file descriptors, ip
of IP addresses, and port of ports 1..65535.

The sender program ez, which should be run on ALAN, defines a port p and an
IP address i (in fact one of machine KURT) and creates a new socket. A socket
consists of assorted data maintained by the OS, including an identifier (a file
descriptor, which here will be bound to fd) and a pair of ‘local’ and ‘remote’ pairs
of an IP address and a port. These are used for matching incoming datagrams
and addressing outgoing datagrams. Program e then sets the remote pair of the
socket to 7 and p using connect, and sends a UDP datagram via fd with body
"hello".

The receiver e,, which should be run on KURT, defines i’ and p’ to be the
same IP address and port, creates a new socket fd', sets the local pair of fd’ to
permit reception of datagrams sent to (i, p’), and prints "ready". It then blocks,
waiting for a datagram to be received by the socket, after which it prints the
datagram body.

If e5 and e, are run on ALAN and KURT respectively (but e, is started first),
and there is no failure in either machine or the network, a single UDP datagram
will be sent from one machine to the other.

1.7 Choices: What to Model? To address the issues of §1.1, and support
the desired rigorous understanding, the model must satisfy several criteria.

1. It must have a clear relationship (albeit necessarily informal) to what goes
on in actual systems; it must be sufficiently accurate for reasoning in the
model to provide assurances about the behaviour of those systems. For this,
it is essential to include the various failures that can occur.

2. It must cover a large enough fragment of the network protocols and sockets
interface to allow interesting distributed algorithms to be expressed. In par-
ticular, we want to provide as much information about failure as possible to
the programmer, to support failure-aware algorithms.

3. In tension with both of these, the model must be as simple as possible, for
reasoning to be tractable.

The full range of network protocols and OS interactions is very large by the
standards of semantic definitions. As a starting point, in this paper we choose
to address (unicast) UDP and the associated part of ICMP, with a single thread
of control per machine, in a flat network. We choose the fragment of the sockets
interface that is most useful for programming in these circumstances, and deal
with the sockets interface view of message loss, host failure and various local
errors. For simplicity, we do not as yet deal with any of the following, despite
their importance.

— TCP, and associated ICMP messages

— broadcast and multicast UDP communication

— multithreaded machines and inter-thread communication

— other IO primitives (in this paper we choose, minimally, ‘print’ and ‘exit’)
— persistent storage

— network partition (especially for machines with intermittent connections)
— DNS

— IPv6 protocols

— machine reconfiguration and other privileged operations

We are not modelling the implementation of IP (routing, fragmentation etc.)
or lower levels (Ethernet, ARP, etc.), as we aim to support reasoning about
distributed applications and algorithms above IP, rather than implementations
of low-level network protocols.

The standard sockets interface is a C language library. To avoid dealing
with irrelevant complexities of a C interface (weak typing and explicit memory
management) we introduce a thin abstraction layer, providing a clean strongly-
typed view (we also clean up the interface by omitting redundancy). This LIB
interface is defined in Figure 3; it was shown in the diagram at the end of §1.5.

In this paper we describe only an interleaving semantics. We anticipate that
it will be straightforward to add fairness constraints, which are required for rea-
soning about non-trivial examples, and intend to investigate lightweight timing
annotations, for more precise properties about examples involving time-outs.
The model is not intended for quantitative probabilistic reasoning, eg. for qual-
ity of service issues. It may, however, provide a useful model for reasoning about

some forms of malicious attack — eg. for networks with some malicious hosts,
though with our flat network topology we do not deal with firewalls.

Blocking system calls are a key aspect of sockets programming, so it is natural
to deal with sequential threads, rather than a concurrent programming language
with language-level parallelism (for which blocking system calls would block the
entire runtime).

1.8 Structuring the Model (and Language Independence) We want to
reason about executable implementations of distributed algorithms, expressed
in some programming language(s), not in a modelling language. We do not wish
to fix on a single language, however, as the behaviour of the sockets interface
and network is orthogonal to the programming language used to express the
computation on each machine. We therefore factor the model, allowing threads to
be arbitrary labelled transition systems (LTSs) of a certain form. One can extend
the operational semantics of a variety of languages with labelled transitions, for
library calls and returns, so that programs denote these LTSs (values used by
the sockets interface are all of rather simple types, not involving callbacks, so
this is straightforward). In this paper we do so for a fragment of OCaml, with
functions, references and exceptions. This allows our example programs to be
executed without change, by linking them with a module providing our thin layer
of abstraction, LIB, above the OCaml sockets library (in turn implemented above
the C library).

It will be convenient to be able to describe partial systems, for example to
consider the interactions between the collection of all threads and the rest of
the system, so we allow hosts and their threads to be syntactically separated.
Networks therefore consist of a parallel composition of IP datagrams, hosts (each
with a state v, giving the host’s IP addresses, states of sockets etc.), and threads
(each with a state e of an LTS). The precise definition is in §2.1.4, which uses
the grammar below.

N:=0 empty
N|N parallel composition
IP v IP datagram in transit
n-HOST v host n, with state v
n-e thread of host n, with state e

The host semantics — the heart of the model — is outlined in §2.3. The behaviour
of networks is defined in §2.2.2 by a structural operational semantics (SOS),
combining the LTSs of hosts and threads, using process-calculus techniques (we
give a direct operational semantics, rather than a complex encoding into an
existing calculus).

1.9 It’s Not Really So Easy The informal introductions to the protocols
and sockets interface in §§1.5,1.6 above give a deceptively simple view. Real

network programming must take into account the following, all of which are
captured in our model:

1.

