
Rigour is good for youand feasible:
reflections on formal treatments of

C and UDP sockets

Michael Norrish Peter Sewell Keith Wansbrough
fFirstname.Lastnameg@cl.cam.ac.uk

Computer Laboratory, University of Cambridge, Cambridge CB3 0FD

1. Introduction

We summarise two projects that formalised complex real
world systems: UDP and its sockets API, and the C pro-
gramming language. We describe their goals and the tech-
niques used in both. We conclude by discussing how such
techniques might be applied to other system software and
by describing the benefits this may bring.

2. Specifying UDP and the sockets API

We recently formalised a substantial behavioural speci-
fication, that for the Internet protocol UDP, as presented to
programmers through thesockets interface[12, 10, 1, 5, 11].
Our aim was to make clear the behavioural subtleties of the
widely used – but poorly documented – sockets API. This
clarification of the interface should ease the production of
robust software that uses it. The specification was necessar-
ily developedpost hoc; we developed it by referring to ex-
isting documentation (RFCs and source code, for example),
and by experimentally checking existing implementations,
using automated tools. We produced the specification in the
following three stages:

Syntax We developed a precise notation for describing
our systems. We specified abstract syntax with which to
denote values corresponding to threads, hosts, messages,
sockets, an abstract network, and a simple functional lan-
guage in which to write programs for threads. Specifying
syntax can be seen either as writing a grammar (using BNF
notation, say), or as writing data type descriptions in a pro-
gramming language, particularly one with convenient sup-
port for expressing disjoint unions and recursion.

For example, using an ML-like notation, the body of an
IP message is specified as in Figure 1. The first possibil-
ity of the three above corresponds to a UDP message, with
optional destination and source ports, as well as a message
body. The remaining two possibilities correspond to the two

types of ICMP message we modelled, unreachable host and
port messages respectively, each with source and destina-
tion details recorded. This is an abstraction of the structure
of actual IP packets: there are many other fields, but they are
not significant for programs that use the part of the sockets
interface we consider, so need not be modelled.

Typing We developed a set of typing rules, expressing
constraints on the values generable from the abstract syn-
tax. For example, our network hosts include a list of ac-
tive sockets and we require that each of these have a unique
file descriptor. Another constraint is that no message in a
socket’s incoming queue should include a “martian” IP ad-
dress. These constraints are both examples ofassertions,
requirements that might be checked dynamically. We also
specified a more traditional type system for our miniature
programming language.

Behaviour Finally, we described the legal behaviours of
the system. Using a labelled transition system (a particular
form of automata), we specified the possible ways in which
the system might evolve. Our model encompasses threads
in hosts, the various non-deterministic behaviours assumed
of networks (message dropping, duplication and misorder-
ing) and timing requirements.

We illustrate with two examples from the 78 rules that
describe the interactions between network hosts, the net-
work and the threads of a process running on a host. Each
rule is of the general form

h

0

label

h

Hereh

0

is the state of a network host’s kernel, andlabel

describes an interaction between that kernel and either the
network or the threads of a user-level process. The result of
this interaction is presented in the expressionh.

In Figure 2, our first rule describes a thread with identi-
fier tid connect-ing a socket to an external address. The
evaluation contextF picks out the pertinent components of

1

ipBody = UDP of (port option * port option * string)
| ICMP_HOST_UNRCH of (ip * port option * ip * port option)
| ICMP_PORT_UNRCH of (ip * port option * ip * port option)

Figure 1. Type declaration for the body of an IP message

the given host. Theifds component is the host’s network in-
terfaces. The next two components specify that in the state
before the interaction, the host records that threadtid is run-
ning. After the interaction (threadtid making its call), the
host records that the host is due to return a unit value (rep-
resenting success) to the same thread. In the meantime, that
thread is blocked waiting for this return to happen.

The main effect of the call is to alter the state of the
socket with the file descriptorfd , which is the last compo-
nent of the tuple. It has its destination IP address and des-
tination port (fourth and fifth fields within the SOCK tuple)
modified to take on the values of thei andps parameters.
The source address and port also change, with the source
port becoming “autobound” if it is not bound already, and
the source address being generated by examining the host’s
current interfaces (ifds) and the destination.

