
A Theory of Dynamic Software Updates

A thesis submitted for the Degree of Doctor in Philosophy,

by Gareth Paul Stoyle of Hughes Hall.

Copyright c© Gareth Paul Stoyle, 2006.





To my parents





Abstract

This thesis addresses the problem of evolving software through a sequence of releases

without halting execution, a process referred to as Dynamic Software Updating (DSU).

It looks at the theoretical foundations, develops an applied theory, and shows how this

can be used to automatically transform programs into upgradable ones that come with

guarantees of updatability. In contrast to many previous approaches, our semantics are

developed at the language level, allowing for on-line evolution to match source-code

evolution.

The first part of the thesis takes a foundational approach, developing a core theory

of dynamic rebinding. The theory looks afresh at the reduction semantics of the call-

by-value (CBV) λ-calculus, delaying instantiations so that computations always use the

most recently rebound version of a definition. We introduce the redex-time and destruct-

time strategies that differ in how long they delay instantiations. The computational

consistency of these calculi are confirmed by showing that their contextual equivalence

relations agree with that of classical CBV.

The second part of the thesis presents Proteus, a core calculus for dynamic software

updating in C-like languages that is flexible, safe, and predictable. Proteus supports

dynamic updates to functions (even active ones), to named types, and to data. First

it is shown how an a posteriori notion of abstraction can lead to a very general type-

directed mechanism for DSU whose safety can be assured dynamically, and second that

this dynamic check has a good static approximation. The latter is shown by constructing

a novel capability-based type system that is proved sound with respect to a reduction

semantics. The final chapter reports on a prototype implementation of the theory for the

C programming language.
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1
Introduction

Software changes. It changes because the requirements change, because a bug is found,

or because an optimisation is discovered. Whatever the reason, change, in the form of

software upgrades, pervades the life cycle of any non-trivial software product.

The usual approach to a software upgrade involves the developer providing a new ex-

ecutable, the client halting execution of the existing system and restarting with the new.

In the case of critical services such as financial transaction processors, air traffic control

and network infrastructure a planned outage is organised for the upgrade, possibly re-

sulting in substantial financial loss. Dynamic Software Updating (DSU) is an approach

that avoids this temporary interruption caused by a software upgrade by allowing the

system to be patched on-the-fly.

Of course, the techniques of DSU are not limited to critical systems: for other non-

critical but continuous services, such as the SSH daemon or a personal computer’s op-

erating system kernel, it is not necessary, but nonetheless convenient to upgrade them

without interruption. An important instance of this occurs when software is managed

asynchronously to its use, such as a service centre changing the software on a mobile

phone which may be simultaneously in use by the client. In these situations DSU can

allow the change to happen without the need to notify the user.

DSU also has applications that are not related to software upgrades. Examples of this

are debugging and performance tuning. DSU allows the engineer to augment running

software to collect information about problems that occur with a production system,

such as poor performance or intermittent faulty behaviour. The information required

to diagnose and fix the problem is not known in advance, and certainly not at compile

1



2 1. INTRODUCTION
time, so when a fault is noticed a software extension can be installed to determine the

cause.

This thesis investigates the theory of updatable systems and how programs can be

automatically compiled to allow updates at runtime.

1.1 Approaches to DSU

The purpose of DSU is to dynamically change the behaviour of a running software system

without interruption. We group approaches to the problem under the broad headings of

systems-based and software-based approaches.

1.1.1 A systems approach

As a first thought we may decide the simplest way to achieve DSU is through the use

of redundant hardware. The idea here is that two machines are available, A and B.

A runs the application until an upgrade is required, at which point B is brought up

running the new software, the state of the application (current connections, open files,

the state of any computations, etc. ) is transferred from A to B, and B takes over. The

main problem to be solved is how to transfer the state. More precisely, how is the

relevant state extracted from A, transformed to be compatible with the new software

and injected into B? How is the system dependent state such as open sockets and file

handles transferred from A to B? And when is a safe time for this to be performed?

Taking a redundant hardware approach ties together the dynamic upgrade with the

complications of process migration, while still retaining the problem of transferring the

state between the old and new version. If no state transfer is needed, such as in the case

of a server with a stateless protocol (e.g. HTTP) then this approach is a fine solution.

However, for the majority of cases where state transfer is required we would be better

upgrading a single address space and not introducing the extra problem of migration

between machines.

1.1.2 A software approach

Having observed that redundant hardware does not help us we shall concentrate directly

on a software approach, focusing on the problem of transforming the state of the old

process into a corresponding state for the new process, along with installing the new

code and data. The central challenge is to discover mechanisms that allow us to structure

dynamic changes to a system.
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If we accept that writing correct software is a hard task in its own right, then writing

a patch to a running system is very hard, as when extending a software system dynami-

cally we not only have to think about logical correctness, but also temporal correctness.

This temporal correctness refers to the fact that not all changes will only be valid at all

execution points: we probably do not want to change an integer to a string just before

addition is about to take place.

Dynamic update can be seen as consisting of three parts: dynamic linking, re-linking

and state transfer.

Dynamic linking This is a well understood stage where new code and data are made

accessible to the program at runtime. A prototypical implementation is POSIX’s dlopen1

which can load data and code from shared libraries into a process’ address space and

provides a mechanism to locate items in the library by name.

Re-linking After new definitions have been loaded, it is necessary to ensure not only

that new code uses the new definitions, but also that old code does too. Existing binders

in the old code are re-linked to their new definitions, which may have changed type.

State transfer When a program is upgraded the data structures it uses will most likely

change. For example, a data structure that was previously implemented as a singly-

linked list may now be required to be doubly-linked, in which case every instance of

the list should have reverse links added. Another case might require storage expansion,

where locations previously assumed to be integers are upgraded to records, or indeed

vice-versa where storage is contracted, the record being replaced with an index to locate

it.

During all three stages we would like to maintain some notion of safety. Here we are

interested in ensuring that the program will not crash by maintaining type safety. As

mentioned before, with a patch we not only have to check that it is safe to apply, but

also that it is safe to apply with respect to a program state, or set of program states.

The first part of this thesis is concerned with re-linking at the fundamental level of

the λ-calculus, while the latter half examines how a form of a posteriori abstraction can

be used to ensure representation consistency during state transfer.

1See the UNIX man page dlopen(3)



4 1. INTRODUCTION
1.2 Understanding Dynamic Relinking

The linking of an identifier to a value traditionally occurs at either compile time, link

time or runtime. Compile time resolution of an identifier to the value it binds usually

applies to local variables, link time binding to occurrences of identifiers belonging to

one module in another and runtime linking to identifiers that are shared between many

programs, such as interfaces to system resources.

Our motivation for looking at linking is in the context of dynamic updates, where

we are interested not just in linking, but relinking. A minimal requirement of dynamic

update is to be able to change a program at runtime by relinking its identifiers to new

code and data. While dynamic linking is well understood [DE02, Car97], there is a much

more patchy understanding of the dynamic relinking required for DSU.

A simple approach to relinking at runtime, allowing limited dynamic changes, are

plugin architectures. A program that has a plugin architecture delays choices about the

number and type of particular services it provides until runtime. It exports an interface

for a service (such as a filter facility in a graphics package) and looks for shared libraries

providing this interface dynamically at runtime. Plugin architectures are an explicit

realization of dynamic rebinding at runtime. The programmer designs his program to

allow a predetermined set of variables, referring to the given service, to be rebound

at runtime. This limited form of update has proved successful in contexts where third

parties are expected to extend software in a specific direction, such as adding extra filters

to graphics packages.

The plugin approach does not address unexpected changes. For this we want to

make changes to the original program, not just extensions. The most natural way to

make changes to a program is by adding new variables and rebinding existing variables

to new values. Thus, dynamic changes must be understood in the context of the original

program and we are led to consider dynamic relinking in the context of programming

language semantics.

Despite considerable previous interest in DSU (see related work in §1.6), there has,

perhaps surprisingly, been little formalism. Therefore, a suitable place to begin is by

considering how dynamic update can be understood in a traditional model of a pro-

gramming language, by which we mean the λ-calculus with a let construct, paring and

projection (written πi). We assume the reader to be familiar with such a system.
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The let construct allows terms to be labelled with an identifier, providing a natural

unit of indirection.

let z = (5, 4) in z

While the above example program refers to z, it is not committed to the actual value

presently bound to z. In other words, the program has the potential to notice any

change in the binding of z. After the occurrences of z are replaced by its definition the

indirection is collapsed and a choice is made to use the current definition. There are

several choices that can be made about how to collapse this indirection, i.e. how to

instantiate variables. The usual one is substitution.

Recall the usual call-by-value (CBV) evaluation strategy for the λ-calculus and con-

sider the following reduction:

let z = (5, 4) in π1(π2(z, z)) → {5/z}(π1(π2(z, z))) ≡ π1(π2((5, 4), (5, 4)))

Substitution has removed the relation between the value (5, 4) and the variable z; in

the resulting term we no longer know where (5, 4) originated. Immediately we are pre-

sented with a glaring incompatibility between the usual reduction strategy for CBV and

dynamic update. In the situation posed it is hopeless to try to give meaning to a notion

of upgrading z, as z no longer ‘exists’. If we are to make sense of dynamic rebinding, as

we must if we are to make progress in understanding dynamic updating, then we need a

reduction strategy that preserves the structure of the computation, allowing us to refer

back to the results of previous computations and delaying the collapse of the indirection

from variable names to their bound values.

One way of presenting such a system without introducing any extra syntactic con-

structors is to do away with substitution and allow reduction under lets that bind values,

which we call value-lets. For example, instead of

let x = 1 in let y = 2 in π1(3, 4) → let y = 2 in π1(3, 4)

we could allow

let x = 1 in let y = 2 in π1(3, 4) → let x = 1 in let y = 2 in 3

as the lets bind values. A consequence of such a theory is that we eventually reach a

variable during reduction, for example:

let z = (5, 4) in π1(π2(z, z))
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where the leftmost z must be resolved as it is in redex position. Of course, we are not

stuck, because the answer is contained in the surrounding context which contains a

let-binding for z. All we have to do is look it up:

let z = (5, 4) in π1(π2(z, z)) → let z = (5, 4) in π1(π2((5, 4), z))

Or do we? Well, it is certainly valid to instantiate the variable z at this point, but it is not

necessary. The value of z is not actually needed, because the inner π2 projection does

not inspect the structure of z. Performing the inner projection leads to

let z = (5, 4) in π1z

The ensuing projection presents a problem as it does rely on the structure of z – we

cannot project from a variable, only a tuple. We are forced to instantiate the z and say

that z is in destruct position as the value z binds is about the destructed (decomposed):

let z = (5, 4) in π1z → let z = (5, 4) in π1(5, 4) → let z = (5, 4) in 5

In the discussion above we proposed allowing execution to continue under value-

binding lets and identified two ways to delay the instantiation of variables. The first

delayed instantiation strategy, which we call redex time, instantiates (looks up) variables

when they enter redex position in a usual left to right CBV evaluation order. The second

strategy, which we call destruct time, instantiates variables later when a destructive op-

eration is directly applied. A destructive operation is one that needs to look at the value

bound to a variable such as project or function application.

Either of these two instantiation strategies are suitable for use in dynamic environ-

ments. Both delay instantiation of variables, preserving the link between binder and

bindee and thus, in the presence of updates, allow programs to use the most recent

version of a bound variable.

Destruct-time instantiation preserves the binder-bindee link longer, making the pro-

gram aware of more updates, while redex-time instantiation is a more familiar model

(and may carry more intuition). Chapter 2 formalises these reduction strategies and

defines a notion of update within the calculus.
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1.2.1 CBV Equivalence

We would like to continue using our usual CBV reasoning and intuition, therefore we

hope that the calculi we describe are, in the absence of rebinding or update, equivalent

to the usual CBV semantics. The intuitive reason for believing that they still operate ‘by

value’ (and thus CBV reasoning still applies) is that instantiation only occurs for value

bindings, and evaluation only continues under a let once that let binds a value. Slightly

more formally, observe that substituting away the lets from the delayed term results in

a term that matches substitution-based reduction:

let f = λx.e in

f 3

delayed inst. //

Sub. out lets

��

let f = λx.e in

(λx.e) 3

app //

Sub. out lets

��

let f = λx.e in

let x = 3 in

e

Sub. out lets

��
(λx.e) 3 (λx.e) 3

app // {3/x}e

However, the situation is more subtle in the presence of a recursive definitions (letrec),

as the substitution may unfold the recursion. For example, the reason that the central

substitution of lets results in (λx.e) 3 and not (λx.{λx.e/f}e) 3 is that f does not appear

free in e.

Although a correspondence as described above shows that reduction sequences are

related, it says nothing about termination: there may be programs that terminate under

the usual CBV reduction but diverge under our delayed instantiation approach, or vice

versa. Pleasingly, this turns out not to be the case. In fact, the contextual equivalence

relations of delayed instantiation calculi coincide with that of the usual CBV, in a sense

to be made clear in Chapter 3.

1.2.2 Safe Dynamic Relinking

As discussed, dynamic relinking involves changing the value associated with some bind-

ing available to the program. In its simplest form this could be a non-deterministic

change to a variable in the program, in which case our only job would be to place a

restriction on when such changes could occur, as without such restrictions it would be

hard for a programmer to reason about evaluation. However, here we have made the

tacit assumption that the variable retains its type, forcing the relinked value to be of the

same type as (or possibly a subtype of) the old one — a far too restrictive constraint if

we want to use the relinking mechanism to perform dynamic updates. Of course, if we
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permit types to be changed then we must transform any values associated with that type

accordingly, otherwise we may end up with a type-inconsistent program.

One way to enforce type consistency is to require that the newly-relinked program

type check in its entirety (e.g. as in Hicks’ thesis [Hic01]). However, with this approach

the program requires a runtime representation that is checkable, such as typed assembly

language [MCG+99] combined with disassembly, proof-carrying code [Nec97] used in

the same way, or some higher-level typed representation such as Java bytecode, which

is not appropriate for all applications. Worse though, is that the programmer is left to

guess how to produce a patch that when applied to the program will produce a typeable

program, and moreover, whether or not the program is typeable depends on when the

patch is applied. Thus, even when we have a way to talk about relinking in our language,

we are still left wondering about the inter-related problems of how to change the type

of bindings and how to reliably modify the state to be consistent with this in a way that

is both natural and intuitive to the programmer.

1.3 Dynamic Update

Now that we have some understanding of delayed instantiation and dynamic relinking,

the core challenge of changing the representation of data can be addressed. For our

purposes the representation of data can be seen as its type; all items of a given type

having the same representation and each type’s representation being unique.

Suppose, for a moment, that all data is allowed to change type. Further assume

that we identify the type of data by tagging it with its type T , written [−]T . Consider

[1]int+[2]int. If we change the representation of [1]int to [“1”]string then this will only make

sense if we change the definition of + and possibly the representation of [2]int to match.

One possibility is to change [2]int to [“2”]string and the definition of + to a function that

acts on strings, for example, concatenation. This approach is not very practical for two

reasons. First, there is no way to identify the data item to change (we have no name for

[1]int) and second, each data item in a program needs changing on an individual basis

– the update mechanism lacks structure. The first of these problems has an obvious

solution, which is to allow only data bound by a let to be changed (although this is

not without its problems due to alpha conversion). This still leaves the programmer to

search out all variables that should be changed, suggesting that we need a higher-level

notion of change.

When programming in a typed language, groups of variables that have similar mean-

ing to the programmer, such as floating point numbers that denote money or a record
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structure that denotes an address, are usually grouped together using a named type, for

example, money = float and address = {house no : int, postcode : string}. These named

types, being assigned by the programmer, create logical divisions of the data where all

members of a particular division (named type) are likely to change representation to-

gether; it is preferable to have all monetary values as floats or strings, but not a mix

of representations. Prompted by this observation we do not concentrate on changing

the type of individual data items, but on changing the definition of named types. A

safe update will ensure that such a change does not invalidate the type structure of the

program.

Consider the following simple program

type t = int

let x : t = 5 in

x ÷ x

If we try to update t to string, or some other exotic type, then the data bound to x must be

transformed accordingly. However, such a transformation will invalidate the subsequent

division operation — especially as it is integer division. We clearly need some control

over what can be updated, and because the safety of an update is flow-dependent (e.g.

after the division is performed there is no constraint on the updatability of x), we also

need to consider when updates are valid.

In the last example, the unsoundness introduced by updating type t was due to the

fact that x, of type t, was subsequently used at t’s originally defined type. This is unsound

because the type of a variable represents an assumption about properties of the data

associated with that variable. If we change the type then we change the assumptions,

and continuing to use old, now invalid, assumptions will lead to error. If the type of

a variable is to be safely updated it seems necessary to require that the variable never

be used at the old type following the update. With no further refinement this condition

would mean the variable could never be used concretely in the execution of the rest of

the program, a limiting restriction indeed. This motivates a second natural requirement,

that every function that uses values of type t concretely be replaced with a function that

acts on those values at the new type, i.e. is consistent with the new definition of t. With

this in place, it is only the code on the call stack that must not use the variable, for this

usage will be at the old type. It is perfectly safe to pass values of type t as parameters

in function calls, as the function is guaranteed to have been replaced and so consistent

with the newly updated type.
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There are many outstanding questions. How do we know if a given update is safe?

How do we find and convert data of type t at runtime? How do we know when data

of named type is used concretely? At what point do we know if a type is updatable –

runtime or compile time? We outline our solutions in subsequent sections.

1.3.1 After the Event Abstraction

Having decided to focus on updating the definition of named types, we face a problem:

if we have the type definition t = int how can we distinguish between data of type t and

that of type int? This is important as when updating t we want to change all data of type

t, which is not the same as every integer. One way, and the one we shall investigate,

is to reflect the difference in the term structure. We let abst 3 be of type t with the

interpretation that 3 is abstracted to type t, while 3 is of type int. Of course, we need

a way to concretize a value of named type back to its underlying type, which we write

cont e with the semantics that cont (abst 3) → 3.

There are two benefits to this explicit representation. First, it is immediate exactly

which functions use data of a named type concretely, as those contain a subterm of the

form cont e. Second, when we change the definition of t we can easily locate data of

type t, as they are subterms of the form abst e. The downside is that the programmer

must insert these explicit coercions into and out of the named type as t and int are

distinct, whereas the usual semantics for named type definitions implies that t and int

can be used interchangeably whenever the declaration type t = int holds. Luckily,

we can (almost2) regain the usual semantics for the programmer by inserting these

coercions automatically, as we show in Section 5.2. For now we will consider programs

with explicit coercions.

To see how the explicit coercions work in practice suppose we have two named types

defined, t = int and s = int, and consider the following program

fun double(x : t) : int = 2 ∗ (cont x) in

let x : t = abst 2 in

let y : s = abss 3 in

let z : int = (cont x) + (cons y) in

z + double(x) + (cons y)

At the start of execution neither t nor s are updatable because the continuation of the

process contains concretions for both types. Let us use substitution for lets and (redex-

2The type definition type t = τ will be transparent everywhere except at reference types
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time) instantiation for functions, so that substituting away both lets gives

fun double(x : t) : int = 2 ∗ (cont x) in

let z : int = (cont (abst 2)) + (cons (abss 3)) in

z + double(abst 2) + (cons (abss 3))

whereupon the abs and con annihilate each other, the program reducing to

fun double(x : t) : int = 2 ∗ (cont x) in

let z : int = 2 + 3 in

z + double(abst 2) + (cons (abss 3))

The resulting program is updatable for t, but not for s. This is because the continuation

of the program will directly use s concretely, but t will only be used concretely indirectly

through the function double, which will be replaced on any update to t to be consistent

with the new definition. To update t to, say, the record {a : int, b : int} we provide a

coercion function c : int → {a : int, b : int}, which the runtime system can easily insert at

every abstraction. Consistent with the requirements discussed earlier we also replace the

function double to act consistently with the new definition of t. The resulting program is

fun double(x : t) : int = 2 ∗ (cont x).a in

let z : int = 2 + 3 in

z + double(abst (c 2)) + (cons (abss 3))

In this example we have assumed updates to be asynchronous, meaning that we can

attempt to apply them without regard to the program’s state. The formalism described

in this thesis uses synchronous updates, their possibility being explicitly marked with

the keyword update. Asynchronous updates are hard to reason about because they can

happen in any program state, but in contrast synchronous updates allow one to know

some information about the state of the program at the time the update is applied.

1.3.2 A Capability Approach

The machinery discussed thus far allows for program patches that can change the defini-

tion of named types in a way that is both safe and whose application is automatic. While

this is an advance over previous systems, it still has one flaw: when the initial program

is run we have no guarantee as to the updatability of any type. We only discover if an

update is possible when we attempt to apply it. We would prefer to know whether each
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type is updatable in advance of execution; if our program is not available for update then

we have precluded the very thing we set out to achieve. Our approach to this problem

will be to use the intuitive dynamic notion of capability to develop a capability-based

type system that predicts which types are modifiable at each update point statically. This

static system is developed in Chapter 6 and here we restrict our discussion to explaining

the intuitive notion of capability that lies behind it.

Updates can be made safe through a check at update time, as proposed in the previ-

ous section, but suppose for a moment that no such check was in-place. How could we

detect that an invalid update had lead to an error dynamically? An approach we shall

describe is based on the notion of capability.

Suppose we augment program configurations with a capability denoted ∆ to have

configurations (∆;P ), where ∆ is a set of named types and P is the program. The notion

of capability we shall use is that whenever t ∈ ∆ the program P has the capability to

concretize data of type t.

Assume that initial configurations have the ability to concretize all program types.

We must say how execution maintains the capability set so as the set always contains

exactly the types the program can concretize. We now look at how this capability set is

used and maintained.

Concretization This is where errors are detected. A fundamental constraint is that a

program only concretes at a type t if it has the capability to do so. By this we mean that

the reduction ∆; cont (abst v) → ∆; v is only possible whenever t ∈ ∆. Whenever we

reach a concretion and t /∈ ∆ then an error occurs as we do not have the capability to

proceed.

Updates Whenever an update occurs to a named type t the capability to concretize at

that type needs to be revoked:

∆;P
update to t
−−−−−−−→ ∆\{t};P ′

where P ′ is the updated program with the data of type t transformed to be consistent

with the new definition.

Function application Updates reduce our capability and concretions can lead to errors

if our capability is not big enough. If these were the only rules our program would

become less and less updatable as time progressed. Fortunately they are not. It is our
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requirement to replace functions that use a type begin updated concretely that plays

a crucial rôle here. Because of this requirement, whenever a function is called it is

guaranteed to use the new definition of t. Thus even if the calling context does not

have the capability to concretize at t, this does not preclude the called function from

concretising at t. Thus, we are free to expand the capability when calling a function. We

must remember through, to reduce the capability upon returning from the function, as

then we will be back in old code that assumes the old definition of t.

1.4 Pragmatic Update

A reasonable question to ask is whether the theory we develop has any practical value.

This can only be answered through the experience of using a real system, for which a sig-

nificant start has been made. The theory presented in this thesis has been implemented

for the C programming language in the form of a prototype source-to-source compiler

for turning regular C programs into updatable ones and for compiling dynamic patches

that can be applied by a simple run-time system. We accept all C programs, marking

types non-updatable where we must be conservative due to C’s unsafe features.

Chapter 7 describes a prototype implementation of the theory as a sequence of

source-to-source transforms on C programs together with constraint solving to deter-

mine a program’s updatability. Additionally, it extends the theory to cope with specific C

language features and gives some preliminary performance results.

1.5 Update Systems Introduced in This Thesis

This thesis introduces the four update systems, Lambda-update, The Update Calculus,

Proteus and Proteus∆. They increase in sophistication, following the development out-

lined in this introduction.

1.5.1 Lambda-Update

This is a simple extension of the delayed instantiation calculus λd. It provides a straight-

forward mechanism for update that allows one to change any binding in scope at the

reduction of the update. It is typesafe and flexible, but achieves this via typechecking at

runtime.
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1.5.2 Update Calculus

This applies the ideas of λr in a simple setting, giving semantics to a statically typed

Erlang-like language. This language requires just as many dynamic checks as Lambda-

Update, but is more practical, showing how the ideas can apply at the module level.

1.5.3 Proteus

Proteus starts to remove the dynamic checks required by the previous calculi. Proteus

replaces a runtime type check with a simple syntactic check, which is both simple to

verify and obviates the need for runtime type information. It still allows types to change,

but places a restriction that only named types can change. In short, the relevant part

of the type system is reified in the syntax and only a check for the presence of certain

syntactic forms in the continuation is required at update time.

1.5.4 Proteus∆

Proteus∆ is an extension to Proteus that completely removes the need to examine code

at runtime. Through a static analysis, each update point is (conservatively) annotated

with the types that may not be changed by updates applied at that update point. The

only runtime check is to compare the types changed by the update to those prohibited

from change at the active update point. Any other checks (such as type checking new

code) can be done offline. Because the analysis is conservative, Proteus∆ accepts a

potentially smaller class of updates than Proteus. However, the analysis can be used

promiscuously to discover program points at which more types can be updated than any

other. Ideally we will find a universal point that admits updates to all types, or a set of

update points that collectively allow all types to be updated.

1.6 Related Work

This section relates our work to the existing literature. Section 1.6.1 reviews work re-

lated to our development of a delayed instantiation semantics for the λ-calculus, Section

1.6.2 details the prior work on dynamic update and Section 1.6.3 reviews previous work

on capability type systems.
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1.6.1 λ and Delayed Instantiation

Our approach to the semantics of the CBV λ-calculus retains bindings for later instan-

tiation and in this respect has some similarities with prior work on explicit substitu-

tions [ACCL90], sharing in call-by-need languages [AFM+95], and work on the compi-

lation of extended recursion [HLW03, Hir03].

The work on explicit substitutions presents the λσ-calculus, a call-by-name (CBN)

λ-calculus that moves the usual notion of substitution from the meta-level into the term

structure. Although their evaluation strategies are CBN, the obvious presentation of a

CBV strategy would lead to λr (redex-time) instantiation of variables.

The Call-by-Need Lambda Calculus [AFM+95] of Maraist, Odersky and Wadler uses

lets to share the results of computations. Instantiation from surrounding let bindings is

performed, although they are lazy and so the timing is not specified. Their computations

result in "answers" that are similar to our value forms. They also show a correspondence

to the call-by-name lambda calculus using operational reasoning.

The idea of incorporating a destruct-time instantiation strategy in a CBV λ-calculus,

as we use in λd, was simultaneously discovered by Hirschowitz et al. [HLW03] in the

setting of extending mutual recursion beyond data of function type in CBV languages.

They prove a correspondence with an allocation-style semantics, while we prove a cor-

respondence with a substitution semantics.

Although the instantiation strategies of our work and those mentioned above are

similar, differences occur in how the environment is represented. In particular, we pre-

served the structure of the environment whereas the others do not. The λσ-calculus

percolates substitutions through the term structure to the variables, whereas the the cal-

culus presented by Hirschowitz does the opposite, floating value-binding lets up to the

top-level, after which instantiation is possible. The call-by-need lambda-calculus allows

its value binding lets to be flattened and garbage collected.

1.6.2 Dynamic Update

DSU has been studied in both industry and academia for many years resulting in a num-

ber of implementations. Surprisingly, perhaps, there has been little formal study and

many of the implementations offer little in the way of safety guarantees. The implemen-

tations that do give some safety guarantees do so with severe restrictions on what can

be updated. Previous work can be categorised into three approaches: those that encode

DSU into an existing language via the use of design patterns; those that take a systems

approach; and those that incorporate it as a language feature. Our approach is the latter.
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Coding up DSU

We are aware of two approaches[HG98, SC05] to encode DSU in an existing (unmodi-

fied) language. The first gives a way to change the implementation of classes in C++

and the second describes a way to build dynamic applications in Haskell [SC05].

Work on dynamic C++ classes [HG98] proposes the use of proxy classes to provide

a level of indirection between the current implementation for an object and its interface.

This means the interface used by the rest of the program can remain fixed while the

underlying implementation changes. Of course, this means that extra fields and methods

cannot be added. After a new implementation of a class is provided, all subsequently

created objects are instances of this new class. However, no attempt is made to upgrade

existing objects that use the old implementation. The approach does complicate the

use of inheritance (due to the separation of interface and implementation) and dynamic

objects have to be created through a factory pattern.

Stewart and Chakravarty [SC05] describe a method for writing applications in

Haskell so that code can be hot swapped. They advocate building applications around a

small static core that interacts with both the dynamic linker, to reload components, and

with the dynamic part of the program. The entry point of the program’s dynamic part is

parametrised by the state that needs to be preserved through an upgrade. Little support

is offered for dealing with changes to the representation of data and their solution for

changing the state type is to serialise the data, convert it and reinject. This happens

outside the type system and is thus unchecked.

MagicBeans [CEM04] is an software engineering solution to dynamic update that

employes a plugin architecture. It uses the reflection, custom loading and dynamic

linking capabilities of Java to implement DSU as a collection of design patterns. This

allows one to write applications that can be extended at runtime, but the extent and

direction of this expansion must have been anticipated at design time. Nonetheless, it

does provide a limited form of DSU.

Barr and Eisenbach [BE03] develop a distributed framework for managing the up-

grade of application components. This works in the existing Java framework and so has

the limitation that updated components must be binary compatible [DWE98, DEW99]

with those they replace. Their system checks components to ensure that this requirement

is met.
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Systems approach

There are three approaches that we group together as systems approaches: cluster

rolling upgrade, process migration, and OS controlled.

Cluster Rolling Upgrade The cluster rolling upgrade approach is simple and works

well, but only for a limited class of client-server applications where request can be fed to

multiple instances of the server by a proxy. As long as the process of upgrading keeps one

server alive, the clients will not suffer any break in service. While simple, this process

requires redundant hardware (if the OS is to be upgraded) which may not be available

(e.g. when upgrading a personal operating system or an embedded device) and requires

the program to have a strict client-server architecture that is stateless so that different

requests from a given session can be distributed among multiple servers.

Process Migration An issue that DSU could address, and a particular issue the sys-

tems community has focussed on, is that of updating an operating system while its

processes remain running. The common approach taken by the systems community

is process migration [Smi88]. Whenever an OS needs to be upgraded its processes

can be checkpointed [Pla97, BMP+04], a process whereby the memory footprint is se-

rialised to storage. This image can then be transmitted to another machine where it

can be restarted. Meanwhile the original machine’s OS can undergo an upgrade and be

rebooted. There are issues here with what happens to resources acquired before check-

pointing and whether they will be available on the target machine. Also, this approach

does not deal with the problem of state transfer between the upgraded process and the

migrated one. It is worth pointing out that this can be done without redundant hardware

using virtualisation [LSS04].

OS Controlled Most modern operating systems support some form of dynamic code

loading at both the user and kernel level. For example, Linux supports dlopen(3) for

user-level dynamic linking and kernel modules for extending the operating system at

runtime. These approaches only allow for dynamic linking, not the relinking and state

transfer needed for DSU. The only operating system we are aware of to support DSU

is the K42 research operating system [BAS+05, SAH+03] developed at IBM Research.

