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Abstract

This is a course of 20 lectures for first year undergraduates. The content may be
quickly inferred from the Section headings.

1 Introduction

This is a course (EE1.ma.A1) for about 70 first year students in the Faculty of Engineering
and Physical Sciences at the University of Surrey, at Guildford, in the Autumn Term of
2010. They have a variety of backgrounds with different nationalities and differing bodies
of previous knowledge. The lecture material which I have written below, and which I have
delivered in 20 lectures, is supported by discussions of unassessed work with tutors, and by
associated homework marked by graduate students. Previous lecturers for this course were
Dr. Anne Skeldon (before 2003), Professor Ian Roulstone (2003 - 2007) and Dr. Henk Bruin
(2008 - 2009). The notes below follow closely the topics treated by Dr. Skeldon, but the
material has been completely rewritten by me. The students were each given a copy of a
118-page booklet containing another version of the course notes, and 8 Assignment sheets.

2 Books

No textbook is uniquely recommended. Many are available, often very large, with more
than 1000 pages, and therefore covering much more material than is described here.

The best book that I know which covers the area sometimes called Mathematical Meth-
ods is

Calculus, by J.Marsden and A.Weinstein, Benjamin/Cummings Publishing Co., Menlo
Park, California. 1980. 1012 pp.

More recent books are

Engineering Mathematics, by K.A.Stroud and D.J. Booth, Palgrave/Macmillan. 2007.
1258 pp., and

∗Department of Mathematics, University of Reading, Whiteknights, P.O. Box 220, Reading, RG6 6AX
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Modern Engineering Mathematics, by G.James, Pearson/Prentice Hall, 2001. 978 pp.

Other books with similar scope include

Calculus, by R.A.Adams, Addison-Wesley. 1999. 1117 pp., and

Calculus with Analytic Geometry, by C.H.Edwards and D.E.Penney, Prentice Hall.
1998. 1120 pp.

3 Elementary operations

The operations of addition, subtraction, multiplication and division, and the rules of prece-
dence for the order of performing these operations are mentioned. For example, brackets
are removed from inside to out, and brackets are used to indicate the order of operations.

E.g. in arithmetic where we deal only with numbers, we write

6 x (8 - (4 - 5)) = 6 x (8 - (-1)) = 6 x (8 + 1) = 6 x 9 = 54.

6 x 8 - (4 - 5) = 48 - (-1) = 48 + 1 = 49.

Also in algebra, where letters represent numbers,

4a x 6b means (4 x a) x (6 x b) = 4 x a x 6 x b = 4 x 6 x a x b = 24 x a x b = 24 ab.

Where there is no ambiguity we can omit the x sign and agree that writing the symbols
next to each other means multiplication.

3a + 6a = 9a is thus simplified, but 3a + b cannot be simplified further.

Care is required not to confuse the letter x with the multiplication symbol x. Brackets
can avoid use of the latter. For example, we multiply sequentially

(x− 2)(x2 − 4x + 2) = x(x2 − 4x + 2)− 2(x2 − 4x + 2)

= x3 − 4x2 + 2x− 2x2 + 8x− 4 = x3 − 6x2 + 10x− 4.

Don’t confuse z with 2. Write numbers before letters, e.g. 2x not x2. Note the ordering
is that of descending powers.

4 Factorizing

This means identifying terms which can be coupled together, thus:
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y2 + 6y + 8 = y2 + (4 + 2)y + (4 x 2) = (y + 4)(y + 2),

y2 − 6y + 8 = y2 − (4 + 2)y + (-4) x (-2) = (y − 4)(y − 2),

y2 + 2y − 8 = y2 + (4− 2)y + 4 x (-2) = (y + 4)(y − 2).

5 Quadratic equations

“Quadratic” means the highest power present is two, i.e. squared . For example

x2 +6x+8 = 0 is a quadratic equation for x, because the highest power of the unknown
x present is 2.

How do we find x? By factorizing , as follows.

x2 + 6x + 8 = 0 implies (x + 4)(x + 2) = 0,

so either x + 4 = 0 or x + 2 = 0 or both.

Thus x = −4 and x = −2 are two (and the only two) solutions of the quadratic equation.

There is a graphical representation. We imagine the graph

y = x2 − 6x + 8 = (x− 4)(x− 2)

[Diagram]

plotted in the x, y plane. It is a parabola (highest power 2) which cuts the x-axis y = 0
at x = 2 and x = 4.

6 Solution of a general quadratic equation

Solve ax2 + bx + c = 0 where x is the unknown, and a, b, c are given constants.

The method is to “complete the square”, i.e. to rewrite the equation as

a(x + b
2a)2 + c− b2

4a = 0

[Check: a(x2 + bx
a + b2

4a2 ) + c− b2

4a = ax2 + bx + c]

so (x + b
2a)2 = 1

a( b2

4a − c)

x + b
2a = ±

√
b2−4ac

4a2

x = − b
2a ±

√
(b2−4ac)

2a .

3



So general solution for any choice of a, b, c is

x = −b±
√

(b2−4ac)

2a .

7 Example with real roots

A solution is sometimes called a root.

x2 + 6x + 8 = 0.

[Diagram]

This is an example of ax2 + bx + c = 0 with a = 1, b = 6, c = 8 and we can either

quote the formula to give x = −6±
√

(36−32)

2 = 3± 1 = −2 or -4

or factorise the equation giving (x + 4)(x + 2) = 0 and therefore

x + 4 = 0 or x + 2 = 0 with the same result.

So this example x2 +6x+8 = 0 has real roots - 2 and - 4, and a graph of y = x2 +6x+8
can be shown.

In examples which do not look easy we can always quote the formula, but it is better
first to look to see if it is easy to factorise the equation with two linear factors.

8 Example with complex roots

Solve x2 + x + 1 = 0. This is an example of ax2 + bx + c = 0 with a = b = c = 1, so in the
formula b2 − 4ac = 1− 4 = −3, which is negative. Quoting the formula gives

x = −b±
√

(b2−4ac)

2a = −1±
√

(−3)

2 .

There are no real solutions, and this is because the graph of y = x2 + x + 1 does not
cross the x-axis.

To plot it, find the turning point where dy
dx = 2x + 1 = 0 at x = −1

2 , y = 3
4 . Note that

y = 1 at x = 0.

[Diagram]
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9 Complex numbers

Real numbers, whether they be

integers - 93, - 11, 0, 1, 5, 1003,

fractions - 22
7 , - 1

3 , 1
2 , (rational)

non-fractions 3.14159... = π, 2.71828...= e, (irrational)

can each be represented by a point somewhere on the real line.

[Diagram]

Complex numbers are different animals which are defined by introducing a brand new
idea.√

(−1) = i which is defined to be a solution of the equation z2 +1 = 0, so that z2 = −1
is satisfied by two solutions z = ±

√
(− 1) = ±i.

Sometimes j is used instead of i.

We can next use i =
√

(− 1) to define a new idea

x + iy which is called a complex number, in which x and y are real numbers. We often
write

z = x + iy for a complex number having a real part x and an imaginary part iy.

It may seem surprising to introduce an imaginary number
√
−1 = i but it turns out to

be useful.

For example, we can then say that every quadratic equation ax2 + bx + c = 0 has two
solutions

x = −b±
√

(b2−4ac)

2a which will be real if b2 > 4ac and complex if b2 < 4ac.

For example x2 + x + 1 = 0, in which a = b = c = 1, has two solutions

x = −1±
√

(1−4)

2 = −1±i
√

3
2 .

Thus both x = −1+i
√

3
2 and x = −1−i

√
3

2 satisfy x2 + x + 1 = 0. But these solutions are
complex numbers and not real numbers.
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10 Definition of equality

Two complex numbers x + iy and a + ib are equal if and only if their real parts are equal
(x = a) and their imaginary parts are equal (y = b). We must have both.

Example: a + ib = 3 + 4i means that a = 3 and b = 4.

Next we must discuss, by examples, addition, subtraction and multiplication of complex
numbers. Division is treated later.

Addition and Subtraction. Define w = 2 + i, z = 3 + 5i.

Then w + z = 2 + i + 3 + 5i = 5 + 6i, w − z = 2 + i− (3 + 5i) = −1− 4i.

We add the real parts, and add the imaginary parts, separately. And we subtract the
real parts, and subtract the imaginary parts, also separately.

Multiplication. The product of w = 2 + i and z = 3 + 5i is wz = (2 + i)(3 + 5i) =
6 + 10i + 3i + 5i2 = 6 + 13i− 5 = 1 + 13i using i2 = −1.

11 Complex conjugate

The complex conjugate of z = a + ib with real a and b is defined to be a− ib, and is often
written z̄ or sometimes z∗.

Examples of complex conjugate are z = 3+ 4i with z̄ = 3− 4i; z = i with z̄ = −i; z = 3
with z̄ = 3.

12 Some properties of complex conjugates

The product zz̄ = (3 + 4i)(3− 4i) = 9− 12i + 12i− 16i2 = 9− 16i2 = 9 + 16 + 25 is real .

In general the product of z and z̄ is always real and positive.

z = a + ib with z̄ = a− ib implies

zz̄ = (a + ib)(a− ib) = a2 − iab + iab− i2b2 = a2 + b2

which is real and positive for any z and for any real a, b.

Also any z which satisfies z = z̄ must be real because z = a + ib implies z̄ = a− ib, so
that a + ib = a− ib. This implies a− a + i(b + b) = 0, so that 2ib = 0, and therefore b = 0
and z = a = z̄.
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13 Modulus or amplitude of a complex number

Because z = a + ib with z̄ = a− ib implies zz̄ = a2 + b2 which is always positive, the square
root

√
(a2 + b2) is called the modulus of z, and is written | z |=

√
(a2 + b2).

We also see that z = a + ib and z̄ = a− ib imply z + z̄ = 2a and z − z̄ = 2ib. Thus

a = 1
2(z + z̄) is the real part = Re(z) of z.

ib = 1
2(z − z̄) is the imaginary part = Im(z) of z, with b = − i

2(z − z̄).