Our second example, in Figure 3, illustrates a host re-
ceiving a packet off the network and delivering to a match-
ing socket. The contextS is an injective function that in-
serts a socket (heres, initially) into an implicit list of other
sockets. The rule describes a transition where one of the
host’s sockets changes, but where the host’s other sockets,
and its other components all remain unchanged. The label
on the transition arrow is the incoming packet. Thelookup
function returns the set of scokets that such a packet could
be delivered to, and the other side conditions check that the
IP addresses involved are reasonable. The resulting state is
updated so that the message queue of sockets is extended
with the message, paired with interface information about
how the message was received.

3. Specifying C

A similar approach was taken in the formalisation of the
semantics of C done by the first author [7, 8]. This project
was undertaken with the aim of showing that the tools of the
theoretical community could be used to model a real world
programming language, and do so with high confidence in
the correctness of the result.

Syntax The concrete syntax of C expressions and state-
ments is specified in the ISO Standard [6]. Generating an
abstract syntax that elided details only necessary for parsing
was trivial.

Typing The type system in the standard is carefully de-
scribed in natural language. The formalised system is non-

trivial only in its slightly complicated treatment of l-values
and normal values. For example, the expressione.fld1,
with the fieldfld1 declared as an array, can only be a nor-
mal value if the expression e is an l-value. There is also a
lot of tedious detail in specifying parts of the system like the
usual arithmetic conversions, which determine the types of
the results of binary arithmetic operators.

Behaviour This project did not specify the behaviour of
the standard’s library. A great deal of complexity remains in
the core language, however. In particular, the details of C’s
sequence points, and the degree to which expression evalu-
ation is allowed to refer to and update objects in memory,
are very complicated. These and the standard’s three forms
of under-determinism,implementation-defined, unspecified
andundefinedbehaviours, were modelled very carefully.

The operational rules used have conclusions of the gen-
eral form

he

0

; �

0

i ! he; �i

Here an expressione
0

, coupled with a state�
0

, reduces to
a new expression-state pair. States include, among other
components, the contents of memory, which parts of mem-
ory are allocated, and which parts are initialised.

For example, Figure 4 presents two rules for expres-
sions involving binary operators other than&&, || and,
(comma). The first rule can be paraphrased: ife

1

can take
a step toe0

1

(transforming state�
0

to � on the way), then
the expressione

1

� e

2

can reduce toe0

1

� e

2

. When the
arguments to the operator� have been fully evaluated, the
operator will take effect, reducingvalue

1

� value

2

to the
appropriate result.

By way of contrast, there is one rule for&&, allowing
only the first argument to be evaluated, which enforces that
operator’s “short-circuit” behaviour:

he

1

; �

0

i ! he

0

1

; �i

he

1

&& e

2

; �

0

i ! he

0

1

&& e

2

; �i

C’s rules governing the application of side effects are
similarly under-determined. Side effects need not be ap-
plied as they are generated, nor in order. This under-
determinism is tempered by strong constraints, which deem
certain sequences of memory references and updates to re-
sult in undefined behaviour. Programs that might exhibit
such sequences are in the same class as those that divide by
zero, or access uninitialised memory.

F(ifds ; tid ; RUN
d

; SOCK(fd ;*; ps
1

;*;*; e; f;mq))

tid � connect(fd ; i; ps)

F(ifds ; tid ; RET(OK ())
ds
h

; SOCK(fd ; " i

1

; "p

0

1

; " i; ps; e; f;mq))

where F context(F) ^ i

1

2 outroute(ifds ; i) ^ p

0

1

2 autobind(ps

1

;F)

Figure 2. Performing a connect call

h with sks := S(s)