In K42 components must be quiesced before they are updated, which is achieved by

blocking new calls while waiting for existing ones to complete. A few protocols of state

transfer are supported, although the actual process is left to the programmer. In contrast,

we allow the update of active code and provide a general method for state transfer. K42
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is a multi-threaded OS and thus supports DSU in this context, however, threads have to

be blocked for update.

DSU as a Language Feature

Research into DSU has been mainly focused at the language level, where research ef-

forts may usefully be assessed in three directions. First, how available the system is for

update, by which we mean does it restrict update to certain parts of the program or

only allow it at certain points during execution. Second, how they deal with the state

transfer problem and the degree to which conversion of data at runtime is automated,

as this is the most difficult and error prone part of this approach to DSU. Third, whether

any guarantees of safety are made.

Much of the early research allows code to be replaced, but is not type safe [FS91,

HG98, Gup94, BH00] while Erlang [AVWW96, AV91], which has been successfully used

in industry, can generate dynamic errors. The closest systems to ours are those by

Hicks [Hic01], Gilmore et al. [GKW97], Duggan [Dug01], and work on adding DSU

to Java [Dmi01b, ORH02, MPG+00, BLS+03].

Hicks’ system adds a synchronous update feature to a type-safe C-like language with

garbage collection. Safety is provided by building the system on top of TAL, a typed

assembly language. Updates in this system are patches consisting of a state transformer,

stub functions and replacement functions. The state transformer function is a user sup-

plied procedure that runs directly after new code is installed and is intended to convert

the old state to be consistent with the new code. Stub functions allow the type of func-

tions to change by proxying calls from old code, while new code calls the new functions

directly. Hicks’ system allows user-defined types to change, but relies on the user to man-

ually locate and transfer data between them, whereas we support named type changes

with automatic conversion. Hicks’ system is also available for update only when the call

stack is empty, whereas we support update with a non-empty call stack.

We use a similar type-based approach to Duggan although our presentation is more

elementary. Duggan allows multiple versions of a type to coexist simultaneously with

conversions between them being applied automatically. In contrast, our system main-

tains a single definition for each named type. We believe that our representation consis-

tent approach makes it simpler for a programmer to reason about their program because

they only need consider the latest definition of a named type. Our systems also differ in

how data conversion is implemented. While Duggan’s semantics check a runtime type

tag, we avoid this complication by expressing an update as a rewrite to the program.
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Gilmore’s Dynamic ML system allows dynamic update of ML modules. The types

exported by updatable modules are restricted to abstract types, the replacing module

must be a sub-signature of the existing module, and replacement can only occur when

the module is quiescent, that is, none of its functions are on the call stack. It allows the

abstract types of a module to be changed, applying a user-supplied conversion function

automatically. This conversion process is specified as part of the garbage collector which

is convenient for implementation but results in the semantics of update being given in

a somewhat indirect way. While it is not hard to believe this approach to be sound

(although this is not proved), it imposes a serious restriction on expressiveness of the

updates and on coding style.

A few researchers have proposed to incorporate DSU into Java [GJSB00]. Dim-

itriev [Dmi01b, Dmi01a] studied the state transformation problem from the point of

view of persistent Java programs, where databases of persistent objects need to evolve

with the program. This is a simpler problem than state transfer in DSU as the program

is not running when an update is applied to the database. Dimitriev also modifies the

Java Virtual Machine to support the replacement of class implementations with binary

compatible ones (see [DWE98] for a discussion of binary compatibility).

Orso et al. [ORH02] propose a technique similar to Dynamic C++ for use with Java.

The use of templates in Dynamic C++ is replaced with a tool that rewrites Java code to

explicitly support DSU. As with Dynamic C++, the interface to classes must remain fixed

and in addition, reflection and native methods are not compatible with the technique.

Dynamic Java Classes [MPG+00] extend the Java class loader to support (nearly)

arbitrary changes to classes. To maintain type safety, whenever a class is updated all

other classes are examined to see if they depend on the class being replaced. If they

do then the system requires them to be replaced as well. All existing objects of an

updated class are converted at update time during garbage collection along similar lines

to Dynamic ML. In contrast, our system spreads out the cost of instance conversion rather

than introduce a possibly lengthy delay at update time. We also give a formal semantics

along with proofs of correctness.

Drossopoulou and Eisenbach [DE03] formalise a system of dynamic relinking, in-

tended as an extension to the dynamic linking already supported in languages such as

Java and C#. While dynamic relinking does not constitute DSU on its own, it is an es-

sential ingredient. The approach is quite flexible, differentiating between the loading of

the class and class members. This enables method signatures and method bodies to be

loaded separately, so that choices about the exact implementation are delayed as long

as possible. In return for this flexibility extensive type checking is required at runtime.
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Boyapati et al. [BLS+03] develop a system for online upgrades to code and object

representation in a persistent object store that supports local reasoning about objects.

They, like us, transform objects lazily as they are accessed to minimise interruption,

and allow other upgrades to begin before previous ones have completed. Upgrades are

performed by conversion functions which must run in a specified order to maintain type

safety (earlier updates must be applied before later ones). They ensure the ordering by

imposing the encapsulation constraint that every object a given object depends on must

be an encapsulated subobject. When this constraint fails the decision is passed to the

programmer, although some support is given to automate the common cases.

None of the systems mentioned above give guarantees of updatability as we provide

in Chapter 6.

1.6.3 Capability Type Systems

The notion of capability has a long history in computer science (for example [WN79]).

More recently the notion has been used in the static analysis of programs, first intro-

duced by Walker, Crary and Morrisett [WCM00] and used extensively in [DF01, FD02]

for statically checking resource management and in [Wal00] for enforcing security poli-

cies. We are the first to apply capability type systems to solve the DSU problem.

1.7 Collaboration

Collaboration is an important part of research and this thesis is no exception. Chapters

2 and 3 are the result of a joint project previously published in [BHS+03a] with Peter

Sewell, Gavin Bierman, Mike Hicks and Keith Wansbrough, although Chapter 3 is en-

tirely my own work. Chapter 4 contains my contribution to work previously published

in [BHSS03] with Peter Sewell, Gavin Bierman and Michael Hicks. Chapters 5 and 6

have previously been published in [SHB+05] with Michael Hicks, Gavin Bierman, Peter

Sewell and Iulian Nemtiu. I took the lead rôle in this research, but Michael was the

first to sketch the ideas of the capability type system. Finally, the implementation re-

ported in Chapter 7 was joint work with Iulian Nemtiu, Mike Hicks and Manuel Oriol,

although I developed the abstraction violating alias analysis, was a major contributor to

the implementation and the presentation I give is, of course, my own.
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2
Delayed instantiation

Most programming languages choose static binding, where free variables are bound by

the enclosing binders in their source-code context. This is for good reason, as it allows

static type systems to be employed so that errors may be caught early and identifiers

can be resolved at compile time, which is good for efficiency. On the other hand, dy-

namic binding is obligatory for systems that support dynamic update: new code must be

loaded into the system which will want to make use of existing bindings in the program.

Dynamic binding is also required to support many other language features, such as mar-

shalling. For example, if a computation is to be sent across a network then resources

bound at one site may need to be rebound at another.

The standard Call By Value (CBV) semantics for the lambda calculus provides an

inadequate model in which to consider dynamic binding and consequently is hard to ex-

tend with dynamic update. This chapter exposes its deficiencies and forms a theoretical

foundation for dynamic update by re-examining the standard operational semantics for

the CBV lambda calculus. We change the reduction strategy, but remain faithful to the

traditional CBV semantics (in a sense to be made clear in the next chapter). At the end

of the chapter we show how our semantics can be easily extended to give a calculus that

supports dynamic update.
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Construct-time λc

Values v ::= n | () | (v , v ′) | λz :τ.e
Atomic evaluation contexts A ::= ( , e) | (v , ) | πr | e | v |

let z = in e

Evaluation contexts E ::= | E .A

Reduction Rules

(proj) πr(v1, v2) −→ vr

(app) (λz :τ.e)v −→ {v/z}e
(let) let z = v in e −→ {v/z}e
(letrec) letrec z = λx :τ.e in e ′ −→ {λx :τ.letrec z = λx :τ.e in e/z}e ′

if z 6= x

(cong)
e −→ e ′

E .e −→ E .e ′

Error Rules

(proj-err) E .(πr v)err if not exists v1, v2 such that v = (v1, v2)
(app-err) E .(v ′ v)err if not exists (λz :τ.e) such that v ′ = λz :τ.e

Figure 2.1: Standard Call-by-Value Lambda Calculus

2.1 The failure of CBV semantics

Consider the CBV λ-calculus, and in particular the way in which identifiers are instan-

tiated. The usual operational semantics, recalled in Figure 2.1, substitutes out binders –

the standard construct-time (app) and (let) rules

(app) (λz :τ.e)v −→ {v/z}e

(let) let z :τ = v in e −→ {v/z}e

instantiate all instances of z as soon as the value v it has been bound to has been con-

structed. This semantics is not compatible with dynamic update, as it loses too much

information. To see this, suppose that the reduction of e in let z = v in e is allowed

to accept dynamic updates to the program. More often than not the update will want

access to the surrounding state, either to use it or to modify it. With the (let) rule this

would be futile, as the z is substituted away before the execution of e even begins, let

alone an update point is reached.

We therefore need a more refined semantics that preserves information about the

binding structure of terms, allowing us to delay ‘looking up’ the value associated with

an identifier as long as possible so as to obtain the most recent version of its definition.
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This should maintain the essentially call-by-value nature of the calculus (we elaborate

below on exactly what this means).

We present two reduction strategies with delayed instantiation in §2.2. The redex-

time (λr) semantics resolves identifiers when in redex position. While this is clean and

simple, it is still unnecessarily eager, and so we formulate the destruct-time (λd) seman-

tics to delay resolving identifiers until their values must be destructed. After establishing

these basic calculi, we extend the latter one to support dynamic update. As an example,

consider the expression on the left below:

let x = 5 in
{y⇐(x ,6)}
−−−−−−→ let x = 5 in

let y = (4, 6) in let y = (x , 6) in

let z = update in let z = () in

π1 y π1 y

Let the update expression indicate that an update is possible at the point during evalua-

tion when update appears in redex position. At that run-time point the user can supply

an update of the form {w ⇐ e}, indicating that w should be rebound to expression e.

In the example this update is {y ⇐ (x , 6)}; the let-binder for y1 is modified accordingly

yielding the expression on the right above, and thence a final result of 5. For a reduction

like this to even be possible, it requires that let binders are not substituted away, but that

execution continues under them.

2.2 CBV λ-calculus revisited

This section defines the late instantiation calculi λr and λd. We take a standard syntax:

Identifiers x , y , z

Integers n

Types τ ::= int | unit | τ ∗ τ ′ | τ → τ ′

Expressions e ::= z | n | () | (e, e ′) | πr e

| λz :τ.e | e e ′ | let z = e in e ′

| letrec z = λx :τ.e in e ′

where r ranges over {1, 2}. Expressions are taken up to alpha equivalence (though

contexts are not). It is simply-typed, with a standard typing judgement Γ ⊢ e:τ defined

in Figure 2.2, where Γ ranges over sequences of z :τ pairs containing at most one such

for any z .
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Γ ⊢ e:τ

Γ, z :τ,Γ′ ⊢ z :τ

Γ ⊢ n:int

Γ ⊢ ():unit

Γ ⊢ e:τ
Γ ⊢ e ′:τ ′

Γ ⊢ (e, e ′):τ ∗ τ ′
Γ ⊢ e:τ1 ∗ τ2

Γ ⊢ πr e:τ1

Γ, z :τ ⊢ e:τ ′

Γ ⊢ λz :τ.e:τ → τ ′

Γ ⊢ e ′:τ → τ ′

Γ ⊢ e:τ

Γ ⊢ e ′ e:τ ′

Γ ⊢ e:τ
Γ, z :τ ⊢ e ′:τ ′

Γ ⊢ let z = e in e ′:τ ′

Γ, z :τ → τ ′, x :τ ⊢ e:τ ′

Γ, z :τ → τ ′ ⊢ e ′:τ ′′

Γ ⊢ letrec z = λx :τ.e in e ′:τ ′′

Figure 2.2: Lambda Calculi – Typing

2.2.1 Construct-time

The standard semantics, here called the construct-time or λc semantics, is recalled in

Figure 2.1. We define a small-step reduction relation e −→ e ′, using evaluation contexts

E . Context composition and application are both written with a dot, e.g. E .E ′ and E .e,

instead of the usual heavier brackets E [E ′[−]] and E [e]. Standard capture-avoiding

substitution of e for z in e ′ is written {e/z}e ′.

At the bottom of Figure 2.1 the prediate e err is defined to identify stuck terms.

An expression in λc is stuck if either (a) a projection of a non-pair value, or (b) an

application of a non-function value, is in redex position.

We write hb(E ), defined in Figure 2.3, for the list of binders around the hole of E .

2.2.2 Redex-time

The redex-time semantics is shown in Figure 2.4. Instead of substituting bindings

of identifiers for values, as in the construct-time (app) and (let) rules, the λr semantics

(and as we shall see later the λd semantics) introduces a let to record a binding of the

abstraction’s formal parameter to the application argument, e.g.

(λz :τ.e)u −→ let z = u in e
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Define the list of hole-binders of E3, written hb(E3), by:

hb( ) = []
hb(E3.A1) = hb(E3)
hb(E3.(let z :τ = u in )) = hb(E3), z
hb(E3.(letrec z :τ ′ = λxi:τ.e in )) = hb(E3), z

Figure 2.3: Auxiliary functions used in the definition of instantiation calculi

Redex-time λr

Values u ::= n | () | (u, u ′) | λz :τ.e | let z = u in u ′ |
letrec z = λx :τ.e in u

Atomic evaluation contexts A1 ::= ( , e) | (u, ) | πr | e | u |
let z = in e

Atomic bind contexts A2 ::= let z = u in | letrec z = λx :τ.e in

Evaluation contexts E1 ::= | E1.A1

Bind contexts E2 ::= | E2.A2

Reduction contexts E3 ::= | E3.A1 | E3.A2

Reduction Rules

(proj) πr(E2.(u1, u2)) −→ E2.ur

(app) (E2.(λz :τ.e))u −→ E2.let z = u in e if fv(u) /∈ hb(E2)
(inst) let z = u in E3.z −→ let z = u in E3.u

if z /∈ hb(E3) and fv(u) /∈ z ,hb(E3)
(instrec) letrec z = λx :τ.e in E3.z −→ letrec z = λx :τ.e in E3.λx :τ.e

if z /∈ hb(E3) and fv(λx :τ.e) /∈ hb(E3)

(cong)
e −→ e ′

E3.e −→ E3.e
′

Error Rules

Outermost-structure-manifest values w ::= n | () | (u, u ′) | λz :τ.e
(proj-err) E3.πr(E2.w)err if ¬ ∃ u1, u2.w = (u1, u2)
(app-err) E3.(E2.w)u err if ¬ ∃(λz :τ.e).w = λz :τ.e

Figure 2.4: Redex-time, instantiation-based Call-by-Value Lambda Calculus

This is reminiscent of an explicit substitution [ACCL90], save that here the let will not be

percolated through the term structure, and also of the λlet-calculus [AFM+95], though

we are in a CBV not CBN setting, and do not allow commutation of lets. In contrast, we

must preserve let-binding structure, since our update primitive will depend on it.

Example (1) in Figure 2.5 illustrates (app), contrasting it with the substitution ap-

proach of the construct-time semantics. Note that the resulting let z = 8 in 7 is a λr
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Construct-time λc Redex-time λr Destruct-time λd

(1) (λz .7)8 (λz .7)8 (λz .7)8
−→ 7 let z = 8 in 7 let z = 8 in 7

(2) let x = 5 in π1(x , x) let x = 5 in π1(x , x) let x = 5 in π1(x , x)
−→ π1(5, 5) let x = 5 in π1(5, x) let x = 5 in x

−→ 5 let x = 5 in π1(5, 5)
−→ let x = 5 in 5

(3) let x = (5, 6) in let y = x in π1 y let x = (5, 6) in let y = x in π1 y let x = (5, 6) in let y = x in π1 y

−→ let y = (5, 6) in π1 y let x = (5, 6) in let y = (5, 6) in π1 y let x = (5, 6) in let y = x in π1 x

−→ π1(5, 6) let x = (5, 6) in let y = (5, 6) in π1(5, 6) let x = (5, 6) in let y = x in π1(5, 6)
−→ 5 let x = (5, 6) in let y = (5, 6) in 5 let x = (5, 6) in let y = x in 5

(4) π1(π2(let x = (5, 6) in (4, x)) π1(π2(let x = (5, 6) in (4, x)) π1(π2(let x = (5, 6) in (4, x))
−→ π1(π2(4, (5, 6))) π1(π2(let x = (5, 6) in (4, (5, 6))) π1(let x = (5, 6) in x)
−→ π1(5, 6) π1(let x = (5, 6) in (5, 6)) π1(let x = (5, 6) in (5, 6))
−→ 5 let x = (5, 6) in 5 let x = (5, 6) in 5

Figure 2.5: Call-by-Value Lambda Calculi Examples
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(and λd) value. Because values may involve lets, some clean-up is needed to extract the

usual final result, for which we define

[| n |]val = n

[| () |]val = ()

[| (u, u ′) |]val = ([| u |]val, [| u
′ |]val)

[| λx :τ.e |]val = λx :τ.e

[| let z = u in u ′ |]val = {[| u |]val/z}[| u
′ |]val

[| letrec z = λx :τ.e in u |]val = {λx :τ.letrec z = λx :τ.e in e/z}[| u |]val if z 6= x

[| z |]val = z

which takes any value (λr or λd) and substitutes out the lets.

The semantics must allow reduction under lets: in addition to the atomic evaluation

contexts A we had above (here A1) we now have the binding contexts A2 and reduction

is closed under both. Redex-time variable instantiation is handled with the (inst) rule,

which instantiates an occurrence of the identifier z in redex position with the innermost

enclosing let that binds that identifier. The side-condition z /∈ hb(E3) ensures that

the correct binding of z is used. Here hb(E ) denotes the list of identifiers that bind

around the hole of a context E , as defined in Figure 2.3. The other side-condition,

fv(u) /∈ z ,hb(E3), which can always be achieved by alpha conversion, prevents identifier

capture, making E3 and let z = u in transparent for u. Here fv( ) denotes the set of

free identifiers of an expression or context.

Example (2) in Figure 2.5 illustrates identifier instantiation. While the construct-

time strategy substitutes for x immediately, the redex-time strategy instantiates x under

the let, following the evaluation order. Both this and the first example also illustrate

a further aspect of the redex-time calculus: values u include let-bindings of the form

let z = u in u ′. Intuitively, this is because a value should ‘carry its bindings with it’

preventing otherwise stuck applications, e.g. , (λx :int.x )(let z = 3 in λx :int.z ). Note

that identifiers are not values, so z , (z , z ) and let z = 3 in (z , z ) are not values. Values

may contain free identifiers under lambdas, as usual, so λx :int.z is an open value and

let z = 3 in λx :int.z is a closed value.

The (proj) and (app) rules are straightforward except for the additional binding

context E2. This is necessary as a value may now have some let bindings around a

pair or lambda; terms such as π1(let z = 3 in (4, 5)) or (more interestingly) π1(let z =

3 in (λx :int.z , 5)) would otherwise be stuck. The purpose of the side condition for (app)

is to prevent capture and can always be achieved by alpha conversion.
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The bottom of Figure 2.4 defines the prediate e err that identifies terms stuck under

λr. Its definition relies on the notion of Outermost-structure-manifest values. These are

the values whose outer-most constructor is not a let or letrec binding. If such a value is

about to be projected from and it is not a pair, or if it is about to be applied and it is not

a function then the term is stuck; this is captured by the rules (proj-err) and (app-err).

2.2.3 Destruct-time

The redex-time strategy is appealingly simple, but it instantiates earlier than neces-

sary. In Example (2) in Figure 2.5, both occurrences of x are instantiated before the

projection reduction. However, we could delay resolving x until after the projection; we

see this behaviour in the destruct-time semantics in the third column. In many dynamic

rebinding scenarios it is desirable to instantiate as late as possible. For example, in dy-

namically updatable code we want to delay looking up a variable as long as possible, so

as to acquire the most recent version.

To instantiate as late as possible, while remaining call-by-value, we only instantiate

identifiers that are immediately under a projection or on the left-hand-side of an appli-

cation. In these ‘destruct’ positions their values are about to be deconstructed, and so

their outermost pair or lambda structure must be made manifest. The destruct contexts

R ::= πr | u can be seen as the outer parts of the construct-time (proj) and (app) re-

dexes. The choice of destruct contexts is determined by the basic redexes – for example,

if we added arithmetic operations, we would need to instantiate identifiers of int type

before using them.

The essential change from the redex-time semantics is that now any identifier is a

value ( u ::= ... | z). The (proj) and (app) rules are unchanged. The (inst) rule is

replaced by two that together instantiate identifiers in destruct contexts R. The first

(inst-1) copes with identifiers that are let-bound outside a destruct context, e.g. :

let z = (1, 2) in π1 z −→ let z = (1, 2) in π1(1, 2)

whereas in (inst-2) the let-binder and destruct context are the other way around:

π1(let z = (1, 2) in z ) −→ π1(let z = (1, 2) in (1, 2))

Further, we must be able to instantiate under nested bindings between the binding in

question and its use. Therefore, (inst-2) must allow additional bindings E2 and E ′
2

between R and the let and between the let and z . Similarly, (inst-1) must allow bindings
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Destruct-time λd

Values u ::= n | () | (u, u ′) | λz :τ.e | let z = u in u ′ |
letrec z = λx :τ.e in u | z

Atomic evaluation contexts A1 ::= ( , e) | (u, ) | πr | e | u |
let z = in e

Atomic bind contexts A2 ::= let z = u in | letrec z = λx :τ.e in

Evaluation contexts E1 ::= | E1.A1

Bind contexts E2 ::= | E2.A2

Reduction contexts E3 ::= | E3.A1 | E3.A2

Destruct contexts R ::= πr | u

Reduction Rules

(proj) πr(E2.(u1, u2)) −→ E2.ur

(app) (E2.(λz :τ.e))u −→ E2.let z = u in e if fv(u) /∈ hb(E2)
(inst-1) let z = u in E3.R.E2.z −→ let z = u in E3.R.E2.u

if z /∈ hb(E3,E2) and fv(u) /∈ z ,hb(E3,E2)
(inst-2) R.E2.let z = u in E ′

2.z −→ R.E2.let z = u in E ′
2.u

if z /∈ hb(E ′
2) and fv(u) /∈ z ,hb(E ′

2)
(instrec-1)

letrec z = λx :τ.e in E3.R.E2.z −→ letrec z = λx :τ.e in E3.R.E2.λx :τ.e
if z /∈ hb(E3,E2) and fv(λx :τ.e) /∈ hb(E3,E2)

(instrec-2)
R.E2.letrec z = λx :τ.e in E ′

2.z −→ R.E2.letrec z = λx :τ.e in E ′
2.λx :τ.e

if z /∈ hb(E ′
2) and fv(λx :τ.e) /∈ hb(E ′

2)

(cong)
e −→ e ′

E3.e −→ E3.e
′

Error Rules

Outermost-structure-manifest values w ::=n | () | (u, u ′) | λz :τ.e | z
(proj-err) E3.πr(E2.w)err

if ¬ ∃ u1, u2.w = (u1, u2) and ¬ ∃ z ∈ hb(E3,E2).w = z

(app-err) E3.(E2.w)u err

if¬ ∃(λz :τ.e).w = λz :τ.eand¬ ∃ z ∈ hb(E3,E2).w = z

Figure 2.6: Destruct-time, instantiation-based Call-by-Value Lambda Calculus

E2 between the R and z ; it must allow both binding and evaluation contexts E3 between

the let and the R, e.g. , for the instance

let z = (1, (2, 3)) in π1(π2 z )

−→ let z = (1, (2, 3)) in π1(π2(1, (2, 3)))
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with E3 = π1 , R = π2 and E2 = . The conditions z /∈ hb(E3,E2) and z /∈ hb(E ′

2)

ensure that the correct binding of z is used; the other conditions prevent capture and

can always be achieved by alpha equivalence.

Example (3) illustrates a chain of instantiations, from outside-in for λr and from

inside-out for λd.

The error rules for λd are the same as those for λr but with the extra condition that if

the outermost-structure-manifest value is an identifier then it should not be in the hole

binders of the surrounding context, for if this was the case then the term could proceed

by an instantiation.

2.2.4 Properties

This subsection gives properties that sanity check our various λ-calculi: unique decom-

position, preservation and safety. The proof of these facts is standard and can be found

in the technical report [BHS+03b]. Discussion of the more substantial result of observa-

tional equivalence is deferred to the next chapter.

First, we recall the important unique decomposition property of evaluation contexts

for λc, essentially as in [FF87, p. 200], and generalise it to the more subtle evaluation

contexts of λr and λd:

2.2.1 Theorem (Unique decomposition for λr and λd). Let e be a closed expression.

Then, in both the redex-time and destruct-time calculi, exactly one of the following

holds:

(i) e is a value;

(ii) e err;

(iii) there exists a triple (E3, e
′, rn) such that E3.e

′ = e and e ′ is an instance of the

left-hand side of rule rn.

Furthermore, if such a triple exists then it is unique. ❑

Note that the destruct-time error rules defining e err, given in Figure 2.6, must in-

clude cases for identifiers in destruct contexts that are not bound by enclosing lets and

so are not instantiable, giving stuck non-value expressions. Determinacy is a trivial

corollary. We also have type preservation and type safety properties for the three calculi.

2.2.2 Theorem (Type preservation for λc, λr and λd). If Γ ⊢ e:τ and e −→ e ′ then

Γ ⊢ e ′:τ .
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2.2.3 Theorem (Safety for λc, λr and λd). If ⊢ e:τ then ¬(e err).

2.3 Update calculus

At the beginning of this chapter it was shown that the standard CBV λ-calculus did not

meet our needs as the basis of a model for dynamic update. Using our new semantics

for the lambda calculus based on delayed instantiation, we can now begin to explore

models of dynamic update. The delayed instantiation will ensure that running code

picks up any updated definitions as it executes and, furthermore, make it possible for

expressions replaced at update time to make use of their surrounding environment by

binding to the let-bound variables in scope.

Our aim in the design of this update mechanism is to allow as large a class of updates

as possible. Thus, while our specification of update will be at the level of abstraction

a programmer deals with, it will be fine grained so as not to limit potential updates.

Two candidates exist as the unit of update in the λ-calculus, the most obvious unit

being the function. However, while functions are a natural unit of abstraction in the

λ-calculus, they do not serve as a good unit of updatability. This is mainly due to their

anonymity, resulting in no natural way to refer to a specific function within a program,

which poses problems when specifying what to update. A more appealing candidate

is the let binding. Although lets are often a derived form of function, in the delayed

instantiation calculi they play a key rôle. lets give a name to part of a computation and

this name is programmer assigned, meaning that it often has some (informal) meaning

to the programmer. So, accepting the let-binding as a unit of update leads us to consider

an update as a set of pairs mapping let-bound names to expressions.

The reader familiar with programming languages, and the lambda calculus in partic-

ular, will know that it is useful to deal with binders up to alpha conversion, disregarding

the exact name. Of course, in this setting, a let-bound name has no meaning from out-

side of the program – a fact most readily apparent if one thinks of binders as de Bruijn

indices [dB72, dB80]. To preserve reasoning up to alpha equivalence, while having ex-

ternally meaningful names, we use tagged identifiers. A tagged identifier, written xk,

consists of a constant name, x , together with an alpha-varying tag, k , which will range

over integers for the purposes of examples. Thus λx0.x0 is alpha equivalent to λx1.x1

but not to λy0.y0. By convention, math text x , y , z will be used for meta identifiers and

sans serif x, y, z for concrete identifiers. As a further simplifying assumption we shall

assume all identifiers in a program to be unique and we will omit the tag when it is

superfluous to the discussion.
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Simple Update Calculus: Syntax

Integers n Identifiers x, y, z Tags i, j, k
Types τ ::= int | unit | τ ∗ τ ′ | τ → τ ′

Expressions e ::= xi | n | () | (e, e ′) | πr e | λxi:τ.e | e e ′ | let zk:τ = e in e ′ |
letrec zk:τ = λxi:τ.e in e | update | UpdEx

Simple Update Calculus: Semantics
(upd-replace-ok)

S = rebind(fv(e),hb(E3)) is defined env(E3) ⊢ S (e):τ ∀ j .xj /∈ hb(E ′
3)

E3.let xi:τ = u in E ′
3.update

{x⇐e}
−→ E3.let xi:τ = S (e) in E ′

3.()

otherwise: E3.let xi:τ = u in E ′
3.update

{x⇐e}
−→ UpdEx

Figure 2.7: Simple Update Calculus: λupdate

2.3.1 Update mechanism

We now consider how to add a dynamic update facility to the late instantiation calculi

developed in this chapter. We define the λupdate-calculus, given in Figure 2.7, as an

extension of the λd calculus. In this calculus the programmer can place an update

expression at points in the code where an update could occur; defining such updating

‘safe points’ is useful for ensuring programs behave properly [Hic01]. The intended

semantics is that this expression will block, waiting for an update (possibly null) to be

fed in. An update can modify any identifier that is within its scope (at update-time), for

example in

let x1 = (let w1 = 4 in w1) in

let y1 = update in

let z1 = 2 in

(x1, z1)

x1 may be modified by the update, but w1, y1 and z1 may not. For simplicity we only

allow a single identifier to be rebound to an expression of the same type, and we do not

allow the introduction of new identifiers. Although both of these extensions would be

straightforward, they do not add anything to the exposition.

We define the semantics of the update primitive using a labelled transition system,

where the label is the updating expression. For example, supplying the label {x ⇐

π1(3, 4)} means that the nearest enclosing binding of x is replaced with a binding to

π1(3, 4). Note that updates can be expressions, not just values – after an update the new
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expression, if not a value, will be in redex position. Further, they can be open, with free

variables that become bound by the context of the update. To see why this is useful

consider the following program:

let x = input int in

let y = x ∗ x in

update

Any expression given as an update to y will most likely require the use of x ; the value of

x was obtained via input at runtime and so is not known when writing an update. Thus,

any expression that we replace x ∗ x with requires its free variables to be bound in the

enclosing scope. We call this operation rebinding. Given a context E3 and an expression e

whose free variables are at most the hole binders of E3 (hb(E3)), we define the rebinding

of e in context E3 to be the expression e with its free variables alpha-varied to match the

closest enclosing identifier in E3. More formally, we can define rebind(e, b) inductively

on the structure of expressions, where b is the list of tagged identifiers binding around

e:

rebind(Γ, [])
{

undefined if Γ nonempty

= {} otherwise

rebind(Γ, (L, (xi:τ)))
{

undefined, if ∃ j , τ ′.(xj :τ
′) ∈ Γ ∧ τ ′ 6= τ

= {xi/xJ} ∪ rebind(Γ − xJ ,L), otherwise

where xJ = {xj | (xj :τ) ∈ Γ}

(abusing notation to treat the partial function Γ as a set of tuples and writing {xi/xJ}

for the substitution of xi for all the xj ∈ xJ).