14 Division of complex numbers

Example: given z = 2 + 3i and w = 4 + 5i, find z
w in the form a + ib.

Method: multiply numerator and denominator by the complex conjugate of the denom-
inator.

z
w = 2+3i

4+5i = (2+3i)(4−5i)
(4+5i)(4−5i) = 8+12i−10i−15i2

6+20i−20i−25i2
= 8+15+2i

16+25 = 23+2i
41 = 23

41 + i 2
41 ,

so that the real part of z
w is 23

41 , and the imaginary part of z
w is 2i

41 .

15 Geometry of complex numbers

Any complex number, such as z = x + iy with real x and y, and i =
√

( − 1), can be
represented by a point on the x, y plane.

[Diagram]

This picture is called the Argand diagram after the Frenchman Jean-Robert Argand
who invented it in 1806.

The magnitude x of the real part is plotted on the horizontal axis.

The magnitude y of the imaginary part is plotted on the vertical axis.

To discuss the geometry of complex numbers z = x + iy we need the magnitude
r =

√
(x2 + y2) (r2 = x2 + y2 by Pythagoras), also called the modulus | z |= r, and

the amplitude θ = tan−1 y
x which is also called the argument , so that tan θ = y

x .

[Diagram]

We can also write x
r = cos θ or x = rcos θ, and y

r = sin θ or y = rsin θ.

7



Because θ = θ + 2π = θ + 2nπ for n revolutions of the radius (e.g. 50◦ is the same as
50◦ + 360◦ = 410◦) it is conventional to restrict θ to the range −π < θ ≤ π of principal
values.

[Diagram]

If we use the complex conjugate z̄ = x− iy of z = x+ iy we have zz̄ = (x+ iy)(x− iy) =
x2 − i2y2 = x2 + y2, so we can also write the modulus as r =

√
(x2 + y2) =

√
(zz̄).

Examples: find the modulus (magnitude) and argument (amplitude) of 1 + i
√

3. This
is r(cos θ + isin θ) if

tan θ = rsinθ
rcosθ =

√
3

1 =
√

3, so

θ = tan−1
√

3 = 60◦ = π
3 radians,

and if r2 = r2(cos2θ + sin2θ) = 1 + (
√

3)2 = 4, so r= 2.

Particular points which can be plotted on the Argand diagram are i, 1 + i, 1− i, 1.

[Diagram]

16 Polar coordinates

These are radius (r) and angle (θ) alternatives to cartesian x, y coordinates given by

x = rcos θ, y = rsin θ so that r =
√

(x2 + y2), θ = tan−1 y
x .

[Diagram]

For example, a circle of radius a may be described as x = acosθ with y = asinθ, or r = a
for all θ.

17 Exponentials

Any two numbers a and b can be used to construct two more numbers ab and ba. For
example, 4 and 3 deliver 43 = 64 and 34 = 81. The “power” 3 in the first case, or 4 in the
second, is called the “exponent”.

When the exponent is allowed to be a variable, called x say, then cx is called an
exponential function with base c. If c is any positive number, and x is real , then cx →
∞ as x → ∞, c0 = 1 (a definition), and cx → 0 as x → - ∞. The graph can be sketched.

[Diagram]
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There is a very special value of c, namely 2.7182818285... which is always denoted by
e, for which the gradient dex

dx of ex at every x is the value of ex there, i.e.

dex

dx = ex.

This particular and famous function ex is called the exponential function.

18 Imaginary and complex exponents

Exponents, like the real x in ex above, can also be imaginary (like iy with real y and
i =

√
(− 1)) or complex (like x + iy).

It can be proved that, for the special number e = 2.71828..., eiθ = cos θ + i sin θ with
any real θ (Euler 1748). No elementary proof exists, so we shall treat this result as an axiom.

We shall use it with polar coordinates r, θ and cartesian coordinates x, y to construct
alternative versions of any complex number as follows.

z = x + iy = rcosθ + irsinθ = r(cosθ + isinθ) = reiθ.

[Diagram]

This follows because x = rcos θ, y = rsin θ, r2 = x2 + y2, tan θ = sinθ
cosθ = x

y .

Examples are 1 + i
√

3 = 2e
iπ
3 with θ = 60◦ = π

3 radians;

i = e
iπ
2 with θ = 90◦ = π

2 radians;

1 + i =
√

2e
iπ
4 with θ = 45◦ = π

4 radians;

1− i =
√

2e
−iπ
4 with θ = −45◦ = −π

4 radians;

1 = 1ei0 with e0 = 1.

[Diagram]

19 A famous example

of z = x + iy = reiθ

[Diagram]

is the case when r = 1 and θ = π so that x = −1 and y = 0 giving
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eiπ = −1

which some people think is the most famous formula in mathematics.

This is because it relates three different but basic things e, π, i in a very simple way.

20 Examples of multiplication and division via the exponen-
tial form

For any two complex numbers z = reiθ and w = seiφ

the product is zw = reiθseiφ = rsei(θ+φ)

so we multiply the magnitudes (moduli) and add the angles (arguments);

and the quotient is z
w = reiθ

seiφ = r
se

i(θ−φ)

so we divide the moduli and subtract the angles.

Particular cases include i and eiφ whose product is ieiφ = ei(φ+π
2
)

because i =cosπ
2 + isinπ

2 = ei π
2 (using cosπ

2 = 0

and sinπ
2 = 1).

So multiplying by i rotates the complex number by π
2 .

Also z = 5e3i and w = 3e2i have product zw = 5e3i.3e2i = 15e15i

and quotient z
w = 5e3i

3e2i = 5
3ei.

Another type of example is that z = 5ei π
3 implies

z10 = (5ei π
3 )10 = 510ei 10π

3 = 510(cos10π
3 + isin10π

3 ).

21 Addition and subtraction of fractions

This is done by changing each fraction so that they have the same bottom (then called the
common denominator), and then adding or subtracting the numerators (tops).

1
2 + 3

2 = 1+3
2 = 4

2 = 2
1 = 2.

1
3 + 1

2 = 2
6 + 3

6 = 2+3
6 = 5

6 .
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The above is arithmetic, but the same method works in algebra as follows.

w
5 + 3w

4 = 4w
20 + 15w

20 = 4w+15w
20 = 19w

20 .

y
2 + y

8 = 4y
8 + y

8 = 4y+y
8 = 5y

8 .

1
w + 1

w−1 = w−1
w(w−1) + w

w(w−1) = w−1+w
w(w−1) = 2w−1

w(w−1) .

2
y−1 + 3

y+1 + 4
(y+1)2

= 2(y+1)2+3(y−1)(y+1)+4(y−1)
(y−1)(y+1)2

= 2(y2+2y+1)+3(y2−1)+4(y−1)
(y−1)(y+1)2

= 5y2+8y−5
(y−1)(y+1)2

.

22 Partial fractions

This is the name sometimes used for the reverse procedure in which we write a given func-
tion as a sum of simpler fractions such as (the previous example reversed)

5y2+8y−5
(y−1)(y+1)2

= 2
y−1 + 3

y+1 + 4
(y+1)2

.

This can make it easier to work with the expression, e.g. to integrate it (later in the
course).

The method is as follows.

1. Factorise the denominator (as far as possible) into, e.g., linear [ax + b] or quadratic
[(ax + b)2] terms.

2. Use these factors to construct terms like

A
ax+b or B

(ax+b)2
for some constants A,B, a, b.

3. Add to recover the original expression.

4. The purpose is, for example, to help integration.

Example.

Write 8y+1
2y2−y−1

in partial fractions.

Step 1. Factorise the denominator 2y2 − y − 1 = (2y + 1)(y − 1).
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Step 2. Use these factors to write

8y+1
2y2−y−1

= 8y+1
(2y+1)(y−1) = A

2y+1 + B
y−1 = A(y−1)+B(2y+1)

2y2−y−1
= (A+2B)y+B−A

2y2−y−1

with A and B to be found.

Step 3. Equate coefficients, so we must have

A + 2B = 8 and B −A = 1,

so A + 2(A + 1) = 8 giving 3A = 6 and therefore A = 2, B = 3.

Step 4. We conclude that

8y+1
2y2−y−1

= 2
2y+1 + 3

y−1 .

The method works in this example because

(i) the numerator is a lower degree polynomial than the denominator ( linear
quadratic);

(ii) there are no repeated factors;

(iii) all factors are linear.

Example (with repeated factors , and nonlinear factors).

Express 3x2+4x+6
(x−1)2(x2+3x+1)

in partial fractions.

Try A
x−1 + B

(x−1)2
+ Cx+D

x2+3x+1
= A(x−1)(x2+3x+1)+B(x2+3x+1)+(Cx+D)(x−1)2

(x−1)2(x2+3x+1)

so that the numerator must be

3x2 + 4x + 6 = A(x3 + 3x2 + x− x2− 3x− 1) + B(x2 + 3x + 1) + (Cx + D)(x2− 2x + 1)

= A(x3 + 2x2 − 2x− 1) + B(x2 + 3x + 1) + C(x3 − 2x2 + x) + D(x2 − 2x + 1)

= x3(A + C) + x2(2A + B − 2C + D) + x(−2A + 3B + C − 2D)−A + B + D

so by comparing coefficients on the left and right sides we need

A + C = 0, 2A + B − 2C + D = 3,−2A + 3B − 2D = 4,−A + B + D = 6.

Thus C = −A implies 4A + B + D = 3,−3A + 3B − 2D = 4,−A + B + D = 6.

This leaves three equations for three unknowns, and substituting A = B + D − 6 from
the last into the middle two gives
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4(B + D)− 24 + B + D = 3, −3(B + D) + 18 + 3B − 2D = 4 and thus

5B + 5D = 27 and −5D = −14 so that

D = 14
5 , 5B = 27− 14 = 13 giving B = 13

5 , A = 27
5 − 6 = −3

5 , C = 3
5

and therefore finally

3x2+4x+6
(x−1)2(x2+3x+1)

= − 3
5(x−1) + 13

5(x−1)2
+ 3x+14

5(x2+3x+1)
.