2

IP addresses and ports with zero values have special meanings, being treated
roughly as wildcards, both in the arguments to bind, connect, etc. and in the
socket states. Our ip and port are types of non-zero IP addresses and ports;
we use option types ipt and port? where the zero values (x) may occur.
The system-call interactions between a thread and its host are weakly cou-
pled to the interactions between a host and the network. Messages may arrive
at a machine, and be processed (and buffered) by the network hardware and
0OS, at almost any time. The sendto and recvfrom calls can block, until there
is queue space to send a message or until a message arrives, respectively.
Further, select allows blocking until one of a number of file descriptors is
ready for reading or writing, or a specified time has elapsed. Communica-
tion between hosts is asynchronous, due both to buffering and the physical
media.

Machines can fail; messages can be lost, reordered, or duplicated. There is
buffering (and potential loss) at many points: in the operating system, in the
network cards, and in the network routers. UDP provides very little error
detection and no recovery. UDP datagrams typically contain a checksum
(here we idealise, assuming that the checksum is perfect and hence that
all corrupted datagrams are discarded). More interestingly, remote failure
can sometimes be detected: a machine receiving a UDP datagram addressed
to a port that does not have an associated socket may send back an ICMP
message. These can asynchronously set an error flag in the originating socket,
giving rise to an error from a blocked or future library call.

Many local errors are possible, for example (just considering bind): a port
may be already in use or in a privileged range; an IP address may not belong
to the machine; the OS may run out of resources; the file descriptor may not
identify a socket. In MiniCaml, these are reported via exceptions, which may
be caught and handled.

Machines can have more than one IP address — in fact, a machine may
have several interfaces, each of which has a primary IP address and possibly
also other alias IP addresses. Typically each interface will correspond to a
hardware device, but a machine will also have a loopback interface which
echoes messages back.

The sockets interface includes assorted other functionality — further library
calls, socket options etc.

UDP - The Model

We now present the UDP Clalculus, our model of the network and of the sockets
interface to UDP. As the definition is far too large to include here, we give only

the basic structure and selected highlights, leaving the full details to the technical

report [SSWO01]. Section 2.1 presents the static structure of the model, Section 2.2
explains the interactions between parts of the model, Section 2.3 illustrates the

T := int)
bool
string
0 unit type
Ty .. T, tuple (n >2)
T list list
Tt optional type
T err T or error
void empty type TL
fd file descriptor
ip IP address
port port
error OS error
netmask netmask
ifid interface descriptor
sockopt socket options)
T set finite set
ipBody body of IP datagram
msg IP datagram
ifd interface descriptor table entry
flags flags from socket descriptor table entry
socket socket descriptor table entry
hostid unique identifier of a host
hostThreadState the OS view of a thread
host a single host

The clauses annotated by TL form a subgrammar of T, the language types. All values
passed between a thread and its host OS are of a language type.

Fig. 1. Types

host semantics by means of some key rules, and Section 2.4 discusses some sanity
results.

2.1 Statics: Types, Values, and Judgements

The model is largely built from the types T shown in Figure 1, which have values
v composed of the constructors ¢ € Con given in Figure 2; constructors can be
polymorphic. Each constructor has a natural number arity and a non-empty set
of sequences (of length one plus that arity) of types; the sequences are written
with arrows — . The obvious typing judgement for values is written - v: T.
A number of invariants are captured by additional judgements, omitted here.
Notation: We typically let i, p, e range over values of types ip, port,error, and
is, ps, es over values of types ip?, port?, errort.

2.1.1 Hosts and Threads We separate a running machine into two parts: the
host, representing the machine itself and its operating system; and the thread,

Partition Con into the language constructors:

. —1,0,1,2,..
TRUE, FALSE
octet-sequence

0
(, .,) (mixfix)
(infix)

NIL

*
T

OK

FAIL

1..2%% —1

1..65535
FD3,FDg,...

LO, ETHO, ETHL, ...

Ziej..?,l 2

:int

: bool

: string

: ()

T — .. =Ty =T x..xT,
: Tlist

: T — Tlist — T list
Tt

cT—> Tt

: T— Terr

: error — T err

n>2

D ip

: port

: fd

: ifid

: netmask for 0 < j <31

SO_BSDCOMPAT,SO_REUSEADDR : sockopt

EACCES, EADDRINUSE, EADDRNOTAVAIL, EAGAIN, EBADF,
ECONNREFUSED, EHOSTUNREACH, EINTR, EINVAL, EMFILE,
EMSGSIZE, ENFILE, ENOBUFS, ENOMEM, ENOTCONN,

ENOTSOCK : error

and the non-language constructors:
1P : ip * ip * ipBody — msg
UDP : port? x portt * string — ipBody
ICMP_HOST_UNREACH : ip * portf * ip * portt — ipBody
ICMP_PORT_UNREACH : ip * port?t * ip * port? — ipBody
Host ifd set * host ThreadState * socket list * msg list * bool — host
Sock fd = ipt * port? * ipt * port? * errort * flags * (msg * ifid) list — socket
IF : ifid x ip set * ip x netmask — ifd
Run : hostThreadState
TERM : hostThreadState
RETTL : TL — hostThreadState
SENDTO2 : fd = (ip * port)? * string — hostThreadState
RECVFROM2 : fd — hostThreadState
SELECT2 : fd list * fd list * int? — hostThreadState
PRINT2 : string — hostThreadState
Fraas : bool * bool — flags
ALAN, KURT, ASTROCYTE, ... : hostid

Elements of T set are written {v, ..

be elided.

,Un }. The TL subscript of RET 77, will usually

Fig. 2. Constructors

representing the application program controlling it. Threads are explained in
§2.2.1. A host is of the form:

Host(ifds, t, s, oq, ogf)

A host has a set ifds :ifd set of interfaces, each with a set of IP addresses and
other data. We assume all hosts have at least a loopback interface and one
other. We sometimes write ¢ € ifds to mean ‘i is an IP address of one of the
interfaces in ifds’. The operating system’s view of the thread state is stored
in ¢:hostThreadState: the thread may be running (RUN), terminated (TERM),
or waiting for the OS to return from a call. In the last case, the OS may be
about to return a value from a fast system call (RET v) or the thread may be
blocked waiting for a slow system call to complete (SENDTO2 v, RECVFROM2 v,
SELECT2 v, PRINT2 v). The host’s current list of sockets is given by s : socket list.
The outqueue, a queue of outbound IP messages, is given by oq:msglist and
oqf :bool, where oq is the list of messages and ogf is set when the queue is full.