Typing The static typing rule for update is trivial, as it is simply an expression of type

unit. Naturally we have to perform some type checking at run-time; this is the second

condition in the transition rule in Figure 2.7. Notice however, that we do not have to

type-check the whole program; it suffices to check that the expression to be bound to

the given identifier has the required type in the context that it will evaluate in. The

other conditions of the transition rule are similarly straightforward. The first ensures

that a rebinding substitution is defined, i.e. that the context E3 has hole binders that

are alpha-equivalent to the free variables of e. The third condition ensures that the
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binding being updated, xi, is the closest such binding occurrence for x (notice that an

equivalence class x is specified for the update, but that the closest enclosing member, xi,

of this class is chosen as the updated binding). These conditions are sufficient to ensure

that the following theorems hold. We give only the cases involving the update keyword,

as the rest are the same as for λd.

2.3.1 Theorem (Unique decomposition for λupdate).

Let e be a closed λupdate expression. Then exactly one of the following holds:

(i) e is a value;

(ii) e err;

(iii) there exists E3, e
′, rn such that E3.e

′ = e and e ′ is an instance of the left-hand side

of rule rn. Furthermore, if such a triple exists then it is unique, except for update,

where we admit both an update reduction and an update failure.

Proof. As for the corresponding λd proof we generalise to open terms by proving that

for all possibly open e exactly one of the following hold:

(i) e is a value;

(ii) e err;

(iii) there exists E3, e
′, rn such that E3.e

′ = e and e ′ is an instance of the left-hand side

of rule rn;

(iv) there exists E3,R,E2 such that E3.R.E2.z = e and z /∈ hb(E3.R.E2) (unbound

variable);

(v) there exists E2 such that E2.z = e and z ∈ hb(E2) (bound variable).

The proof is by induction on the syntax of e, showing each case is unique as per

the λd proof. The only extra construct to consider is update, in which (iii) holds where

E3 = , e = update and e matches exactly the left-hand side of the update rule and the

left-hand side of the update failure rule. ❑

2.3.2 Theorem (Type preservation for updates).

If ⊢ e:τ then either

(i) if e −→ e ′ then ⊢ e ′:τ ; or

(ii) if e
x⇐ê
−→e ′ then ⊢ e ′:τ ; or
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(iii) e = UpdEx

Proof. The proof of the cases where (i) holds is the corresponding λd proof. The proof

of (ii) is as follows. The only rule by which the reduction can follow is the update rule.

Therefore

E3.let xi:τ = u in E ′
3.update

x⇐ê
−→E3.let xi:τ = S (ê) in E ′

3.()

where

S = rebind(fv(e),hb(E3)) (2.1)

env(E3) ⊢ S (e):τ (2.2)

∀ j . xj /∈ hb(E ′
3) (2.3)

⊢ E3.let xi:τ = u in E ′
3.update:τ ′ (2.4)

We are required to prove ⊢ E3.let xi:τ = S (ê) in E ′
3.():τ

′. By E3-inversion we

have env(E3) ⊢ let xi:τ = u in E ′
3.update:τ ′. By inversion of the typing relation

env(E3) ⊢ u:τ and env(E3), xi:τ ⊢ E ′
3.update:τ ′ (*). By (*) and using E3-inversion

twice env(E3), xi:τ ⊢ E ′
3.():τ

′. By 2.2 and let typing rule env(E3) ⊢ let xi:τ =

S (ê) in E ′
3.():τ

′. ❑

2.3.3 Theorem (Safety for updates).

If ⊢ e:τ then ¬(e err).

Proof. This follows as per the corresponding λd proof as update is not involved in the

error rules. ❑

Higher-Order Functions Our use of delayed instantiation cleanly supports updating

higher-order functions, a significant advance on previous treatments. Consider the fol-

lowing program:

let f1 = λy1.(π2 y1, π1 y1) in

let w1 =λg1.let = update in g1(5, 6) in

let y1 = f1(3, 4) in

let z1 = w1 f1 in

(y1, z1)
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which contains an occurrence of update in the body of w1. If, when w1 is evaluated, we

update the function f :

e −→∗ {f⇐λp1.p1}
−−−−−−−→ −→∗ u

we have [| u |]val = ((4, 3), (5, 6)). Delayed instantiation plays a key role here: with the λc

semantics, the result would be [| u |]val = ((4, 3), (6, 5)); i.e. the update would not take

effect because the g1 in the body of w1 would be substituted away by the (app) rule

before the update occurs. Our semantics preserves both the structure of contexts and

the names of variables so that updates can be expressed.

2.3.2 Conclusions

This chapter looked afresh at the semantics of the CBV lambda calculus from the point

of view of dynamic binding and, in particular, dynamic update. We presented two alter-

native semantics, λr and λd, that differ from the usual semantics in two ways:

(1) they preserve the relationship between binder and bindee by using delayed instan-

tiation rather than substitution as the mechanism for resolving variables; and

(2) they preserve the structure of the computation by not discarding or permuting en-

vironment bindings.

The difference between λr and λd is only when identifiers are instantiated. The former

instantiates as soon as the variable comes into redex position, while the latter delays

instantiation further, waiting until the identifier appears in a destruct position. Lastly

we presented a simple calculus that supports dynamic update, providing evidence that

delayed instantiation calculi are a suitable model of computation to use when studying

dynamic update. In particular, an important part of update is the rebinding operation

that binds the free variables of an expression to those in a given context, and this is

straightforward to define and intuitive for delayed instantiation calculi.



3
λc,λr,λd Equivalence

It is not immediately apparent that the delayed instantiation reduction strategies pre-

sented in the previous chapter produce results that agree with the standard CBV strat-

egy. Such a property is important if our claim that these calculi are suitable for reasoning

about dynamic binding and dynamic update in a CBV lambda setting are to carry any

weight. In this chapter we show that the reduction strategies of λr and λd are consis-

tent, in a sense to be made clear, with that of the standard CBV λ-calculus. We start by

reviewing the notion of equivalence in programming languages and sketching our proof

strategy in §3.1. The proof of equivalence between λr and λc is then presented in detail

in §3.2 followed by the equivalent proof between λd and λc in §3.3, presented in terms

of where it differs from §3.2.

3.1 Equivalence

It is our intent in this chapter to prove the equivalence of reduction strategies. However,

let us start out by considering equivalence of terms within a single language. A common

notion of program equivalence is contextual equivalence, also known as observational

equivalence. Two programs are contextually equivalent if they can be interchanged in

some larger program without changing the final value. In sequential programming lan-

guages the notion of observation is usually the final result (or non-termination) or simply

termination.

Based on this notion of program equivalence, if λc, λr and λd are equivalent reduc-

tion strategies then we expect every lambda term to produce the same result, irrespective

39
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of the strategy used. Moreover, we would also expect the associated contextual equiva-

lence relations of the strategies to coincide. These are the facts we establish in this chap-

ter. Formally, we will prove the following Theorem (where [|− |]val is the value-collapsing

function defined in section 2.2.2)

3.1.1 Theorem (Observational Equivalence). λc, λr and λd are all observationally equiv-

alent at integer type:

1. If ⊢ e:int and e −→∗
c n then for some u and u ′ we have e −→∗

r u and e −→∗
d u′

and [| u |]val = [| u ′ |]val = n.

2. If ⊢ e:int and e −→∗
r u and e −→∗

d u′ then for some n we have e −→∗
c n and

[| u |]val = [| u ′ |]val = n.

We find that this theorem is a sufficient condition to ensure that the contextual equiv-

alence relations coincide. To show this, we must first define exactly what we mean by

contextual equivalence for each calculus. For λc this is standard:

3.1.2 Definition (Contextual Equivalence for λc). e and e ′ are contextually equivalent

in λc, written e
ctx
= c e ′ if and only if for all C such that ⊢ C[e]:int and ⊢ C[e ′]:int the

following hold:

(i) if C[e] −→∗
c n then C[e ′] −→∗

c n

(ii) if C[e ′] −→∗
c n then C[e] −→∗

c n

❑

For the delayed instantiation calculi we define contextual equivalence to relate terms

that reduce to values which collapse to identical terms under [|− |]val. In other words the

environment is substituted away before terms are compared at the end of the computa-

tion.

3.1.3 Definition (Contextual Equivalence for λr (λd)). e and e ′ are contextually equiva-

lent in λr, written e
ctx
= r e ′ if and only if for all C such that ⊢ C[e]:int and ⊢ C[e ′]:int the

following hold:

(i) if C[e] −→∗
r v then ∃ v ′.C[e ′] −→∗

r v ′ ∧ [| v |]val = [| v ′ |]val

(ii) if C[e ′] −→∗
r v then ∃ v ′.C[e] −→∗

r v ′ ∧ [| v |]val = [| v ′ |]val

A similar definition, e
ctx
= d e ′, holds for λd. ❑
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The proof of the following theorem shows that coincidence of contextual equivalence

follows from observational equivalence.

3.1.4 Theorem (Coincidence of Contextual Equivalence).
ctx
= c,

ctx
= r and

ctx
= d are equiva-

lent relations.

Proof. It is sufficient to show for all e and e ′ that e
ctx
= c e ′ ⇐⇒ e

ctx
= r e ′ and

e
ctx
= c e ′ ⇐⇒ e

ctx
= d e ′. We show just the former as the latter is similar.

➤Case =⇒ : First prove point (i) in the definition of
ctx
= r. Suppose

e
ctx
= c e ′ (3.1)

⊢ C[e]:int (3.2)

⊢ C[e ′]:int (3.3)

C[e] −→∗
r v (3.4)

We prove ∃ v ′.C[e ′] −→∗
r v ′ ∧ [| v |]val = [| v ′ |]val. By 3.2, 3.4 and Observational Equiva-

lence (Theorem 3.1.1) we have ∃ n.C[e] −→∗
c n ∧ n = [| v |]val. By 3.1 and previous fact

C[e ′] −→∗
c n. By 3.3, the previous fact and Observational Equivalence (Theorem 3.1.1)

we have ∃ v ′′.C[e ′] −→∗
c v ′′ ∧ n = [| v ′′ |]val. It is immediate that [| v |]val = [| v ′′ |]val, which

together with the last fact proves the result.

Case (ii) is shown similarly.

➤Case ⇐ : Identical reasoning to the previous case. ❑

3.2 Observational Equivalence Between λr and λc

This section proves the λr part of Theorem 3.1.1, that is we prove Theorem 3.2.1. We do

this by constructing a tight operational correspondence between the two calculi using

the proof technique of bisimulation.

3.2.1 Theorem. For all e ∈ λ the following hold:

1. ⊢ e:int =⇒ (e −→∗
c n =⇒ ∃ v . e −→∗

r u ∧ n = [| v |]val)

2. ⊢ e:int =⇒ (e −→∗
r v =⇒ ∃ n. e −→∗

c n ∧ n = [| v |]val)

It is well-known that statements like that in Theorem 3.2.1 do not admit a direct

proof by induction. This is because the termination property of a term does not follow
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from that of its subterms and so a simple proof by structural induction does not suf-

fice. For example, just because e and e ′ terminate at some value, does not necessarily

imply that the application e e ′ will terminate; consider λx .Ω and 1, where Ω is a non-

terminating computation. Logical relations and bisimulation are two proof techniques

that provide a way to generalise the induction hypothesis to overcome this. We dis-

cuss both here as either is an equally viable technique, although we use the notion of

bisimulation in our proof.

Logical relations A relation R is said to be logical if it has the property that whenever

related functions f and f ′ are applied to related arguments e and e ′, the results f e and

f ′ e ′ are related. These relations are defined by induction on the structure of types and

are called logical because they respect the actions of the languages type constructors

which by the curry-howard correspondence are related to the logical operators of intu-

itionistic logic. In particular, they respect the action of implication (function application)

as stated above. While logical relations were first invented for denotational semantics,

they have since been adapted to work directly on the syntax. If a logical relation can be

defined for the property one wishes to prove, then a proof by induction can be carried

out. The proof technique was first introduced by Tait [Tai67].

Bisimulation Bisimulation was originally developed for process calculi [Par81], but

was later adapted to the lambda calculus and called applicative bisimulation by Abram-

sky [Abr90]. A relation R is a simulation w.r.t. some transition relation −→ if whenever

e1 and e2 are related and e1 −→ e ′1 then e2 −→ e ′2 for some e ′2, such that the results e ′1

and e ′2 are related. If the statement obtained by interchanging e1 with e2 and e ′1 with e ′2

also holds, then it is a bisimulation.

While these techniques are described in terms of a single transition system, we require

relations between transition systems, but the notions are readily extended in an obvious

way.

The notion of simulation (resp. bisimulation) can be relaxed to what is known as a

weak simulation (resp. weak bisimulation), we give a definition below following [Mil89].

3.2.2 Definition (Weak (Bi)Simulation). Given two transition systems X⊆ S1 × S1 and

Y⊆ S2 × S2, we say that a relation R ⊆ S1 × S2 relating states of X to states of Y is a

weak simulation from X to Y if and only if for every ex R ey the following holds:

ex −→X e′x =⇒ ∃ e′y. ey −→∗
Y e′y ∧ e′x R e′y
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If R−1 is a weak simulation from X to Y and a weak simulation from Y to X , then R is

called a weak bisimulation between X and Y . ❑

For the purposes of proving our equivalence and obtaining a tight operational corre-

spondence, we need a slight relaxation on this which we call an Eventually Weak Simu-

lation:

3.2.3 Definition (Eventually Weak (Bi)Simulation). Given two transition systems X

⊆ S1 × S1 and Y ⊆ S2 × S2, we say that a relation R ⊆ S1 × S2 relating states of X to

states of Y is an eventually weak simulation from X to Y if and only if for every ex R ey

the following holds:

ex −→X e′x =⇒ ∃ e′y. ey −→∗
Y e′y ∧ ∃ n ≥ 0. e′x −→

n
X e′′x ∧ e′′x R e′y

If the reverse implication holds it is a eventually weak bisimulation between X and Y .

❑

Observe that every bisimulation is a weak bisimulation and every weak bisimulation

is an eventually weak bisimulation.

Informally, we require the weakness relaxation because λr performs more work than

λc: while λc instantiates all instances of a bound variable in a single reduction step,

λr requires reductions proportional to the number of occurrences of the variable. In

addition, we require the eventually weak relaxation as λc’s recursive function expansion

results in λx .letrec z = λx .e in e while in λr we obtain λx .e instead. Upon application

of these functions λc requires an extra reduction when compared to λr, i.e.:

(λx .letrec z = λx .e in e)v −→c letrec z = λx .e in {v/x}e

−→c {λx .letrec z = λx .e in e/z}{v/x}e

but,

(λx .e)u −→r let x = u in e

A similar situation holds for λd.

3.2.1 An Overview

Before we embark on the detailed proof we provide a high-level overview. The proof

goes like this:

1. Try to explicitly construct an eventually weak bisimulation relation (henceforth

EWB relation) between λr and λc terms; fail.
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2. Introduce an annotated calculus, λ′

r, that preserves more information during re-

duction so that the EWB we seek may be defined.

3. Introduce normal forms. Eventually weak simulations only guarantee that two

terms in the relation eventually reduce to another two terms in the relation. In or-

der to produce a proof we must identify criteria for the terms to be in the relation.

This leads us to introduce the notion of Instantiation and Zero Normal Forms.

4. Establish some basic properties of our definitions.

5. Show that the relation we defined is an EWB.

6. Show that the termination relation for λ′
r and λc coincide. Sadly it will not be the

case that our relation (R) relates values only to values. Therefore we show that

whenever eRv or vRe′ then e and e′ terminate.

7. Show that λr and λc are observationally equivalent. This follows from the exis-

tence of the EWB and the fact that the termination relations coincide.

The same process is repeated for λd in section 3.3.

3.2.2 An Eventually Weak Bisimulation Relation

In this section we define a candidate eventually weak bisimulation relation R and es-

tablish its basic properties. In later sections we prove that this relation is actually an

EWB between λc and λr. We have already seen in section 2.2.2 a function [|− |]val that

transforms values built by instantiation reduction into the corresponding value λc re-

duction would have built. It is reasonable, although incorrect as we shall see, to seek to

define R by lifting [|− |]val to act on expressions (call it [|− |]) and defining R as the set

{(e, e ′) | e ′ = [| e |]}. Let us define such a function and see why it fails to be an EWB.

We lift to expressions by acting inductively on applications, projections and on let ex-

pressions that bind non-values. On let expressions that bind values we act the same as

[|− |]val. Our presentation differs from that used to define [|− |]val in that instead of using

substitutions to remove let bindings we instead use an environment, Φ, that records a

mapping from variables to λc terms as we find it convenient for later developments. The
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(erroneous) definition of [|− |]Φ is as follows

[| z |]Φ = Φ(z )

[| n |]Φ = n

[| (e1, e2) |]Φ = ([| e1 |]Φ, [| e2 |]Φ)

[|πr e |]Φ = πr[| e |]Φ

[|λx .e |]Φ = λx .[| e |]Φ , x 7→x

[| e1 e2 |]Φ = [| e1 |]Φ[| e2 |]Φ

[| let z = v in e |]Φ = [| e |]Φ , z 7→[| v |]Φ

[| let z = e1 in e2 |]Φ = let z = [| e1 |]Φ in [| e2 |]Φ , z 7→z

[| letrec z = λx .e1 in e2 |]Φ = [| e2 |]Φ , z 7→[| µ(z ,x ,e1) |]Φ

In the last part we make use of shorthand defined below.

3.2.4 Definition (Recursive abbreviation). We write µ(z , x , τ, e) for λx :τ.letrec z =

λx :τ.e in e and overload it for annotated terms (defined in Figure 3.1) such that

µ(z , x , τ, a) stands for λx :τ.letrec1 z = λx :τ.a in a. Whenever the types are clear

from the context we write µ(z , x , e) and µ(z , x , a) respectively. ❑

While the function [|− |]− converts r-expressions to c-expressions it has two serious

problems stemming from the fact that it identifies "the environment" in an erroneous

way:

(i) Not every value-binding let is part of "the environment". Let bindings on the out-

side of a computation that bind values are morally part of the computation’s en-

vironment; their values are used by the computation, but the terms they bind are

fully computed. For example, in

let x = 5 in let y = 6 in let z = π1(x , y) in z

the values bound to x and y are used by the computation under them, but no more

computation occurs above or within them. The variables x and y are part of the

environment, but the let binding z is in the part of the program that is yet to be

computed: it is part of the computation. The problem with our definition of [|− |]−

is that it identifies a let binding as part of the environment if it binds a value, a

condition that is too weak. To see this consider

[| let x = 5 in let y = π1(1 , 2) in let z = 3 in (x , (y , z )) |]Φ

= let y = π1(1, 2) in (y , (3, 5))
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Here the inner-most let binding a value is substituted away in advance of the time

λc reduction would substitute it away, changing the evaluation order. The problem

here is that the third let which binds z is morally part of the program – a program-

let – and should not be substituted away. On the other hand, the let binding x is

morally part of the environment – an environment-let – and is correctly substituted

away.

(ii) The recursive unrolling rules for the two calculi produce structurally different re-

sults. For example, the term letrec z = λx .e in z can do an instantiation of z

under λr to become

letrec z = λx .e in λx .e (3.5)

and the corresponding λc term according to [|− |]− is

[|µ(z , x , e) |]∅ (3.6)

which is a value. Unfortunately, the resulting terms are not related under our (er-

roneous) R, that is, applying [|− |]− to 3.5 does not yield 3.6. In λc the environment

containing the recursive binding of z is carried with the recursive function, whereas

in λr (and λd) the recursive binding is not duplicated.

To make a correct definition of [|− |]− we must formally recognise the separation of

what is "the program" and what is "the environment" in a given λr term. To do this we

introduce an intermediate language, λr′ , given in Figures 3.1 and 3.2, that distinguishes

the two forms of let: let0 for environment-lets and let1 for program-lets. The (zero) and

(zerorec) reductions convert a 1-tagged let/letrec into a 0-tagged let/letrec whenever

a 1-tagged let/letrec binding a value is in redex position. These reductions correspond

to substituting lets away in λc.

Similarly, a tagging scheme is employed for distinguishing between functions and

recursive unrollings of functions. Whenever a variable bound by a letrec is instantiated

we tag the function with the name of the letrec it came from, e.g. z will be instantiated

to λzx .a. See the (instrec) rule in Figure 3.2.

Notation We say that λz x .a is a recursive function and call z in that term a recursive

variable. Write frv(a) (the free recursive variables in a) for the recursive variables in a

not bound by an enclosing letrec and frf(a) (the free recursive functions in a) for the

recursive functions whose recursive variables are in frv(a).
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Notation Whenever we want to specify that a reduction is of a specific type we will

label the transition with its name, e.g. a
inst
−−→ r′a ′. As a generalisation of this, we will

write a
insts
−−−→ r′a ′ to mean that a can do an inst or instrec transition to become a ′, and

we call the action an inst reduction. Similarly, we write a
zeros
−−−→ r′a ′ for a zero or zerorec

transition and call it a zero reduction.

Intuitively, environment-lets are only found on the outside of a computation and sub-

sequent to a program-let occurring there should be no more occurrences of environment-

lets. Also, we expect tagged functions to only be introduced by the computation and not

by the user, therefore we do not expect to find tagged functions under lambdas or be-

low program lets. For these reasons, we work only with well-formed annotated terms

defined as follows.

3.2.5 Definition (Well-formedness). We write wf[a] to denote that a term a is well-

formed, in the sense of the definition below. The definition uses an auxiliary predicate

noenv(a) which asserts that a nor any of its subexpressions contain environment syntax

(let0 ,letrec0 or λz ).

wf[z ] ⇐⇒ t

wf[n] ⇐⇒ t

wf[()] ⇐⇒ t

wf[(a, a ′)] ⇐⇒ wf[a] ∧ wf[a ′]

wf[πr a] ⇐⇒ wf[a]

wf[λj x :τ.a] ⇐⇒ wf[a] ∧ noenv(a)

wf[a a ′] ⇐⇒ wf[a] ∧ wf[a ′]

wf[let0 z = a in a ′] ⇐⇒ wf[a] ∧ wf[a ′] ∧ a val

wf[let1 z = a in a ′] ⇐⇒ wf[a] ∧ wf[a ′] ∧ noenv(a ′)

wf[letrec0 z = λx :τ.a in a ′] ⇐⇒ wf[λx :τ.a] ∧ wf[a ′]

wf[letrec1 z = λx :τ.a in a ′] ⇐⇒ wf[λx :τ.a] ∧ wf[a ′] ∧ noenv(a ′)

We extend wf[−] to act on A1 contexts by including wf[ ] = t and otherwise remaining

unchanged from its action on expressions. On reduction contexts we define it as follows:

wf[ ] ⇐⇒ t

wf[ .E3] ⇐⇒ wf[E3]

wf[A1.E3] ⇐⇒ wf[A1] ∧ wf[E3]

wf[let0 z = u in E3] ⇐⇒ wf[let0 z = u in ] ∧ wf[E3]

wf[letrec0 z = λx :τ.a in E3] ⇐⇒ wf[letrec0 z = λx :τ.a in ] ∧ wf[E3]
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Integers n

Identifiers x , y , z
Types τ ::= int | unit | τ ∗ τ ′ | τ → τ ′

Exprs a ::= z | n | () | (a, a ′) | πr a | λj x .a
| a a ′ | letm z = a in a ′ | letrecm z = λx :τ.a in a ′

Annotations m ::= 0 | 1
j ::= · | z
r ::= 1 | 2

Figure 3.1: Annotated syntax for λr′

❑

The correct definition of [|− |]− is given in Figure 3.3, which relies on an environment

Φ whose definition is given below.

3.2.6 Definition (Environment). An environment Φ is a list containing pairs whose first

component is an identifier and whose second component is a c-value or an identifier. An

environment is well-formed if the following hold:

(i) Whenever (x , z ) ∈ Φ then x = z .

(ii) Whenever (x , e) ∈ Φ then forall z ∈ fv(e) it holds that z≤Φx where ≤Φ is the

ordering of the identifiers in Φ.

(iii) All of the first components of the pairs in the list are distinct.

When Φ is well-formed we write Φ ◭ 1. We write Φ, z 7→ v for the disjoint extension

of Φ forming a new environment and Φ[z 7→ v ] for the environment acting as Φ, but

mapping z to v . ❑

Note that in the above definition if Φ is well-formed it does not necessarily follow

that the extensions are well formed. Clause (i) is a simplifying assumption reflecting

the fact that if an environment maps an identifier to a non-value, then it maps it to

itself. Clause (ii) is a closure property ensuring that variables which occur free in the

environment have definitions further up the environment. Clause (iii) ensures each

identifier is defined only once, allowing us to treat an environment as a finite partial

function without ambiguity.

1We adopt this strange notation as later we extend environment well-formedness to environment well-
formedness w.r.t. a term a, which we write Φ ◭ a
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Reduction contexts
Values u ::= n | () | (u, u ′) | λx :τ.a | let0 z :τ = u in u

| letrec0 z :τ = λx :τ.a in u

Atomic eval ctxts A1 ::= ( , a) | (u, ) | πr | a | λx :τ.a
| let1 z :τ = in a

Atomic bind ctxs A2 ::= let0 z :τ = u in | letrec0 z = λx :τ.a in

Eval ctxts E1 ::= | E1.A1

Bind ctxts E2 ::= | E2.A2

Reduction ctxts E3 ::= | E3.A1 | E3.A2

Reduction rules

(proj) πr(E2.(u1, u2)) −→ E2.ur

(app) (E2.(λx :τ.a)u) −→ E2.let0 x = u in a

if fv(u) /∈ hb(E2)

(inst) let0 z = u in E3.z −→ let0 z = u in E3.u
if z /∈ hb(E3) and fv(u) /∈ z ,hb(E3)

(instrec) letrec0 z = λx :τ.a in E3.z −→ letrec0 z = λx :τ.a in E3.λ
z x :τ.a

if z /∈ hb(E3) and fv(λx :τ.a) /∈ z ,hb(E3)

(zero) let1 z = u in a −→ let0 z = u in a

(zerorec) letrec1 z = λx :τ.a in a ′ −→ letrec0 z = λx :τ.a in a ′

(cong)
a −→ a ′

E3.a −→ E3.a
′

Figure 3.2: λr′ calculus

The function [|− |]Φ is not well defined for all terms. Given a well-formed environ-

ment Φ the function [|− |]Φ on lambda terms acts on variables by looking them up in the

environment Φ. Thus it is well defined only for terms whose free variables are contained

in the domain of Φ. Additionally, because recursive functions, λzx .a, mention a variable

z , whenever we apply [|− |]Φ to such a term z should be mapped by Φ. In this case the

environment and the term both associate a function with z and we must ensure that the

terms they associate with it are compatible. The correct definition of compatible is that

the body of the function in the environment is the image of the one in the term under

[|− |]Φ
′

where Φ′ is the bindings above z in Φ extended to map the free variables x and

z to themselves. The following definition formalises this compatibility of environment

and term.
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Here we introduce a function that expresses the correspondence between
well-formed λr′ terms built through instantiation and λ terms built through
substitution (in the sense of λc reduction). [| a |]Φ is a function mapping a λr′

expression a and an environment Φ to a λc expression. We note that in each
of the cases where we extend the environment to associate an identifier with
a value, we can ensure that the identifier is fresh for the environment by alpha
conversion.

[| z |]Φ , Φ(z )

[| n |]Φ , n

[| () |]Φ , ()

[| (a, a ′) |]Φ , ([| a |]Φ, [| a ′ |]Φ)

[|πr a |]Φ , πr[| a |]Φ

[|λx :τ.a |]Φ , λx :τ.[| a |]Φ , x 7→x x /∈ dom(Φ)

[|λz x :τ.a |]Φ , Φ(z )

[| a a ′ |]Φ , [| a |]Φ [| a ′ |]Φ

[| let0 z = a in a ′ |]Φ , [| a ′ |]Φ , z 7→[| a |]Φ z /∈ dom(Φ)

[| let1 z = a in a ′ |]Φ , let z = [| a |]Φ in [| a ′ |]Φ , z 7→z z /∈ dom(Φ)

[| letrec0 z = λx .a in a ′ |]Φ , [| a ′ |]Φ , z 7→[| µ(z ,x ,a) |]Φ z /∈ dom(Φ)

[| letrec1 z = λx .a in a ′ |]Φ , letrec z = [|λx .a |]Φ , z 7→z in [| a ′ |]Φ , z 7→z

z /∈ dom(Φ)

We extend [|− |]− to act on A1 contexts by adding the clause [| |]Φ = . On
reduction contexts we define the action as:

[| let0 z = u in .E3 |]Φ , [|E3 |]Φ , z 7→[| u |]Φ

[| letrec0 z = λx .a in .E3 |]Φ , [|E3 |]Φ , z 7→[| µ(z ,x ,a) |]Φ

[|A1.E3 |]Φ , [|A1 |]Φ.[|E3 |]Φ

[| .E3 |]Φ , .[|E3 |]Φ

Figure 3.3: Instantiate-substitute correspondence and its extension to evaluation con-
texts
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3.2.7 Definition (Environment-Term Compatibility). A term a is compatible with an

environment Φ, written Φ ◭ a, if and only if the following hold

(i) the environment is well-formed: Φ ◭

(ii) fv(a) ⊆ dom(Φ)

(iii) for all λzx .â ∈ frf(a) there exists Φ1,Φ2, e such that Φ = Φ1, z 7→ λx .letrec z =

λx .e in e,Φ2 and Φ1, x 7→ x , z 7→ z ◭ â and e = [| â |]Φ1 , x 7→x , z 7→z .

The definition extends naturally to evaluation contexts Φ ◭ E3. ❑

Environment-term compatibility is closed under reduction, as the following lemma

proves.

3.2.8 Lemma ( − ◭ − is Closed Under Reduction ). Φ ◭ a ∧ a −→r′ a ′ =⇒ Φ ◭ a ′

Proof. Proof is by induction on the transition relation derivation. For each case the three

points in the definition of Φ ◭ a ′ must be established. Point (i) is immediate from

assumptions. Point (ii) can be established easily by showing the property fv(a) ⊆ fv(a ′).