23 Solution of linear simultaneous equations

Example: find x, y which satisfy both of x + y = 2 and 2x + 3y = 5.

The first gives y = 2−x which can be substituted into the second to give 2x+3(2−x) = 5,
and therefore 2x − 3x = 5 − 6 or −x = −1. Hence x = 1 and y = 2 − 1 = 1. Substituting
back into the starting equations confirms that x = y = 1 is the solution.

A general notation: find x, y which satisfy both of

ax + by = p and cx + dy + q for known a, b, c, d, p, q.

These can be written in matrix notation, using a row-on-column definition of matrix
multiplication, in the form

Ax = p

where A is a 2x2 square matrix of the coefficients a, b, c, d, x is a 2x1 column matrix x, y
of the unknowns, and p is a 2x1 column matrix p, q of the known right hand side.

24 A general solution method

The following method is sometimes called Gaussian elimination with “back substitution”
after Carl Friedrich Gauss (1777 - 1855).

We wish to solve

ax + by = p simultaneously with cx + dy = q (which pair could be written in matrix
form Ax = p), for the unknowns x, y where a, b, c, d, p, q are known.

Rewriting the first equation as x = p
a −

by
a and substituting into the second gives

cp
a −

cby
a + dy = q and hence y = aq−cp

ad−cb provided ad− cb 6= 0.
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“Back substitution” of this y into the first equation above then gives

x = p
a −

b(aq−cp)
q(ad−cb) .

This method always works provided the determinant of coefficients ad− bc 6= 0.

25 Example

x + y = 2 with 2x + 3y = 5 can be displayed in matrix form.

Substituting x = 2− y from the first into the second gives

2(2− y) + 3y = 5 and therefore y = 5− 4 = 1.

Back substitution then gives x = 2− y = 1.

We can check this answer as 1 + 1 = 2 with 2 + 3 = 5. Notice that the determinant of
coefficients is 3− 2 = 1 6= 0.

26 Another example

This time we have three unknowns x, y, z instead of two as above. Solve

x + 2y + 5z = 5, 2x + y + z = 4, x− y + z = 4.

We can rewrite the first of these as x = 5− 2y− 5z, and substituting in the second and
third gives

−3y − 9z = −6 and −3y − 4z = −1.

Rewriting the first of these as 3y = 6 − 9z and substituting in the second gives −6 +
9z − 4z = −1 so that z = 1.

Back substituting gives −3y − 9 = −6 and therefore y = −1.

Returning to the first equation then gives x = 5− 2y − 5z = 5 + 2− 5 = 2.

Substituting the completed solution x = 2, y = −1, z = 1 into the original system of
three equations verifies that all three are satisfied.

27 Alternative notation

For some purposes suffix notation is a useful alternative. For example, the problem
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x + y = 2, 2x + 3y = 5

can be rewritten x1 + x2 = 2, 2x1 + 3x2 = 5.

This can also be rewritten in matrix notation using row-on-column matrix multiplica-
tion, and square and rectangular arrays. These permit an alternative version of systems of
equations like

a11x1 + a12x2 = b1 with a21x1 + a22x2 = b2.

This system can be written in the matrix format as Ax = b, where A is a square 2 x
2 matrix, and x and b are 2 x 1 column matrices representing the unknown and known
variables respectively.

28 Functions

A function is a procedure (or a recipe, or a rule) for converting one number, or set of num-
bers, into another number or set of numbers. We can represent this procedure by a box
which pictures

output y = function f(x) of input x, which means y = f(x).

[Diagram]

E.g. if f(x) = x2, then an input x = −2 implies an output y = (−2)2 = 4.

The “function” describes the operation of converting x into y.

A “graph” is a “picture” of a function, e.g. it is the set of points in the x, y plane such
that y = f(x).

29 Example

The relation between centigrade (C) and Fahrenheit (F) measures of temperature is a
straight line passing through

the freezing point of water C = 0 or F = 32 degrees, and

the boiling point of water C = 100 or F = 212 degrees,

so it has the gradient or slope 212−32
100−0 = 1.8 and the equation of the straight line is

F − 32 = 1.8C or F = 1.8C + 32.
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[Diagram]

If we rewrite F = y and C = x we have y = 1.8x + 32.

As an example of the use of these equations, the question arise of whether there is a
temperature which is the same on the C and F scales, i.e which has C = F .

Putting F = C or y = x in the function gives x = 1.8x + 32 so that 0.8x = −32 and
therefore x = − 32

0.8 = −40.

[Diagram]

Thus F = C at −40 degrees. The graphical solution is where the two straight lines
F = 1.8C + 32 and F = C cross.

30 Circular graph

A circle of radius r has equation x2 + y2 = r2, so y2 = r2 − x2 and y = ±
√

1− x2.

[Diagram]

31 Parabola

This is the graph of the function y = f(x) when f(x) = x2, i.e. y = x2.

[Diagram]

32 Cubic

Plotting graphs can involve the following particular questions.

1. Find where they cross the axes.

For example y = x3 − x crosses the x-axis at y = 0 where x(x2 − 1) = 0, i.e. where
x = 0 and x = ±1.

2. Find what happens at large x, e.g. in this example x→ +∞ implies y→ +∞ and
x→−∞ implies y→−∞.

[Diagram]

3. Find the possible turning points, where dy
dx = 0. Here dy

dx = 3x2 − 1 = 0 at x2 = 1
3 ,

i.e. where x = ± 1√
3
, y = ± 1

3
√

3
∓ 1√

3
.
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There is a local maximum if dy
dx is decreasing, i.e. if d2y

dx2 < 0 (“minus mountain”).

There is a local minimum if dy
dx is increasing, i.e. if d2y

dx2 > 0 (“plus plate”).

In this example d2y
dx2 = 6x, so there is a local maximum at x = − 1√

3
(“mountain”), and

a local minimum at x = + 1√
3

(“plate”).

33 Asymptotes

These are situations where the graph of y = f(x) approaches a steady behaviour as x → +∞
or x → −∞.

For example y = 1
x−1 has the following properties.

[Diagram]

As x → +1 from x < 1, y → −∞.

As x → +1 from x > 1, y → +∞.

As x → +∞, y → 0 from above (y → +0).

As x → −∞, y → 0 from below (y → −0).

The graph is called a rectangular hyperbola.

34 Composition, or combination, of functions

This is about the application of a sequence of functions, rather than about just one function.
The input to a function f() delivers an output which can be put into another function g[],
which then delivers a combined output g[f()].

[Diagram]

The picture illustrates such a combination. Another notation which is sometimes used
(but not recommended by me) is

g◦f = g(f(x)).

This means that we work out f(x), and then work out g(f) which will depend on x.

An example is f(x) =
√

x = x
1
2 with g(f) = x3 + 3. For this the composition g(f) =

g ◦ f = f3 + 3 = x
3
2 + 3, which is not the same as f(g) = f ◦ g = g

1
2 = (x3 + 3)

1
2 .
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In general g◦f 6= f◦g, i.e. g(f)6=f(g), i.e the composition operation is not commutative.
The order in which we do the two operations does matter.

35 Inversion of functions

We may be given output = f(input) or y = f(x) or y = y(x), and we wish to know x = x(y),
i.e. how the input depends on the output.

An example is when we are given the exponential function y = ex where

e = 2.718281828459045235...

The inverse is the log function x = lny where ln stands for “natural logarithm” which is
associated with John Napier, 1550 - 1617. Thus ln also stands for “Napierian logarithm”.

[Diagram]

In electrical engineering we find current I and voltage V related by

I = I0exp( qV
kT − 1) with constants I0, q, k, T

which has inverse

V = kT
q [1 + ln I

I0
]

which allows us to calculate V when I is known.

The mathematical notation for the inverse of x = f(y) might seem to be y = f−1(x),
but it better not to use this because f−1(x) might be confused with 1

f(x) .

Instead we say that x = f(y) implies y = g(x) where f [g(x)] = x.

Another explicit example is that y = x3 + 1 implies x3 = y − 1 from which we get the
inverse x = (y − 1)

1
3 .

The guideline is : make it clear that you know what you are doing.

Another example is that y = x2 has inverse x = ±y
1
2 .

[Diagram]

36 Even and odd functions

An even function satisfies y(x) = y(−x) for all x, so an even function is symmetric under
reflection in the vertical (y) axis.
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[Diagrams - piecewise smooth, and smooth]

An odd function satisfies y(x) = −y(−x) for all x, so an odd function is symmetric
under rotation by 180◦ about the origin.

[Diagrams - smooth like cubic, and piecewise smooth]

An odd function must pass through the origin if it is defined there at all, because

y(0) = −y(0) implies 2y(0) = 0 which implies y(0) = 0.

A simple even function is f(x) = x2 and a simple odd function is f(x) = x.

[Diagrams]

Much of mathematics gets its confidence by being expressible in Theorem/Proof format.
An example is the following.

Theorem

Every function f(x) can be expressed as the sum of an even function g(x) and an
odd function h(x). That is, every f(x) = g(x) + h(x) where g(x) = g(−x) (even) and
h(x) = −h(−x) (odd) for every x.

Proof

We can rewrite any f(x) as

f(x) = 1
2 [f(x) + f(−x)] + 1

2 [f(x)− f(−x)]

= g(x) + h(x)

where g(x) = 1
2 [f(x) + f(−x)] = g(−x) is even,

and h(x) = 1
2 [f(x)− f(−x)] = - h(−x) is odd.

Q.E.D. = quod erat demonstrandum = which was to be proved.

37 Trigonometric examples

y = sin x is an odd function because the sine wave is antisymmetric. For example sin π
2 =

1 and sin (−π
2 ) = - 1, and in general sin x = - sin (−x) for all x.

[Diagram]
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y = cos x is an even function because the cosine wave is symmetric. For example cos
3π
2 = - 1 and cos (−3π

2 ) = - 1, and in general cos x = cos (−x) for all x.

[Diagram]

38 Integration

The integral of any odd function over a symmetric interval is zero.