2.1.2 Sockets The central abstraction of the sockets interface is the socket. It
represents a communication endpoint, specifying a local and a remote pair of an
IP address and UDP port, along with other parts of the protocol implementation
state. It is of the form

SOCK(fd7 islapsl) iSQ,pSQ, es:f: m(I)

A socket is uniquely identified within the host by its file descriptor fd : fd. The lo-
cal and remote address/port pairs are is; :ipt, ps; : portt and isg :ipT, pse : portt
respectively; wildcards may occur. Asynchronous error conditions store the
pending error in the error flag es :errorf. An assortment of socket parameters are
stored in f:flags. Finally, mq: (msg * ifid) list is a queue of incoming messages
that have been delivered to this socket but not yet received by the application.

2.1.3 The Sockets Interface A library interface defines the form of the
interactions between a thread and a host, specifying the system calls that the
thread can make. A library interface consists of a set of calls, each with a pair of
language types. We take a library interface LIB, shown in Figure 3, consisting
of the sockets interface together with some basic OS operations.

All of the sockets interface calls return a value of some type Terr to the
thread, which can be either OK v for v: T or FAIL e for a Unix error e:error. A
language binding may map these error returns into exceptions, as the MiniCaml
binding of §3 does.

2.1.4 Networks A network N (a term of the grammar in §1.8) is a parallel
composition of IP datagrams IP v, hosts n-HOST v, and their threads n-e. To
describe partial systems, we allow hosts and their threads to be split apart.
The association between them is expressed by shared names n : hostid, which are
purely semantic devices, not to be confused with IP addresses or DNS names.
A well-formed network must contain at most one host and at most one thread

The sockets interface:

socket : () — fderr

bind : fd * ipt * portt = ()err

connect : fd % ip * port? = ()err

disconnect : fd = ()err

getsockname : fd — (ipt = portt) err
getpeername : fd — (ipt = portt) err
sendto : fd = (ip * port)?1 * string * bool — () err

recvfrom : fd * bool — (ip * port? « string) err
geterr : fd — errorterr
getsockopt : fd * sockopt — boolerr

setsockopt : fd % sockopt * bool — ()err

close : fd = ()err

select : fd list * fd list * int? — (fdlist = fd list) err
port_of int :int — porterr

ip_of string : string — iperr

getifaddrs : () — (ifid = ip = ip list x netmask) list err

Basic operating system operations:
print_endline flush : string
exit : ()

= ()err
— void

Fig. 3. The library interface LIB

ALAN-e
Thread

ALAN-OK()

ALAN-sendto(..)

ALAN-console "hello"

C ALAN-HOST(..)
r

Host

ALAN-IP(..)

ALAN-IP(..)

TP (israx, icurr, UDP(1024, 7654, "hello"))
TP (ixurr, ianan, ICMP_PORT_UNREACH(..))

Network

Fig. 4. Thread, Host and Network

LTS for each name. Hosts and messages must be well-formed, and no two hosts
may share an IP address.

2.2 Dynamics: Interaction

The threads, hosts, and the network itself are all labelled transition systems; they
interact by means of CCS-style synchronisations. Figure 4 shows the network

N = ALAN-e | ALAN-HOST(..)
| IP (iaran, fxurr, UDP(1024, 7654, "hello"))
| TP (ixurr, faran, ICMP_PORT_UNREACH(..)) | ...

along with some of its possible interactions (showing the host LTS labels). Host
and thread are linked by the hostid prefix on their transitions, but messages
on the network are bare — messages are not tied to any particular host, other
than by the IP addresses contained in their source and destination fields. As we
shall see, the host and thread LTSs are defined without these prefixes, which are
added when they are lifted to the network SOS.

The only interaction between a thread and its associated host is via system
calls — a call and its return are both modelled by CCS-style synchronisations.
A thread can make a system call f v for any f: TL — TL' in LIB and argument
v: TL, for example sendto(..). The operating system may then return a value
r: TL', for example OK(). In the above diagram, the host’s ALAN-sendto(..) and
ALAN-OK() are part of call and return synchronisations respectively.

Invocations of system calls may be fast or slow [Ste98, p124]. Fast calls return
quickly, whereas slow calls block, perhaps indefinitely — for example, until a
message arrives. The labelled transitions have the same form for both, but the
host states differ (as in §2.1.1). (In the absence of slow calls, one could model
system calls as single transitions, carrying both argument and return values,
rather than pairs.)

A host interacts with the network by sending and receiving IP datagrams:
ALAN-IP(..) and ALAN-IP(..) in the figure, respectively.

A host may also emit strings to its console with transitions of the form
ALAN-console "hello". This provides a minimal way to observe the behaviour of
a network, namely by examining the output on each console.

2.2.1 Thread LTSs and Language Independence The interactions be-
tween a thread and the OS are essentially independent of the programming
language the thread is written in — they exchange only values of simple types,
the language types of Figure 1. Instead of taking a thread to be a syntactic pro-
gram in some particular language, we can therefore take an arbitrary labelled
transition system, with labels f v, r and 7. It is then straightforward to extend
an operational semantics for a variety of languages to define such an LTS, as we
do for MiniCaml in §3.