Finally, to show point (iii) observe that for all λz x .â ∈ frf(a) the condition required holds

by assumption, therefore it suffices to show frf(a) ⊆ frf(a ′), which can be established by

an induction on the transition relation. ❑

Defining R

We have now defined a function to relate the intermediate language λr′ to λc. However,

we wish to define a candidate bisimulation relation, R, between λr and λc. We therefore

need a way of relating unannotated λr terms and annotated λr′ ones. Fortunately this is

straightforward. Going from unannotated to annotated it is assumed that the whole term

is part of the program, so all lets are 1-annotated and functions are left unannotated,

while the reverse direction is the forgetful function that removes all annotations. The

former is called inject and the latter erase. Their definitions are given in Figure 3.2.9 and

3.2.10 respectively.
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3.2.9 Definition (inject). ι[ ] is a function that converts unannotated λ terms to anno-

tated λr′ terms.

ι[z ] = z

ι[n] = n

ι[()] = ()

ι[πr e] = πrι[e]

ι[(e, e ′)] = (ι[e], ι[e ′])

ι[λx :τ.e] = λx :τ.ι[e]

ι[e e ′] = ι[e]ι[e ′]

ι[let z = e in e ′] = let1 z = ι[e] in ι[e ′]

ι[letrec z =λ x .e in e ′] = letrec1 z = ι[λx .e] in ι[e ′]

❑

3.2.10 Definition (erase). ǫ[ ] is a function that converts annotated λr′ terms to unan-

notated λ terms.

ǫ[z ] = z

ǫ[n] = n

ǫ[()] = ()

ǫ[πr a] = πrǫ[a]

ǫ[(a, a ′)] = (ǫ[a], ǫ[a ′])

ǫ[λx :τ.a] = λx :τ.ǫ[a]

ǫ[λzx :τ.a] = λx :τ.ǫ[a]

ǫ[a a ′] = ǫ[a] ǫ[a ′]

ǫ[let0 z = a in a ′] = let z = ǫ[a] in ǫ[a ′]

ǫ[let1 z = a in a ′] = let z = ǫ[a] in ǫ[a ′]

ǫ[letrec0 z =λ x .a in a ′] = let z = ǫ[λx .a] in ǫ[a ′]

ǫ[letrec1 z =λ x .a in a ′] = let z = ǫ[λx .a] in ǫ[a ′]
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We extend ǫ[−] to act on A1 contexts by adding the clause ǫ[ ] = . On reduction contexts

we define the action as:

ǫ[let0 z = a in .E3] = let z = ǫ[a] in ǫ[E3]

ǫ[letrec0 z = λx .a in .E3] = letrec0 z = ǫ[λx .a] in ǫ[E3]

ǫ[A1.E3] = ǫ[A1].ǫ[E3]

ǫ[ .E3] = .ǫ[E3]

❑

We can now give the resulting definition of the candidate weak bisimulation R.

3.2.11 Definition (Candidate Eventually Weak Bisimulation).

R ≡ {(e, e ′) | ∃ a. wf[a] ∧ a closed ∧ e = [| a |]∅ ∧ e ′ = ǫ[a]}

❑

The relation is on unannotated terms, but defined in terms of projections out of an

annotated λr′ term; [|− |]− forms the corresponding λc term and ǫ[−] the corresponding

λr term.

The goal is to show that if we start with identical terms then the two reduction sys-

tems reduce them to equivalent values, we therefore need identical terms to be related

by R. We check this sanity property.

3.2.12 Definition ( idλ ). idλ is the identity relation on closed lambda terms: idλ =

{(e, e) | e ∈ λ ∧ e closed} ❑

3.2.13 Lemma ( R Contains Identity ). The candidate bisimulation R contains idλ.

Proof. It suffices to prove ǫ[ι[e]] = e and [| ι[e] |]∅ = e. The first is clear from the defini-

tions. The second can be proved by induction on e. ❑

Basic Properties of Constituents of R

This section establishes some basic properties of [|− |]−, ǫ[−] and wf[−] – the basic build-

ing blocks of R – as well as environment well-formedness conditions. We are mainly

interested in how the operations distribute over our syntax, that they preserve values

and that well-formedness of terms is preserved by reduction.

The following definition provides the link between λr′ evaluation contexts and envi-

ronments Φ.
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3.2.14 Definition (Binding Context). Ec[E3]

Φ builds an environment corresponding to

the binding context of the λr′ reduction context E3 using the environment Φ.

Ec[ ]Φ = ∅

Ec[ .E3]
Φ = Ec[E3]

Φ

Ec[A1.E3]
Φ = Ec[E3]

Φ

Ec[let0 z = u in .E3]
Φ = z 7→ [| u |]Φ, Ec[E3]

Φ , z 7→[|u |]Φ

Ec[letrec0 z = λx .a in .E3]
Φ = z 7→ [| µ(z , x , a) |]Φ, Ec[E3]

Φ , z 7→[| µ(z ,x ,a) |]Φ

The context E3 and the environment Φ must be compatible in the sense that fv(E3) ⊆

dom(Φ) and hb(E3) must be unique. ❑

When extending an environment with a value care must be taken to ensure the

resulting environment is well-formed. The following facts are useful in doing this.

3.2.15 Proposition (Environment Properties).

(i) If Φ ◭ u and z /∈ dom(Φ) then Φ, z 7→ [| u |]Φ ◭

(ii) If Φ ◭ a and Φ,Φ′ ◭ then Φ,Φ′ ◭ a

(iii) If Φ ◭ E3.a then Φ, Ec[E3]
Φ ◭ a

❑

We can extend parts (ii) and (iii) of the previous lemma to contexts to conclude the

following.

3.2.16 Corollary (Environment Context Properties).

(i) If Φ ◭ E3 and Φ,Φ′ ◭ then Φ,Φ′ ◭ E3

(ii) If Φ ◭ E3.E
′
3 then Φ, Ec[E3]

Φ ◭ E ′
3

❑

3.2.17 Lemma ( [|− |]− Value Preservation ). Φ ◭ u ∧ wf[u] =⇒ [| u |]Φ cval

Proof. We prove by induction on u. [|− |]Φ clearly preserves n and (), so these cases are

trivial. The pair case follows by application of IH. In the function case functions in λr′
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are transformed to functions in λc, and functions are values. This leaves the 0-tagged-

let/letrec case (we show just the case for let):

➤Case let0 = u1 in u2 : Assume Φ ◭ let0 z = u1 in u2 and wf[let0 z = u1 in u2].

Note [| let0 z = u1 in u2 |]Φ = [| u2 |]Φ
′

where Φ′ = Φ, z 7→ [| u1 |]Φ. By Environment Prop-

erties (iii) (Proposition 3.2.15) Φ′ ◭ u2 and by definition of wf[−], wf[u2]. By induction

[| u2 |]Φ
′
cval as required. ❑

3.2.18 Lemma ( Well-Formed Context Decomposition ). wf[E3.a] ⇐⇒ wf[E3] ∧ wf[a]

Proof. (⇒) Assume wf[E3.a] and note that wf[−] acts on contexts in the same way it acts

on expressions, thus wf[E3]. Furthermore having a surrounding context can only impose

stricter conditions upon a, thus wf[a].

(⇐) Assume wf[E3] ∧ wf[a] and note that wf[−] can only fail if the noenv(−) or value

checks fail. No holes in E3 coincide with these checks, thus wf[E3.a]. ❑

3.2.19 Lemma ( λr′ reduction preserves well-formedness ). wf[a] ∧ a −→r′ a ′ =⇒

wf[a ′]

Proof. The proof proceeds by an easy induction on the transition relation for λr′ using

the definition of wf[−] and Well-Formed Context Decomposition (Lemma 3.2.18) to

prove each case. ❑

We now prove some conditions under which a change of environment in [|− |]− leaves

the image unchanged.

3.2.20 Proposition ( [|− |]− Environment Properties ).

(i) If wf[a] and Φ, x 7→ x ◭ a and Φ, x 7→ v ,Φ′ ◭ then {v/x}[| a |]Φ , x 7→x , Φ′
=

[| a |]Φ , x 7→v , Φ′

(ii) If Φ ◭ a and Φ,Φ′ ◭ a then [| a |]Φ = [| a |]Φ , Φ′

(iii) If Φ1,Φ2,Φ3,Φ4 ◭ a and Φ1,Φ3,Φ2,Φ4 ◭ a then [| a |]Φ1 , Φ2 , Φ3 , Φ4 =

[| a |]Φ1 , Φ3 , Φ2 , Φ4.

Proof. First prove (i) by induction on a. Cases () and n are trivial.

➤Case z : Let Φx ≡ Φ, x 7→ x ,Φ′ and Φv ≡ Φ, x 7→ v ,Φ′. Assume Φ, x 7→ x ◭ z

and Φx ◭ and wf[z ]. As we know that Φ, x 7→ x ◭ z then [Φ, x 7→ x ](z ) = z or

[Φ, x 7→ x ](z ) = v ′ for some c-value v ′. Let us consider each case:
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➤Case [Φ, x 7→ x ](z ) = z : If z = x holds then

{v/x}[| z |]Φx = {v/x}[Φx](z ) = {v/x}x = v = [| z |]Φv

if not then

{v/x}[| z |]Φx = {v/x}[Φx](z ) = {v/x}z = z = [| z |]Φv

➤Case [Φ, x 7→ x ](z ) = v ′ : In this case

{v/x}[| z |]Φx = {v/x}[Φx](z ) = {v/x}v ′

holds and it suffices to show that {v/x}v ′ = v ′ = [| z |]Φv . The second equality is

true by assumption. To show the first equality is suffices to prove x /∈ fv(v ′). As

Φ, x 7→ x ◭ z and Φ, x 7→ x ,Φ′ is well-formed, then z /∈ dom(Φ′). Thus z ∈

dom(Φ). By environment well-formedness Φ(z ) can only contain free variables

defined before it in the environment, and x is defined after it.

➤Case λ·z :τ.a : Assume Φ ◭ λz :τ.a and wf[λz :τ.a]. First note that by alpha conversion

z /∈ {x} ∪ dom(Φ) can be ensured. Then Φ , x 7→ x ◭ a and wf[a], so by induction

{v/x}[| a |]Φ , x 7→x = [| a |]Φ , x 7→v

from which the result follows by lambda abstracting on z .

➤Case λzx .a : Let Φx ≡ Φ, x 7→ x ,Φ′ and Φv ≡ Φ, x 7→ v ,Φ′. Assume Φ, x 7→ x ◭

λz x .a ∧ Φx ◭ v ∧ wf[λz x .a]. x 6= z by well-formedness (z is a free recursive variable

and so must map to a function) and z /∈ dom(Φ′) as Φ, x 7→ x ◭ λz x .a. Therefore

Φx(z ) = Φv(z ) = Φ(z ) = [|λz x .a |]Φx = [|λz x .a |]Φv and it suffices to show that x /∈

fv(Φ(z )). This holds as Φ, x 7→ x ◭ λz x .a.

The rest of the cases follow a similar pattern.

Part (ii) is clear from the definition of [|− |]− and well-formed environments.

Part (iii). We proceed by induction on the structure of a. The base terms () and n are

trivially true. The interesting case is variables, but here we note that both environments

agree on all variable assignments. All other cases follow by applying the induction

hypothesis. (Observe that all bound identifiers in a can be alpha converted not to clash

with those in dom(Φ1 , Φ2 , Φ3 , Φ4) = dom(Φ1 , Φ3 , Φ2 , Φ4)). ❑
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3.2.21 Lemma ( [|− |] Outer Value Preservation ). For all λr′ values u:

(a) If wf[u], Φ ◭ u and [| u |]Φ = λx :τ.e then there exists E2, a, j such that u = E2.λ
j x :τ.a

(b) [| u |]Φ = (v1, v2) =⇒ ∃ E2, u1, u2. u = E2.(u1, u2)

Proof. We prove (a) by induction on u. The cases of n, (), (u1, u2) are trivially true as

[|− |]− on these terms can not result in a term of the form λx :τ.e. The case λj x :τ.a

results in a function when [|− |]− is applied, but it is already of the right form if one

chooses E2 = . This leaves the (let) and (letrec) cases:

➤Case let0 z = u1 in u2 : Assume wf[let0 z = u1 in u2]; Φ ◭ let0 z =

u1 in u2 and [| let0 z = u1 in u2 |]Φ = λx :τ.e (*). By definition of well-formedness

wf[u1] ∧ wf[u2]. It is easy to show that Φ ◭ u1 and Φ , z 7→ [| u1 |]Φ ◭ u2 fol-

lows by Environment Properties (Proposition 3.2.15) . By definition of [|− |]− and

(*) [| let0 z = u1 in u2 |]Φ = [| u2 |]Φ , z 7→[| u1 |]Φ = λx :τ.e, thus by induction there exists

E ′
2, a

′, j ′ such that u2 = E ′
2.λ

j ′x :τ.a ′. The result follows by choosing E2 = (let0 z =

u1 in .E ′
2), a = a ′ and j = j ′.

➤Case letrec0 z = λx :τ.a in u : By the definition of [|− |]− and environment well

formedness there is an e such that

[| letrec0 z = λx :τ.a in u |]Φ = [| u |]Φ , z 7→[| µ(z ,x ,a) |]Φ = λx :τ.e

from which the result follows by induction.

(b) is proved by a similar induction on u. ❑

3.2.22 Lemma ( [|− |]− Distribution Over Contexts ). For all E3,Φ and a, if Φ ◭ E3.a

and wf[E3.a] then [|E3.a |]Φ = [|E3 |]Φ.[| a |]Φ ,Ec[E3]Φ

Proof. We prove by induction on E3. We elide the letrec0 context case as it is similar to

the let0 case.

➤Case A1.E
′
3 :

[|A1.E
′
3.a |]Φ = [|A1 |]Φ. [|E ′

3.a |]Φ

= [|A1 |]Φ. [|E ′
3 |]Φ. [| a |]Φ ,Ec[E ′

3]Φ (*)

= [|A1.E
′
3 |]Φ. [| a |]Φ ,Ec[A1.E ′

3]Φ



58 3. λC ,λR,λD EQUIVALENCE
By Well-Formed Context Decomposition (Lemma 3.2.18) we have wf[E ′

3.a], and by

Environment Properties (iii) (Proposition 3.2.15) Φ ◭ E ′
3.a, thus by induction (*) holds.

➤Case let0 z = u in .E ′
3 :

[| let0 z = u in .E ′
3.a |]Φ = [|E ′

3.a |]Φ , z 7→[|u |]Φ

= [|E ′
3 |]Φ , z 7→[| u |]Φ . [| a |]Φ

′
(*)

where Φ′ = Φ , z 7→ [| u |]Φ, Ec[E
′
3]

Φ , z 7→[| u |]Φ

= [| let0 z = u in .E ′
3 |]Φ. [| a |]Φ ,Ec[let0 z=u in .E ′

3]
Φ

(**)

By definition of wf[−] we have wf[E ′
3.a], and by Environment Properties (iii) (Propo-

sition 3.2.15) Φ′ ◭ E ′
3.a, thus by induction (*) holds. By definition of Ec[−]−, (**) is

equivalent to (*).

❑

3.2.23 Lemma ( [|− |] Preserves Contexts ). If Φ ◭ E3 and wf[E3] then there exists a λc

reduction context E such that [|E3 |]Φ = E .

Proof. We proceed by induction on the structure of E3:

➤Case : [| |]Φ = which is a valid λc reduction context.

➤Case A1.E
′
3 : Assume Φ ◭ A1.E

′
3 (3.7) and wf[A1.E

′
3] (3.8). From the definition of

[|− |] on contexts (Figure 3.3) [|A1.E
′
3 |]Φ = [|A1 |]Φ.[|E ′

3 |]Φ. By Environment Properties

(iii) (Proposition 3.2.15) Φ ◭ E ′
3 and by Well-Formed Context Decomposition (Lemma

3.2.18) wf[E ′
3]. From these derived facts and induction there exists an E such that

E = [|E ′
3 |]Φ. We are left to show that [|A1 |]Φ is a valid λc reduction context for every A1:

➤Case ( , a) : Follows directly from definition

➤Case (u, ) : [| (u, ) |]Φ = ([| u |]Φ, ) which is a λc context only if [| u |]Φ cval. From

3.7 we can deduce Φ ◭ u. From 3.8 we conclude wf[u]. By these last two facts and

[|− |]− Value Preservation (Lemma 3.2.17) [| u |]Φ cval as required.

The rest of the A1 cases are similar to one of the above two.

➤Case let0 z = u in .E ′
3 : Assume Φ ◭ let0 z = u in .E ′

3 and

wf[let0 z = u in .E ′
3]. From the definition of [|− |] on contexts (Figure 3.3)

[| let0 z = u in E ′
3 |]Φ = [|E ′

3 |]Φ , z 7→[| u |]Φ . By Environment Properties (iii) (Proposition

3.2.15) z 7→ [| u |]Φ and Φ ◭ E ′
3, and by Well-Formed Context Decomposition (Lemma

3.2.18) wf[E ′
3]. Thus by induction there exists an E such that [|E3 |]Φ , z 7→[| u |]Φ = E .

❑
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We now establish a similar set of properties for ǫ[−], although the definition is con-

siderably simpler making the proofs routine.

3.2.24 Lemma ( ǫ[−] Value Preservation). wf[u] =⇒ ǫ[u] rval ❑

3.2.25 Lemma ( ǫ[−] Distributes Over Contexts ). ǫ[E3.a] = ǫ[E3].ǫ[a] ❑

3.2.26 Lemma ( ǫ[−] Preserves Contexts ). If wf[E3] then there exists a λr reduction

context E ′
3 such that ǫ[E3] = E ′

3.

Proof. By induction on E3. We elide the let0 and letrec0 cases as they are similar to

the A1 case.

➤Case : trivial

➤Case A1.E3 : Assume that wf[A1.E3]. By Well-Formed Context Decomposition

(Lemma 3.2.18) wf[E3]. By induction there exists a λr context E ′
3 such that ǫ[E3] = E ′

3.

Now ǫ[A1.E3] = ǫ[A1].ǫ[E3] = ǫ[A1].E
′
3 and furthermore, by ǫ[−] Value Preservation

(Lemma 3.2.24) it is easy to verify that for each A1, ǫ[A1] is a valid λr atomic context.

➤Case let0 z = u in .E3 : Similar to the previous case.

❑

3.2.27 Lemma ( ǫ[−] Outer Value Preservation ). For all λr′ values u:

(a) If wf[u] and ǫ[u] = E2.λx :τ.e then there exists Ê2, a, z , j such that u = Ê2.λ
j x :τ.a

(b) ǫ[u] = E2.(v1, v2) =⇒ ∃ Ê2, u1, u2. u = Ê2.(u1, u2)

❑

3.2.3 R is an Eventually Weak Bisimulation

In this section we show that R, as defined in Definition 3.2.11, is a weak bisimulation

between λc and λr. To do this we factor the problem into two simulations, one from λc to

λr and the other in the reverse direction. These simulations are further factored through

the annotated calculus λr′ . This process is shown for each simulation in Figures 3.4 and

3.5. Proving that R is a bisimulation amounts to showing that these two diagrams hold

for all a. The diagrams are intended to be read left-to-right and top-down and show

how reductions are related between the various calculi. The upper and lower quadrants

of each diagram are proved separately.
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insts ∗
r
//

l

if l 6= zeros
//

if l =zeros

ê′
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An Eventually Weak CR-Simulation

We first consider the upper quadrant of the cr-simulation diagram, which can be read as

follows. Suppose e R ê via a (i.e. a satisfies the existential in the definition of R), and e

reduces in one step to e ′ by a λc reduction, call it l, then a can perform a finite sequence

of instantiation reductions followed by a non-instantiation reduction l̂. This reduction

matches l and results in a ′ such that [| a ′ |]Φ = e ′.

The argument presupposes that instantiation reductions to a leave the image of a

under [|− |]Φ unchanged. The following lemma confirms this.
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3.2.28 Lemma ( [|− |]− Invariant Under Insts ). wf[a] ∧ Φ ◭ a ∧ a
insts
−−−→

∗

r′ a
′ =⇒

[| a |]Φ = [| a ′ |]Φ

Proof. We first prove the single reduction case by induction on a
insts
−−−→r′ a

′. Every case is

trivial except (inst), (instrec) and (cong):

➤Case (inst) : Assume wf[let0 z = u in E3.z ] and Φ ◭ let0 z = u in E3.z . We are

required to prove that applying [|− |]Φ to the left and right hand side of this rule results

in the same term. First take the LHS:

[| let0 z = u in E3.z |]Φ = [|E3.z |]Φ , z 7→[| u |]Φ

= [| z |]Φ , Φ′
(3.9)

where Φ′ = z 7→ [| u |]Φ, Ec[E3]
Φ , z 7→[| u |]Φ

= [Φ,Φ′](z ) (3.10)

= [| u |]Φ

3.9 follows from [|− |]− Distribution Over Contexts (Lemma 3.2.22) and 3.10 follows as

z /∈ hb(E3) by the side condition of rule. Now take the RHS:

[| let0 z = u in E3.u |]Φ = [| u |]Φ , Φ′
(3.11)

We are left to show that [| u |]Φ = [| u |]Φ , Φ′
.

By side condition of the (inst) reduction rule fv(u) /∈ hb(E3) and by alpha conversion

z /∈ fv(u). It follows that fv(u) /∈ dom(Φ′). By Environment Properties (iii) (Proposition

3.2.15) Φ′ ◭ u, thus by [|− |]− Environment Properties (ii) (Proposition 3.2.20) [| u |]Φ =

[| u |]Φ , Φ′
, as required.

➤Case (instrec) : Follows directly from the definition of [|− |]− and [|− |]− Distribution

Over Contexts (Lemma 3.2.22) .

➤Case (cong) : Assume wf[E3.a] and Φ ◭ E3.a. By Well-Formed Context Decom-

position (Lemma 3.2.18) wf[a]. Let Φ′ = Φ, Ec[E3]
Φ, then by Environment Properties

(Proposition 3.2.15) Φ′ ◭ a. By induction [| a |]Φ
′

= [| a ′ |]Φ
′

(*). Now [|E3.a |]Φ = [| a |]Φ
′

and [|E3.a
′ |]Φ = [| a ′ |]Φ

′
by Environment Properties (iii) (Proposition 3.2.15) , thus by (*)

we are done.

The multiple step case follows by induction on the number of reductions. ❑

The validity of the upper quadrant also relies on the fact that every contiguous se-

quence of instantiations is finite. That is, we eventually reach a term that cannot reduce
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via an instantiation. We say such a term is in instantiation normal form, which is for-

mally defined in Definition 3.2.29 and extended to open terms in Definition 3.2.30. The

obvious variant of these definitions hold for λr as well.

3.2.29 Definition (INF). A term a is in instantiation normal form (INF) if and only if

there does not exist an a′ such that a
insts
−−−→ a ′. We write a infr when a is in INF. ❑

3.2.30 Definition (Open INF). A possibly open term a is in open instantiation normal

form if and only if there does not exist an E3 and z such that a = E3.z . We write a inf ◦r

when a is in open INF. ❑

INF and open INF agree on closed terms, but not necessarily on open ones. For

example, if there does not exist E3,E
′
3, z , x , u, a such that a = E3.let0 z = u in E ′

3.z

and a 6= E ′
3.letrec0 z = λx .a in E ′

3.z then a cannot perform an inst or instrec reduction

and is in INF. However, it may still be the case that for some E ′′
3 and z that a = E ′′

3 .z as

long as z /∈ hb(E ′′
3 ) and therefore a is not in open INF.

A useful property of instantiation normal forms is that they are preserved by removing a

surrounding E3 context, the proof of which follows easily by proving the contrapositive.

3.2.31 Lemma ( inf ◦r Preserved by E3 Stripping ). For any evaluation context E3, if

E3.a inf ◦r then a inf ◦r ❑

To prove that we can reach an instantiation normal form from any λr′ term by re-

duction, we observe that the number of variables above lambdas decreases with every

instantiation. Therefore, we define the function instvar[e] in Definition 3.2.32 and prove

that this is monotonically decreasing w.r.t. instantiation reductions to obtain an “INF

reachability” result.

3.2.32 Definition ( instvar[−] ). instvar[a] denotes the number of potential instantia-

tions that a can do.

instvar[z ] = 1

instvar[n] = 0

instvar[()] = 0

instvar[πr a] = instvar[a]

instvar[(a a ′)] = instvar[a] + instvar[a ′]

instvar[λj x .a] = 0

instvar[a a ′] = instvar[a] + instvar[a ′]

instvar[letm z = a in a ′] = instvar[a] + instvar[a ′]

instvar[letrecm z = λx .a in a ′] = instvar[a ′] ❑
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3.2.33 Lemma ( instvar[−] Properties). For all λr′ terms a and a ′

1. a r’val =⇒ instvar[a] = 0

2. a
insts
−−−→r′ a

′ =⇒ instvar[a ′] = instvar[a] − 1

Proof. First prove 1: For instvar[u] to be non-zero, there must be at least one occurrence

of a variable that is not under a lambda binding. By the definition of the forms of values,

this cannot be the case.

Now prove 2: Assume a
inst
−−→r′ a

′ and prove instvar[a ′] = instvar[a] − 1. One of the

following must hold:

∃ E3,E
′
3, z , u. a = E3.let0 z = u in E ′

3.z (3.12)

∃ E3,E
′
3, z , x , a. a = E3.letrec0 z = λx .a in E ′

3.z (3.13)

Both cases are similar so just consider 3.12. We must prove

instvar[E3.let0 z = u in E ′
3.u] = instvar[E3.let0 z = u in E ′

3.z ] − 1

which is true if instvar[u] = instvar[z ]−1, which holds if instvar[u] = 0, which is assured

by our first observation.

❑

3.2.34 Lemma (INF Reachability). For all closed a, if wf[a] then there exists a ′ such that

a
insts
−−−→

∗

r′ a
′ ∧ a ′ infr

Proof. Assume a closed and wf[a]. If a does not match the LHS of an inst or instrec rule

then we are done, so suppose that it does. By instvar[−] Properties (Lemma 3.2.33) there

can only be finitely many inst or instrec reductions, say n. Thus after n instantiation

reductions we arrive at a term a ′, for which it must hold that a ′ does not match the LHS

of inst or instrec and thus a ′ infr as required. ❑

We are nearly ready to prove the upper quadrant of the CR-simulation diagram.

Before we can though, we need to establish a converse of Lemma 3.2.17, although the

converse will not hold directly. The Lemma states that values are preserved by [|− |]Φ,

the failure of its converse, that if [| a |]Φ is a value then a is a value, is demonstrated by

the following example:

[| let x = 3 in z |]Φ = 3
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The result 3 is a value, but let x = 3 in z is not. The extra requirement needed is that

a is in INF. The following lemma proves this result.

3.2.35 Lemma ( [|− |]Φ Source-Value Property ). For all λr′ expressions a, the following

holds:

wf[a] ∧ a inf ◦r ∧ Φ ◭ a ∧ [| a |]Φ cval =⇒ a r’val

Proof. We prove by induction on a. In the identifier case, the term is not in INF. The n

and () cases are immediate. λx .a and λzx .a both result in values when [|− |]Φ is applied,

but are values themselves. The (a1, a2) case follows by induction (and that the subterms

are well-formed). The πr a and a1 a2 cases are immediate as the action of [|− |]Φ on

them does not produce a value. The function case is also immediate as [|− |]Φ produces a

function which is a value. In the let1 and letrec1 cases, applying [|− |]Φ does not produce

a value. This leaves the let0 and letrec0 cases, for which we just show let0 as letrec0 is

similar:

➤Case let0 z = a1 in a2 : Assume the term is well-formed, then the subterms are

well-formed and a1 r’val. Assume the term is in open INF, then a2 inf ◦r . Assume

Φ ◭ let0 z = a1 in a2, then by Environment Properties (iii) (Proposition 3.2.15)

Φ, z 7→ [| a1 |]Φ ◭ a2. We have to prove:

[| let0 z = a1 in a2 |]Φ = [| a2 |]Φ , z 7→[| a1 |]Φ

is an r-value, which follows by induction on a2.

❑

We can now prove the upper quadrant of the cr-simulation.

3.2.36 Lemma (c-r’ Correspondence). If a closed and wf[a] and [| a |]∅ −→c e ′ then

there exists a ′, a ′′ such that a
insts
−−−→

∗

r′ a
′′ −→r′ a ′ and a ′′ infr and either

(i) e ′ = [| a ′ |]∅; or

(ii) there exists e ′′ such that e ′ −→c e ′′ and e ′′ = [| a ′ |]∅.

Proof. We generalise to open terms and claim that it is sufficient to prove the following:

If wf[a] and Φ ◭ a and a inf ◦r and [| a |]Φ −→c e ′ then there exists a ′ such that a −→r′ a ′

and one of the following hold

(i) e ′ = [| a ′ |]Φ; or
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(ii) there exists e ′′ such that e ′ −→c e ′′ and e ′′ = [| a ′ |]Φ.

First let us show that this is sufficient: assume the above proposition and a closed ∧

wf[a] ∧ [| a |]∅ −→c e ′ then we are required to prove that there exists an a ′ and a ′′ such

that (3.14) a
insts
−−−→

∗

r′ a
′′; (3.15) fv(a) ⊆ dom(Φ); (3.16) a ′′ −→r′ a ′; (3.17) a ′′ infr and

either (i) or (ii) hold. By INF Reachability (Lemma 3.2.34) there exists an a ′′ to satisfy

3.14 and 3.17, thus taking Φ = ∅ in the generalised claim and applying modus ponens

we have that there exists an a ′ such that a ′′ −→r′ a ′ and (i) or (ii) of the lemma hold.

This satisfies the remaining proof obligations.

We prove the generalised claim by induction on the structure of a. In every case

except one subcase of application (where recursive functions are considered) we show

case (i) holds.

➤Case z : ¬(z inf ◦r ).

➤Case n; () : [| n |]Φ = n which does not reduce under λc. [| () |]Φ = () which does not

reduce under λc.

➤Case (a1, a2) : Assume wf[(a1, a2)] ∧ (a1, a2) inf ◦r ∧ [| (a1, a2) |]Φ −→c e ′ and prove

that there exists an a ′ such that (a1, a2) −→r′ a ′ ∧ e ′ = [| a ′ |]Φ. We proceed by case split

on the reductions of [| (a1, a2) |]Φ.

➤Case [| (a1, a2) |]Φ −→c (e ′1, [| a2 |]Φ) : It follows that [| a1 |]Φ −→c e ′1. By wf[−]

definition wf[a1]. By Environment Properties (Proposition 3.2.15) Φ ◭ a1. By

inf ◦r Preserved by E3 Stripping (Lemma 3.2.31) a1 inf ◦r . By induction a1 −→r′

a ′
1 ∧ [| a1 |]Φ = e ′1 (*). Thus (a1, a2) −→r′ (a ′

1, a2) and we are left to show that the

erasure of the RHS of this is equal to (e ′1, [| a2 |]Φ): [| (a ′
1, a2) |]Φ = ([| a ′

1 |]Φ, [| a2 |]Φ) =

(e ′1, [| a2 |]Φ) as required.

➤Case [| (a1, a2) |]Φ −→c ([| a1 |]Φ, e ′2) : Similar to last case, but also uses [|− |]Φ

Source-Value Property (Lemma 3.2.35) to establish a1 r’val.