For example the integral of x2sinx+tanx
(x2+1)2

over −1 ≤ x ≤ +1 is zero, because x2 and
(x2 + 1)2 are even, and sinx and tanx are odd, and the interval −1 ≤ x ≤ +1 is symmetric.

39 Further examples

x3 + sin x = -(−x)3 - sin (−x) = -[(−x)3 + sin (−x)] is odd.

x + x2 = - [(−x)− (−x)2] is neither odd nor even.

In general notation a function f(x) is neither odd nor even if f(−x) 6= f(x) and
f(−x) 6= −f(x).

Writing the above example as f(x) = x+x2 we see that f(−x) = (−x)+(−x)2 = −x+x2

and therefore

f(−x) = f(x) only where (−x) + (−x)2 = x + x2, i.e. where x = 0 only and not every-
where, so f(x) is not even.

Also f(−x) = - f(x) only where (−x) + (−x)2 = - (x + x2), i.e. only where x = 0 and
not everywhere, so f(x) is not odd either.

40 Periodic functions

Definition: if a function g(x) has the property that g(x) = g(x + L) for all x and some
number L, then g(x) is periodic.

The smallest value of L for which the values of g(x) repeat like this is called the period .

The most familiar examples of periodic functions are the trigonometric functions sin x
and cos x, whose graphs we display.

[Diagrams]
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In both cases, for any integer n,

sin x = sin (x± 2π) = sin (x± 2nπ) for any integer n, and

cos x = cos (x± 2π) = cos (x± 2nπ) for any integer n,

so that the period of each is 2π.

Frequency = k
period for some constant k (perhaps k = 1) which depends on the context.

Periodic functions do not have to be smooth (e.g. the saw-tooth function is not smooth
at isolated points) or continuous (e.g. the square wave function illustrates this - it has
vertical discontinuities at isolated places), nor even symmetrical .

[Diagrams]

Functions can also have composite definitions such as

f(x) = x for 0 ≤ x ≤ 1

f(x) = 1 for 1 ≤ x ≤ 2

f(x) = f(x + 2n) for n = 1, 2, 3, 4, ...

To sketch this we divide the real line up into intervals of length 1. Then within the
closed intervals 0 ≤ x ≤ 1, 2 ≤ x ≤ 3, 4 ≤ x ≤ 5, etc. we have a line of slope 1

and within the half-open intervals 1 ≤ x < 2, 3 ≤ x < 4, 5 ≤ x < 6, etc. we have a
horizontal line of height 1,

so this is a periodic function with a slightly complicated definition which is not just a
single formula.

41 Trigonometry

Trigonometry is “triangle measuring”, in a triangle with vertices (corners) at A,B, C
where there are angles labeled alpha, beta, gamma
whose opposite sides have lengths a = BC, b = CA, c = AB.

[Diagram]

Right-angled triangles are of special importance. Choosing the corner C to be the right
angle, γ = 90◦. The side AB opposite the right angle is called the hypotenuse.

[Diagram]
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The angle made by a full circle is called 2π radians or 360◦ (degrees), so that

1 radian = 360
2π = 180

π = 57.32 degrees, because π = 3.14 = 22
7 approximately.

42 Definitions of trigonometric functions

In a right-angled triangle with hypotenuse of length r and the other two sides of lengths x
and y, the angle θ opposite y has associated functions defined by

[Diagram]

sin θ = x
r = opposite

hypotenuse ,

cos θ = y
r = adjacent

hypotenuse ,

tan θ = y
x = opposite

adjacent .

Their inverses are called

sec θ = 1
cosθ ,

cosec θ = 1
sinθ ,

cot θ = 1
tanθ .

We have already seen the graphs of sin θ, cos θ and tan θ = sinθ
cosθ , which are all periodic

with period 2π.

[Diagram]

43 Trigonometric identities

There are many of these, all provable from the definitions.

Example: sin2α + cos2α = 1.

This is another version of Pythagoras’s Theorem. The Course Booklet contains other
examples.

We previously quoted the formula (Section 17) that the exponential number e satisfies

eiθ = cosθ + isinθ.

If we assume this, we can use it to prove several trigonometric identities as follows.

The definition of indices means that
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eαeβ = e(α+β) for any real α and β.

Returning to the context of imaginary and complex numbers

eiαeiβ = ei(α+β) for any real α and β.

Thus

eiαeiβ = (cos α + isin α)(cos β + isin β)
= cos αcos β + i2sin αsin β + i(sin αcos β + cos αsin β)
= cos αcos β - sin αsin β + i(sin αcos β + cos αsin β).

Equating real and imaginary parts gives

cos (α + β) = cos αcos β - sin αsin β,

sin (α + β) = sin αcos β + cos αsin β.

44 Series expansions

Many functions have series expansions. To explain these we introduce another notation for
derivatives

dy
dx = y′(x), d2y

dx2 = y′′(x), d3y
dx3 = y′′′(x).

Thus a prime or dash is used to denote differentiation, so that, for example,

y′(x) is the first derivative evaluated at general x,

y′(0) is the first derivative evaluated at x = 0,

y′′(3) is the second derivative evaluated at x = 3,

and so on.

It can be proved (but we shall assume it to be true) that a smooth function y(x)
[“smooth” mean that it has a unique tangent, and therefore a derivative, at every point]
can be expressed as a Maclaurin series

y(x) = y(0) + xy′(0) + x2

2 y′′(0) + x3

3! y
′′′(0) + ... + xn y(n)(0)

n! + ...

in which, for example “factorial” 4 is 4! = 4 x 3 x 2 x 1.

[Colin Maclaurin, 1698 - 1746, became a professor at the age of 19].
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[Diagram]

The Maclaurin series is an “expansion about the origin” x = 0. This gives a good “ap-
proximation” for small x, say, because (for example)

if x = 1
10 , then x2 = 1

100 , x3 = 1
1000 , etc.

For example, the Maclaurin expansion of y(x) = x2 + sin x requires us to calculate

y′(x) = 2x + cos x, y′′(x) = 2 - sin x, y′′′(x) = - cos x, etc. at the origin, where

y(0) = 0, y′(0) = 1, y′′(0) = 2, y′′′(0) = - 1, etc.

[Diagram]

Thus the approximation near the origin (i.e. for small x) is

y(x) = 0 + x.1 + 2x2

2 + (−1)x3

6 + ... = x + x2 − x3

6 .

This illustrates how the Maclaurin series is an “expansion about the origin”. If we want
an expansion about some other point, say x = a, we require a generalisation of the Maclau-
rin seies which is called the Taylor series

y(x) = y(a) + (x− a)y′(a) + (x−a)2

2 y′′(a) + (x−a)3

6 y′′′(a) + ...

[This was established by Brook Taylor, 1685 - 1731.]

Examples of Maclaurin series are

sin x = x - x3

3! + x5

5! - x7

7! + ...,

cos x = 1 - x2

2 + x4

4! - x6

6! + ...,

because, for example, when

y(x) = cos x, y′(x) = - sin x, y′′(x) = - cos x, y′′′(x) = sin x, ... so that

y(0) = 1, y′(0) = 0, y′′(0) = - 1, y′′′(0) = 0.

45 Inverse trigonometric functions

y = sin x means that y is the sine of the angle x, and the inverse function is sometimes
written

x = sin−1y which means that x is the angle whose sine is y.
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[Diagram]

Thus the inverse can be pictured just by turning the graph round by 90◦.

Notation sometimes used is that if y = sin x, then x = arc siny or x = sin−1y. This is
not wholly satisfactory because it suggests, but does not mean, x = 1

siny .

[Diagram]

[Diagram]

More graphical examples are provided by y = cos x with x = arc cos y, and y = tan
x with x with x = arc tan y. It should be noticed that these inverse functions are not
single-valued, so care is need when using calculators. These might imply restricted ranges
like

- π <arc cos y < π, and - π
2 <arc tan y < π

2 .

Example: find all the angles that satisfy cos x = 1
2 .

[Diagram]

The principal solution is x = 60◦ = π
3 radians. All solutions are x = ±π

3 + 2nπ for
n = 0,±1,±2, ...

Example:

Find the amplitude and phase of a signal produced by the addition 3 cos t + 4 cos t.

This means that we write 3cos t + 4cos t = rsin(t + α), and then try to find the
amplitude r and phase α which are thus implied, where 0 ≤ α ≤ 2π.

To solve we write rsin(t + α) = r(sintcosα + costsinα), which shows that we need

r sin(α) = 3 and r cos(α) = 4.

These are two simultaneous equations for two unknowns r and α. They imply

r = 5 and tan α = 3
4 .

[Diagram]

From the tan graph, or tables, α = 37 degrees.

25



46 Exponential functions

These are any functions of the form f(x) = bx for some positive constant b called the base,
and some variable x called the exponent .

They have the following properties.

1. f(0) = b0 = 1 at x = 0.

2. f(x) = bx > 0 for all x (because b > 0).

3. f(x) → +∞ as x → +∞.

4. f(x) → 0 as x → −∞.

[Diagram]

5. There is a special value of b, always written e = 2.718... as we have already seen, for
which df

dx = f , i.e. gradient = value for all x.

6. There is a series expansion ex = 1 + x + x2

2! + x3

3! + x4

4! + ...,

where n! = n(n− 1)(n− 2)...3.2.1 = factorial n.

7. f(x) = −bx is the reflection of bx in the horizontal axis.

8. f(x) = b−x is the reflection of bx in the vertical axis.

[Diagram]

47 Logarithms

Logarithms are the inverse of exponential functions.

This means that any exponential function y = bx for any given base b with exponent x
has an inverse, which is called

x =logby (log y to base b).

[Diagrams]

There are two particular bases for logarithms which are in common use, namely

b = 10 so that y = 10x has inverse x = log10y, which are called “logs to base 10”; and
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b = e so that y = ex has inverse x = logey = lny.

The latter alternative is called the “natural logarithm” or “Napierian logarithm”.

John Napier (1550 - 1617) of Merchieston Castle, Edinburgh, was the first inventor of
logarithms in 1614.