Take a thread LTS e to be (Lthread, S, —, sp) where S is a set of states,
S € S is the initial state, - C S x Lthread x S is the transition relation, and
the labels are

Lthread = {fv |f: TL— TL' € LIBA Fv:TL}U{r |3TL. Fr:TL} U {r}

Some axioms must be imposed to give an accurate model, as in [Sew97]. System
calls are deterministic — a thread cannot offer to invoke multiple system calls si-
multaneously. Moreover, after making a system call, the thread must be prepared
to input any of the possible return values, and its subsequent behaviour will be
a function of the value. Threads may however have internal nondeterminism. A
thread can always make progress, unless it has been terminated by invoking exit
(the only system call with return type void). The precise statements of these
properties are given in [SSWO01].

2.2.2 Network Operational Semantics The transitions of a network are
defined by the rules below, together with a structural congruence defined by
associativity, commutativity and identity axioms for | and 0. Here we let x be
either a host (with F 2 host-ok) or a thread LTS, - n : hostid, and F N; network.

zh a1 #T r 5
nx X na! nr = e’ 0 2P 1Py IP v n-TP v 0
i o Ny 24 N
N =N | € Lthread U Crash = n-HosTv ¢ Ny
N n—l> N} Il € Lthread U Crash = n-e ¢ N,
o - par.1 i par.2
Ni | Ny = Ni| N, Ni | N3 — N{ | N,
k>2
— T drop. 1 T dup. 1
0——0 0—>Hj€1__kIPv
host.crash.1 — o host.crash.2
n-HosT v 22y n-e —=3

IP datagrams can arrive out of order, be lost or be (finitely) duplicated. Re-
ordering is built into the rules above, but for the other kinds of failure we add
the rules drop.1 and dup.1. These are most interesting when constrained, eg. by
fairness or timing assumptions. Hosts can also fail in a variety of ways. In this
paper we consider only the simplest, ‘crash’ failure [Mul93, §2.4].

Our network has no interesting topological structure. It can always receive

a new datagram, and can always deliver any datagram it has, with rules similar
to those of Honda and Tokoro’s asynchronous 7-calculus [HT91].

2.3 Highlights of the Host Semantics

We now highlight a few of the most interesting parts of the host semantics, il-
lustrating some (10 out of 72) of the host transition axioms. The definitions of
several auxiliary functions are omitted. We aim to give some feeling for the intri-
cacies of UDP sockets and to demonstrate that a rigorous treatment is feasible,
without (for lack of space) fully explaining our semantics.

2.3.1 Ports: Privileged, Ephemeral, and Unused, and Autobinding
The ports 1..65535 of a host are partitioned into the privileged = {1, ..,1023},
the ephemeral = {1024, ..,4999}, and the rest (these sets are implementation-
dependent; we fix on the Linux defaults). The unused ports of a host are the
subset of {1,..,65535} that do not occur as the local port of any of its sockets.
One can bind the local port of a socket either to an explicit non-privileged
value, eg. the p' = 7654 of the e, example in §1.6, or request the OS to choose
a unused port from the set of ephemeral ports. The latter autobinding can be
done by invoking bind with a * in its portf argument, as in the bind.2 rule:

bind.2 (1i,x) succeed, autobinding
F(ifds, RUN, SOCK(fd, *, %, x, *, es, f, mq))

DU, f(ifds, RET (OK()), SOCK(fd, i, 1p',, %, %, s, f, mq))

p'; € unused(F') Nephemeral and i € ifds

To reduce the syntactic clutter in rules, we define several classes of contexts that
build a host. Here F ranges over contexts of the form HOST(-1, -2, S(3), 0q, oqf),
where S is a socket list context, of the form s; @[_]@sg. The rule also requires
the TP address ¢ to be one of those of this host. Autobinding can also occur
in connect (if one connects a socket that does not have a local port bound), in
disconnect, in sendto, and in recvfrom.

2.3.2 Message Delivery to the Net In the simplest case, sending a UDP
datagram involves two host transitions: one that constructs the datagram and
adds it to the host outqueue, and one that takes it from the outqueue and outputs
it to the network. These are given by the host transition axioms below.

sendto.1 succeed . .
HOST(Zde, RUN7 S(SOCK(fda 1S1,PS1,152,PS2, *7f7 mQ))a 0q, OQf)
sendto(fd,ips,data,nb)

\
7

HOST(ide, RET (OK())a S(SOCK(fda Z.51 5 Tpl1) 7;82,]752, *7f7 mQ))a oqla OQ]“)

p'; € autobind(ps;, S)
and (oq', oqf', TRUE) € dosend(ifds, (ips, data), (is1, 10, is2, psz2), 0q, oqf)
and size(data) < UDPpayloadMax and (ips # * or ise # x).

In sendto.1: S is a socket list context, allowing the fd socket to be picked out;
the autobind function provides a nondeterministic choice of an unused ephemeral
port, if the local port of this socket has not yet been bound; the dosend function

constructs a datagram, using the ips argument to sendto and the IP addresses
and ports from the socket, and adds it to the outqueue (or fails, if the queue is
full); the length of data must be less than UDPpayloadMax; and at least one of
the ips argument and the socket must specify a destination IP address.

delivery.out.1 put UDP or ICMP to the network from oq
HosT(ifds, t, s, og, ogf)

Host(ifds, t, s, oq’, ogf")

IP (i3,i;,body)
— e,

(TP (is, iy, body)), o¢', ogf") € dequeue(og, ogf)
and i; ¢ LOOPBACK UMARTIAN and is ¢ MARTIAN

In delivery.out.1: the dequeue function picks a datagram off the outqueue
(nondeterministically resetting the ogf flag), and checks the datagram has non-
martian source and destination addresses [Bak95, §5.3.7]. It outputs the data-
gram to the network.