➤Case πr a : Assume wf[πr a] ∧ πr a inf ◦r ∧ [|πr a |]Φ −→c e ′ and prove that there

exists an a ′ such that πr a −→r′ a ′ ∧ e ′ = [| a ′ |]Φ. We proceed by case split on the

reductions of [|πr a |]Φ.

➤Case [|πr a |]Φ −→c πr a ′ : Similar to inductive case on pairs.

➤Case [|πr a |]Φ ≡ πr(v1, v2) −→c vr : It follows that [| a |]Φ = (v1, v2). By inf ◦r

Preserved by E3 Stripping (Lemma 3.2.31) a inf ◦r . By [|− |]Φ Source-Value Property
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(Lemma 3.2.35) a r’val. By [|− |]Φ Outer Value Preservation (Lemma 3.2.21) there

exists E2, u1, u2 such that a = E2.(u1, u2). Thus πr a = πr E2.(u1, u2) −→r′ E2.ur.

Note that [| a |]Φ = [|E2.(u1, u2) |]Φ = ([| u1 |]Φ ,Ec[E2]Φ , [| u2 |]Φ ,Ec[E2]Φ) = (v1, v2), thus

[|E2.ur |]Φ = [|ur |]Φ ,Ec[E2]Φ = vr as required.

➤Case λj x .a : Applying [|− |]Φ gives a function which does not reduce.

➤Case a1 a2 : Assume wf[a1 a2] ∧ Φ ◭ a1 a2 ∧ (a1 a2) inf ◦r ∧ [| a1 a2 |]Φ −→c e ′ and

prove that there exists an a ′ such that a1 a2 −→r′ a ′ and one of (i) or (ii) hold. We

proceed by case split on the reductions of [| a1 a2 |]Φ.

➤Case [| a1 a2 |]Φ −→c e ′1 [| a2 |]Φ : Similar to inductive case on pairs ((i) holds).

➤Case [| a1 a2 |]Φ −→c [| a1 |]Φ e ′2 : Similar to inductive case on pairs ((i) holds).

➤Case [| a1 a2 |]Φ ≡ (λx :τ.e) v −→c {v/x}e : Thus [| a1 |]Φ = λx :τ.e and [| a2 |]Φ = v .

By inf ◦r Preserved by E3 Stripping (Lemma 3.2.31) a1 inf ◦r , so by [|− |]Φ Source-

Value Property (Lemma 3.2.35) a1 r’val. As a1 r’val it follows by inf ◦r Preserved

by E3 Stripping (Lemma 3.2.31) that a2 inf ◦r , so by [|− |]Φ Source-Value Property

(Lemma 3.2.35) a2 r’val. By Environment Properties (iii) (Proposition 3.2.15)

Φ ◭ λj x :τ.e and Φ ◭ v . By [|− |]Φ Outer Value Preservation (Lemma 3.2.21)

there exists E2, j , τ, â such that a1 = E2.λ
j x :τ.â. There are two cases to consider

depending on the form of j .

➤Case j = · : Thus, (E2.λx :τ.â) a2 −→r′ E2.let x = a2 in â and applying

[|− |]Φ to the RHS gives [| â |]Φ
′

where Φ′ = Φ, Ec[E2]
Φ, x 7→ [| a2 |]Φ ,Ec[E2]Φ . We

are left to show that [| â |]Φ
′
= {v/x}e. Do this by expanding {v/x}e

{v/x}e = {[| a2 |]Φ/x}[| â |]Φ ,Ec[E2]Φ, x 7→x

= [| â |]Φ ,Ec[E2]Φ, x 7→[| a2 |]Φ (3.18)

= [| â |]Φ
′

(3.19)

3.19 follows from [|− |]− Environment Properties (i) (Proposition 3.2.20) and

3.18 is true as fv(a2) /∈ hb(E2).

➤Case j = z : By [|− |]− Environment Properties (i) (Proposition 3.2.20)

[|E2.λ
z x .â |]Φ = [| λzx .â |]Φ

′
where Φ′ = Φ, Ec[E2]

Φ. As Φ ◭ E2.λ
z x .â then

Φ′ ◭ λz x .â by Environment Properties (Proposition 3.2.15) . Thus by the
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definition of Environment-Term Compatibility (Definition 3.2.7) there exists

Φ1,Φ2, ê such that

Φ′ = Φ1, z 7→ λx .letrec z = λx .ê in ê,Φ2 (3.20)

ê = [| â |]Φ1 , z 7→z , x 7→x (3.21)

Φ1, z 7→ z , x 7→ x ◭ â (3.22)

We prove point (ii). Observe

(λx .letrec z = λx .ê in ê)v

−→c letrec z = λx .ê in {v/x}ê

−→c {λx .letrec z = λx .ê in ê/z}{v/x}ê (3.23)

and

(E2.λ
z x .â)a2 −→r′ E2.let x = a2 in â (3.24)

We are left to show that applying [|− |]Φ to 3.24 gives 3.23.

[|E2.let x = a2 in â |]Φ = [| â |]Φ
′′

where Φ′′ = Φ′, x 7→ [| a2 |]Φ
′
and Φ′ = Φ, Ec[E2]

Φ

First note that by alpha conversion we can ensure fv(a2) /∈ hb(E2) and there-

fore Φ ◭ a2. Thus by [|− |]− Environment Properties (ii) (Proposition 3.2.20)

we have [| a |]Φ = [| a |]Φ
′
. By [|− |]− Environment Properties (i) (Proposition

3.2.20) we have

[| â |]Φ
′ , x 7→[| a2 |]Φ = {v/x}[| â |]Φ

′ , x 7→x

The environment entry x 7→ x does not have any free variables apart from x ,

therefore reordering will not invalidate the environment’s well-formedness:

[| â |]Φ1 , z 7→λx .letrec z=λx .ê in ê , Φ2 , x 7→x = [| â |]Φ1 , x 7→x , z 7→λx .letrec z=λx .ê in ê , Φ2

We are required to show that this equals 3.23 which we do via the following

sequence of deductions whose validity is explained below.
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{v/x}[| â |]Φ1 , x 7→x , z 7→λx .letrec z=λx .ê in ê , Φ2

= {v/x}{λx .letrec z = λx .ê in ê/z}[| â |]Φ1 , x 7→x , z 7→z , Φ2 (3.25)

= {v/x}{λx .letrec z = λx .ê in ê/z}[| â |]Φ1 , x 7→x , z 7→z (3.26)

= {v/x}{λx .letrec z = λx .ê in ê/z}ê (3.27)

As 3.22 holds so does

Φ1, x 7→ x , z 7→ λx .letrec z = λx .ê in ê ◭ â

thus by [|− |]− Environment Properties (i) (Proposition 3.2.20) 3.25 holds and

by [|− |]− Environment Properties (ii) (Proposition 3.2.20) 3.26 also holds.

Finally, 3.27 holds by 3.21.

➤Case let0 z = a1 in a2 : Assume wf[let0 z = a1 in a2], Φ ◭ let0 z = a1 in a2,

(let0 z = a1 in a2) inf ◦r and [| let0 z = a1 in a2 |]Φ = [| a2 |]Φ1 −→c e ′ where Φ1 =

Φ, z 7→ [| a1 |]Φ. By inf ◦r Preserved by E3 Stripping (Lemma 3.2.31) a2 inf ◦r . By definition

of wf[−] we have wf[a2] ∧ a1 r’val. By induction a2 −→r′ a ′
2 ∧ e ′ = [| a ′

2 |]Φ1 (*), thus

let0 z = a1 in a2 −→r′ let0 z = a1 in a ′
2. Now show that applying [|− |]Φ to the RHS

of the previous transition gives e ′: [| let0 z = a1 in a ′
2 |]Φ = [| a ′

2 |]Φ1 = e ′ follows from

(*).

➤Case let1 z = a1 in a2 : Assume wf[let1 z = a1 in a2], Φ ◭ let1 z = a1 in a2,

(let1 z = a1 in a2) inf ◦r and [| let1 z = a1 in a2 |]Φ = let z = [| a1 |]Φ in [| a2 |]Φ −→c e ′

(*). By wf[−] definition wf[a1] ∧ wf[a2]. By inf ◦r Preserved by E3 Stripping (Lemma

3.2.31) a1 inf ◦r . By Environment Properties (iii) (Proposition 3.2.15) Φ ◭ a1 and

Φ, z 7→ [| a1 |]Φ ◭ a2.

We case split on the transitions of (*):

➤Case let z = [| a1 |]Φ in [| a2 |]Φ , x 7→x −→c let z = e ′1 in [| a2 |]Φ , x 7→x : By induc-

tion a1 −→r′ a ′
1 ∧ e ′1 = [| a ′

1 |]Φ. Thus let1 z = a1 in a2 −→r′ let1 z = a ′
1 in a2

and we are left to show that applying [|− |]− to the RHS of this results in the RHS

of the transition in the case split:

[| let1 z = a ′
1 in a2 |]Φ = let z = [| a1 |]Φ in [| a2 |]Φ , x 7→x

= let z = e ′1 in [| a2 |]Φ , x 7→x
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as required.

➤Case let z = [| a1 |]Φ in [| a2 |]Φ , x 7→x −→c {[| a1 |]Φ/z}[| a2 |]Φ , x 7→x : Thus

[| a1 |]Φ cval. By [|− |]Φ Source-Value Property (Lemma 3.2.35) a1 r’val, thus

let1 z = a1 in a2 −→r′ let0 z = a1 in a2. We are left to show that ap-

plying [|− |]− to the RHS of this results in the RHS of the case split:

[| let0 z = a1 in a2 |]Φ = {[| a1 |]Φ/z}[| a2 |]Φ , x 7→x

= [| a2 |]Φ , x 7→[| a1 |]Φ

where the last step is valid by [|− |]− Environment Properties (i) (Proposition

3.2.20) .

➤Case letrec0 z = λx .a1 in a2 : Similar to the let0 case.

➤Case letrec1 z = λx .a1 in a2 : Similar to the second sub-case of let1 .

❑

This concludes the proof of the upper quadrant of Figure 3.4. The lower quadrant of

the diagram can be stated informally as follows. Suppose e R ê via a and a reduces to

an instantiation normal form before performing a reduction via rule l̂ to a ′, then ê can

match each instantiation of a and the last reduction l̂, provided it is not a zero reduction.

In the case where l̂ is a zero reduction no further reductions are required for e to equal

[| a ′ |]Φ. We first show that λr can match the instantiation reductions of λr′ , where the

two are related by the ǫ[−] function.

3.2.37 Lemma (Inst Match Property).

wf[a] ∧ a
insts
−−−→r′ a

′ =⇒ ∃ e ′. ǫ[a]
insts
−−−→r e ′ ∧ e ′ = ǫ[a ′]

Proof. We prove by induction on the structure of a
insts
−−−→r′ a

′ showing only the non-trivial

cases:

➤Case (inst) :

ǫ[let0 z = u in E3.z ]

= let z = ǫ[u] in ǫ[E3].ǫ[z ]

−→r let z = ǫ[u] in ǫ[E3].ǫ[u]

= ǫ[let z = u in E3.u]
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Where the penultimate step is valid by ǫ[−] Preserves Contexts (Lemma 3.2.26) .

➤Case (instrec) : Similar to (inst) case.

➤Case (cong) : Assume wf[E3.a]; E3.a −→r′ E3.a
′ and a

insts
−−−→r′ a

′. It follows from

Well-Formed Context Decomposition (Lemma 3.2.18) that wf[a]. By induction on a

there exists an e ′ such that ǫ[a]
insts
−−−→r′ e

′ and e ′ = ǫ[a ′]. As ǫ[E3] is a valid λr context by

ǫ[−] Preserves Contexts (Lemma 3.2.26) ǫ[E3].ǫ[a] −→r ǫ[E3].e
′. To get the result it is

sufficient to prove that ǫ[E3].e
′ = ǫ[E3.a

′]. It follows from ǫ[−] Distributes Over Contexts

(Lemma 3.2.25) that ǫ[E3.a
′] = ǫ[E3].ǫ[a

′] = ǫ[E3].e
′ as required. ❑

3.2.38 Lemma (Inst Match Sequence).

wf[a] ∧ a
insts
−−−→

n

r′ a
′ =⇒ ∃ e ′. ǫ[a]

insts
−−−→

n

r e ′ ∧ e ′ = ǫ[a ′]

Proof. By induction on the length of the transition sequence (n):

➤Case n = 0 : Immediate.

➤Case n = k : Assume (3.28) wf[a] ∧ a
inst
−−→

k + 1

r′ a ′ and prove (3.29)

∃ e ′. ǫ[a]
insts
−−−→

k + 1

r e ′ ∧ e ′ = ǫ[a ′]. By 3.28 ∃ a ′′. a
insts
−−−→

k

r a ′′ insts
−−−→r a ′ thus by IH (3.30)

∃ e ′′. ǫ[a]
insts
−−−→

k

r e ′′ ∧ e ′′ = ǫ[a ′′]. Recall that well-formedness is preserved by reduction

so wf[a ′′]. By the above results and Inst Match Property (Lemma 3.2.37) we have (3.31)

∃ e ′. ǫ[a ′′]
insts
−−−→r e ′ ∧ e ′ = ǫ[a ′]. Thus by 3.30 and 3.31: ∃ e ′. ǫ[a]

insts
−−−→

k + 1

r′ e ′ ∧ e ′ = ǫ[a ′]

as required.

❑

3.2.39 Lemma (r’-r Correspondence).

a closed ∧ wf[a] ∧ a
l
−→r′ a

′ ∧ l 6= zero =⇒ ∃ e ′. ǫ[a] −→r e ′ ∧ e ′ = ǫ[a ′]

Proof. We generalise to open terms and claim that it is sufficient to prove:

wf[a] ∧ a
l
−→r′ a

′ ∧ l 6= zero =⇒ ∃ e ′. ǫ[a] −→r e ′ ∧ e ′ = ǫ[a ′]

We prove this by induction on a
l
−→r′ a

′.

➤Case (proj) : Assume wf[πr(E2.(u1, u2))]. Then ǫ[πr(E2.(u1, u2))] =

πrǫ[E2].(ǫ[u1], ǫ[u2]). By ǫ[−] Value Preservation (Lemma 3.2.24) ǫ[u1] rval and
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ǫ[u2] rval. Thus by ǫ[−] Preserves Contexts (Lemma 3.2.26) πrǫ[E2].(ǫ[u1], ǫ[u2]) −→r

ǫ[E2].ǫ[ur] = ǫ[E2.ur] as required.

➤Case (app) : Assume wf[(E2.λx :τ.â)u]. Then ǫ[(E2.λx :τ.â)u] = (ǫ[E2].λx :τ.ǫ[â]) ǫ[u].

By ǫ[−] Value Preservation (Lemma 3.2.24) ǫ[u] rval, thus ǫ[E2].((λx :τ.ǫ[â]) ǫ[u]) −→r

ǫ[E2].let x = ǫ[u] in ǫ[â]. We are left to show that this is equal to the erasure of

the RHS of the (app) reduction rule. Performing the erasure of the RHS we get

ǫ[E2.let x = u in â] = ǫ[E2].let x = ǫ[u] in ǫ[â], as required.

➤Case (inst),(instrec) : Follow directly from Inst Match Property (Lemma 3.2.37) .

➤Case (zero),(zerorec) : l = zero.

➤Case (cong) : Assume wf[E3.a] and a −→r′ a ′. By Well-Formed Context Decomposi-

tion (Lemma 3.2.18) wf[a]. By induction there exists an e ′ such that ǫ[a] −→r e ′ ∧ e ′ =

ǫ[a ′]. We are now left to show that the erasure of E3.a reduces under λr to a term that is

the erasure of E3.a
′. The following reasoning relies on the fact that ǫ[E3] is a λr context,

which can be established by ǫ[−] Preserves Contexts (Lemma 3.2.26) :

ǫ[E3.a] = ǫ[E3].ǫ[a]

−→r ǫ[E3].e
′

= ǫ[E3].ǫ[a
′]

= ǫ[E3.a
′]

as required.

❑

Putting the c-r’ and r’-r correspondence together and using the following lemma

(easily proved by inspection), we obtain the cr-simulation result.

3.2.40 Lemma ( ǫ[−] Invariant Under Zeros ). wf[a] ∧ a
zeros
−−−→

∗

r′ a
′ =⇒ ǫ[a] = ǫ[a ′] ❑

3.2.41 Lemma (cr Eventually Weak Simulation). R is an eventually weak simulation

from λc to λr

Proof. By recalling the definition of eventually weak simulation and expanding the defi-

nition of R, assume

∃ a. wf[a] ∧ a closed ∧ e1 = [| a |]∅ ∧ e2 = ǫ[a] (3.32)

e1 −→c e ′1 (3.33)
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We are required to prove that there exists e ′2, e ′′1 and n ≥ 0 such that

e2 −→∗
r e ′2 (3.34)

e ′1 −→n
c e ′′1 (3.35)

∃ â. wf[â] ∧ â closed ∧ e ′′1 = [| â |]∅ ∧ e ′2 = ǫ[â] (3.36)

By c − r′ Correspondence (lemma 3.2.36) there exists a ′ and a ′′ such that

a
insts
−−−→

∗

r′ a
′′ −→r′ a ′ ∧ a ′′ infr and either (i) or (ii) of its conclusion holds. Sup-

pose (i) holds, then choose n = 0, e ′′1 = e ′1 and e ′2 = e2. Suppose (ii) holds, then there

exists the required e ′′2 and n = 1. In either case choosing â = a ′ confirms e ′′1 = [| a ′ |]∅.

It is easily shown from λr′ reduction preserves well-formedness (Lemma 3.2.19) that

wf[â], and â closed as reduction preserves closedness. By Inst Match Sequence (Lemma

3.2.38) there exists an e ′ such that ǫ[a]
insts
−−−→

∗

r′ e
′ ∧ e ′ = ǫ[a ′′].

We now case split on the reduction rule for a ′′ −→r′ a ′ = â:

➤Case l = zero : By ǫ[−] Invariant Under Zeros (Lemma 3.2.40) we have ǫ[a ′′] = ǫ[a ′],

thus taking e ′2 to be e ′ satisfies our proof obligation.

➤Case otherwise : By r’-r Correspondence (Lemma 3.2.39) there exist e ′2 such that

ǫ[a ′′] −→r e ′2 ∧ e ′2 = ǫ[a ′′].

❑

An Eventually Weak RC-simulation

We now prove the reverse simulation using a similar process to the one used to prove

the CR-simulation. The rôle played by instantiation normal forms is replaced by zero

normal forms, with zeros in λr′ matching let-reductions in λc, as shown in Figure 3.5.

We first define Zero Normal Form, establish some properties of it and prove that

these forms are always reachable. We do not need to define open and closed ZNFs as we

did with INF as the two definitions coincide. That is, a term a can not do an instantiation

reduction if and only if the following ZNF condition holds:

3.2.42 Definition (Open ZNF). We say that a possibly open λr′ expression is in open

zero normal form and write a znfr if and only if there does not exist E3, z , u, a ′ such that

a = E3.let1 z = u in a ′ ❑

3.2.43 Lemma ( znfr Preserved by E3 Stripping ). E3.a znfr =⇒ a znfr

Proof. Proof is easily obtained by proving the contrapositive. ❑
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3.2.44 Lemma ( ǫ[−] Source-Value Property ). wf[a] ∧ a znfr ∧ ǫ[a] rval =⇒ a r’val ❑

3.2.45 Lemma ( ǫ[−] Source Context ). If ǫ[a] = E3.e and a znfr then there exists an Ê3

and â such that a = Ê3.â and ǫ[Ê3] = E3.

Proof. Proceed by induction on E3. We show only a sample of the cases as the rest are

similar:

➤Case (v , ).E3 : Assume ǫ[a] = (v , ).E3.e and a znfr. The only possible form for

a is (a1, a2) for some a1 and a2. Thus ǫ[a1] = v and ǫ[a2] = E3.e. As a is in open

ZNF, a1 must also be, thus by ǫ[−] Source-Value Property (Lemma 3.2.44) a1 r’val. By

induction on E3 there exists Ê3 and â such that a2 = Ê3.â ∧ ǫ[Ê3] = E3. It follows that

(a1, a2) = (a1, ).Ê3.â ∧ ǫ[(a1, ).Ê3] = (v , ).E3.

➤Case let0 z = u in E3 : Assume ǫ[a] = let z = u in E3.e and a znfr. By inspection

of the definition of ǫ[−], a either has the form let0 z = a1 in a2 or let1 z = a1 in a2

for some a1 and a2. The latter cannot be the case, as assume that it is, then by znfr

Preserved by E3 Stripping (Lemma 3.2.43) a1 znfr, but ǫ[a1] = u so by ǫ[−] Source-

Value Property (Lemma 3.2.44) a1 r’val and so let1 z = a1 in a2 is not in open

ZNF, a contradiction. We continue considering a = let0 z = a1 in a2. We have

ǫ[a1] = u, ǫ[a2] = E3.e and as wf[a], a1 r’val. By induction on E3 there exists an Ê3

and â such that a2 = Ê3.â ∧ ǫ[Ê3] = E3. It follows that a = let z = a1 in Ê3.â and

ǫ[let z = a1 in Ê3] = let z = u in E3 as required.

❑

3.2.46 Lemma (ZNF Reachability). For all closed a, if wf[a] then there exists a ′ such

that a
zero
−−→

∗

r′ a
′ ∧ a ′ znfr

Proof. To see this we show that all contiguous sequences of (zero)-reductions are fi-

nite. Define a metric ones: λ′ → N that counts the number of 1-annotated-lets in an

expression, then each (zero) reduction strictly reduces this measure. As expressions

are finite, our metric is finite-valued and thus reduction sequences consisting only of

(zero)-reductions are finite. ❑

For every zero or zerorec reduction that λr′ can do, λc can match it. We give this

result its own lemma as it is used in two places.

3.2.47 Lemma (Zero Match Property).

wf[a] ∧ Φ ◭ a ∧ a
zero
−−→r′ a

′ =⇒ ∃ e ′. [| a |]Φ
let
−−→c e ′ ∧ e ′ = [| a ′ |]Φ
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Proof. We prove by induction on the structure of a

zero
−−→r′ a

′:

➤Case (zero) : observe

[| let1 z = u in a |]Φ = let z = [| u |]Φ in [| a |]Φ , z 7→z

−→c {[| u |]Φ/z}[| a |]Φ , z 7→z

= [| a |]Φ , z 7→[| u |]Φ (3.37)

= [| let0 z = u in a |]Φ

where step 3.37 is allowed by [|− |]− Environment Properties (i) (Proposition 3.2.20) .

➤Case (zerorec) : Observe:

[| letrec1 z = λx .a in a ′ |]Φ = letrec z = λx .[| a |]Φ , z 7→z , x 7→x in [| a ′ |]Φ , z 7→z

−→c {µ(z , x , [| a |]Φ , z 7→z , x 7→x )/z}[| a ′ |]Φ , z 7→z (3.38)

and

[| letrec0 z = λx .a in a ′ |]Φ = [| a ′ |]Φ , z 7→[| µ(z ,x ,a) |]Φ

= {[| µ(z , x , a) |]Φ/z}[| a ′ |]Φ , z 7→z (3.39)

It is easily shown that [|µ(z , x , a) |]Φ = µ(z , x , [| a |]Φ , z 7→z , x 7→x ) which makes 3.38 and

3.39 equal, as required.

➤Case (cong) : Assume wf[E3.a]; Φ ◭ E3.a; E3.a
zero
−−→r′ E3.a

′. Notice that [|E3.a |]Φ =

[|E3 |]Φ.[| a |]Φ ,Ec[E3]Φ . By Environment Properties (iii) (Proposition 3.2.15) Φ , Ec[E3]
Φ ◭

a. By Well-Formed Context Decomposition (Lemma 3.2.18) wf[a]. By induction there

exists an e ′′ such that [| a |]Φ ,Ec[E3]Φ −→c e ′′ ∧ e ′′ = [| a ′ |]Φ ,Ec[E3]Φ . We are required

to prove that there exists an e ′ such that [|E3.a |]Φ
let
−−→c e ′ and e ′ = [|E3.a

′ |]Φ. By [|− |]

Preserves Contexts (Lemma 3.2.23) there exists E such that [|E3 |]Φ = E . Taking e ′ = e ′′

by (cong) rule E .[| a |]Φ ,Ec[E3]Φ let
−−→c E .e ′′. Finally, [|E3.a

′ |]Φ = [|E3 |]Φ.[| a ′ |]Φ ,Ec[E3]Φ by

[|− |]− Distribution Over Contexts (Lemma 3.2.22) and [|E3 |]Φ.[| a ′ |]Φ ,Ec[E3]Φ = E .e ′′ as

required.

❑

3.2.48 Lemma (Zero Match Sequence).

wf[a] ∧ Φ ◭ a ∧ a
zero
−−→

n

r′ a
′ =⇒ ∃ e ′. [| a |]Φ

let
−−→

n

c e ′ ∧ e ′ = [| a ′ |]Φ
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Proof. Proceed by induction on the length of transitions:

➤Case n = 0 : Immediate.

➤Case n = k+1 : Assume wf[a] ∧ Φ ◭ a ∧ a
zero
−−→

k + 1

r′ a ′. Clearly there exists an a ′′ such

that a
zero
−−→

k

r′ a
′′. By induction there exists an e ′ such that [| a |]Φ

let
−−→

k

c e ′ ∧ e ′ = [| a ′′ |]Φ (*).

By − ◭ − is Closed Under Reduction (Lemma 3.2.8) Φ ◭ a ′′. By Zero Match Property

(Lemma 3.2.47) there exists an e ′′ such that [| a ′′ |]Φ
let
−−→c e ′′ ∧ e ′′ = [| a ′ |]Φ (**). By (*),

(**) we have the result.

❑

3.2.49 Lemma (r-r’ Correspondence).

a closed ∧ wf[a] ∧ ǫ[a] −→r e ′ =⇒ ∃ a ′, a ′′. a
zero
−−→

∗

r′ a
′′ −→r′ a ′ ∧ a ′′ znfr ∧ e ′ = ǫ[a ′]

Proof. We generalise to open terms and claim that it is sufficient to prove:

wf[a] ∧ a znfr ∧ ǫ[a] −→r e ′ =⇒ ∃ a ′. a −→r′ a ′ ∧ e ′ = ǫ[a ′]

Let us show that this is sufficient. Suppose a closed, wf[a], and ǫ[a] −→r e ′ then by

ZNF Reachability (Lemma 3.2.46) there exists an a ′′ such that a
zero
−−→

∗

r′ a
′′ ∧ a ′′ znfr. As

reduction can only reduce the number of free variables a ′′ closed and by λr′ reduction

preserves well-formedness (Lemma 3.2.19) wf[a ′′]. It thus follows from our generalised

claim that there exists an a ′ such that a ′′ −→r′ a ′ ∧ e ′ = ǫ[a ′]. The a ′ and a ′′ that we

have demonstrated the existence of satisfy the conclusion of our original claim.

We prove the generalised claim by induction on a. The terms z , () and n are left

unchanged by ǫ[−] and do not reduce under λr. ǫ[λj x .a] is a function which does not

reduce under λr. The pair case is just an application of the IH using Well-Formed

Context Decomposition (Lemma 3.2.18) and znfr Preserved by E3 Stripping (Lemma

3.2.43) . The rest of the cases follow:

➤Case πr a : Assume wf[πr a], (πr a) znfr and ǫ[πr a] −→r e ′. By ǫ[−] Source-Value

Property (Lemma 3.2.44) a r’val. By definition of wf[−], wf[a]. By znfr Preserved by

E3 Stripping (Lemma 3.2.43) a znfr. Observe ǫ[πr a] = πrǫ[a] and case split on the

reductions of this:
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➤Case πrǫ[a] −→r πr e ′ : Thus ǫ[a] −→r e ′. By induction a −→r a ′ ∧ e ′ = ǫ[a ′],

thus πr a −→r′ πr a ′ ∧ πr e ′ = ǫ[πr a ′] as required.

➤Case πrǫ[a] = πr E2.(v1, v2) −→r E2.ur : By this case split ǫ[a] = E2.(v1, v2)

(*). By ǫ[−] Outer Value Preservation (Lemma 3.2.27) there exists Ê2, u1, u2 such

that a = Ê2.(u1, u2) (**). Thus πr Ê2.(u1, u2) −→r′ Ê2.ur. We are left to show

that ǫ[Ê2.ur] = E2.vr. By (*) and (**) ǫ[Ê2] = E2 and ǫ[ur] = vr, thus ǫ[Ê2.ur] =

ǫ[Ê2].ǫ[ur] = E2.vr as required.

➤Case a1 a2 : Assuming that (3.40) wf[a1 a2], (3.41) a1 a2 znfr and (3.42) ǫ[a1 a2] −→r

e ′, we can derive immediately that (3.43) wf[a1] ∧ wf[a2] and by (3.44) a1 znfr.

We case split on the reduction 3.42:

➤Case ǫ[a1] ǫ[a2] −→r e ′1 ǫ[a2] : Inductive.

➤Case ǫ[a1] ǫ[a2] −→r ǫ[a1] e
′
2 : Inductive.

➤Case ǫ[a1] ǫ[a2] ≡ (E2.λx :τ.e) v −→r E2.let x = v in e : By well-formedness

definition wf[a1] ∧ wf[a2]. By znfr Preserved by E3 Stripping (Lemma 3.2.43)

a1 znfr. By ǫ[−] Source-Value Property (Lemma 3.2.44) a1 r’val. By znfr

Preserved by E3 Stripping (Lemma 3.2.43) a2 inf ◦r . By ǫ[−] Source-Value Property

(Lemma 3.2.44) a2 r’val. By ǫ[−] Outer Value Preservation (Lemma 3.2.27) a1

is of the form Ê2.λx :τ.a. Therefore ǫ[a1] = ǫ[Ê2.λx :τ.a] = λx :τ.ǫ[a]. By reduction

rules a1 a2 = (Ê2.λx :τ.a) a2 −→r′ E2.let0 x = a2 in a. Then show that erasing

this gives the desired result:

ǫ[E2.let0 x = a2 in a] = ǫ[E2].let x = ǫ[a2] in ǫ[a]

We are left to show that v = ǫ[a2], which is true by case split assumptions.

➤Case let0 z = a1 in a2 : This case proceeds by case analysis on the reductions of

ǫ[let0 z = a1 in a2]. There are two inductive cases, one in which ǫ[a1] reduces and the

other where ǫ[a2] reduces. In both cases we use znfr Preserved by E3 Stripping (Lemma

3.2.43) to establish the open ZNF property of a1 and a2 and then proceed by induction.

The last possibility is for the term to reduce by doing an instantiation of z . In this case

there exists E3, u such that (let z = u in E3.z ) = ǫ[let0 z = a1 in a2], and we are left



3.2. OBSERVATIONAL EQUIVALENCE BETWEEN λR AND λC 77

to show that there exists an E ′
3 such that a2 = E ′

3.z , which is assured by ǫ[−] Source

Context (Lemma 3.2.45) .