IP(i

3

; i

4

;UDP(ps

3

; ps

4

; data))

h with sks := S(s with mq := APPEND s:mq [(IP(i

3

; i

4

;UDP(ps

3

; ps

4

; data)); ifd :i�d)℄)

where socklist context(S) ^ s 2 lookup(S(s); (i

3

; ps

3

; i

4

; ps

4

)) ^

ifd 2 h:ifds ^ i

4

2 ifd :ipset ^ i

4

62 LOOPBACK ^

i

3

62 MARTIAN [LOOPBACK

Figure 3. Receiving a packet from the network

he

1

; �

0

i ! he

0

1

; �i

he

1

� e

2

; �

0

i ! he

0

1

� e

2

; �i

he

2

; �

0

i ! he

0

2

; �i

he

1

� e

2

; �

0

i ! he

1

� e

0

2

; �i

Figure 4. Behaviour of C’s binary expressions

4. Reflections

Both projects described above were examples ofpost hoc
specification. Our specifications required us to compare our
developing models with real world, un-formalised, systems.
In the case of C, the un-formalised system was the ISO stan-
dard. Being quite carefully written, checking the formal
specification manually was not infeasible. In addition, the
formalisation was also checked by the proof of a great vari-
ety of additional theorems. These were not necessarily par-
ticularly deep results, indeed were often quite trivial. When
these proofs failed, this pointed out a problem, either in the
model, or occasionally, in expectations of how the model
should behave.

In the case of UDP sockets, there is no such natural-
language standard. The RFCs are not complete, and in any
case specify only the wire behaviour not the sockets API be-
haviour. In addition to consulting documentation, we used
experimental techniques to determine the behaviour of im-
plementations in particular situations. These experiments
were important in determining behaviours in extreme cases
that were often not very well documented.

In both cases, we also used the HOL interactive theorem-
proving system [3, 9]. For the C semantics, HOL was used
from the outset, enabling the definition of a type represent-
ing C syntax, and the appropriate relations, for typing and
behaviour, over those types. Used entirely in this “defi-
nitional capacity”, HOL provides an expressive, statically
type-checked language in which to write logical definitions.
HOL’s theorem-proving facilities were subsequently used
to prove the theorems referred to above.

With UDP, we found HOL’s greatest benefit to be the
sanity checks we were able to make of the specification.
The mechanisation of what was originally a pen-and-paper
specification caught numerous errors. Most of these were
typographical errors, such as using functions or predi-
cates with inappropriate types or numbers of arguments.
Nonetheless, we also later proved that our behavioural sys-
tem preserved an important invariant (or safety) property.
Attempting this proof caught a number of omissions and
errors in the original model, drawing our attention to its ob-
scure corners.

We have yet to marry our specifications of UDP and C to
verification, in any significant way. Nonetheless, our spec-
ifications are valuable in themselves. We have given for-
mal description to large and complicated systems, and in so
doing, have made explicit the contract between users and
implementors of those systems. Our (annotated!) specifica-
tions provide detailed documentation which may be useful
to both users and implementors of UDP sockets and C com-
pilers. For UDP, and with mechanical assistance, we have
explored both the state spaces of the formal system, and also
of the deployed implementations, discovering, for example,

how the Windows and Linux implementations differ.
This is a general phenomenon: while underway, the

specification activity brings benefits of increased under-
standing. Later, the specification is useful as precise doc-
umentation. Subsequent program verification, while desir-
able, remains infeasible in most contexts.

5. Lessons—what others can do

Language designers give rigorous specifications of lan-
guage syntax as a matter of course. Moreover, there are
long-established formal notations for the specification of
concrete syntax, and tools to support the use of these no-
tations. Syntax is specified not just for programming lan-
gauges, but other formal languages such as HTML and
XML.

Rigorous definitions of type systems is less common,
though standard practice in the programming language and
semantics communities. These definitions are usually ex-
pressed in informal mathematics, using a body of widely-
accepted stylised idioms, rather than in any particular log-
ical system. General tool support is lacking, though inter-
active proof assistants such as HOL are increasingly used
in large-scale work. In addition to the often elaborate type
systems constructed around research calculi and languages,
types have been usefully deployed in, for example, the
Xduce project [4], which defines regular expression types
for manipulating XML data, and the Hafnium project [2]
which used type inference to address the Y2K problem for
COBOL programs.