2.3.3 Return From a Fast Call After the invocation of a fast call, eg. an
instance of the sendto.1 rule above, the host thread state is of the form RET v,
recording the value v to be returned to the thread by ret.1 below.

ret.1 return value v from fast system call to thread
HosT(ifds, RET v, s, ogq, ogf)

iHOST(ifds, RUN, s, 0q, ogf)

2.3.4 Message Delivery from the Net If the thread invokes recvfrom on a
socket fd that does not have any queued messages, with the ‘non-blocking’ flag
argument FALSE, the thread will block until a message arrives (or until an error
of some kind occurs).

recufrom.2 block, entering Recvfrom?2 state
F(Zfdsa RUN7 SOCK(fda i81,PS1,182, PSe, *7f’ NIL))

reefromJAFASE), b (ifds, RECVFROM2 fd, SOCK(fd, isy,1p',, iss, pse, %, f, NIL))

p'; € autobind(ps;,socks(F))

As in bind.2 and sendto.1, the local port of the socket will be automatically
bound (to an unused ephemeral port) if it is not already bound.

When a UDP datagram, eg. IP(is,i;, UDP(pss, ps;, data)), arrives at a host,
the 4-tuple (is,pss,i;,ps;) is matched against each of the host’s sockets, to
determine which (if any) the datagram should be delivered to. This matching
compares the 4-tuple with each SOCK(.., is7, pss, is2, pse, ..), giving a score from
0 to 4 of how many elements match, treating a % in the socket elements as a
wildcard. The lookup function takes a list s of sockets and a datagram 4-tuple
(i3, pss, iy, ps;), returning the set of sockets with maximal non-zero scores. The
datagram is delivered to one of these sockets, by adding it to the end of the

socket’s message queue mgq. This is expressed in the basic delivery.in.udp.1 rule
below.

delivery.in.udp.1 get UDP from network and deliver to a matching
socket

Host(ifds, t, s, oq, ogf)
sHosT(ifds, t, S(Sock(fd, is;, psy, is2, pse, es, f,

mg:: (IP(is, iy, UDP (pss, ps, , data)), ifid))), og, oqf)

IP(ig,i;,UDP(pss3,ps;,data))

SOCK(fd7 Z-31 , DS1, iSQ,pSQ, esafa m(I) € IOOkup S (i37p53, Z4,p34)
and S(SOCK(fda 181 , PS1, iSQ,pSQ, es,f, mQ)) =S

and (ifid, iset,_,) € ifds and i, € iset

and iy ¢ LOOPBACK and is ¢ MARTTIAN U LOOPBACK

After this, a blocked recvfrom will be able to complete, using the recufrom.6
rule.

recufrom.6 slow succeed
F(ifds, RECVFROM2 fd,SOCK(fd, is;,1py,iS2,pSe, *, [,
(IP(ig,i;, UDP(pss, ps;, data)), ifid) :: mq))

M)F(ifdsa RUN7 SOCK(fda Z.51) Tpl) i527p527 *7f7 mQ))

2.3.5 ICMP Generation If a UDP datagram arrives at a host (so its des-
tination IP address is one of the host’s) but no socket matches its 4-tuple
(i3, pss, iy, ps;) then the host may or may not send an ICMP_PORT_UNREACH
message back to the sender. This is dealt with by the rule below (in the non-
loopback case). Note that the ICMP message is added to the host’s outqueue og,
not put directly on the network. This uses an auxiliary function enqueue which
is also used by dosend.

delivery.in.udp.2 get UDP from network but generate ICMP, as no
matching socket
HosT(ifds, t, s, oq, ogf)

IP(@',;,Z'4,UDP(ps,;,pn,data))\HOST(ifds P Oq, OQ]“)
s by 5,y ’

iy € ifds and lookup s (is, pss,is,ps;) =0

and (oq', oqf', ok) € {(oq, ogf , TRUE)} U

enqueue(IP(iy, is, ICMP_PORT_UNREACH((is, pss, iy, ps;)), 04, ogf)
and iy ¢ LOOPBACK and is ¢ MARTTIAN U LOOPBACK

2.3.6 Asynchronous Errors When an ICMP_PORT_UNREACH message
arrives at a host, it is matched against the sockets, in roughly the same way that
UDP datagrams are. If it matches a socket (which typically will be the one used
to send the UDP datagram that generated this ICMP) then the error should
be reported to the thread. The arrival and processing of the ICMP message is

asynchronous w.r.t. the thread activity, though, so what happens is simply that
the error flag es’ of the socket is set, in this case to fECONNREFUSED.

delivery.in.icmp.1 get ICMP from the network, setting error in a
matching socket
HosT(ifds, t, s, oq, ogf)
IP (i} i3 ICMP.X_UNREACH (i5,p57.,i .p3;))

7

Host(ifds, ¢, S(SoCK(fd, is;, psi, ise, pse, es', f, mq)), oq, ogf)

S(SOCK(fda isl yDS1, is?aps.?a esafa mQ)) =S

and SOCK(fd, is1, psi1,is2, psa, es, f, mq) € lookup s(is,pss, iz, ps;)

and m = IP(ij, i3, ICMP_X_UNREACH(i3, pss, iy, ps;))

and i} € ifds and —(loopback(m) v martian(m))

and es’ =1if (isg # *) or —(bsdcompat f) then TECONNREFUSED else es

Here X is either HOST or PORT. There are sanity constraints on the IP ad-
dresses involved, and the behaviour differs according to whether the bsdcompat
socket flag is set. Note also that unmatched ICMPs do not themselves generate
new ICMPs — there is no analogue of delivery.in.udp.2 for ICMPs.