Theorem

The log of a product is the sum of the logs.

That is, using any base, logMN = log M + log N .

Proof

Using any base b, consider the numbers defined by M = bm and N = bn.

Then by definition

m = logbM and n = logbN for logs to the same base b.

Also MN = bmbn = b(m+n) so m + n = logbMN .

Therefore

logbMN = logbM + logbN .

Q.E.D. = Quod Erat Demonstrandum = which was to be proved.

This Theorem is the basis for the use of “log tables” to make multiplication easier:

1. look up the logs of the two numbers M and N ;

2. add these logs: log M + log N = log MN ;

3. look up the “antilogs” (inverse log tables) to find MN .

48 Hyperbolic functions

We now use the very special exponential number e = 2.71828... which has the property
dex

dx = ex to define

sinh x = ex−e−x

2 (called the hyperbolic sine),

cosh x = ex+e−x

2 (called the hyperbolic cosine),

27



tanh x = sinhx
coshx = ex−e−x

ex+e−x (called the hyperbolic tangent).

These are not periodic functions like sin x, cos x and tan x. Instead their graphs are
constructed from those of ex and e−x, and these “hyperbolic” functions satisfy different
relationships to the trigonometric functions.

The graph of coshx can be shown to represent the shape of a uniform hanging rope such
as a washing line, or a telephone wire.

[Diagram]

[Diagram]

General Theorem

Hyperbolic functions satisfy cosh2x - sinh2x = 1, in contrast to the trigonometric rela-
tion cos2x + sin2x = 1.

Proof

cosh2x - sinh2x = 1 from the definitions of cosh x and of sinh x above.

cos2x + sin2x = 1 from Pythagoras’ Theorem. Q.E.D.

[Diagram]

49 Sample Theorem

The solution of 5cosh x + 3sinh x = 4 is x = ln 1
2 .

Proof

The definitions can be used to rewrite the Theorem as

5( ex+e−x

2 ) + 3( ex−e−x

2 ) = 4,

8ex + 2e−x = 8,

4(ex)2 − ex + 1 = 0,

(2ex − 1)2 = 0,

ex = 1
2 ,

Taking natural logarithms then gives
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x = ln 1
2 as the solution.

50 Osborne’s Rule

This is an empirical rule which says that any relation between trigonometric quantities can
be converted into a valid corresponding relation between hyperbolic quantities by changing
the sign of any product (or implied product) of two sines. For example

cos(A + B) = cosAcosB - sinAsinB

delivers

cosh(A + B) = coshAcoshB + sinhAsinhB.

The proof follows from

cosh ix = eix+e−ix

2 = cos x, sinh ix = eix−e−ix

2 = isin x.

51 Limits

Some functions y(x) approach a limit or limiting value as x approaches some particular
value.

For example, the equation xy = 1 defines a function y = 1
x which has the properties that

x and y have the same sign (both positive or both negative), and that

as x → +∞, y → +0, (tends to zero through positive values)

as x → −∞, y → −0,

as y → +∞, x → +0,

as y → −∞, x → −0.

These all illustrate limits, and diagrams display them.

[Diagram]

[Diagram]

Other (easier) examples are the limits as x → 2 of

x2 + 3x + 1 which is 4 + 6 + 1 = 11, and of x+1
x+2 which is 3

4 .
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But the limit of x2+2x−3
x−1 as x → 1 appears to be 1+2−3

1−1 = 0
0 which is undefined .

52 Methods for finding limits

We have to find more information if a limit appears to be 0
0 or ∞∞ because these are undefined .

We can try to factorise the numerator and denominator, and then cancel any common
factors before going to the limit, as follows.

1. The limit of x2+2x−3
x−1 as x → 1 appears to be 1+2−3

1−1 = 0
0 which is undefined, but

x2+2x−3
x−1 = (x−1)(x+3)

x−1 = x + 3 → 4 as x → 1,

so lim x2+2x−3
x−1 as x → 1 is 4.

2. The limit of x2−7x+12
x−3 as x → 3 appears to be 9−21+12

3−3 = 0
0 which is undefined, but

x2−7x+12
x−3 = (x−3)(x−4)

x−3 = x− 4 → −1 as x → 3,

so lim x2−7x+12
x−3 as x → 3 is - 1.

3. The limit of (3+x)2−9
x as x → 0 appears to be 32−9

0 = 0
0 which is undefined, but

(3+x)2−9
x = 9+6x+x2−9

x = 6 + x → 6 as x → 0,

so lim (3+x)2−9
x as x → 0 is 6.

4. The limit of
√

(5+x)−
√

(4+2x)

x−1 as x → 1 appears to be
√

6−
√

6
0 = 0

0 which is undefined,
but we can avoid the ambiguity by writing the fraction as

[
√

(5+x)−
√

(4+2x)][
√

(5+x)+
√

(4+2x)]

(x−1)[
√

(5+x)+
√

(4+2x)]

= (5+x)−(4+2x)

(x−1)[
√

(5+x)+
√

(4+2x)]

= 1−x

(x−1)[
√

(5+x)+
√

(4+2x)]

= −1

[
√

(5+x)+
√

(4+2x)]

→ −1
2
√

6
as x → 1.

5. We can sometimes use a series expansion, for example the limit as x → 0 of sinx
x

appears to be 0
0 which is undefined, but we know that the Maclaurin series for small x of

sin x = x− x3

3! + x5

5! −
x7

7! + ... so that

sinx
x = 1− x2

3! + x4

5! −
x6

7! + ... which tends to 1 as x → 0
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so that the limit of sinx
x is 1 as x → 0.

53 More methods for finding limits

In these cases the naive approach appears to give ∞
∞ , which has to be avoided.

1. The limit as x →∞ of

x2+2x+3
2x2+x+1

is obtained by dividing top and bottom by x2, which gives

1+ 2
x
+ 3

x2

2+ 1
x
+ 1

x2
→ 1

2 .

2. The limit as x →∞ of

ex+1
3ex+2 is obtained by dividing top and bottom by ex, which gives

1+e−x

3+2e−x → 1
3 .

3. If we require the limit as x → −∞, we can use the fact that ex → 0 as x → −∞ so
that

ex+1
3ex+2 →

1
2 as x → −∞.

54 Differentiation

This allows us to discuss rate of change accurately.

For example, velocity v is rate of change of distance s with time t, i.e.

v = ds
dt ,

and acceleration a is rate of change of velocity with time, i.e.

a = dv
dt = d

dt(
ds
dt ) = d2s

dt2
.

In electricity, current I = rate of change of charge Q with time t, i.e.

I = dQ
dt .

The gradient of the graph of a function y(x) is the rate of change of y(x), which is the
local slope or gradient of the graph.

[Diagram]

When the graph is not a straight line, the local slope varies from place to place with x.
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The second derivative d
dx(dy

dx) = d2y
dx2

tells us how the slope (or gradient) is changing.

[Diagram]

55 The limiting process

To find the slope at A of the graph y = y(x) construct a triangle ABC in which

A has coordinates (x, y(x)), B has coordinates (x + h, y(x + h)).

[Diagram]

Then the slope of the hypotenuse AB is

BC
AB = y(x+h)−y(x)

(x+h)−x = y(x+h)−y(x)
h .

[Diagram]

Now introduce a limiting process which allows B to move towards A so that the gradi-
ent of the hypotenuse AB approaches the gradient of the tangent to the curve at A. We write

limit as h → 0 of y(x+h)−y(h)
h = dy

dx .

This is the gradient of the curve y = y(x) at A.

A common alternative notation is dy
dx = y′(x).

56 Examples

(a) Parabola y(x) = x2.

[Diagram]

The gradient at a typical point is

dy
dx = limit (x+h)2−x2

h as h → 0

= lim x2+2xh+h2−x2

h = lim 2xh+h2

h = lim (2x + h) = 2x.

(b) Constant y(x) = 3.

[Diagram]
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dy
dx = lim y(x+h)−y(x)

h = lim 3−3
h = lim 0 = 0.

Note that we evaluate the numerator before proceeding to the limit h → 0.

(c) The general power y = xn for any fixed n (not necessarily an integer) has derivative

dy
dx = nxn−1.

[Diagram]

(d) When n = 3 in (c) the cubic y(x) = x3 has gradient

dy
dx = lim (x+h)3−x3

h = limx3+3x2h+3xh2+h3−x3

h

= lim3x2h+3xh2+h3

h = lim(3x2 + 3xh + h2) = 3x2

= nxn−1 for n = 3.

[Diagram]

(e) When n = −1
3 , the cube root y(x) = x−

1
3 can be sketched by writing

[Diagram]

y3 = 1
x so that x = 1

y3

which is a smooth curve having two disjoint parts and such that

y → +∞ where x → +0 (zero through positive values),

y → −∞ where x → −0 (zero through negative values),

x → +∞ where y → +0,

x → −∞ where y → −0.

dy
dx = −1

3x(− 1
3
−1) = −1

3x−
4
3 .

(f) The sum or difference y(x) = f(x)± g(x) has derivative

dy
dx = df

dx ±
dg
dx .

For example if y(x) = x3 ± 1
x = x3 ± x−1,

dy
dx = 3x2 ∓ 1

x2 .
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(g) y(x) = 4
x3 = 4x−3 has dy

dx = - 12x−4 = - 12
x4 .

57 Differentiation of a product

The derivative dy
dx of y(x) = u(x)(v(x) is the limit as h → 0 of

y(x+h)−y(x)
h = u(x+h)v(x+h)−u(x)v(x)

h

=lim u(x+h)v(x+h)−u(x+h)v(x)+u(x+h)v(x)−u(x)v(x)
h

=u(x)limv(x+h)−v(x)
h + v(x)limu(x+h)−u(x)

h

so dy
dx = udv

dx + v du
dx .

An example is y(x) = x2sinx whose derivative is

dy
dx = x2 d(sinx)

dx + dx2

dx sin x = x2cosx + 2xsinx.

This uses the facts that dsinx
dx = cosx and dcosx

dx = - sin x, which we take to be axioms here.