The situation for behavioural specification is even worse.
A very weak form is the use of assertions, becoming more
widespread. “State-of-the-art” in most fields is more-or-
less precise natural language. Network protocols at lower
levels of abstraction are specified precisely, in RFCs and
other documentation, and some hardware components do
have formal specifications, but we are unaware of signifi-
cant examples at the systems level.

We do not propose a universal methodology for writing
formal specifications to address these problems. Indeed, we
believe that no such methodology is pragmatically viable.
Our experience suggests, however, that a number of impor-
tant principles apply:

Specify in small pieces.Do not set out to specify every-
thing all at once, nor in exhaustive detail. Attack
tractable pieces of systems, at appropriate levels of de-
tail, and begin with simple aspects such as typing re-
quirements.

Choose the right pieces.Formal specification is most
valuable for systems with subtle behaviour, for which
it is hard to develop a sufficiently good informal under-
standing, and (obviously) for systems for which cor-

rectness matters. Concurrent systems, including com-
munication and security protocols, often benefit.

Use intellectual tools.Draw on techniques from appropri-
ate fields, such as operational semantics, type theory,
programming language theory, and concurrency the-
ory. Take an existing specification language/idiom or
build a new one if required, as appropriate to the prob-
lem. Make sure, however, that whatever specification
notation is used has a precise meaning.

Use mechanical tools.Use a notation with tool support, so
that mechanical analysis and checking of the specifica-
tion is possible. This might be simple type-checking,
model-checking, machine-assisted theorem proving,
or automated testing.

Begin as early as possible.Post hocspecification activi-
ties such as the two we described here have value, but
if used at the design stage then rigorous treatments can
be valuable in other ways, providing early understand-
ing and a push towards clean design.

In the long term, we believe greater rigour is essential in
the development of more robust software at all levels; there
are many behaviourally subtle aspects of operating systems
which could benefit from it, and for which the tools are now
available.

References

[1] U. CSRG. 4.2BSD, 1983.
[2] P. H. Eidorff, F. Henglein, C. Mossin, H. Niss, M. H.

Sørensen, and M. Tofte. AnnoDomini: from type theory to
year 2000 conversion tool. InPOPL 99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 1999.

[3] M. J. C. Gordon and T. Melham, editors.Introduction to
HOL: a theorem proving environment. Cambridge University
Press, 1993.

[4] H. Hasoya and B. C. Pierce. Regular expression pattern
matching for XML. In The 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 67–80, 2001.

[5] IEEE and The Open Group.IEEE Std 1003.1TM-2001 Stan-
dard for Information Technology — Portable Operating Sys-
tem Interface (POSIXR
). Dec. 2001. Issue 6. Avail-
able http://www.opengroup.org/onlinepubs/
007904975/toc.htm.

[6] Programming languages – C, 1990. ISO/IEC 9899:1990.
[7] M. Norrish. C formalised in HOL. PhD thesis, Computer

Laboratory, University of Cambridge, 1998.
[8] M. Norrish. Deterministic expressions in C. In S. D. Swier-

stra, editor,Programming languages and systems, 8th Euro-
pean Symposium on Programming, volume 1576 ofLecture
Notes in Computer Science, pages 147–161. Springer, March
1999.

[9] M. Norrish and K. Slind. A thread of HOL development.
Computer Journal, 45(1):37–45, 2002.

[10] A. Serjantov, P. Sewell, and K. Wansbrough. The UDP calcu-
lus: Rigorous semantics for real networking. InProceedings
of TACS 2001: Theoretical Aspects of Computer Software
(Sendai, Japan), LNCS 2215, pages 535–559, Oct. 2001.

[11] W. R. Stevens.UNIX Network Programming Vol. 1: Net-
working APIs: Sockets and XTI. Prentice Hall, second edi-
tion, 1998.

[12] K. Wansbrough, M. Norrish, P. Sewell, and A. Serjantov.
Timing UDP: Mechanized semantics for sockets, threads and
failures. InProgramming languages and systems, 11th Eu-
ropean Symposium on Programming, Lecture Notes in Com-
puter Science. Springer, 2002. To appear.