The error flag may cause subsequent sendtos or recvfroms to fail, returning
the error and clearing the flag, for example in the rule below.

sendto.5 fail, as socket in an error state
F(Zfdsa RUN7 SOCK(fda Z.51) Tpl) 7;82,]752, Teafa mQ))
SendtO(fd’ws’dam’nb)>F(z’fds, RET (FAIL e),SOoCK(fd, is;,1py,iS2, pSe, *, [, mq))

2.3.7 Local Errors A number of other sources of error must be dealt with.
Firstly, there are straightforward erroneous parameters. Any call that takes an
fd can return ENOTSOCK or EBADF if given a file descriptor that is not a
socket. For bind we also have errors for a privileged port, a port already in use
(modulo the reuseaddr flags), an IP address that is not one of the host’s, and
a socket which already has a non-* local port. For sendto we have errors if the
destination is % and the socket is unconnected, and if the data is bigger than
UDPpayloadMax. Both sendto and recvfrom return EAGAIN if the non-blocking
flag argument is set but the call would block.

Secondly, any of the slow calls (sendto, recvfrom, select) can return EINTR
from the blocked state if the system call is interrupted. Our model does not con-
tain the sources of such interrupts, so all we can do is include a nondeterministic
rule allowing the error to occur.

Thirdly, there are pathological cases in which the OS has exhausted some
resource. A call to socket can return EMFILE or ENFILE, if there are too
many open files or the file table overflows, and all calls can return ENOMEM or
ENOBUFS if the OS has run out of space or buffers. Again, these are modelled
by purely nondeterministic rules. We must also deal with the possibility that all
the ephemeral ports are exhausted.

2.3.8 Loopback A datagram sent to a loopback address, typically 127.0.0.1,
will be echoed back — without reaching the network. To model loopback, we use
a number of additional delivery rules which are essentially the compositions of
delivery.out.x and delivery.in.x rules. For example, a rule delivery.loopback.udp.1
removes a loopback UDP from a host’s outqueue and delivers in to a matching
socket, in a single step.

2.4 Sanity Properties

We have proved type preservation and progress theorems for the model, and a
semideterminacy result. The latter states roughly that for a given system call
and host state, either the call succeeds (and exactly one rule applies) or it fails
(several error rules may be in competition). The combination of the progress
result, the thread LTS axioms and the network SOS rules exclude pathological
deadlocks.

3 MiniCaml

MiniCaml is designed to be a sublanguage of OCaml 3.00 [L100]. Its types (with
corresponding constructors) are given by the grammar marked TL in Figure 1
(except T err), together with:

T:o=---|T—>T"|Tref |exn

The syntax, typing rules and reduction rules are standard, with additions to
define an LTS satisfying the axioms of §2.2.1. We also prove theorems stating
type preservation and absence of runtime errors.

We have written an OCaml module Udplang which implements almost all
of LIB (together with the required types and constructors). The example pro-
grams in this paper are automatically typeset from working code, omitting an
open Udplang;; at the beginning of each program and using mathematized con-
crete syntax, writing (), T1,te, x,— for unit, T 1ift, Lift e, Star and ->.

4 Validation

To develop and validate our host semantics, we set up a test network: a non-
routed subnet with four dedicated machines (two Linux and two Win2K), ac-
cessible via an additional interface on one of our Linux workstations. In a few
cases we ran tests further afield. Tests were written in C, using the glibc sock-
ets library. Initially we wrote a large number of ad hoc tests, C programs that
display the results of short sequences of socket calls, and also observed the re-
sulting network traffic with the tcpdump utility. Certain hard-to-test issues were
resolved by inspecting the Linux kernel source code.

Later, to more thoroughly validate the semantics as a whole, we translated
the host operational semantics into C; we wrote an automatic tool, udpautotest,

that simulates the model in parallel with the real socket calls. This tests repre-
sentatives of most cases of the semantic rules, giving us a high level of confidence
in our model. It helped us greatly in correctly stating the more subtle corners
of the semantics, and will hopefully make determining the semantics of other
implementations (such as Win2K or BSD) relatively routine.

The closed-box testing has a number of limitations, however (which we dis-
cuss further in [SSWO01]). We do not directly observe the internal socket state
(of which our SOCK structures are an abstraction), some pathological cases are
hard to set up, and it is clearly impossible to exhaust all cases. Loss is very
rare on our single subnet, and as far as we are aware reordering and duplication
never occur. We therefore cannot regard the semantics as definitive, and would
be interested to hear of discrepancies between it and real system behaviour.

We have endeavoured to make the model as accurate as possible, for the
fragment of socket programming and the level of abstraction chosen in §1.7, and
as far as one can with an untimed interleaving semantics. Nonetheless, it is in
some respects idealised. Some of these are resource issues — we do not bound
the MiniCaml space usage, and have a purely nondeterministic semantics for
OS allocation failures. We simplify the real full-outqueue behaviour, and use
an approximation to the treatment of ‘martian’ datagrams. We also assume
unbounded integers and perfect UDP checksums, and have atomic transitions
that have a subtle relationship to the detailed OS process scheduling,.

No attempt was made to validate either the language semantics for MiniCaml
(other than to check the evaluation order, which differs between the native-code
generator and the bytecode interpreter), or the Udplang OCaml binding we used
to test our examples. In the latter case, we assume the OCaml Unix module is a
trivial binding to the C sockets interface; our Udplang module does little more.

5 Examples

5.1 The Single Sender We first show the possible traces of the single sender
and single receiver from §1.6. Consider

N = ALAN-e; | ALAN-HOST(ifds,; ,s RUN,], [], FALSE)
| KURT-€, | KURT-HOST(ifds,nr, RUN, [],[], FALSE)

and discount rules modelling interrupted system calls or the OS running out of
file descriptors or kernel memory. Suppose loss (drop.1) may occur, but dupli-
cation (dup.1) and host failure (host.crash.x) do not.