The differentiation of a triple product y(x) = u(x)v(x)w(x) works in the same way by
an extension of the formula above for a double product, namely

dy
dx = vw du

dx + uw dv
dx + uv dw

dx .

An explicit example is that the derivative of the triple product y(x) = 3xextanx is

dy
dx = d3x

dx extanx + 3xdex

dx tanx + 3xex dtanx
dx .

Using d3x
dx = 3, dex

dx , dtanx
dx = sec2x = 1

dcos2 x,

dy
dx = 3extanx + 3xextanx + 3 xex

dcos2x
.

58 More examples

1. Remembering that ln x is the log to base e of x, the definition y = ex has inverse
x = ln y, and the derivative dy

dx = ex implies

dx
dy = 1

ex = 1
y , so that

dlny
dy = 1

y .

2. y(x) = 3sinxlnx is an example of a product
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y = u(x)v(x) whose derivative is dy
dx = udv

dx + dv
dxv

so the example has derivative

dy
dx = 3cosxlnx + 3sinx 1

x = 3(cosxlnx + sinx
x ).

59 Chain rule

This is the statement that the derivative of a function of a function y(x) = f [g(x)] is ob-
tained by the formula

dy
dx = df

dg
dg
dx .

The following are two illustrations.

1. y(x) = cos x2 provides an example in which f(g) = cos g and g(x) = x2.

Then dy
dx = df

dg
dg
dx = - (sin g).2x = - 2xsin x2.

2. y(x) = (1 + 3x2)10 = f(g(x)) has f(g) = g10 and g(x) = 1 + 3x2.

Therefore dy
dx = df

dg
dg
dx = 10g9(6x) = 10(1 + 3x2)9.6x = 60x(1 + 3x2)9.

60 Quotient rule

The quotient of two functions u(x) and v(x) is the result of dividing one by the other, giving
another function, for example u(x)

v(x) = q(x) say.

The derivative of this is obtained by treating it as the product of u(x) and 1
v(x) .

This leads to v2 d
dx(u

v ) = v du
dx − udv

dx .

For example,

d
dx( cosx

x2 ) = −xsinx−2cosx
x3 .

61 Inverse functions

Any function y(x) has an inverse x(y) in the sense that the axes are just turned round
through a right angle to describe the same curve in a different way.

[Diagrams]
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If we insert the inverse into the original function we get

y[x(y)] = y or alternatively x[y(x)] = x.

Differentiating with respect to y, or x, respectively, using the chain rule, gives

dy
dx

dx
dy = dy

dy = 1 and dx
dy

dy
dx = dx

dx = 1

so that dy
dx = 1

dx
dy

.

For an example we can use y = sin−1x, which means x = sin y and not y = 1
sinx =

(sinx)−1.

Differentiating x = siny(x) with respect to x gives

1 = (cosy)dy
dx by the chain rule, so that

dy
dx = 1

cosy = 1
dx
dy

because x = siny has derivative

dx
dy = cos y.

62 Differentiation of implicit functions

We might need to find dy
dx when y(x) is given implicitly but not explicitly. For example, in

y3 + 3y = x2

we do not know y(x) explicitly because we have not solved the cubic, but we can still
differentiate the equation to find dy

dx using the chain rule, as follows.

3y2 dy
dx + 3dy

dx = 2x

3(y2 + 1)dy
dx = 2x

dy
dx = 2x

3(y2+1)
.

A second example is to find dy
dx when y = ax for any constant a. Taking logs we find

lny = xlna and differentiating this with respect to x gives

1
y

dy
dx = ln a so that

dy
dx = yln a = axln a.
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63 Higher derivatives

Any function f(x) or curve y = f(x) has a value y at each given x, and also a slope or
gradient dy

dx = f ′(x) at each x. But it also has a curvature or rate of change of slope

d2y
dx2 = d

dx(dy
dx) = f ′′(x) and so on.

[Diagram]

For example, the parabola y = x2 has slope dy
dx = 2x (so the slope increases linearly

with x), but it also has curvature represented by d2y
dx2 = 2.

[Diagram]

Thus this second derivative happens to be constant for a parabola, and the third deriva-
tive d3y

dx3 = 0.

An example of these derivatives is provided by a particle or motor-bike in motion which
travels a distance s(t) in time t, so that its speed is ds

dt and its acceleration is d2s
dt2

.

Newton’s Law (1687) says that

“force = mass x acceleration”, or F = md2s
dt2

for a particle of mass m. This means,
for example, that if a force is sustained at the value F , then the particle of mass m upon
which it is acting will move with a constant acceleration d2s

dt2
= F

m in the direction of the force.

But if the acceleration oscillates like d2s
dt2

= − sin t, this must mean that an oscillating
force is being applied to it, and the velocity will oscillate like

ds
dt = cos t + k around a constant value k, and the distance s traveled in time t will

oscillate according to the formula s = - sint + kt + c, where c is another constant.

The rate of change of acceleration will be

d
dt(

d2s
dt2

) = d3s
dt3

= - cost and so also oscillates.

[Sir Isaac Newton, P.R.S., 1642 - 1727, is one of the most famous figures in applied
mathematics, and reknowned for his work on mechanics and on optics.]

64 Maxima and minima - optimisation

A curve y = y(x) may have local maxima M1, M2 and local minima m1, m2 as in the
diagram.

[Diagram]
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At all four of these turning points the gradient dy
dx = 0.

At each local maximum this gradient is decreasing from positive to negative, so

d
dx(dy

dx) =d2y
dx2 < 0,

i.e. the second derivative is negative there.

At each local minimum this gradient is increasing from negative to positive, so

d
dx(dy

dx) =d2y
dx2 > 0,

i.e. the second derivative is positive there.

For an example we locate the turning points of the cubic function

y(x) = 2x3 + 3x2 − 180x + 600

and find out whether they are local maxima or local minima.

The turning points will have zero slope, so we need to find where

dy
dx = 6x2 + 6x− 180 = 6(x2 + x− 30 = 6(x + 6)(x− 5)

is zero. This happens at x = 5 and x = −6.

Which way does the function turn here? It will turn

upwards (local minimum) if d2y
dx2 > 0, and

downwards (local maximum) if d2y
dx2 < 0 there.

From above we find that d2y
dx2 = 12x + 6. This is 66 at x = 5 so that we have a local

minimum there, and it is - 66 at x = - 6, so we have a local maximum there.

[Diagram]

The diagram shows this result, with y(- 6) = 1356, and y(5) = 25.

65 Parametric description of curves

It is sometimes convenient to describe a curve in the x, y plane by using a third (interme-
diate) parameter, say t.

For example, (y − 2)2 = 4a(x + 1) is a parabola for any constant a.
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[Diagram]

This single equation can also be written as two “parametric” equations x+1 = at2 with
y − 2 = 2at, because (2at)2 = 4a2t2 = (4a)(at2) for every value of t.

Another example is the circle x2+y2 = r2 with constant radius r. This can be written in
parametric form x = rcosθ, y = rsinθ where θ is the parameter using Pythagoras’s Theorem.

[Diagram]

Gradients dy
dx can be found for any parametric description y = y(t), x = x(t) because

dy
dx = dy

dt .
dt
dx = dy/dt

dx/dt .

For example the circle x =cosθ, y =sinθ has gradient

dy
dx = dy

dθ . dθ
dx = dy/dθ

dx/dθ = cosθ
−sinθ = - 1

tanθ

which is the slope of the tangent.

[Diagram]

66 Hyperbolic functions

The hyperbola x2 − y2 = 1 has asymptotes x2 − y2 = 0, i.e.

(x− y)(x + y) = 0 and therefore x = y with x = −y.

[Diagram]

In parametric form this hyperbola can be written

x = cosh t = et+e−t

2 with x = sinh t = et−e−t

2 .

To verify this parametric form we see that

x2 − y2 = [ et+e−t

2 ]2 − [ e
t−e−t

2 ]2

= 1
4 [(e2t + 2 + e−2t)− (e2t − 2 + e−2t)] = 1.

67 Functions of more than one variable

x2 and cosx are functions of one variable x.
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A function like f(x) = x2 has a graph y = f(x), i.e. y = x2, which is a curve on a
two-dimensional page.

[Diagram]

Now we consider functions f(x, y, z, ...) of several variables x, y, z, ....

A function like f(x, y) = x2 + y2 represents a surface z = x2 + y2 in three-dimensional
space spanned by x, y, z.

This example is a parabolic bowl.

[Diagram]

A sphere with radius r will have equation

x2 + y2 + z2 = r2 which can also be written

z2 = r2 − (x2 + y2) or z = ±
√

r2 − (x2 + y2)

or z = f(x, y) where f(x, y) = ±
√

r2 − (x2 + y2).

[Diagram]

68 Partial differentiation

This means that we are working with a function of several variables but differentiating it
with respect to only one variable at a time, holding the others fixed .

A new symbol is used for partial differentiation.

The ordinary derivative of f(x) is

df
dx = lim f(x+h)−f(x)

h as h → 0.

For example, if f(x) = x2,

df
dx = lim (x+h)2−x2

h = lim 2xh+h2

h = lim (2x + h) = 2x as h → 0.

But the partial derivatives of f(x, y) with respect to x and y are written

∂f
∂x = lim (x+h,y)−f(x,y)

h as h → 0 and ∂f
∂y = lim (x,y+k)−f(x,y)

k as k → 0.

In practice, all the usual rules for differentiation with respect to one variable work,
because we are holding all the other variables fixed .
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69 Examples of first partial derivatives

f(x, y) = x2 + 2y2 + 5xy has ∂f
∂x = 2x + 5y and ∂f

∂y = 4y + 5x.

To find the partial derivative of

f(x, y) = 1
1+x2+3y2 = (1 + x2 + 3y2)−1

we introduce an intermediate variable u = 1 + x2 + 3y2 so that f = u−1 is an example
of f(x, y) = f [u(x, y)].

Then we use the chain rule to get

∂f
∂x = df

du
∂u
∂x = (−u−2)(2x) = - 2x

(1+x2+3y2)2
.