➤Case let1 z = a1 in a2 : This case proceeds by case splitting on the reductions of

ǫ[let1 z = a1 in a2]. The first case is when ǫ[a1] reduces, which goes by induction on

a1 after using znfr Preserved by E3 Stripping (Lemma 3.2.43) to establish a1 znfr.

The other possible reduction, occurring when a1 is a value, say u, is a zero reduction.

However, as a1 znfr, by ǫ[−] Source-Value Property (Lemma 3.2.44) a1 r’val, but then

let1 z = u in a2 is in open ZNF, a contradiction.

➤Case letrec0 z = a1 in a2, letrec1 z = a1 in a2 : Similar to their corresponding

let cases.

❑

3.2.50 Lemma (r’-c Correspondence). If a closed and wf[a] and a
l
−→r′ a

′ and l 6= insts

then there exists an e ′ such that [| a |]∅ −→c e ′ and either:

(i) e ′ = [| a ′ |]∅

(ii) there exists e ′′ such that e ′ −→c e ′′ and e ′′ = [| a ′ |]∅

Proof. Generalising to open terms it is sufficient to prove: If Φ ◭ a and wf[a] and

a
l
−→r′ a

′ and l 6= insts then there exists e ′ such that [| a |]Φ −→c e ′ and either:

(i) e ′ = [| a ′ |]Φ

(ii) there exists e ′′ such that e ′ −→c e ′′ and e ′′ = [| a ′ |]Φ

We prove by induction on a
l
−→r′ a

′., showing (i) holds in each case apart from one sub-

case of (app).

➤Case (proj) : Assume Φ ◭ πr(E2.(u1, u2)) and wf[πr(E2.(u1, u2))]. Note that

[| πr(E2.(u1, u2)) |]Φ = πr([| u1 |]Φ ,Ec[E2]Φ , [| u2 |]Φ ,Ec[E2]Φ) (3.45)

and [|E2.ur |]Φ = [| ur |]Φ ,Ec[E2]Φ . Our obligation is to show that 3.45 reduces to

[| ur |]Φ ,Ec[E2]Φ .

From our assumptions we know Φ ◭ E2.(u1, u2) thus Φ ◭ E2.ur. By Environment

Properties (i) (Proposition 3.2.15) Φ , Ec[E2]
Φ ◭ ur. By [|− |]− Value Preservation

(Lemma 3.2.17) [| ur |]Φ ,Ec[E2]Φ cval. It follows that 3.45 reduces to [|ur |]Φ ,Ec[E2]Φ under

λc

➤Case (app) : Assume Φ ◭ (E2.λ
j x :τ.a)u, wf[(E2.λ

j x :τ.a)u] and (3.46)

(E2.λ
j x :τ.a)u −→r′ E2.let0 x = u in a.
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We case split on the form of j .

➤Case j = · : Applying [|− |]Φ to the left-hand side of 3.46 and reduce.

[| (E2.λx :τ.a)u |]Φ = (λx :τ.[| a |]Φ ,Ec[E2]Φ, x 7→x ) [| u |]Φ

−→c {[| u |]Φ/x}[| a |]Φ ,Ec[E2]Φ, x 7→x

= [| a |]Φ ,Ec[E2]Φ, x 7→[|u |]Φ (3.47)

The last step uses [|− |]− Environment Properties (i) (Proposition 3.2.20) . Now

apply [|− |] to the right-hand side of 3.46:

[|E2.let0 x = u in a |]Φ = [| a |]Φ ,Ec[E2]Φ, x 7→[|u |]Ec[E2]Φ, Φ

To show this equals 3.47 observe that Φ ◭ u by assumptions and Environ-

ment Properties (Proposition 3.2.15) and apply [|− |]− Environment Properties

(i) (Proposition 3.2.20) .

➤Case j = z : First note that by alpha conversion we can ensure that x /∈

dom(Φ) ∪ hb(E2) (*). Applying [|− |]Φ to the left-hand side of 3.46 we get

[| (E2.λ
z x :τ.a)u |]Φ = (Φ′(z )) [| u |]Φ

where Φ′ = Φ, Ec[E2]
Φ. By Environment Properties (Proposition 3.2.15) we have

Φ′ ◭ λz x .a and Φ ◭ u (3.48)

Thus by the definition of environment wellformedness there exist Φ1,Φ2 such that

Φ′ = Φ1, z 7→ λx .letrec z = λx .[| a |]Φ
′
1 in [| a |]Φ

′
1 ,Φ2 (3.49)
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where Φ′
1 = Φ1, z 7→ z , x 7→ x . Therefore:

(Φ′(z )) [| u |]Φ −→c {[| u |]Φ/x}(letrec z = λx .[| a |]Φ
′
1 in [| a |]Φ

′
1)

−→c {µ(z , x , [| a |]Φ
′
1)/z}{[| u |]Φ/x}[| a |]Φ

′
1

= {µ(z , x , [| a |]Φ
′
1)/z}{[| u |]Φ/x}[| a |]Φ

′
1 , Φ2 (3.50)

= {µ(z , x , [| a |]Φ
′
1)/z}{[| u |]Φ/x}[| a |]Φ1 , z 7→z , Φ2 , x 7→x (3.51)

= {µ(z , x , [| a |]Φ
′
1)/z}[| a |]Φ1 , z 7→z , Φ2 , x 7→[|u |]Φ (3.52)

= [| a |]Φ1 , z 7→µ(z ,x ,[| a |]Φ
′
1 ), Φ2 , x 7→[|u |]Φ (3.53)

The derivation step 3.50 holds by [|− |]− Environment Properties (ii) (Proposition

3.2.20) if Φ′
1,Φ2 ◭ a; let us show this. As Φ1, z 7→ z , x 7→ x ◭ a and Φ2 is disjoint

from Φ1 and by 3.49 and alpha conversion x and z are not in Φ2, it holds that

Φ′
1,Φ2 ◭. By Environment Properties (Proposition 3.2.15) Φ′

1,Φ2 ◭ a as required.

The derivation step 3.51 holds by expansion of Φ′
1 and Environment Properties

(Proposition 3.2.15) if Φ1 , z 7→ z , Φ2 , x 7→ x ◭. To show this it suffices to note

that x is not free in the codomain of Φ2 (as Φ2 is generated from E2 in which x is

not bound). The derivation step 3.52 holds by [|− |]− Environment Properties (i)

(Proposition 3.2.20) if

Φ1 , z 7→ z , Φ2 , x 7→ x ◭ a (3.54)

and Φ1 , z 7→ z , Φ2 , x 7→ [| u |]Φ ◭. The former holds by reasoning of the previous

derivation step. The latter holds by the following reasoning. As 3.54 holds so

does Φ1, z 7→ z ,Φ2 ◭ a and taking this fact together with 3.48 and Environment

Properties (i) (Proposition 3.2.15) gives the result.

The derivation step 3.53 holds by [|− |]− Environment Properties (i) (Proposi-

tion 3.2.20) if Φ1 , z 7→ µ(z , x , [| a |]Φ
′
1), Φ2 , x 7→ [| u |]Φ ◭; let us show this.

Clearly Φ1 ◭ and z /∈ dom(Φ1). By environment well-formedness definition

Φ1, z 7→ z , z 7→ z ◭ a. Thus Φ1 ◭ µ(z , x , a). By Environment Properties (i)

(Proposition 3.2.15) Φ1, z 7→ [| µ(z , x , a) |]Φ1 ◭. By 3.54, 3.48 and Environment

Properties (i) (Proposition 3.2.15) Φ1, z 7→ z ,Φ2, x 7→ [| u |]Φ ◭. The last two facts

can be combined to show the result.

Applying [|− |]Φ to the right-hand side of 3.46 gives:

[|E2.let0 x = u in a |]Φ = [| a |]Φ
′ , x 7→[|u |]Φ

′
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but as Φ ◭ u by [|− |]− Environment Properties (ii) (Proposition 3.2.20)

[|E2.let0 x = u in a |]Φ = [| a |]Φ
′ , x 7→[|u |]Φ

as required.

➤Case (inst), (instrec) : l = inst

➤Case (zero), (zerorec) : Follows directly from Zero Match Property (Lemma 3.2.47) .

➤Case (cong) : Assume Φ ◭ E3.a, wf[E3.a], E3.a −→r′ E3.a
′ and a −→r′ a ′. We can

deduce Φ , Ec[E3]
Φ ◭ a by Environment Properties (iii) (Proposition 3.2.15) , and wf[a]

by Well-Formed Context Decomposition (Lemma 3.2.18) . Then by induction there ex-

ists e ′ such that [| a |]Φ ,Ec[E3]Φ −→c e ′ and e ′ = [| a ′ |]Φ ,Ec[E3]Φ . By [|− |]− Distribution

Over Contexts (Lemma 3.2.22) [|E3.a |]Φ = [|E3 |]Φ, [| a |]Φ ,Ec[E3]Φ . By [|− |] Preserves Con-

texts (Lemma 3.2.23) there exists E such that E = [|E3 |]Φ. By (cong) reduction rule

E .[| a |]Φ ,Ec[E3]Φ −→c E .[| a ′ |]Φ ,Ec[E3]Φ . Using the equalities derived above we can show

the result of this reduction to be equal to [|E3.a
′ |]Φ as required.

❑

3.2.51 Lemma (r-c Eventually Weak Simulation). R is an eventually weak simulation

from λr to λc

Proof. Recall the definition of eventually weak simulation, expand the definition of R

and take n = 0. Assume

∃ a. wf[a] ∧ a closed ∧ e1 = [| a |]∅ ∧ e2 = ǫ[a] (3.55)

e2 −→r e ′2 (3.56)

Prove that there exists an e ′1 such that

e1 −→∗
c e ′1 (3.57)

∃ a. wf[a] ∧ a closed ∧ e ′1 = [| a |]∅ ∧ e ′2 = ǫ[a] (3.58)

By r-r’ Correspondence (Lemma 3.2.49) there exists a ′ and a ′′ such that

a
zero
−−→

∗

r′ a
′′ −→r′ a ′ ∧ a ′′ znfr ∧ e ′1 = ǫ[a ′]. By Zero Match Sequence (Lemma

3.2.48) there exists an e ′ such that [| a |]∅
let
−−→

∗

c e ′ ∧ e ′ = [| a ′′ |]∅. Choose a ′ to be the
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existentially quantified a in 3.58. We now case split on the reduction rule for a ′′ l
−→r′ a

′:

➤Case l = insts : By [|− |]− Invariant Under Insts (Lemma 3.2.28) we have [| a ′′ |]∅ =

[| a ′ |]∅, thus taking e ′1 to be e ′ satisfies our proof obligation.

➤Case otherwise : By r’-c Correspondence (Lemma 3.2.50) there exists e ′′ such that

[| a ′′ |]∅ −→c e ′′ and one of its conclusions (i) or (ii) must hold; consider each in turn.

(i) e ′′ = [| a ′ |]∅: in this case our proof obligation is immediately satisfied by taking

e ′1 = e ′′.

(ii) ∃ e ′′′.e ′′ −→c e ′′′1 ∧ e ′′′ = [| a ′ |]∅: in this case e1 −→∗
c e ′′′1 so our proof obligations

are satisfied by taking e ′1 = e ′′′.

❑

3.2.4 Equivalence

Having demonstrated an eventually weak bisimulation between λc and λr we now wish

to use that relation to establish observational equivalence. The bisimulation tells us

how terms reduced under λr and λc are related. However, because the bisimulation is

weak it does not tell us anything about how termination behaviour is related between

the two calculi. We must show that the termination of expressions coincides for both

systems in order to show that the two are observationally equivalent. Figure 3.6 shows

diagrammatically how the proof of the main theorem will proceed.

We must first relate [|− |]val and [|− |]−. The former is used to obtain λc values from

λr/r′ results, while the latter provides the link between λc and λr′ expressions; we show

they are consistent. The main difference is that [|− |]val uses substitution whereas [|− |]−

uses an environment.

Notation Let σ range over substitutions.

The following definition introduces a function S that builds a substitution from an

environment.
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e

r
∗// v

a

ǫ[−]

OO

[|− |]∅

��

a ′

ǫ[−]

OO

[|− |]∅

��

zero

r′
n// u

[|− |]∅
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G

G

G

G

G

G

G

G

G

G

G

G

G

G

ǫ[−]

��
e

c
∗// e′′
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c
n// v′

e
c
∗// v

a

[|− |]∅

OO

ǫ[−]

��

a ′

[|− |]∅

OO

ǫ[−]

��

inst

r′
n// u

ǫ[−]

ccG
G

G

G

G

G

G

G

G

G

G

G

G

G

G

[|− |]∅

��
e

r
∗// e′′

inst
c
n// v′

Figure 3.6: Operational reasoning of r-c equivalence

3.2.52 Definition. Environment-Substitution Correspondence

S (Φ , z 7→ [| u |]Φ) = S (Φ){[| ǫ[u] |]val/z}

S (∅) = {}

❑

As discussed earlier, the simple value collapsing function [| ǫ[−] |]val and [|− |]− do not

agree on all values, only those of ground type. For values of function type they may not

agree as they may differ in their recursive unrollings:

[| ǫ[letrec0 z =λ x .a in λzx .a] |]val = {λx .letrec z = λx .ǫ[a] in ǫ[a]/z}(λx .ǫ[a])

but

[| letrec0 z =λ x .a in λzx .a |]∅ = λx .letrec z = [| a |]x 7→x , z 7→z in [| a |]x 7→x , z 7→z
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It turns out that the results of these operators do agree above lambda abstractions, which

is sufficient for our purposes as we are interested in contextual equivalence at integer

type. This motivates the next definition which is used in following lemma to prove a

compatibility result between the two operators.

3.2.53 Definition (Equality on λ Terms up to Functions). We define =λ to be the stan-

dard equality relation up to alpha-equivalence, but extended to equate every function.

❑

3.2.54 Lemma (Value Correspondence). if Φ = Φk where

Φ0 = ∅

Φn+1 = Φn, xn+1 7→ [|un+1 |]Φn where fv([| un+1 |]Φn) = ∅

and Φ ◭ u and wf[u] then S (Φ)[| ǫ[u] |]val =λ [| u |]Φ

Proof. The proof proceeds by induction on the structure of u.

➤Case n; () : Immediate.

➤Case (u1, u2) : Assume wf[(u1, u2)] and Φ ◭ (u1, u2). It is clear from the definition

of wf[−] that wf[u1] ∧ wf[u2] and by Environment Properties (iii) (Proposition 3.2.15)

Φ ◭ u1 and Φ ◭ u2. By induction on u1 we have S (Φ)[| ǫ[u1] |]val =λ [| u1 |]Φ and similarly

by induction on u2 we have S (Φ)[| ǫ[u2] |]val =λ [| u2 |]Φ. It follows that

[| (u1, u2) |]Φ =λ ([| u1 |]Φ, [| u2 |]Φ)

=λ (S (Φ)[| ǫ[u1] |]val,S (Φ)[| ǫ[u2] |]val)

=λ S (Φ)[| (ǫ[u1], ǫ[u2]) |]val

as required.

➤Case λj x :τ.a : σ[| ǫ[λj x :τ.a] |]val = λx :τ.σǫ[a] and [| λj x :τ.a |]Φ equals either

λx :τ.[| a |]Φ , x 7→x or Φ(j ), both are functions (the latter guaranteed to be a function by

environment well-formedness) and therefore are equated by =λ.

➤Case let0 z = u1 in u2 : Assume wf[let0 z = u1 in u2] and Φ ◭ let0 z = u1 in u2.

We are required to prove

S (Φ)[| ǫ[let0 z = u1 in u2] |]val =λ [| let0 z = u1 in u2 |]Φ
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By expanding this becomes

S (Φ){[| ǫ[u1] |]val/z ][| ǫ[u2] |]val =λ [| u2 |]Φ , z 7→[| u1 |]Φ

Which holds if and only if

S (Φ, z 7→ [| ǫ[u1] |]val)[| ǫ[u2] |]val =λ [| u2 |]Φ , z 7→[| u1 |]Φ

By Environment Properties (iii) (Proposition 3.2.15) Φ ◭ u1 and Φ, z 7→ [| u1 |]Φ ◭ u2

thus by IH applied to u2

S (Φ, z 7→ [| u1 |]Φ)[| ǫ[u2] |]val =λ [| u2 |]Φ , z 7→[| u1 |]Φ

It therefore suffices to prove

S (Φ, z 7→ [| u1 |]Φ)[| ǫ[u2] |]val =λ S (Φ, z 7→ [| ǫ[u1] |]val)[| ǫ[u2] |]val

which holds if S (Φ)[| u1 |]Φ =λ S (Φ)[| ǫ[u1] |]val. By IH applied to u1 we have

S (Φ)[| ǫ[u1] |]val =λ [| u1 |]Φ and by an easy induction it can be shown that fv([| u1 |]Φ) = ∅,

therefore [| u1 |]Φ =λ S (Φ)[| u1 |]Φ.

➤Case letrec0 z = λx .a in u2 : This case is similar to the last, but the substitutions

for z can be shown in =λ trivially as they are functions.

❑

The following two facts about typing are easily proved by induction on the typing

derivation.

3.2.55 Lemma ( Typing is Substitutive ). Γ ⊢ v :τ ∧ Γ, z :τ ⊢ e:τ ′ =⇒ Γ ⊢ {v/z}e:τ ′ ❑

3.2.56 Lemma ( [|− |]val Type Preservation ). Γ ⊢ u:τ =⇒ Γ ⊢ [| u |]val:τ ❑

Proof of The Main Theorem

Proof of Theorem 3.2.1. We begin by proving point 1 of the theorem. First prove:

e closed ∧ e −→∗
c v1 =⇒

∃ v2, u. e −→∗
r v2 ∧ wf[u] ∧ u closed ∧ v1 = [| u |]∅ ∧ v2 = ǫ[u](∗)

Assume e closed and e −→∗
c v1, and recall e R e by R Contains Identity (Lemma

3.2.13) . By c-r Eventually Weak Simulation (Lemma 3.2.41) R is a c-r simulation, thus
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there exists an e ′ such that e −→∗
r e ′ and v1 R e ′. Expanding the definition of R in the

latter, we are assured that

∃ a. wf[a] ∧ a closed ∧ v1 = [| a |]∅ ∧ e ′ = ǫ[a]

We are left to show e ′ −→∗
r e ′′ and e ′′ rval. By ǫ[−] Source-Value Property (Lemma

3.2.44) it suffices to prove that there exists an a ′ such that a ′ r’val ∧ wf[a ′] ∧ a ′ znfr ∧

e ′′ = ǫ[a ′].

Suppose that a infr, then by [|− |]Φ Source-Value Property (Lemma 3.2.35) a r’val.

By ǫ[−] Value Preservation (Lemma 3.2.24) ǫ[a] rval as required.

Now suppose that ¬(a infr) then by INF Reachability (Lemma 3.2.34) there exists an

a ′′ such that a −→∗
r′ a ′ ∧ a ′ infr. By λr′ reduction preserves well-formedness (Lemma

3.2.19) wf[a ′] and by [|− |]− Invariant Under Insts (Lemma 3.2.28) v1 = [| a ′ |]∅. Thus by

[|− |]Φ Source-Value Property (Lemma 3.2.35) a ′ r’val. By Inst Match Sequence (Lemma

3.2.38) there exists an e ′′ such that e ′ −→∗
r e ′′ ∧ e ′′ = ǫ[a ′] as required.

Now prove the main theorem:

⊢ e:int ∧ e −→∗
c n =⇒ ∃ v . e −→∗

r v ∧ n = [| v |]val

Assuming ⊢ e:τ ∧ e −→∗
c n we can derive e closed, thus by (*) we know that there

exists a u and v2 such that e −→∗
r v2 ∧ wf[u] ∧ u closed ∧ n = [| u |]∅ ∧ v2 = ǫ[u].

We are left to show that n = [| v2 |]val. By Value Correspondence (Lemma 3.2.54)

[| ǫ[u] |]val = [| u |]∅. We are left to show that this value is an integer, for which it suffices

to show that one of the values in the equality above types to int, as the only values of

type int in λc are integers. By type preservation for λr ⊢ v2:int, thus ⊢ ǫ[u]:int by dint

of equality with v2. By [|− |]val Type Preservation (Lemma 3.2.56) ⊢ [| ǫ[u] |]val:int, as

required.

Now prove point 2. First prove:

e closed ∧ e −→∗
r v1 =⇒ ∃ v2, u. e −→∗

c v2 ∧ wf[u] ∧ u closed ∧ v2 = [| u |]∅ ∧ v1 = ǫ[u]

Assume e closed and e −→∗
r v1, and recall e R e by R Contains Identity (Lemma

3.2.13) . By r-c Eventually Weak Simulation (Lemma 3.2.51) R is a r-c simulation, thus

there exists an e ′ such that e −→∗
c e ′ and e ′ R v1. Expanding the definition of R in the

latter, we are assured that

∃ a. wf[a] ∧ a closed ∧ e ′ = [| a |]∅ ∧ v1 = ǫ[a]
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We are left to show e ′ −→∗

c e ′′ and e ′′ cval. By [|− |]Φ Source-Value Property (Lemma

3.2.35) it suffices to prove that there exists an a ′ such that a ′ r’val ∧ wf[a ′] ∧ a ′ infr ∧

e ′′ = [| a ′ |]∅.

Suppose that a znfr then by ǫ[−] Source-Value Property (Lemma 3.2.44) a r’val. By

[|− |]− Value Preservation (Lemma 3.2.17) [| a ′ |]∅ cval as required.

Now suppose that ¬(a znfr) then by ZNF Reachability (Lemma 3.2.46) there exists

an a ′′ such that a
zeros
−−−→

∗

r′ a
′ ∧ a ′ znfr. By λr′ reduction preserves well-formedness

(Lemma 3.2.19) wf[a ′] and by ǫ[−] Invariant Under Zeros (Lemma 3.2.40) v1 = ǫ[a ′].

Thus by ǫ[−] Source-Value Property (Lemma 3.2.44) a ′ r’val. By Zero Match Sequence

(Lemma 3.2.48) there exists an e ′′ such that e ′ −→∗
c e ′′ ∧ e ′′ = ǫ[a ′] as required.

Now prove the main theorem:

⊢ e:int ∧ e −→∗
r v =⇒ ∃ n. e −→∗

c n ∧ n = [| v |]val

Assume ⊢ e:int and e −→∗
r v then by the above lemma there exists a v2 and a u such

that e −→∗
c v2; wf[u]; u closed; v2 = [| u |]∅; v = ǫ[u] and u r’val.

We are left to show that [| u |]val = n. By Value Correspondence (Lemma 3.2.54)

[| ǫ[u] |]val = [| u |]∅. We are left to show that this value is an integer, for which it suffices

to show that one of the values in the equality above types to int, as the only values

of type int in λc are integers. By type preservation for λr ⊢ v :int, thus ⊢ ǫ[u]:int by

dint of equality with v . By [|− |]val Type Preservation (Lemma 3.2.56) ⊢ [| ǫ[u] |]val:int, as

required. ❑

3.3 Observational Equivalence Between λd and λc

Having shown in the last section that a certain form of contextual equivalence coincides

for λr and λc we now turn to showing a similar result for λd and λc. This proof closely

follows the structure and techniques used in the last section. We therefore concentrate

on those parts where the proof differs, simply stating those lemmas that follow in a

straightforward way from the corresponding earlier result.

We prove the following theorem

3.3.1 Theorem (Observational Equivalence of λd and λc). For all e ∈ λ the following

hold:

1. ⊢ e:int =⇒ (e −→∗
c n =⇒ ∃ v . e −→∗

d v ∧ n = [| v |]val)

2. ⊢ e:int =⇒ (e −→∗
d v =⇒ ∃ n. e −→∗

c n ∧ n = [| v |]val)



3.3. OBSERVATIONAL EQUIVALENCE BETWEEN λD AND λC 87

We borrow verbatim the annotated syntax λ′; the functions ι[−], ǫ[−] and Ec[−]−;

and the predicate wf[−] from the λr proof.

As we are ultimately interested only in closed terms, we are free to alter the be-

haviour of λc on open terms so long as it remains the same when restricted to closed

terms. We do this by adding identifiers to the set of values for λc:

v ::= z | n | () | λx :τ.e

3.3.2 Definition (λd′ Reduction Semantics). This is as defined for λr′ except we add

destruct contexts:

R ::= πr | u

The (inst) and (instrec) reduction rules are replaced with corresponding ones for de-

struct time instantiation:

(inst-1) let0 z = u in E3.R.E2.z −→ let0 z = u in E3.R.E2.u

(inst-2) R.E2.let0 z = u in E ′
2.z −→ R.E2.let0 z = u in E ′

2.u

(instrec-1) letrec0 z = λx .a in E3.R.E2.z −→ let0 z = u in E3.R.E2.λ
z x .a

(instrec-2) R.E2.letrec0 z = λx .a in E ′
2.z −→ R.E2.let0 z = u in E ′

2.λ
z x .a

❑

The definition for environment must be changed to admit the possibility of identifiers

as values, but the definition of environment-term compatibility remains unaltered.

3.3.3 Definition (Environment). An environment Φ is a list containing pairs whose first

component is an identifier and whose second component is a c-value. An environment

is well-formed if the following hold:

(i) whenever (z , e) ∈ Φ forall z ∈ fv(e).z≤Φx where ≤Φ is the ordering of the

identifiers in Φ.

(ii) all of the first components of the pairs in the list are distinct.

When Φ is well-formed we write Φ ◭. We write Φ, z 7→ v for the disjoint extension of

Φ forming a new environment. We write Φ[z 7→ v ] for the environment acting as Φ, but

mapping z to v ❑

A key difference with λd is that identifiers are values. As a result whenever we

instantiate a variable we may obtain another variable. During reduction this chain of
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variables is followed until a non-variable value is met. To reflect this difference in [|− |]−

we change variable lookup to follow the chain.

3.3.4 Definition ( [|− |]− ). We use the definition from the λr case with the following

change:

[| z |]Φ = Φ∗(z )

where we define Φ∗ as the least fixpoint of the monotone operator F :

F (Φ) = Φ[x 7→ z | ∃ y . Φ(x ) = y ∧ Φ(y) = z ]

❑

Instantiation normal forms change to reflect the destruct time nature of instantia-

tions.

3.3.5 Definition (Instantiation Normal Form (INF)). A term a is in instantiation normal

form (INF) if and only if there does not exist an a′ such that a
inst
−−→d′ a

′, where inst is

inst-1 or inst-2. We write a infd when a is in INF. ❑

3.3.6 Definition (Open INF). A possibly open term a is in open instantiation normal

form if and only if there does not exist an E3,R,E2 and z such that a = E3.R.E2.z . We

write a inf ◦d when a is in open INF. ❑

3.3.1 Transforming proofs from λr to λd

To avoid duplicating tedious proofs we would like to reuse as much reasoning from the

λr proof as possible. To do this let us first enumerate the entities that have changed from

the λr proof:

1. identifiers added to values;

2. introduction of destruct contexts R;

3. new instantiation rules; and

4. the definitions of Φ and [|− |]− changed.

Most changes to the proofs occur where values are considered, as we must now

deal with identifiers, and where reduction is considered, as the instantiation rules have

changed, though this second change is not very deep as the rules are still of a similar

form.
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Lemma No. Name of Lemma λr proof lemma No.

3.3.7 Well-Formed Contex Decomposition 3.2.18
3.3.8 [|− |] Distribution Over Contexts 3.2.22
3.3.9 [|− |] Preserves Contexts 3.2.23

3.3.10 R Contains Identity 3.2.13
3.3.11 ǫ[−] Value Preservation 3.2.24
3.3.12 ǫ[−] Distributes Over Contexts 3.2.25
3.3.13 ǫ[−] Preserves Contexts 3.2.26
3.3.14 ǫ[−] Source-Value Property 3.2.44
3.3.15 ǫ[−] Outer Value Preservation 3.2.27
3.3.16 inf ◦r Preserved by E3 Stripping 3.2.31
3.3.17 Inst Match Property 3.2.37
3.3.18 Inst Match Sequence 3.2.38
3.3.19 ǫ[−] Invariant Under Zeros 3.2.40
3.3.20 znfr Preserved by E3 Stripping 3.2.43
3.3.21 ǫ[−] Source Context 3.2.45
3.3.22 ZNF Reachability 3.2.46
3.3.23 Zero Match Property 3.2.47
3.3.24 Zero Match Sequence 3.2.48
3.3.25 [|− |]val Type Preservation 3.2.56

Table 3.1: Lemmas that follow in a straightforward way from the proof given of the
corresponding fact in the λr-λd equivalence proof.

Although destruct contexts have been introduced, notice that every R context is an

A1 context and so little of the reasoning changes. In particular, the E3.R.E2 context in

the new instantiation rules is a particular form of E3 context.

We might expect some work to be needed due to the change in the definition of

environment. However, the conditions for adding elements to it have been weakened

(we now allow identifiers to map to other identifiers) and when the new definition of

[|− |]Φ looks up identifiers it does so in the “transitive closure” of Φ: [| z |]Φ = Φ∗(z ). This

transitive closure of Φ is an environment like that used for the λr proof, in the sense that

identifiers map to themselves or to a non-identifier value.

Most proofs have a trivial translation from their counter part in the previous section

and we merely note these in Table 3.1 without repeating the proof.

3.3.2 Changed Proofs

3.3.26 Lemma ( Reduction Preserves Well-formedness ). wf[a] ∧ a −→d′ a ′ =⇒ wf[a ′]
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Proof. The proof is by induction on a −→d′ a ′. All the common cases follow analogously

from the λr proof, leaving the two inst cases, which are similar. We consider (inst-

1): assume wf[let0 z = u in E3.R.E2.z ] then wf[E3.R.E2.z ] and by definition of

well-founded wf[u], thus by Lemma 3.3.7 wf[E3.R.E2.u]. It follows that wf[let0 z =

u in E3.R.E2.u] as required. ❑

The properties of [|− |]− remain mainly the same, however because identifiers are

now values we need to specialise the first point of the [|− |]− environment properties,

because the more general statement made in the λr proof no longer holds. However,

this is sufficient for our use.

3.3.27 Lemma ( [|− |]− Environment Properties ).

(i) If wf[a] and Φ, x 7→ x ◭ a and Φ ◭ u and Φ, x 7→ [| u |]Φ,Φ′ ◭ then

{[| u |]Φ/x}[| a |]Φ , x 7→x , Φ′
= [| a |]Φ , x 7→[|u |]Φ, Φ′

(ii) If Φ ◭ a and Φ,Φ′ ◭ a then [| a |]Φ = [| a |]Φ , Φ′

(iii) If Φ1,Φ2,Φ3,Φ4 ◭ a and Φ1,Φ3,Φ2,Φ4 ◭ a then

[| a |]Φ1 , Φ2 , Φ3 , Φ4 = [| a |]Φ1 , Φ3 , Φ2 , Φ4.