One behaviour involves message m = IP (iypax, tkurr, UDP(Tp1, 17654, "hello"))
(for p; € ephemeral) being successfully sent, with observable trace

KURT-console "ready"\ ALAN-console "sending"\ KURT-console "hello"

N > > > N'

and resulting state

N'"= ALAN-RET,.iq | ALAN-HOST(4fds, ,x, TERM, [], [], FALSE)
| KURT-RET\oi¢ | KURT-HOST(4fds ypr, TERM, [], [], FALSE)

)

It is also possible for the "hello" to be received and printed with the message
m arriving at KURT after KURT’s bind but before the output of "ready", giving
trace

ALAN-console "sending"\ KURT-console "ready"\ KURT-console "hello"\
7

N N’

ending in the same state. If message m arrives at KURT before KURT’s bind,
however, it will be discarded, giving a trace

ALAN-console "sending" KURT-console "ready"
7

N \ NII

ending with ALAN’s state terminated as before but KURT in a blocked RECVFROM2
state. Here KURT may or may not generate an ICMP, which may or may not be
delivered to ALAN in time to set the socket error flag, but as the socket is not
used again and is removed on exit this is not visible.

Finally, there are two observable traces if message m is lost: the trace above
and its permutation. In both ALAN runs to completion and KURT remains blocked;
no ICMPs are generated.

5.2 The Single Heartbeat As a more realistic example, we present code for
a simple heartbeat algorithm, a program e, that checks the status of another
program ep (which one might think of running as part of a large application):

epA = e =

let p = port_of int (7655) in

let i = ip_of string ("192.168.0.11") in
let fd = socket() in

let - = bind(fd, *,Tp) in

let - = connect(fd, 1,1p) in

let _ = print_endline_flush "pinging" in
let - = sendto(fd, *, "ping", FALSE) in
let (fds, -) = select([fd], [], 15000000) in

if fds =[] then
print_endline_flush "dead"
else
try

let (-, -, v) = recvfrom(fd, FALSE) in
print_endline flush v
with
UDP(ECONNREFUSED)
— print_endline_flush "down"

let p = port_of int (7655) in

let ¢ = ip_of string ("192.168.0.14") in
let fd = socket() in

let - = bind(fd, *, Tp) in

let - = connect(fd, i, 1p) in

let _ = print_endline_flush "ready" in
let _ = recvfrom(fd, FALSE) in

let - = sendto(fd, %, "ack", FALSE) in
print_endline flush "done"

Program epg, which should be run on KURT, displays "ready" on the console,
waits for a message from ALAN on a known port, and responds with an "ack"
message when the message arrives.

Program e 4, which should be run on ALAN, displays "pinging" and checks
the status of the remote machine KURT by sending a message on the known port.
It then waits up to five seconds for a response (either a UDP reply datagram

or an ICMP_PORT_UNREACH error). If there is none, it displays "dead";
if the response is a UDP datagram it displays its contents to indicate KURT is
alive; and if the response is an ICMP it displays "down" to indicate that KURT
is running but the responder thread ep is down. Note that e 4 will print "dead"
if KURT is really dead, but it may also do so if the initial datagram is lost, or if
the reply datagram or ICMP is lost, or if the reply ICMP is not generated.

Again discount rules modelling interrupted system calls or the OS running
out of resources, but now allow loss, duplication and failure. Assuming further
that only e4 and ep run, on an otherwise-quiet network, we can prove that no
uncaught exceptions arise during the execution of e4. No errors can arise from
any line of e4 apart from the recvfrom call, and the only error this may return is
ECONNREFUSED. This means we are justified in omitting all error handling
from the code of e4. Further, we can show that the sendto and recvfrom calls
in e4 will never block. On the other hand, the message duplication rule dup.!
means that eg might block temporarily in the sendto call, if the output queue
has been filled with ICMP_PORT_UNREACH messages generated by "ping"
messages arriving before the bind call, but at least one "ping" arrives after the
bind. It is still guaranteed that no system call in eg will fail.

6 Related Work

Work on the mathematical underpinnings of distributed systems has been car-
ried out in the fields of distributed algorithms, process calculi, and program-
ming language semantics. Distributed algorithms research has developed sophis-
ticated algorithms, often dealing with failure, and proofs of their properties,
for example using the IO automata of Lynch et al. [Lyn96] and the TLA of
Lamport [Lam94]. Work on process calculi has emphasised operational equiv-
alences and compositional descriptions of processes, and recently systems with
dynamic local name generation — with calculi based on the 7-calculus of Milner,
Parrow and Walker [MPW92]. A few calculi have dealt with failure, including
[AP94,FGL1T96,RHI7,BH00]. Building on process calculi, a number of concur-
rent or distributed programming languages have been designed, with associated
semantic work, including among others Occam, Facile, CML, Pict, JoCaml, and
Nomadic Pict [INM87,TLK96,Rep91,PT00,FGL*96,WS00]. Little of this work,
however, deals with the core network protocols, and as far as we are aware none
addresses the level of abstraction of the sockets interface. Further, most does
not support reasoning about executable code (or adopts a much higher level of
abstraction). The most relevant work is discussed below.

The IOA Language [GLV00] is a language for expressing IO automata di-
rectly. Work on proof tools and compilation is ongoing. This will allow reasoning
about executable sophisticated distributed algorithms that interact with the net-
work using higher-level abstractions than the sockets library, modulo correctness
of the compiler. Using IOA rather than conventional programming languages aids
reasoning, but may reduce the applicability of the method.

The approach of Arts and Dam [AD99] is similar to ours: they aim to prove
properties of real concurrent programs written in Erlang. They describe an oper-

ational semantics for a subset of Erlang, a logic for reasoning about this subset,
and use an automated tool to verify that a program satisfies properties expressed
in the logic.

Less closely related, Biagioni implemented TCP/IP in ML [Bia94] as part of
the Fox project, and the Ensemble system of [Hay98] provides group communica-
tion facilities above UDP. The latter is implemented in OCaml; some verification
of optimisations to the Ensemble protocol endpoint code has been carried out.
Neither involve a semantics of the network (or, for Ensemble, the underlying
sockets implementation), however. At a lower level, work on the semantics of ac-
tive networks [Swi01] has developed proofs of routing algorithms. Related work
on monitoring protocol implementations — TCP in particular — from outside the
hosts is presented in [BCMGO1].