∂f
∂y = df

du
∂u
∂y = (−u−2)(6y) = - 6y

(1+x2+3y2)2
.

70 Higher derivatives

We can differentiate a function of one variable several times. For example, if s = s(t)
describes a distance − time graph, its slope ds

dt is the speed and its curvature represented
by the second derivative d2s

dt2
is the acceleration.

Likewise a function of several variables such as f(x, y) has not only first partial deriva-
tives ∂f

∂x and ∂f
∂y , but also second partial derivatives

∂2f
∂x2 = ∂

∂x(∂f
∂x ),

∂2f
∂y2 = ∂

∂y (∂f
∂y ),

and with commutative mixed second derivatives.

There is an alternative suffix notation for partial derivatives, namely

∂f
∂x = fx and ∂f

∂y = fy, and

∂2f
∂x2 = fxx, ∂2f

∂y2 = fyy, ∂2f
∂x∂y = fxy = fyx = ∂2f

∂y∂x .

There are also higher (for example third and fourth) partial derivatives.

71 Examples of partial derivatives

1. f(x, y) = ysinx + x2y3 has
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∂f
∂x = ycosx + 2xy3, ∂f

∂y = sinx + 3x2y2,

∂2f
∂x2 = - ysinx + 2y3, ∂2f

∂y2 = 6x2y,

∂2f
∂x∂y = cosx + 6xy2 = fyx.

2. g(x, y) = cos(x2 + y2) has

∂g
∂x = -2xsin(x2 + y2)

∂2g
∂x∂y = - 4xycos(x2 + y2).

Exercise: find the other second partial derivatives.

3. h(x, y) = eu where u = x2 + y2.

∂h
∂x = dh

du
∂u
∂x = 2xeu because deu

du = eu.

∂2h
∂x2 = 2eu + 2x∂(eu)

∂x = 2eu + 2x(2xeu) = 2(1 + x2)eu.

4.Find all the first and second derivatives of f(x, y) =ln(xy) + xy3.

To handle this remember that v =eu has inverse u =lnv, that is, the exponential and
(natural) logarithm functions are mutual inverses.

[Diagram]

Using dv
du = eu = v and du

dv = e−u = 1
v ,

∂f
∂x = 1

xy
∂(xy)

∂x + y3 = 1
xyy + y3 = 1

x + y3.

∂f
∂y = 1

xy
∂(xy)

∂x + 3xy2 = 1
y + 3xy2.

∂2f
∂x2 = - 1

x2 , ∂2f
∂y2 = - 1

y2 + 6xy, ∂2f
∂x∂y = 3y2.

5. The temperature T at any point x, y, z in a rectangular block at time t varies accord-
ing to the function T (t, x, y, z) which satisfies the diffusion equation

∂T
∂t = ∂2T

∂x2 + ∂2T
∂y2 + ∂2T

∂z2 .

Verify that T = 3sinxsinysinze−3t satisfies this equation.

We find ∂T
∂t = - 3T because ∂(e−3t)

∂t = -3e−3t.

Also ∂T
∂x = 3cosxsinysinze−3t

so ∂2T
∂x2 = - 3sinxsinysinze−3t = -T .
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Similarly ∂2T
∂y2 = ∂2T

∂z2 = -T ,

so ∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2 - ∂T

∂t = - T - T - T -(-3T ) = 0

as required.

6. The volume of a circular cylinder of radius r and height h is V = πr2h, so h = V
πr2

and small changes δr and δV would cause a small change δh = ∂h
∂V δV + ∂h

∂r δr in h = V r−2

π .

Because ∂h
∂V = 1

πr2 and ∂h
∂r = −2V

πr3 we find

δh = δV
πr2 - 2V δr

πr3 .

[Diagram]

Trying r = 5, δr = 0.1, V = 100, δV = 5 gives δh = 0.114.

72 Measurements of error

If a measurement f(x, y) depends on x and y, and there are small changes δx, δy which
represent possible errors in the measurements of x and y, then the implied error in f is

δf = ∂f
∂xδx + ∂f

∂y δy, and we sometimes use the

fractional error = δf
f = error

value . and also the

percentage error δf
f x 100.

There can be more variables.

An example is to find the percentage error in a measurement of

f(a, b, c) = a2b
1
2 c−3

where a, b, and c are known to within 1 percent, 2 percent and 5 percent respectively.

We have lnf = ln a2 + ln b
1
2 + ln c−3 = 2ln a + 1

2 ln b - 3ln c

because the log of a product is the sum of the logs.

Differentiating gives the relation between the fractional errors

1
f δf = 2

aδa + 1
2bδb - 3

c δc

so the percentage errors are
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1
f δf x 100 = 2

aδa x 100 + 1
2bδb x 100 - 3

c δc x 100

and the worst percentage change in f will be

2x1 + 1
2 x 2 + 3 x 1

2 = 4.5 per cent from the given data above.

73 De Moivre’s Theorem

Returning to discuss complex numbers, we recall that de Moivre’s Theorem states that

(cosθ + i sinθ)n = cos nθ + i sinθ

for any real θ and n, with i =
√

(− 1).

The proof is based on our previous axiom that

eiθ = cos θ + i sin θ for any θ, so that

einθ = cos nθ + i sin nθ

by replacing θ by nθ.

Hence (cosθ + i sinθ)n = einθ.

74 Applications of De Moivre’s Theorem

1. Find all the solutions z of z3 = 8.

If we were just dealing with real numbers then obviously the only solution is z = 2.

but if we allow for complex numbers z = r(cos θ + i sin θ) then we have to find r and
θ which satisfy

z3 = 8(cos2kπ + isin2kπ) for k = 0, ±1, ±2,...

so z = 2(cos2kπ + isin2kπ)
1
3 = 2(cos2kπ

3 + isin2kπ
3 ) by DMT.

The three solutions are therefore

z = 2(cos0 + isin0) = 2 from k = 0;

z = 2(cos 2π
3 + isin 2π

3 ) = 2(- 1
2 + i

√
3

2 ) = - 1 + i
√

3 from k = 1;

z = 2(cos 4π
3 + isin 4π

3 ) = 2(- 1
2 - i

√
3

2 ) = - 1 - i
√

3 from k = 2.
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In summary, the three cube roots of 1 are 1 and -1 ± i
√

3.

[Diagram]

These can be checked by working out the three cubes explicitly.

2. Prove that cos 3θ = 4cos3θ - 3cosθ for any real θ.

We use the particular version of De Moivre’s Theorem which says that

cos 3θ + i sinθ = (cos θ + i sin θ)3 = cos3θ - 3sin2θcosθ - i( sin3θ - 3cos2θsinθ )

so that by equating real and imaginary parts

cos 3θ = 4cos3θ - 3cosθ and also sin 3θ = - 4sin3θ + 3sinθ.

Thus we get two results for the price of one.

75 Links between hyperbolic and trigonometric functions

We previously defined cosh x = ex+e−x

2 for real x.

By analogy we can replace the real x with imaginary iθ for real θ, and so define

cosh iθ = eiθ+e−iθ

2 .

Using e±iθ = cosθ ± isinθ leads to

cosh iθ = cos θ.

Similarly defining sinh iθ = eiθ−e−iθ

2 leads to

sinh iθ = i sin θ.

If we replace real θ by imaginary iφ with real φ in these equations we get

coshφ = cos iφ and sinhφ = - i sin iφ.

Example: find the real and imaginary parts of sin(3 + i).

sin(3 + i) = sin 3 cos i + cos 3 sin i = sin 3 cosh 1 + i cos 3 sinh 1

so Re[sin (3 + i)] = sin 3 cosh 1 and Im[sin (3 + i)] = cos 3 sinh 1.

Example: Find the complex z which satisfies cos z = 3.
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Use eiz+e−iz

2 = 3 so that e2iz - 6eiz + 1 = 0

is a quadratic equation for eiz = 3 ±
√

8

(cosx + isinx)e−y = 3 ±
√

8
.

Equating imaginary parts gives

e−ysin x = 0 so that x = kπ for k = 0, ±1, ±2,...

Equating real parts gives

e−ycos x = 3 ± 2
√

2

so that ±e−y = 3±2
√

2 and z = x + iy = kπ ∓ ln(3 ± 2
√

2).

76 Integration

Integration is the reverse of differentiation.

The basic problem is: if g(x) and f(x) satisfy g = df
dx , what is f(x)?

Example: if df
dx = x, then f(x) = 1

2x2 + any constant (the constant of integration).

The integral sign is the symbol which calls for integration to be performed. Examples
are as follows.∫

x3dx = 1
4x4 + constant c.∫ √

xdx =
∫

x
1
2 dx = 2

3x
3
2 dx + c.∫

3
x2 dx = 3

∫
x−2dx = 3

(−1)x
−1 + c = - 3

x + c.∫
(x + 2)dx = 1

2x2 + 2x + c.∫
dx
x = ln x + c because d

dx(lnx) = 1
x .∫

baxdx = 1
abax + c for constants a,b,c.∫

sinaxdx = - 1
acosax + c.∫

cosaxdx = 1
asinax + c.∫

sinhaxdx = 1
acoshax + c.
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∫
coshaxdx = 1

asinhax + c.

77 Integration by parts

This uses the product rule for differentiation, namely

d(uv)
dx = d(u)

dx v + d(v)
dx u

integrated to give

uv =
∫

v du
dxdx +

∫
udv

dxdx

or∫
udv

dxdx = uv -
∫

v du
dxdx.

Examples.

1.
∫

xexdx = xex -
∫

exdx = (x− 1)ex + c

by choosing u = x, dv
dx = ex so that du

dx = 1, with v = ex.

2.
∫

xlnxdx = 1
2x2ln x -

∫
1
2x2 dx

x = 1
2x2ln x - 1

4x2 + c

by choosing u= ln x, dv
dx = x so that du

dx = 1
x , with v = 1

2x2.

78 Integration by change of variable

Examples.

1.
∫

xex2
dx =

∫
eu du

2 = eu

2 + c

by choosing u = x2 so that 2x = du
dx and xdx = du

2 .