Proof. Prove (i) by induction on a. The interesting case is the identifier case:

➤Case z : Assume wf[z ], Φ ◭ u, Φ, x 7→ [| u |]Φ,Φ′ ◭ and

Φ, x 7→ x ◭ z (3.59)

It suffices to prove {[| u |]Φ/x}[Φ , x 7→ x , Φ′]∗(z ) = [Φ , x 7→ [| u |]Φ, Φ′]∗(z ). There are

two cases to consider

➤Case z = x : In this case [Φ , x 7→ x , Φ′]∗(z ) = x and thus

{[| u |]Φ/x}[Φ , x 7→ x , Φ′]∗(z ) = [| u |]Φ

Now suppose [| u |]Φ is not an identifier then [Φ , x 7→ [| u |]Φ, Φ′]∗(z ) = [| u |]Φ and we

are done. Now consider the other possibility, that [| u |]Φ is an identifier, say y , then

it must be the case that Φ∗(y) = y . We must show that [Φ , x 7→ y , Φ′]∗(x ) = y ,

but this holds if and only if Φ∗(y) = y which has already been shown.
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➤Case z 6= x : In this case z ∈ dom(Φ) as 3.59 holds. It follows that

[Φ , x 7→ x , Φ′]∗(z ) = Φ∗(z ) = [Φ , x 7→ [| u |]Φ, Φ′]∗(z ) as required.

❑

3.3.28 Lemma ( [|− |]− Value Preservation). If wf[u] and Φ ◭ u then [| u |]Φ cval

Proof. The proof is similar to the corresponding λr one. The new case is identifiers,

which is easily discharged as [| z |]Φ = Φ∗(z ) which is a c-value. ❑

We now prove that every instantiation sequence is finite by finding a metric that

decreases with each instantiation. For λr this was straight forward by observing that the

number of identifiers above λ abstractions decreases with each instantiation. This is not

true in λd as the instantiated value can contain variables above λ abstractions because

variables are values. Our approach here is based on the following observations:

1. The form of a term that can undergo an instantiation is E3.R.E2.z where z is bound

in E3.R.E2.

2. If in such a term z instantiates to E ′
2.(u1, u2) and R = πr then by unique decom-

position the next reduction is a projection. On the other hand if z instantiates to

E ′
2.λ

z .a and R = u then by unique decomposition the next reduction is an ap-

plication. In either case the term is in INF. If the R does not match the instantiate

value then we are stuck and again in INF.

3. If in such a term z instantiates to E ′
2.n, or it in instantiates to E ′

2.(u1, u2) when R is

an application destruct context or E ′
2.λ

z .a when R is a projection destruct context

then it is stuck.

4. The final option is for z to instantiate to E ′
2.z

′ in which case another instantiation

is possible.

It is this last point – a reduction of the form E3.R.E2.z −→ E3.R.E2.z
′ – that requires

some consideration. We must show that in any given chain of instantiations there can

only be finitely many of this form. To do this we label each let in the program with a
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unique number in such a way that in any contiguous sequence of instantiations the next

let to be instantiated is less than the one before. The following definition labels terms.

3.3.29 Definition ( label−(−) ). label the lets in a term with natural numbers:

labell(x ) = x

labell(n) = n

labell(λx .e) = λx .labell(e)

labell((e1, e2)) = labell(e1)labell+|labell(e1)|(e2)

labell(πr e) = πrlabell(e)

labell(e1 e2) = labell(e1)labell+|labell(e1)|(e2)

labell(letm z = e1 in e2) =

let
l+|labell(e1)|
m z = labell(e1) in labell+|labell(e1)|+1(e2)

labell(letrecm z = λx .labell(e1) in e2) =

letrec
l+|labell(e1)|
m z = λx .labell(e1) in labell+|labell(e1)|+1(e2)

The auxilliary function |e| determines the highest label in e:

|z | = 0

|n| = 0

|λx .e| = |e|

|(e1, e2)| = max(|e1|)|e2|

|πr e| = |e|

|e1 e2| = max(|e1|, |e2|)

|letl
mz = e1 in e2| = max(l , |e1|, |e2|)

|letrecl
mz = λx .e1 in e2| = max(l , |e1|, |e2|)

We also define letlabels(e) to return the set of label identifier pairs, {(l0, z0), ..., (ln, zn)},

bound by lets in e.

We extend these functions to contexts with | | = 0, labell( ) = and letlabels( ) = ∅.

We write lhb(E3) for the set of label identifier pairs that bind around the hole in E3.

❑

We also need the concept of minimum label:

3.3.30 Definition ( min(−) ). Define min(L) to return the label of least order in the

identifier label pairs L. When L is the empty set define min(∅) = ∞. ❑

We first prove two auxiliary results.
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3.3.31 Lemma. If E3.R.E2.z0 = label0(Ê3.R̂.Ê2.z0) ∧ E3.R.E3.z0 closed then for all

n ∈ N if E3.R.E2.z0
inst
−−→d′ ...

inst
−−→d′ E3.R.E2.E

1
2 ...En

2 and fv(En
2 .zn) = {x1, ..., xm} then

{(x1, l
′
1), ..., (xm, l′m)} ⊆ lhb(E3.R.E2.E

1
2 ...En−1

2 )

and

l1, ..., lm < min(letlabels(En
2 ))

Proof. We proceed by assuming E3.R.E2.z0 = label0(Ê3.R̂.Ê2.z0) and E3.R.E2.z0 closed

and proving the consequence by induction on n, the number of transitions.

➤Case n = 0 : As E3.R.E2.z0 closed we have (z0, l0) ∈ lhb(E3.R.E2). As

min(letlabels(z0)) = min(∅) = ∞ it follows that l0 < min(∅) as required.

➤Case n = k + 1 : Assume E3.R.E2.z0
inst
−−→d′ ...

inst
−−→d′ E3.R.E2.E

1
2 ...En

2 and fv(En
2 .zn) =

{x1, ..., xm}.

By a similar argument to that in the base case {(x1, l1), ..., (xm, lm)} ⊆

lhb(E3.R.E2.E
1
2 ...En−1

2 ).

Case split on where zk is bound and prove l1, ..., lm < min(letlabels(En
2 )).

➤Case zk ∈ E3.R.E2 : The case split ensures that there exists E ′
3 and E ′′

3 such

that

E3.R.E2 = E ′
3.let

lkzk = Ek+1
2 .zk+1 in E ′′

3

Because E3.R.E2.z0 is closed, {x1, ..., xm} are bound by the hole binders of E ′
3.

By assumption E3.R.E2.z0 is the direct result of a labelling, so by the definition

of label−(−) the labels of the binders in E ′
3, and thus the labels of the binders of

{x1, ..., xm}, are all less than the labels in Ek+1
2 as required.

➤Case zk ∈ E1
2 ...Ek−1

2 : WLoG assume zk ∈ Ei
2 for some i , then fv(Ek+1

2 ) ⊆

fv(Ei
2.zi). By induction the free variables of Ei

2.zi are bound by labels less than the

let labels of Ei
2 which has as a subset the let labels of Ek+1

2 .

❑

3.3.32 Lemma. If E3.R.E2.z0 = label0(Ê3.R̂.Ê2.z0) ∧ E3.R.E3.z0 closed then for all

n ∈ N if E3.R.E2.z0
inst
−−→d′ ...

inst
−−→d′ E3.R.E2.E

1
2 ...En

2 then there exists Ê2, l such that

En
2 = labell(Ê2)
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Proof. We proceed by assuming E3.R.E2.z0 = label0(Ê3.R̂.Ê2.z0) and E3.R.E3.z0 closed

and proving the consequence by induction on n, the number of transitions.

➤Case n = 0 : E0 = and = labell( ) for any l.

➤Case n = k + 1 : Case split on where zk is bound:

➤Case zk ∈ E3.R.E2 : By assumption this context is the direct result of a la-

belling and so the subterm Ek+1
2 .zk+1 is also.

➤Case zk ∈ E1
2 ...Ek

2 : WLoG assume zk ∈ hb(Ei
2). By induction Ei

2.zi is the

direct result of a labelling and so the subterm Ek+1
2 .zk+1 is also.

❑

We can now prove that every chain of contiguous instantiations has decreasing labels.

3.3.33 Lemma. If E3.R.E2.z0 = label0(Ê3.R̂.Ê2.z0) ∧ E3.R.E3.z0 closed then for

all n ∈ N if E3.R.E2.z0
inst
−−→d′ ...

inst
−−→d′ E3.R.E2.E

1
2 ...En

2 and {(z0, l0), ..., (zn, ln)} ⊆

lhb(E3.R.E2.E
1
2 ...En−1

2 ) then

l1, ..., lm < min(letlabels(En
2 ))

Proof. Assume

E3.R.E2.z0 = label0(Ê3.R̂.Ê2.z0) (3.60)

E3.R.E3.z0 closedE3.R.E2.z0
inst
−−→d′ ...

inst
−−→d′ E3.R.E2.E

1
2 ...Ek+1

2 (3.61)

{(z0, l0), ..., (zk+1, lk+1)} ⊆ lhb(E3.R.E2.E
1
2 ...Ek

2 ) (3.62)

We are required to prove lk+1 < lk. We begin by case splitting on where zk is bound.

➤Case zk ∈ hb(E3.R.E2) : In this case, for some E ′
3 and E ′′

3 we have

E3.R.E2 = E ′
3.let

lkzk = Ek+1
2 .zk+1 in E ′′

3
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By 3.60 this term is the direct result of a labelling. By 3.61 the term is closed so zk+1

must be bound in either Ek+1
2 or E ′

3, but by the definition of label−(−) these contexts

only have lets labelled less than lk.

➤Case zk ∈ hb(E1
2 ...Ek+1

2 ) : WLoG assume zk ∈ hb(Ei
2) for some i so that there exists

E ′
2 and E ′′

2 such that Ei
2 = E ′

2.let
lkzk = Ek+1

2 .zk+1 in E ′′
2 and thus we have the term

E3.R.E2.E
1
2 ...E ′

2.let
lkzk = Ek+1

2 .zk+1 in E ′′
2 .Ei+1

2 ...Ek+1
2 .zk+1

As reduction does not create free variables this term is closed and so zk+1 must be

bound in either Ek+1
2 , E ′

2 or E3.R.E2.E
1
2 ...Ei−1

2 . Case split on these possibilities proving

lk+1 < lk in each case.

➤Case Ek+1
2 : By 3.3.32 this term is the direct result of a labelling. By the defini-

tion of label−(−) all lets in this context have smaller labels than lk.

➤Case E ′
2 : E ′

2 is a subcontext of Ei
2 and by 3.3.32 Ei

2.zi is the direct result of a

labelling, thus E ′
2 is the direct result of a labelling. By the definition of label−(−)

all lets in E ′
2 must have labels below lk.

➤Case E3.R.E2.E
1
2 ...Ei−1

2 : In this case zk ∈ fv(Ei
2.zi) therefore by Lemma 3.3.31

lk+1 < lk as required.

❑

We can now show that all instantiate chains are finite.

3.3.34 Lemma. For all closed a, there exists an a ′ such that a
insts
−−−→

∗

d′ a
′ and a ′ infd

Proof. If a can perform an instantiation reduction it is of the form E3.R.E2.z0 and, as it

is closed, z0 ∈ hb(E3.R.E2). If z0 instantiates to anything except E ′
2.z1 for some E ′

2 and

z1 then the term is in INF; we show this for the case where z0 instantiates to E ′
2.(u1, u2).

There are two possibilities for R, either u or πr . Suppose the former, then

E3.R.E2.z0 = E3.(E2.E2′.(u1, u2)u)

which by unique decomposition (Lemma 2.2.1) is stuck and so in INF. So suppose the

latter, then the term is not stuck as it matches the LHS of the projection rule. Again by

unique decomposition we are in INF.
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We now consider the only case in which we are not in INF after an instantiation,

namely when we result in a term of the form E3.R.E2.E
′
2.z1. By Lemma 3.3.33 there

is a well ordering on the lets that bind successively instantiated variables. Thus there

can only be finitely many instantiations of this form before one of the proceeding cases

holds. ❑

3.3.35 Lemma ( [|− |]− Invariant Under Insts ). If wf[a] ∧ Φ ◭ a ∧ a
insts
−−−→

∗

d′ a
′ then

[| a |]Φ = [| a ′ |]Φ

Proof. We first prove the single step case by induction on a
insts
−−−→d′ a

′:

➤Case (inst-1) : First note that by alpha conversion z and the hole binders of E3.R.E2

are all distinct.

[| let0 z = u in E3.R.E2.z |]Φ = [| z |]Φ , z 7→[| u |]Φ,Ec[E3.R.E2]Φ

= [Φ , z 7→ [| u |]Φ, Ec[E3.R.E2]
Φ]∗(z )

= [| u |]Φ

= [| u |]Φ , z 7→[| u |]Φ,Ec[E3.R.E2]Φ (3.63)

= [| u |]Φ , z 7→[| u |]Φ,Ec[E3.R.E2]Φ , z 7→[| u |]Φ

(3.64)

= [| let0 z = u in E3.R.E2.u |]Φ

Where 3.63 is valid by part (ii) of Lemma 3.3.27 and 3.64 holds as z /∈ hb(E3.R.E2).

➤Case (inst-2) : Similar to the previous case.

➤Case (instrec-1), (instrec-2) : [| z |]Φ
′

= Φ′(z ) which is equal to [|λz x .a |]Φ
′

for any

environment that is well-formed w.r.t λz x .a.

➤Case (cong) : Assume wf[E3.a] and Φ ◭ E3.a. By Lemma 3.3.7 wf[a]. Let Φ′ =

Φ, Ec[E3]
Φ, then fv(a) ⊆ dom(Φ′). By induction [| a |]Φ

′
= [| a ′ |]Φ

′
(*). Now [|E3.a |]Φ =

[| a |]Φ
′

and [|E3.a
′ |]Φ = [| a ′ |]Φ

′
, thus by (*) we are done.

❑

3.3.36 Lemma ( [|− |]Φ Source-Value Property ). if wf[a] ∧ a inf ◦d ∧ Φ ◭ a ∧ [| a |]Φ cval

then a d’val

Proof. This proof is the same apart from the identifier case, which is immediate as iden-

tifiers are values. ❑
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Notice in the next lemma that an extra restriction is needed when compared to the

corresponding λr lemma, that is, the value u must not be an identifier.

3.3.37 Lemma ( [|− |] Outer Value Preservation ). For all λd′ values u that are not iden-

tifiers:

(a) If wf[u] ∧ Φ ◭ u ∧ [| u |]Φ = λx :τ.e then there exists E2, a, z and j such that

u = E2.λ
j x :τ.a

(b) [| u |]Φ = (v1, v2) =⇒ ∃ E2, u1, u2. u = E2.(u1, u2)

3.3.38 Definition. Candidate bisimulation

R , {(e, e ′) | ∃ a. wf[a] ∧ a closed ∧ e = [| a |]∅ ∧ e ′ = ǫ[a]}

❑

3.3.39 Lemma (c-d’ Correspondence). If a closed ∧ wf[a] ∧ [| a |]∅ −→c e ′ then there

exists a ′, a ′′ such that a
insts
−−−→

∗

d′ a
′′ −→d′ a ′ ∧ a ′′ infd and either

(i) e ′ = [| a ′ |]∅; or

(ii) there exists e ′′ such that e ′ −→c e ′′ and e ′′ = [| a ′ |]∅

Proof. We prove the generalised statement that if wf[a] ∧ a inf ◦d ∧ Φ ◭ a and

[| a |]Φ −→c e ′ then there exists a ′ such that a −→d′ a ′ and one of the following hold

(i) e ′ = [| a ′ |]Φ; or

(ii) there exists e ′′ such that e ′ −→c e ′′ and e ′′ = [| a ′ |]∅

Most cases in this proof transfer directly because the lemmas used in the λr case still

hold here. However, the [|− |]− outer-value preservation property does not hold directly,

instead we have an extra constraint that the value not be an identifier. This changes the

projection and application case; we show just the former. Identifiers are trivial to deal

with as they are not in open INF.

➤Case πr a : In the λr proof, this case is further decomposed by the possible reductions

of πr a. We have to alter the case where the projection occurs to show that a is not an

identifier so that the [|− |]− outer-value preservation result can be used. This is easily

done as by assumption (πr a) inf ◦d , and if a was an identifier, say z , then this would not

hold as z would be in a destruct position. ❑
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3.3.40 Lemma (d’-d Correspondence).

a closed ∧ wf[a] ∧ a
l
−→d′ a

′ ∧ l 6= zero =⇒ ∃ e ′. ǫ[a] −→d e ′ ∧ e ′ = ǫ[a ′]

Proof. The proof is the same as the λr case. The (inst-1) and (inst-2) cases follow, as

they did in the λr case, by the inst match property. ❑

3.3.41 Lemma (cd Eventually Weak Simulation). R is an eventually weak simulation

from λc to λd

3.3.42 Lemma (d-d’ Correspondence).

a closed ∧ wf[a] ∧ ǫ[a] −→d e ′ =⇒ ∃ a ′, a ′′. a
zeros
−−−→

∗

d′ a
′′ −→d′ a ′ ∧ a ′′ znfd ∧ e ′ = ǫ[a ′]

Proof. We prove the generalised statement:

wf[a] ∧ a znf ◦d ∧ ǫ[a] −→d e ′ =⇒ ∃ a ′. a −→d′ a ′ ∧ e ′ = ǫ[a ′]

Most cases in this proof transfer directly because the lemmas used in the λr case still hold

here. As the instantiation rules have changed, we need to reprove the let0 z = a1 in a2,

a1 a2 and πr a cases:

➤Case πr a : In the λr proof this case is further decomposed by the possible reductions

of the erased term. We have to add an extra case to this for the instantiation:

➤Case πrǫ[a] = πr(E2.let z = u in E ′
2.z ) : We can assume that a znfr and wf[a]

and πrǫ[a] −→d πr E2.let z = u in E ′
2.u. We have to prove that there exists an

a ′ such that πr a −→d′ a ′ and πr(E2.let z = u in E ′
2.u) = ǫ[a ′]. By case split

ǫ[a] = E2.let z = u in E ′
2.z . By ǫ[−] Source Context (Lemma 3.3.21) for some

Ê2, â we have a = Ê2.â ∧ ǫ[Ê2] = E2, therefore ǫ[â] = let z = u in E ′
2.z . By

znf ◦d preserved by E3 stripping (Lemma 3.3.20) â znf ◦d . As â znfr and it erases to

a ’let’, then â must be a let0 , as supposing that it is a let1 leads to a contradiction

about its ZNF property. Thus â = let0 z = a1 in a2, ǫ[a1] = u, ǫ[a2] = E ′
2.z

and a1 d’val by well-formedness. By ǫ[−] Source Context (Lemma 3.3.21) for

some Ê2
′
, â2 we have a2 = Ê2

′
.â2 ∧ ǫ[Ê2

′
] = E ′

2. It follows that ǫ[â2] = z thus

â2 = z . Moreover a = πr Ê2.let z = a1 in Ê2
′
.z which reduces under λd′ to
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πr Ê2.let z = a1 in Ê2
′
.a1. It is then simple enough to check that this erases to

πr E2.let z = u in E ′
2.u.

➤Case a1 a2 : Similar to the above proof.

➤Case let0 z = a1 in a2 : We have to consider the case where this term erases to a

term that can do an instantiation:

➤Case let z = ǫ[a1] in ǫ[a2] = let z = u in E3.R.E2.z : We can assume

that wf[let0 z = a1 in a2] ∧ (let0 z = a1 in a2) znf ◦d and let z =

u in E3.R.E2.z −→d let z = u in E3.R.E2.u. By ǫ[−] Source Context (Lemma

3.3.21) there exists a λd context Ê3 and a â such that a2 = Ê3.â and ǫ[Ê3] = E3,

thus as erase distributes over contexts, ǫ[â] = R.E2.z . We can see by inspection of

ǫ[−] that if an erase results in an R context, then the input to erase must have been

an R context, therefore let â = R.â′ for some â′ then ǫ[R.â′] = R.E2.z and as erase

distributes over contexts ǫ[â′] = E2.z . By ǫ[−] Source Context (Lemma 3.3.21)

there exists Ê2 and ǎ such that â′ = Ê2.ǎ and ǫ[Ê2] = E2 therefore ǫ[ǎ] = z forc-

ing ǎ = z . Putting this all together a2 = Ê3.R.Ê2.z , by well-formedness a1 d’val

and so (let z = a1 in a2) = (let0 z = a1 in Ê3.R.Ê2.z ) −→d′ let0 z =

u in Ê3.R.Ê2.a1. More over it is easy to check that this last term erases to

let z = u in E3.R.E2.u.

❑

3.3.43 Lemma (d’-c Correspondence). If a closed and wf[a] and a
l
−→d′ a

′ and l 6= insts

then there exists an e ′ such that [| a |]∅ −→c e ′ and either:

(i) e ′ = [| a ′ |]∅

(ii) there exists e ′′ such that e ′ −→c e ′′ and e ′′ = [| a ′ |]∅

❑

3.3.44 Lemma (dc Simulation). R is a weak simulation from λd to λc ❑

3.3.45 Lemma (Value Correspondence). if Φ = Φk where

Φ0 = ∅

Φn+1 = Φn, xn+1 7→ [|un+1 |]Φn where fv([| un+1 |]Φn) = ∅

and Φ ◭ u and wf[u] then S (Φ)[| ǫ[u] |]val = [| u |]Φ
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Proof. The proof follows the λr proof, but with an extra case necessary as variables can

now be values. We give the extra case:

➤Case z : Under the assumptions Φ = Φk, z ∈ dom(Φ) and wf[z ] we are required to

prove S (Φ)(z ) = Φ∗(z ).

As z ∈ dom(Φ), there exists j ∈ 1 .. k − 1 such that

S (Φ)(z ) = S (Φj , z 7→ [|uj+1 |]Φj )(z )

= S (Φj)[| uj+1 |]Φj

As fv([| uj+1 |]Φj) = ∅ then S (Φj)[|uj+1 |]Φj = [| uj+1 |]Φj . Furthermore, as for all v ∈

cod(Φ) it is the case that fv(v) = ∅, we have that Φ∗ = Φ. It follows that [| uj+1 |]Φj =

Φ(z ) = Φ∗(z ) as required. ❑

The proof of the main theorem follows in the same way as in λr as the argument

is purely based upon lemmas that have been reproved for the λd case, namely Lemmas

3.3.10, 3.3.41, 3.3.14, 3.3.14, 3.3.11, 3.3.34, 3.3.35, 3.3.18, 3.3.44, 3.3.28, 3.3.22,

3.3.19, 3.3.45 and 3.3.25.

3.4 Conclusion

This chapter proves that the semantics of the delayed instantiation calculi are consistent

with the standard CBV semantics, in the sense that their contextual equivalence rela-

tions coincide, confirming that our usual CBV intuition and reasoning still hold. This

was achieved separately for λr and λd, showing their reduction strategies to be equiv-

alent to λc. The two proofs used the same technique: construct an eventually weak

bisimulation relation that relates terms according to [|− |]− and the additional property

that whenever e is related to e ′ under R then e terminates if and only if e ′ terminates.

To construct the relation R an annotated calculus was introduced that explicitly differ-

entiated between which parts of the term are "environment" and which "program", and

also between functions and recursive unrollings of a function. A relation (R) on λ terms

was then formed from carefully crafted projections out of annotated λ terms, with the

intent that it relate terms reduced under λc to those of a delayed instantiation calculus

in the way described above.



4
Update Via Versioned Modules

In this chapter we use the delayed instantiation techniques developed in Chapter 2 to

give a simple, statically typed language that supports the style of dynamic update found

in Erlang [AVWW96, AV91], a dynamically typed language that supports DSU at the

module-level. We present a formal update calculus that has the following characteristics:

1. Simplicity. It straightforwardly extends the first-order simply-typed lambda-

calculus with mutually-recursive modules and a primitive for updating them.

2. Flexibility. We allow any module in the system to be updated, including changes

to the types of its definitions, as long as the resulting program is type-correct.

Furthermore, the timing of an update can be controlled by the programmer, based

on the insertion of an update primitive. Finally, the effects of an update can be

controlled by using appropriate variable syntax. In combination, these features

allow us to model a range of systems, from those that allow updating at any time in

arbitrary (but type-correct) ways, to those that have timing and/or update-content

restrictions (e.g. [GKW97]).

3. Practicality. The calculus is informed by observing implementation experience

[Hic01], and the most widely used DSU implementation, Erlang [AV91]. We show

how the calculus can be used to model a number of realistic situations and updat-

ing strategies.

101
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4.1 The update calculus

In this section we introduce the update calculus as a simple formal model of dynamic

update. We describe the syntax and semantics of the language, focusing on the key

mechanisms that enable DSU. We defer presentation of detailed examples to the next

section.

4.1.1 Syntax

Figure 4.1 shows the syntax of the language, which is basically a first-order, simply-

typed, call-by-value lambda calculus with two extensions: (1) a simple module system

with novel variable lookup rules, and (2) an update primitive that allows loading a new

version of a module during program execution.

A program P consists of a mutually-recursive set ms of module declarations and an

expression e to evaluate. Module declarations are of the form module Mn = m, where

M is a module name, n is a version number, and m is a module body. (Note that the

version superscript n is part of the abstract syntax of programs, while a subscript k on

a module name—or a variable or expression for that matter—as in Mnk

k , is used only

to notate enumerations). Many different versions of the same module can coexist in a

program, but each pair of a module name and a version number is unique. In turn, a

module body m is a collection of bindings of values for module component identifiers,

written z :T = v .

Expressions e are mostly standard, including pairs and pair projection πr, function

abstractions and applications, and let binders. To update a module with a new version,

or insert a new module, we provide a primitive update, which allows a module to be

loaded into the program during execution. To support staged transitions from old to

new code, we allow flexible access to module components: to access the z component

of a module named M , one can write either M .z , which will use the newest version

of the module M , or Mn.z (for some n), which will use version n of the code. This

semantics is analogous to the prefixing semantics of Erlang, but is slightly more general.

In particular, Erlang requires all references to an external module to invoke the newest

version of the code; control is only possible when referencing bindings within the same

module.



4.1. THE UPDATE CALCULUS 103

Natural numbers n

Identifiers x , y
Module names M

Module component
identifiers z , f
Versioned module names Mn

Simple types S ::= int | unit | S ∗ S

Function types F ::= S → S

All types T ::= S | F
Module interfaces σ ::= {z1:Tn, ..., zn:Tn}

Expressions e ::= n | () | (e, e ′) | πr e | λx :S .e | e e

| let x :T = e in e ′ | x | M .z | Mn.z | update
Values v ::= n | () | (v , v ′) | λx :S .e
Projection index r ::= 1 | 2

Module bodies m ::= {z1:T1 = v1 ... zn:Tn = vn}
Module sets ms ::= {module Mn1

1 = m1, .., module Mnk

k = mk}
Programs P ::= modules ms in e

Atomic expr. contexts A1 ::= ( , e) | (v , ) | πr | e | (λx :S .e)
| let x :T = in e

Expression contexts E1 ::= | A1 . E1

Module contexts E2 ::= modules ms in

We work up to alpha-conversion of expressions throughout, with x binding in e in an
expression λx :S .e and y binding in e ′ in an expression let y :T = e in e ′. The Mn

k

of a module set and the zi of a module body do not bind, and so are not subject to
alpha-conversion.

Figure 4.1: Update calculus syntax
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P

Mn=m
−−−−→ P ′ (applying a module update to a program)

(update)

∅ ⊢ modules (ms ∪ {module Mn = m})in E1 .() : S

n > maxversion(M ,ms)

modules ms in E1 . update
Mn=m
−−−−→

modules (ms ∪ {module Mn = m})in E1 .()

P −→ P ′ (internal computation step of a program)

(ver) modules ms in E1 .(Mn.z ) −→ modules ms in E1 . v

where ms = {.., module Mn = {.. z :T = v ..}, ..}

(unver) modules ms in E1 .(M .z ) −→ modules ms in E1 . v

where ms = {.., module Mn = {.. z :T = v ..}, ..}
and n = maxversion(M ,ms)

(let) E2 . E1 . let x :T = v in e −→ E2 . E1 .{v/x}e

(proj) E2 . E1 . πr(v1, v2) −→ E2 . E1 . vr

(app) E2 . E1 .(λx :S .e)v −→ E2 . E1 .{v/x}e

where

mods({module Mn1
1 = m1, .., module Mnk

k = mk}) = {Mn1
1 , ..,Mnk

k }
maxversion(M ,ms) = max {n | Mn ∈ mods(ms)}

Figure 4.2: Update calculus reduction rules

4.1.2 Semantics

Figure 4.2 presents the dynamics of the calculus. We define a small-step reduction re-

lation P −→ P ′, using evaluation contexts E1 for expressions and E2 for programs.

Context composition is denoted by “.”, as in E2 . E1 . e. The rules for (let), (app) and

(proj) are standard, while the remaining three rules describe accessing module bindings

and updating module definitions.

So that module updates work as we would expect, module component identifiers

are not resolved by substitution, as is the case with local bindings (c.f. the (let) and

(app) rules), but instead by ‘lookup’, analogous to the redex-time semantics of Chapter

2. In particular, the (ver) rule will resolve the component identifier z from version n of
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Here Γ ranges over partial functions from identifiers x to types T , and Σ ranges over
partial functions from module names M and versioned module names Mn to module
types σ. Define

modsig({z1:T1 = v1 ... zn:Tn = vn}) = {z1:T1, .., zn:Tn}
modctx0({module Mn1

1 = m1, .., module Mnk

k = mk}) =
{Mn1

1 :modsig(m1), ..,M
nk

k :modsig(mk)}
modctx(ms) =

modctx0(ms) ∪ {M :σ | ∃ n.Mn:σ ∈ modctx0(ms) ∧ n = maxversion(M ,ms)}

∅ ⊢ P :S (type checking a program)

Σ = modctx({module Mn1
1 = m1, .., module Mnk

k = mk})
Σ ⊢ mi:modsig(mi) (i = 1..k)
Σ; ∅ ⊢ e:S

∅ ⊢ modules {module Mn1
1 = m1, .., module Mnk

k = mk}in e:S

Σ ⊢ m:σ (type checking a module body)

Σ; ∅ ⊢ vi:Ti (i = 1..n)
Σ ⊢ {z1:T1 = v1 ... zn:Tn = vn}:{z1:T1, ..., zn:Tn}

Σ;Γ ⊢ e:T (type checking an expression)

Σ;Γ ⊢ n:int Σ;Γ ⊢ ():unit

Σ;Γ ⊢ e:S Σ;Γ ⊢ e ′:S ′

Σ,Γ ⊢ (e, e ′):S ∗ S ′

Σ;Γ ⊢ e:S1 ∗ S2

Σ;Γ ⊢ πr e:Sr

Σ;Γ ⊢ e:S → S ′ Σ;Γ ⊢ e:S

Σ;Γ ⊢ e e ′:S ′

Σ;Γ, x :S ⊢ e:S ′

Σ;Γ ⊢ λx :S .e:S → S ′

Σ;Γ, x :T ⊢ e ′:T ′

Σ;Γ ⊢ e:T

Σ;Γ ⊢ let x :T = e in e ′:T ′

Σ;Γ, x :T ⊢ x :T Σ,Mn:{..., z :T , ...}; Γ ⊢ Mn.z :T

Σ,M :{..., z :T , ...}; Γ ⊢ M .z :T Σ;Γ ⊢ update:unit

Figure 4.3: Update calculus typing rules
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module M when the expression Mn.z appears in redex position. Similarly, the (unver)

rule handles the M .z case, with the difference being that the most recent version of

module M is used. This semantics is crucial for properly implementing updating.