7 Conclusion

We have described a model that gives a rigorous understanding of programming
with sockets and UDP, validated against actual systems. This demonstrates that
an operational treatment of this level of network programming — traditionally
regarded as beyond the scope of formal semantics — is feasible.

The model provides a basis for two directions of future work. Firstly, we plan
to investigate the verification of more interesting examples, developing proof
techniques that build on those of both the distributed algorithm and process
calculus communities. Secondly, we plan to extend the model to cover a larger
fragment of network programming, in a number of ways; we are considering
machine support for managing the large definitions that will certainly result. We
intend to define other language bindings, eg. for a Java fragment. Incorporating
fairness and time is required to capture interesting properties of algorithms. As
discussed in §4, we plan to apply our validation tools to other operating systems,
to identify a common semantic core. Finally, we would like to address more of
the points listed in §1.7, especially aspects of TCP and multi-threaded hosts.

Acknowledgements Sewell is funded by a Royal Society University Research
Fellowship. Serjantov and Wansbrough are funded by EPSRC research grant
GRN24872 Wide-area programming: Language, Semantics and Infrastructure
Design.

References

[AD99] T. Arts and M. Dam. Verifying a distributed database lookup manager written
in Erlang. In World Congress on Formal Methods (1), pages 682-700, 1999.

[AP94] R. Amadio and S. Prasad. Localities and failures. In Foundations of Software
Technology and Theoretical Computer Science, LNCS 880. Springer, 1994.

[Bak95] F. Baker. Requirements for IP version 4 routers. Internet Engineering Task
Force, June 1995. http://wuw.ietf.org/rfc.html.

[BCMGO1] K. Bhargavan, S. Chandra, P. J. McCann, and C. A. Gunter. What packets
may come: Automata for network monitoring. In Proc. POPL 2001, January
2001.

[BHOO] M. Berger and K. Honda. The two-phase commit protocol in an extended -
calculus. In Proceedings of the 7th International Workshop on Ezpressiveness
in Concurrency, EXPRESS 00, 2000.

[Bia94] E. Biagioni. A structured TCP in standard ML. In Proc. SIGCOMM, 1994.

[Bra89] R. Braden. Requirements for internet hosts — communication layers, STD 3,
RFC 1122. IETF, October 1989. http://www.ietf.org/rfc.html.

[CSR83] University of California at Berkeley CSRG. 4.2BSD, 1983.

[FGL196] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus
of mobile agents. In Proc. CONCUR ’96, LNCS 1119. Springer, August 1996.

[GLVO0O0] S.J. Garland, N. Lynch, and M. Vaziri. IOA reference guide, December 2000.
http://nms.lcs.mit.edu/“garland/I0A/.

[Hay98] M. Hayden. The Ensemble System. PhD thesis, Cornell University, January
1998. Technical Report TR98-1662.

[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous communica-
tion. In Proceedings of ECOOP 91, LNCS 512, pages 133-147, July 1991.

[IEE00] IEEE. Information Technology — Portable Operating System Interface
(POSIX) — Part zz: Protocol Independent Interfaces (PII), P1003.1g. 2000.

[INM87] INMOS. Occam2 Reference Manual. Prentice-Hall, 1987.

[LT00] X. Leroy et al. The Objective-Caml System, Release 3.00. INRIA, April 27
2000. http://caml.inria.fr/ocaml/.

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872-923, May 1994.

[Lyn96] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts
I + II. Information and Computation, 100(1):1-77, 1992.

[Mul93] S. J. Mullender. Distributed Systems. ACM Press, 1993.

[Pos80] J. Postel. User Datagram Protocol, STD 6, RFC 768. Internet Engineering
Task Force, August 1980. http://www.ietf.org/rfc.html.

[Pos81] J. Postel. Internet Protocol, STD 6, RFC 791. Internet Engineering Task
Force, September 1981. http://www.ietf.org/rfc.html.

[PT00] B. C. Pierce and D. N. Turner. Pict: A programming language based on the
pi-calculus. In Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 2000.

[Rep91] J. Reppy. CML: A higher-order concurrent language. In Proc. Programming
Language Design and Implementation (PLDI), pages 293-259, June 1991.

[RH97] J. Riely and M. Hennessy. Distributed processes and location failures. In
Automata, Languages and Programming, LNCS 1256. Springer, 1997.

[Sew97] P. Sewell. On implementations and semantics of a concurrent programming
language. In Proceedings of CONCUR 97, LNCS 1243, pages 391-405, 1997.

[SSWO01] A. Serjantov, P. Sewell, and K. Wansbrough. The UDP calculus: Rigorous se-
mantics for real networking. Technical Report 515, Computer Laboratory, Uni-
versity of Cambridge, 2001. http://www.cl.cam.ac.uk/users/pes20/Netsem.

[Ste94] W. R. Stevens. TCP/IP Illustrated: The Protocols, volume 1 of Addison—
Wesley Professional Computing Series. Addison—Wesley, 1994.

[Ste98] W. R. Stevens. UNIX Network Programming, Networking APIs: Sockets and
XTI, volume 1. Prentice Hall, second edition, 1998.

[Swi0l] The SwitchWare project. http://www.cis.upenn.edu/~switchware, 2001.

[TLK96] B. Thomsen, L. Leth, and T.-M. Kuo. A Facile tutorial. In Proceedings of
CONCUR 96, LNCS 1119, pages 278-298. Springer-Verlag, August 1996.

[WS00] P.T.Wojciechowski and P. Sewell. Nomadic Pict: Language and infrastructure
design for mobile agents. IEEE Concurrency, 8(2):42-52, April-June 2000.