2.
∫

(x + 1)3 dx =
∫

(x + 1)3 d(x + 1) = (x+1)4

4 + c.

3.
∫

sinxcosxdx =
∫

sinxd(sinx) = 1
2(sinx)2 + c.

4.
∫

dx
x+3 =

∫ d(x+3)
x+3 = ln(x + 3) + c.

79 Integration by partial fractions

To find the integral of 4x+3
x2−1

seek a version of the integrand in the form
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A
x−1 + B

x+1 , which requires

A(x + 1) + B(x− 1) = 4x + 3 and therefore A + B = 4 and A−B = 3, so that 2A = 7
and 2B = 1. Thus∫

4x+3
x2−1

dx = 7
2

∫
dx

x−1 + 1
2

∫
dx

x+1 = 7
2 ln(x− 1) + 1

2 ln(x + 1) + c.

80 Further examples of integration

1.
∫

dx
(2x+1)2

= 1
2

∫ d(2x+1)
(2x+1)2

= 1
2

∫
du
u2 = - 1

2u + c = - 1
2(2x+1) + c using u = 2x + 1.

2.
∫

tanxsec2xdx =
∫

udu = 1
2u2 + c = 1

2tan2x + c using u = tanx with du = sec2xdx.

3.
∫

exsinxdx =
∫

udv =
∫

d(uv) -
∫

vdu = uv -
∫

vdu = - excos x +
∫

excosxdx using
u = ex, dv = sin xdx, v = - cos x.

4.
∫

excosxdx =
∫

udw =
∫

d(uw) -
∫

wdu = uw -
∫

wdu = exsin x -
∫

exsinxdx using
u = ex, dw = cos xdx, w = sin x.

5. Combining the above two results gives

2
∫

exsin xdx = ex(sin x - cos x) + constant.

81 Integration and area

The area under the graph of a function g(x) from x = a to x = b is the integral∫
g(x)dx because the integral means the sum of all the vertical strips of width dx and

height g (at that location).

[Diagram]

If we treat the starting point x = a as fixed and imagine the end point x = b as variable,
then we can think of the integral∫

g(x)dx = f(b)

as another function f(b) of the end point value b which, when we imagine the end point
to be variable, will have the property

df
db = g(b).

This fact has the rather grand name of “The Fundamental Theorem of the Calculus”,
but it just means that integration is the opposite of differentiation.
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82 Examples of integration

1. Find the area under the graph g(x) = 1 between x = 1 and x = 3. Draw the picture
whenever convenient.

[Diagram]

Area =
∫

1dx = [x + c] = (3 + c) - (1 + c) = 2.

Here c is an arbitrary “constant of integration” which cancels out.

2. Find the integral from x = 1 to x = 2∫
x2dx = [13x3 + c] = (8

3 + c) - (1
3 + c) = 7

3 .

[Diagram - we have evaluated the shaded area under the parabola]

3. Find the integral from x = 1 to x = 3∫
(−1)dx = [- x + c] = (- 3 + c) - (- 1 + c) = - 2.

[Diagram]

This illustrates that any part of a graph which is below the axis will contribute a negative
amount to the integral.

4. Find the integral from x = −π to x = π∫
sin xdx = [- cosx] = ( - cos π) - ( - cos ( -π)) = -( -1) - ( - ( -1)) = 1 - 1 = 0.

[Diagram]

So this is not the area between the curve and the x-axis. That would be four times the
integral of sin x between x = 0 and x = π

2 .

83 Mean values

Mean value = “average” value, in plain language = integral
lengthofinterval .

For example, the mean value of cos2 x over one period of cos x is 1
2π

∫
cos2xdx integrated

from 0 to 2π.

[Diagram]

To integrate this we need the formula cos 2x = cos2x - sin 2x = 2cos2x - 1 so that
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1
2π

∫
cos2xdx = 1

4π

∫
(1 + cos2x)dx = 1

4π [x + 1
2sin 2x

evaluated between 0 and 2π which is

1
4π (2π - 0) = 1

2 .

[Diagram]

Thus the “mean value” is 1
2 , and the “root mean value” is 1√

2
.

84 Integration by substitution

Find
∫

(x + 1)2dx integrated between x = 1 and 2.

Introduce u = x + 1 which implies du = dx so that∫
(x + 1)2dx =

∫
u2du = u3

3

evaluated between u = 3 and 2, so the integral is 27
3 - 8

3 = 19
3 .

85 Integration via simplifying fractions

To find
∫

f(x)dx

where f(x) = 2+3x
(1+x)

2(4 + 3x)

needs f(x) = A
1+x + B

(1+x)2
+ C

4+3x

which leads to

A = 6, B = −1 and C = −18 so that∫
f(x)dx =

∫
6

1+xdx -
∫

1
1+x2 dx -

∫
18

4+3xdx

= 6ln(1 + x) + 1
1+x - 6ln(4 + 3x).

We can now choose any limits for the integration.

86 Binomial theorem

This is the generalisation of expansions like

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
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whose coefficients form part of a pyramid, with a general form.

87 Application:compound interest

If I invest P pounds for n years at r percent per annum, and if I leave each year’s interest
invested for subsequent years (so that compound interest is earned), instead of removing
the interest annually (which would earn simple interest only), then after n years I shall have
P(1 + r

100)n pounds.

This illustrates the Binomial Theorem.

88 Arithmetic progression

Example: 5 + 8 + 11 + 14 + 17 + 17 + 20 + ... has common difference 3.

Generally, a + (a + d) + (a + 2d) + (a + 3d) + (a + 4d) + ... + (a + (n− 1)d) = Sn = sum
of n terms, has first term a, common difference d and number of terms n. We can prove
that the sum of n terms is

Sn = n
2 (2a + (n− 1)d).

This is done by writing out the series in the initial version, and then the same series but
in reversed format, and adding the n pairs of terms. Each pair sums to 2a + (n− 1)d so we
reach the quotes result.

Example: 5 + 8 + 11 + 14 + 17 + 20 = 75 because n = 6, a = 5, d = 3 which delivers
the result from the formula.

89 Geometrical progression

The example 2 + 4 + 8 + 16 + 32 illustrates a geometrical progression with common ratio 2.

The general case is

a + ar + ar2 + ... + ar(n−1) = Sn

= sum of n terms for a series with first term a and common ratio r.

To find a compact formula for Sn, multiply the series by r to give rSn. Then by sub-
tracting the two series we find

Sn = a rn−1
r−1 .

Example: 2 + 6 = 18 + 54 + 162 has a = 2, r = 3, n = 5 so that S5 = 2(35−1)
3−1 = 242.
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We can apply these ideas to find a sum to an infinite number of terms if r < 1, because
then rn → 0 as n →∞.

Then Sn = a rn−1
r−1 → a

1−r as n →∞.

90 Catch-up problem

Car A with uniform speed u is being chased by car B with uniform speed v > u and initial
separation s, so there will be catch-up after time t when B has travelled a distance

c = vt = ut + s

and the time taken will be

t = c
v = c−s

u = s
v−u

and the catch-up distance travelled by B will be c = vs
v−u .

Numerical example: if s = 100m, v = 10ms−1, u = 1ms−1

then c = 10x100
10−1 = 1000

9 = 111.111...

91 More applications of De Moivre’s Theorem

1. Given that z = 64(cos π
6 + i sin π

6 ), find all the values of z
1
6 .

[Diagram]

Using z = 64[cos (π
6 + 2nπ) + i sin (π

6 + 2nπ)] for any integer n, De Moivre’s Theorem
gives

z
1
6 = 64

1
6 [cos(π

6 + 2nπ) + isin(π
6 + 2nπ)]

1
6

= 2[cos1
6(π

6 + 2nπ) + isin1
6(π

6 + 2nπ)]

= 2[cos( π
36 + nπ

3 ) + isin( π
36 + nπ

3 )]

for n = 0,1,2,3,4,5.

[Diagram]

The location of the roots is on a circle of radius 2 (= modulus of all the roots) at angles
(= amplitudes = arguments) of

π
36 radians (= 180

36 = 5 degrees) for n = 0,
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π
36 + π

3 = 13π
36 radians (= 5 + 60 = 65 degrees) for n = 1,

π
36 + 2π

3 = 25π
36 radians (= 5 + 120 = 125 degrees) for n = 2,

π
36 + 3π

3 = 37π
36 radians (= 5 + 180 = 185 degrees) for n = 3,

π
36 + 4π

3 = 49π
36 radians (= 5 + 240 = 245 degrees) for n = 4,

π
36 + 5π

3 = 61π
36 radians (= 5 + 300 = 305 degrees) for n = 5.

2. Find cos 4θ in terms of cos θ.

Use De Moivre’s Theorem in the form

cos 4θ + i sin4θ = (cos θ + i sin θ)4

= cos4θ - 6cos2θsin2θ + sin4θ + i[4cos3θsinθ - 4cosθsin3θ].

Equating real parts and using cos2θ + sin2θ = 1 gives

cos 4θ = 8cos4θ - 8cos2θ + 1.

We now get a bonus without more work by equating the imaginary parts, which gives

sin 4θ = 4cos3θsinθ - 4cosθsin3θ = 4sinθcosθ(cos2θ - sin2θ).

3. Find all the roots z of z3 = i
√

2
1+i .

The right hand side is i
√

2
1+i

1−i
1−i = 1+i√

2
= cos π

4 + i sin π
4 .

So z3 = cos π
4 + i sin π

4 = cos (π
4 + 2nπ) + i sin (π

4 + 2nπ) for n = 0,1,2

and z = (cos π
4 + i sin π

4 )
1
3 = cos ( π

12 + 2nπ
3 ) + i sin( π

12 + 2nπ
3 ) for n = 0,1,2

= cos π
12 + i sin π

12 , cos 9π
12 + i sin 9π

12 , cos 17π
12 + i sin 17π

12

with modulus 1 and amplitudes π
12 = 15 degrees, 9π

12 = 135 degrees, 17π
12 = 255 degrees.

[Diagram]
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