The (update) rule defines the semantics of the update primitive, with labelled tran-

sitions P
Mn=m
−−−−→ P ′. The idea is that when this primitive is evaluated, the system will

apply any waiting update to the running system. We express this idea by having the

rule accept a module name M , a version number n, and a module body m. If the new

module does not invalidate the type safety of the program, and if n is greater than any

existing version of M , the new module is added (if type safety would be compromised,

the update cannot take effect). Any unversioned existing references to M in the code

will now refer to the newly loaded module.

We can now look at an example update. In the following take

ms ≡ {module M0 = {

f = λx :unit.let y :unit = update in M .z

z = 3}}

to be the initial set of modules, an initial expression M .f (), and m ≡ {z = (5, 5)} be a

module body to be loaded. We have:

modules ms in M .f ()

−→ modules ms in(λx :unit.let y :unit = update in M .z ) ()

−→ modules ms in let y :unit = update in M .z
M1=m
−−−−→ modules ms′ in let y :unit = ()in M .z

−→ modules ms′ in M .z

−→ modules ms′ in(5, 5)

where ms′ = ms ∪ {module M1 = {z = (5, 5)}}.

At the point where the M .f is resolved, in the first reduction step, the greatest extant

version of M is M0 – so M .f is instantiated by its M0.f definition. When the M .z

is resolved in the last reduction step, however, the greatest version of M is the M1

supplied by the update – and so M .z resolves to (5, 5) instead of 3.

The type system provides the necessary checks to ensure that loading a module does

not result in a program that will reduce to a stuck state (one in which the expression

is not a value and yet no reduction rule applies). Figure 4.3 shows the type system for

our calculus. The rules for the judgement Σ;Γ ⊢ e:T are the standard ones for the

simply typed lambda calculus, extended in the obvious way to deal with the typing of
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module components. The update command is statically uninteresting and types as unit,

as this is the type of (), the value it becomes after an (update) transition. The other two

judgements are more interesting. Σ ⊢ P :S types whole programs and handles most of

the complexity in typing modules. We use two auxiliary functions modsig and modctx:

modsig determines the interface of a module given its body, and, given a set of modules,

modctx determines the partial function that maps versioned module names Mn to their

signatures and also maps the unversioned module names M to the signature of the

highest versioned module with the same name. modctx can thus be used to determine

the module context in which the program (including the module bodies themselves)

should be typed. The single rule defining the judgement ensures that the expression

and every module body can be typed in this context; this means that the modules are

allowed to be mutually recursive, as every module name is available in the typing of

each module.

Typing of module bodies is expressed by the judgement Σ ⊢ m:σ, i.e. that module

body m has interface σ in the context of module declarations Σ; it simply requires that

each component of the module has the appropriate type.

4.1.3 Discussion

Many design decisions reflect our aim to keep the update calculus simple, but nonethe-

less practical and able to express different updating strategies for programs. We further

consider some of those design decisions here.

The calculus addresses the run-time mechanisms involved in implementing updating

(that is, loading new modules and allowing existing code or parts thereof to refer to

them), but does not cover all the important software development issues of managing

updatable code. In practice, we would expect compiler support for aiding the devel-

opment process, for example [Hic01] where user programs could refer to the ‘current’

and ‘previous’ versions of a module, and the compiler would fill in the absolute version

number.

As many past researchers have observed, the timing of an update is critical to assur-

ing its validity [Gup94, Lee83, FS91, Hic01]. We chose to support synchronous updates

by using the update primitive to dictate when an update can occur. This makes it eas-

ier to understand the state(s) of the program which an update is applied to than the

alternative asynchronous approach, and so makes it easier to write correct updates.

Of equal importance is the need to control an update’s effect. Which modules will

‘notice’ the new version? Can an old version and a new version coexist? Different
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systems answer these questions differently. Many systems allow multiple versions to

coexist [AV91, FS91, Hic01, Dug01, App94, PHL97], while others prefer one version at

a time [GKW97, Gup94]. Our use of module versions allows multiple generations of

a module to exist simultaneously, and provides explicit control over which version of a

module we are referring to, allowing us to delimit the effect of an update. As such, we

can model a variety of updating situations.

Finally, we assert that updatable programs must be reliable: if the program crashes

frequently, there is little need to update it dynamically! For this reason, we imposed a

static (link-time) type system to ensure that if an update is accepted by the system, then

the resulting program will be type-correct. In addition to improved reliability, we also

believe that type-correct programs are easier to reason about.

4.2 Update Strategies

To illustrate the expressive power of the update facility in our calculus we show sev-

eral strategies for completing an update to a simple server application. To simplify the

examples we henceforth work with an extended version of the calculus containing con-

ditionals, lists and two built-in functions for input and output:

e ::= . . . | [] | e :: e | hd e | tl e | if e = e then e else e | input | output

the meaning of list and conditional being the obvious ones (for example, see [Pie02]).

The I/O functions input and output have types unit → int and int → unit respectively,

acting as an I/O channel for integers. Figure 4.4 shows a simple server application that

collects integers, processes them, and then outputs a result. This process is repeated.

Whenever the server receives the integer zero, it performs an upgrade by calling update.

The update we will demonstrate involves making the program collect pairs of inte-

gers (x, y).

4.2.1 Stop and Switch

This is the simplest strategy. We stop receiving data, process what we have and then

continue using the new code. First notice that the update is within the collect loop.

Upon the return of update, collect calls itself, therefore we should alter collect to return

the list immediately:

collect = λ(l :int list)λx :int.l
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modules {
module IServer0 = {

process = λ(l :int list).λx :int.
if l = [] then x else IServer.process (tl l) ((hd l) x ),

collect = λ(l :int list).λx :int.
if x = 0 then l else let i = input() in
let = if i = 0 then update else () in

IServer.collect (i :: l) (x − 1)
},
module Main0 = {

loop = λu:unit.
let l = IServer.collect [] 10000 in

let x = IServer.process l 0 in

Main.loop()
}

}in
Main.loop()

Figure 4.4: Example integer server

This is not the long-term behaviour we would like of collect though (we want it to

collect integers), so we have a problem. One solution is to introduce another function

collect′ and call this instead of collect, however this would involve changing all callers,

something we would like to avoid. The solution is to split the update into two updates.

First we replace the IServer module updating collect to

collect = λ(l :int list)λx :int.let = update in l

Then on the second update we re-update collect and apply the rest of the update. This

involves changing both modules to be those shown in Figure 4.5.

4.2.2 Complete and Switch

In the previous example, the update may have disrupted the batching of input by cutting

short one of the input sequences. We now present an alternative way of performing the

update so that this does not happen. The strategy we present, dubbed complete and
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modules {
module IServer0 = {

process = λ(l :(int ∗ int)list).λx :int.
if l = [] then x else IServer.process (tl l) (π1(hd l) ∗ π2(hd l) x ),

collect = λ(l :(int ∗ int)list).λx :int.
if x = 0 then l else let i = (input(), input()) in
let = if π1 i = 0 then update else () in

IServer.collect (i :: l) (x − 1)
},
module Main0 = {

loop = λu:unit.
let l = IServer.collect [] 10000 in

let x = IServer.process l 0 in

Main.loop()
}

}in
Main.loop()

Figure 4.5: Example integer server update

switch, involves completing the collection of single integers in progress at the time of the

update before going on to accept the pairs of integers. We again use two updates:

1. As we want the collection to complete, the first update simply schedules another

update for when the collection is complete:

collect = λ(l :int list).λx :int.

if x = 0 then let = update in l else let i = input() in

IServer.collect (i :: l) (x − 1)

2. Upon reaching the update at the end of the recursion we perform the full update

as in figure 4.5.

4.2.3 Convert and Switch

A third update strategy that we might like to encode is to start using the new code

immediately, by converting our current state to be compatible with the new program.

The calculus we present here, like current implementations, cannot encode this strategy,

because of conditions placed on the program by its continuation (call stack). After

performing an update within the collect function, the loop we return to in the main

module will always be the old loop – the one that called collect. This expects a list of
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integers to be returned by collect while if we have converted the state and switched to

the new code, collect will return a list of pairs.

The good thing is that such an update will not pass the type check. The downside

is that intuitively it should. The main loop does not use the list it receives concretely,

it merely passes it to the process function, which, if the program has been consistently

updated, should be expecting a list of integers. Systems that we look at later will not

have this problem.

4.3 Conclusions

In this chapter we presented the update calculus, a flexible and practical formal system

for understanding the effects of dynamic software updating. The calculus is expressive

enough to model Erlang-style update and the design decisions present in existing DSU

systems.

While our language is type safe and has provided a useful model for discussing ex-

isting languages and update techniques, it has some serious short comings as a practical

language for writing updatable programs. We briefly discuss these deficiencies, which

we will return to in Part II.

Whole program typecheck at update-time At update time the system must re-

typecheck the whole program to ensure that type consistency is maintained. Although

this provides a flexible and expressive system in which arbitrary type changes to mod-

ules are permitted (the signatures of different versions of a module need not be related),

it is difficult to implement and has implications for performance, because the runtime

system must maintain dynamic type information.

Manual conversion of data If the type of data manipulated by a module is changed,

then it is the programmer’s responsibility to ensure all of the old data is correctly con-

verted. This is quite a burden for the programmer and very difficult to get right, espe-

cially in the the presence of references where data may have to be found on the heap.

A more declarative method where the data of a given type is automatically converted

would be less error prone.

No updatability guarantee We give no guarantee that any particular part of the sys-

tem will be updatable. It is the users problem to decide how available his program will
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be for update at runtime, which will be difficult to decide in any system of sufficient

complexity.



Part II

Proteus
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5
Proteus

In the previous chapter we considered an Erlang-style update at the module level that re-

lied on a run-time type check. In this chapter we present Proteus, a general-purpose DSU

formalism for C-like languages. Proteus supports fine-grained updates at the sub-module

level of named types, ensuring the type safety of updates dynamically by examining how

the program’s continuation depends on their representation. Proteus programs consist of

function, data and named type definitions. In the scope of a named type definition t = τ

the programmer can use the name t and representation type τ interchangeably (except

at reference types) but the distinction lets us control updates. Dynamic updates can add

new types and new definitions, and also provide replacements for existing ones, with

replacement definitions possibly at changed types. Functions can be updated even while

they are on the call-stack: the current version will continue (or be returned to), and the

new version is activated on the next call. Permitting the update of active functions is im-

portant for making programs more available to dynamic updates [AV91, Hic01, BH00].

We also support updating function pointers.

When updating a named type t from its old representation τ to a new one τ ′, the user

provides a type transformer function c with type τ → τ ′. This is used to convert existing

t values in the program to the new representation. To ensure an intuitive semantics, we

require that at no time can different parts of the program expect different representa-

tions of a type t; a concept we call representation consistency. The alternative would be

to allow new and old definitions of a type t be valid simultaneously. Then, we could copy

values when transforming them, where only new code sees the copies [Gup94, Hic01].

115
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While this approach would be type safe, old and new code could manipulate different

copies of the same data, which is likely to be disastrous in a language with side-effects.

To ensure type safety and representation consistency, we must guarantee the follow-

ing property: after a dynamic update to some type t, no updated values v′ of type t will

ever be manipulated concretely by code that relies on the old representation. We call this

property “con-t-freeness” (or simply “con-freeness” when not referring to a particular

type). The fact that we are only concerned about subsequent concrete uses is important:

if code simply passes data around without relying on its representation, then updating

that data poses no problem. Indeed, for our purposes the notion of con-freeness gen-

eralises notions of encapsulation and type abstraction in object-oriented and functional

languages. This is because concrete uses of data are not confined to a single linguistic

construct, like a module or object, but could occur at arbitrary points in the program.

Moreover, con-freeness is a flow-sensitive property, since a function might manipulate a

t value concretely at its outset, but not for the remainder of its execution.

To enforce con-freeness Proteus source programs, which we will refer to as Pro-

teussrc, are automatically annotated with explicit type coercions: abst e converts e to

type t (assuming e has the proper concrete type τ), and cont e does the reverse at points

where e of type t is used concretely. The target language of this translation is called

Proteuscon. The explicit coercions in Proteuscon allow us to dynamically analyse the

active program during an update to some type t to check for the presence of coercions

cont. During this check we take into account that subsequent calls to updated functions

will always be to their new versions. If any cont occurrences are discovered, then the

update is rejected. In the next chapter we will give a way of approximating this property

statically.

In what follows we define two core calculi—Proteussrc and Proteuscon—that formal-

ize our approach to dynamic software updating. In section 5.1 we present Proteussrc, the

language used by programmers for writing updatable programs. Section 5.1.3 presents

Proteuscon, an extension of Proteussrc that makes the usage of named types manifest

in programs by introducing type coercions; these are used to support the operational

semantics of dynamic updating and to ensure that the process is type-safe by ensuring

con-freeness.

5.1 Proteus Source Language

In this section we present Proteussrc, the language used by programmers for writing

updatable programs. Proteussrc models a type-safe, procedural language with second
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Integers n ∈ Int
Internal names x, y, z ∈ IVar
External names x, y, z ∈ XVar
Record labels l ∈ Lab
References r ∈ Ref
Type names t, s ∈ NT
Variables Var = IVar ⊎ XVar ⊎ NT

Types τ ∈ Typ ::= t | int | unit | {l1 : τ1, . . . , ln : τn} | τ ref

| τ1 → τ2

Expressions e ∈ Exp ::= n integers
| x variables
| z external names
| r heap reference
| {l1 = e1, . . . , ln = en} records
| e.l projection
| e1 e2 application
| let z : τ = e1 in e2 let bindings
| ref e ref. creation
| e1 := e2 assignment
| !e dereference
| if e1 = e2 then e3 else e4 conditional
| update dynamic update

Values v ∈ Val ::= z | n | {l1 = v1, . . . , ln = vn} | r

Programs P ∈ Prog ::= var z : τ = v in P
| fun z1(x : τ1) : τ ′

1 = e1 . . .
. . . and zn(x : τn) : τ ′

n = en in P
| type t = τ in P
| e

Figure 5.1: Syntax for Proteussrc
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class functions and mutable state (C-like) augmented with dynamic updating; its syntax

is shown in Figure 5.1. Programs P are a series of top-level definitions followed by an

expression e. A fun z . . . defines a top-level recursive function, and var z : τ . . . defines

a top-level mutable variable (i.e., it has type τ ref). We allow mutually-recursive blocks

of function definitions using the keyword and. A type t = τ . . . defines the type t. Top-

level variables z (a.k.a. external names) must be unique within P , and are not subject

to α-conversion, so they can be unambiguously updated at run-time. Expressions e are

largely standard. We abuse notation and write multi-argument functions

fun f(x1 : τ1, . . . , xn : τn) : τ = e

which are really functions that take a record argument, thus having type {x1 : τ1, . . . , xn :

τn} → τ . We similarly sugar calls to such functions.

The update expression allows the program to accept a dynamic update, but before

we discuss the semantics of this expression, let us consider an example program and

update.

5.1.1 Example

Figure 5.2 shows a simple kernel for handling read and write requests on files or sock-

ets, which one might want to dynamically update. Some functions and type definitions

have been elided for simplicity and we use simple enumerated type definitions (e.g.

fdtype) for clarity on the understanding that they could easily be encoded as integers.

Reading from the bottom, the function loop is an infinite loop that repeatedly gets req

objects (e.g., system calls) and then dispatches them to an appropriate handler using

the dispatch function. This function first calls decode to determine whether a given file

descriptor is a network channel or an open file (e.g., by looking in a table). If it is a

network channel, dispatch calls getsock to get a sock object based on the given file de-

scriptor (e.g., indexed in an array). Next, it decodes the remaining portion of the req to

acquire the transmission flags. Finally, it finds an appropriate sockhandler object to han-

dle the request and calls that handler. Handlers are needed to support different kinds

of network channel, e.g., for datagram communications (UDP), for streaming connec-

tions (TCP), etc. Different handlers are implemented for each kind, and getsockhandler

chooses the right one. A similar set of operations and types would be in place for files.

After dispatch completes, its result is posted to the user, and the loop continues.
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type handResult = int in

type sockhandler = {sock : sock, buf : buf, sflags : sflags} → handResult in

var udp read(sock : sock, buf : buf, sflags : sflags) : handResult = ... in
var udp write(sock : sock, buf : buf, sflags : sflags) : handResult = ... in

type req = {op : op, fd : int, buf : buf, rest : blob} in

type fdtype = File | Socket | Unknown in

fun dispatch (s : req) : handResult =
let t = decode (s.fd) in

if (t = Socket) then

let k = getsock (s.fd) in

let flags = decode sockopargs (s.rest, s.op) in

let h = getsockhandler (s.fd, s.op) in

h (k, s.buf, flags)
else if (t = File) then ...
else − 1 in

fun post (r : handResult) : int = ... in

fun loop (i : int) : int =
let req = getreq (i) in

let i = post (dispatch req) in

loop i in

loop 0

Figure 5.2: A simple kernel for files and socket I/O

5.1.2 Update

The update expression permits a dynamic update to take place, if one is available. That

is, at run-time a user provides an update through an out-of-band signalling mechanism,

and the next time update is reached in the program, that update is applied. Informally,

an update consists of the following:

• Replacement definitions for named types t = τ . In each, along with the new

definition t = τ ′, the user provides a type transformer function of type τ → τ ′,

used by the runtime to convert existing values of type t in the program to the new

representation.

• Replacement definitions for top-level identifiers z, each having the same type as

the original.
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• New type, function, and variable definitions.

Figure 5.3 shows dispatch from Figure 5.2 with some added update expressions. Here

we can assume that the update expressions are inserted by the programmer, but later on

in Section 6.4.1 we will consider how these can be inserted automatically.

The Figure also shows explicit type coercions which will help us to determine if the

update is safe. We discuss these in the next section.

5.1.3 Proteus Target Language

Prior to evaluation, Proteussrc programs (as well as program fragments appearing in up-

date specifications) are compiled to the language Proteuscon, which extends Proteussrc

with type coercions:

e ::= . . . | abst e | cont e

v ::= . . . | abst v

Given a type definition type t = τ , the Proteussrc typing rules effectively allow values

of type t and type τ to be used interchangeably, as is typical.

In Figure 5.2, within the scope of a type definition like type sockhandler = . . .

the type sockhandler is a synonym for its definition. For example, the expression

h (k, s.buf, flags) in dispatch uses h, which has type sockhandler, as a function. In

this case, we say that the named type sockhandler is being used concretely. However,

there are also parts of the program that treat data of named type abstractly, i.e., they do

not rely on its representation. For example, the getsockhandler function simply returns a

sockhandler value; that the value is a function is incidental.

In Proteuscon (but not in the user source language, Proteussrc) all uses of a named

type definition t = τ are made explicit with type coercions: abst e converts e to type

t (assuming e has the proper type τ), and cont e does the reverse. Figure 5.3 illus-

trates the dispatch function from Figure 5.2 with these coercions inserted. As examples,

we can see that a handResult value is constructed in the last line from −1 via the coer-

cion (abshandResult − 1). Conversely, to invoke h (in the expression for res), it must be

converted from type sockhandler via the coercion (consockhandler h) (. . .).

Type coercions serve two purposes operationally. First, they are used to prevent

updates to some type t from occurring at a time when existing code still relies on the old

representation. In particular, the presence of cont clearly indicates where the concrete

representation of t is relied upon, and therefore can be used as part of a static or dynamic

analysis to avoid an invalid update (§5.5).
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let dispatch(s : req) : handResult =
let t = decode((conreq s).fd) in

let u1 = update in

if (confdtype t) = Socket then

let k = getsock((conreq s).fd) in

let flags =
decode sockopargs((conreq s).rest, (conreq s).op) in

let h = getsockhandler((conreq s).fd, (conreq s).op) in

let u2 = update in

let res = (consockhandler h)(k, (conreq s).buf, flags) in

let u3 = update in res
else if (confdtype t) = File then . . .
else (abshandResult −1 )

Figure 5.3: dispatch with explicit update and coercions

Second, coercions are used to “tag” abstract data so it can be converted to a new rep-

resentation should its type be updated. In particular, all expressions of type t occurring

in the program will have the form abst e. Therefore, given a user-provided transformer

function ct which converts from the old representation of t to the new, we can rewrite

each instance at update-time to be abst (ct e). This leads to a natural CBV evaluation

strategy for transformers in conjunction with the rest of the program (§5.4).

The typing rules for coercions are simple:

Γ ⊢ e : t Γ(t) = τ

Γ ⊢ cont e : τ

Γ ⊢ e : τ Γ(t) = τ

Γ ⊢ abst e : t

In fact the target type system shown in Figures 5.4, 5.5 and 5.6 is simple, although

we have to become more complex to insert coercions automatically.

5.2 Automatic coercion insertion

Compiling a Proteussrc program to a Proteuscon program requires inserting type co-

ercions to make explicit the implicit uses of the type equality in the source program.

Our methodology is based on coercive subtyping [BTCGS91]. As is usual for coercive

subtyping systems, we define our translation inductively over source language typing

derivations. In particular, we define a judgement Γ ⊢ P : τ  P ′ by which a Pro-

teussrc program P is translated to Proteuscon program P ′. (The typing environment Γ

is a finite mapping from variables to types and from type names to types. As is usual

we will sometimes write a mapping using a list notation, e.g., Γ ≡ x : τ, t = τ ′.) Our
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Expression Typing: Γ ⊢ e : τ

Γ ⊢ n : int (EXPR.INT)

Γ(x) = τ

Γ ⊢ x : τ
(EXPR.VAR)

Γ(z) = τ

Γ ⊢ z : τ
(EXPR.XVAR)

Γ(r) = τ ref

Γ ⊢ r : τ ref
(EXPR.LOC)

Γ ⊢ ei+1 : τi+1 i ∈ 1..(n − 1) n ≥ 0

Γ ⊢ {l1 = e1, . . . , 1n = en} : {l1 : τ1, . . . , ln : τn}
(EXPR.RECORD)

Γ ⊢ e : {l1 : τ1, . . . , ln : τn}

Γ ⊢ e.li : τi

(EXPR.PROJ)

Γ ⊢ e1 : τ1 → τ2

Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

(EXPR.APPU)

Γ ⊢ e : τ Γ ⊢ e′ : τ
Γ ⊢ e1 : τ ′ Γ ⊢ e2 : τ ′

Γ ⊢ if e = e′ then e1else e2 : τ ′

(EXPR.IF)

Γ ⊢ e1 : τ ′
1

Γ, x : τ1 ⊢ e2 : τ2

Γ ⊢ let x : τ = e1 in e2 : τ2

(EXPR.LET)

Γ ⊢ e : τ

Γ ⊢ ref e : τ ref
(EXPR.REF)

Figure 5.4: Expression typing rules for Proteuscon, the target of the translation (Part I)
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Expression Typing: Γ ⊢ e : τ

Γ ⊢ e : τ ref

Γ ⊢ !e : τ
(EXPR.DEREF)

Γ ⊢ e1 : τ ref

Γ ⊢ e2 : τ

Γ ⊢ e1 := e2 : unit

(EXPR.ASSIGN)

Γ ⊢ update : int (EXPR.UPDATE)

Γ ⊢ e : t Γ(t) = τ

Γ ⊢ cont e : τ
(EXPR.CON)

Γ ⊢ e : τ Γ(t) = τ

Γ ⊢ abst e : t
(EXPR.ABS)

Figure 5.5: Expression typing rules for Proteuscon, the target of the translation (Part II)

primary aim is that the translation be deterministic, so that where coercions are inserted

is intuitive to the programmer. Secondarily, we wish the resulting Proteuscon program

to be efficient, with a minimal number of inserted coercions and other computational

machinery.

The remainder of this subsection proceeds as follows. First, we show how abstraction

and concretion of values having named type can be represented with subtyping. Second,

we show how to derive an algorithmic subtyping relation. Finally, we show how to derive

an algorithmic typing relation for expressions and use this to present the full translation

rules.

Abstraction and Concretion as Subtyping

To properly insert cont and abst coercions in the source program P , we must identify

where P uses values of type t concretely and abstractly. We do this by defining a mostly-

standard subtyping judgement for Proteussrc, written Γ ⊢ τ <: τ ′, with two key rules.
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Program Typing: Γ ⊢ e : τ

Γ, t = τ ′ ⊢P P : τ
Γ ⊢ τ ′

Γ ⊢P type t = τ ′ in P : τ

(PROG.TYPE)

Γ′ = Γ, z1 : τ1
µ1;∆′

1−→ τ ′
1, . . . , zn : τ1

µn;∆′
n−→ τ ′

n

Γ′, x : τi ⊢ ei : τi i ∈ 1..n Γ′ ⊢P P : τ

Γ ⊢P
fun z1(x : τ1) : τ ′

1 = e1 . . .
and zn(x : τn) : τ ′

n = en in P : τ

(PROG.FUN)

Γ ⊢ v : τ ′ Γ, z : τ ′ ref ⊢P P : τ

Γ ⊢P var z : τ ′ = v in P : τ
(PROG.VAR)

Γ ⊢ e : τ

Γ ⊢P e : τ
(PROG.EXPR)

Figure 5.6: Program typing rules for Proteuscon, the target of the translation

First, given a value of type τ it can be abstracted as having type t under the assumption

t = τ :

Γ, t = τ ⊢ τ <: t

Conversely a value of type t can be treated concretely as having type τ :

Γ, t = τ ⊢ t <: τ

These two rules, along with subtyping transitivity, allow a named type to be treated as

equal to its definition.

The basic compilation strategy is to relate a subtyping derivation to a coercion context

C using the judgement Γ ⊢ τ <: τ ′  C. This context is applied to the relevant

program fragment e as part of the derivation Γ ⊢ e : τ  e′ using the expression
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subtyping rule:

Γ ⊢ e : τ  e′ Γ ⊢ τ <: τ ′  C

Γ ⊢ e : τ ′  C[e′]

Here, a coercion context C is defined by the following grammar:

C ::= | abst C | cont C | let x : τ = C in e | e C

The syntax C[e] defines context application, where e fills the “hole” (written ) present

in the context. For the abstraction and concretion subtyping rules, the translation rules

are:
Γ, t = τ ⊢ τ <: t  abst

Γ, t = τ ⊢ t <: τ  cont

To see how this works, here is an example translation derivation using the above rules,

where Γ ≡ t = int → int, f : t:

Γ ⊢ f : t  f Γ ⊢ t <: τ  cont

Γ ⊢ f : int → int  cont f Γ ⊢ 1 : int  1

Γ ⊢ f 1 : int  (cont f) 1

Notice how on the left-hand side of the derivation we apply coercion context cont to

f to get cont f. Standard coercive subtyping relates subtyping judgements to functions,

rather than contexts, so that this application would occur at run-time, rather than during

compilation.

Making Subtyping Algorithmic

Unfortunately, the strategy described above is not directly suitable for implementation.

The problem is that neither the typing relation for expressions nor the subtyping relation

are syntax directed, meaning that many derivations are possible. This is not a merely

theoretical concern: we can observe the difference between these derivations due to the

effect of inserted cont coercions on run-time updates.

For example, assuming Γ ≡ t = τ, x : τ , we could translate the Proteussrc term x

using the following derivation:

Γ ⊢ x : τ  x
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We could also use the following derivation which uses subsumption twice:

Γ ⊢ x : τ  x Γ ⊢ τ <: t  abst

Γ ⊢ x : τ  abst x Γ ⊢ t <: τ  cont

Γ ⊢ x : τ  cont (abst x)

Because cont coercions may impede a proposed dynamic update to the type t, an update

to the first program may succeed while the second fails. Moreover, because coercions

perform computation at run time, the second program is less efficient than the first.

To remedy these problems, we make both the subtyping relation and the typing

relation deterministic. Ignoring contexts C for the moment, here is our initial subtyping

relation for Proteussrc:

(REFL)
Γ ⊢ τ <: τ

Γ, t = τ ⊢ τ <: τ ′

(CON)
Γ, t = τ ⊢ t <: τ ′

Γ, t = τ ⊢ τ ′ <: τ
(ABS)

Γ, t = τ ⊢ τ ′ <: t

Γ ⊢ τ ′
1 <: τ1 Γ ⊢ τ2 <: τ ′

2
(FUN)

Γ ⊢ τ1 → τ2 <: τ ′
1 → τ ′

2

Γ ⊢ τ1 <: τ ′
1 · · · Γ ⊢ τk <: τ ′

k k ≤ n
(REC)

Γ ⊢ {l1 : τ1, . . . , ln : τn} <: {l1 : τ ′
1, . . . , lk : τk}

We have made the standard first step of removing the transitivity rule and embedding

its action into the other rules (in this case, the abstraction and concretion rules). Two

other things are worthy of note. First, the (REFL) rule imposes an invariance restriction

on reference types (i.e., τ ref <: τ ′ ref if and only if τ and τ ′ are identical). While

such an invariance is standard, it usually does not apply when considering named types

as equal to their definition. For example, if we had Γ ≡ t = int, we might expect that

Γ ⊢ t ref <: int ref . However, when subtyping is used to add coercions, this approach

will not work: there is no way to coerce a term having the former type to one having the

latter. We have not found this to be a problem in practice.

Second, we can see that the rules (CON) and (ABS) are not syntax-directed. For

example, consider the context Γ ≡ t = int, s = t, u = s, v = t. Here are two different

derivations of the judgement Γ ⊢ u <: v, with the preferred on the left:
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Γ ⊢ t <: t

Γ ⊢ t <: v

Γ ⊢ s <: v

Γ ⊢ u <: v

Γ ⊢ t <: t

Γ ⊢ t <: int

Γ ⊢ s <: int

Γ ⊢ s <: t

Γ ⊢ u <: t

Γ ⊢ u <: v

The problem with rightmost derivation is the pointless concretion/abstraction of type

t. As we explained above this will be compiled to a coercion that will possibly inhibit

future updates and add unnecessary computation.

The (CON) and (ABS) rules capture the cases of τ <: τ ′ where one or both of τ

and τ ′ is a name. The essence of our solution to the above problem is to break down

these cases into separate rules and also to avoid unnecessary concretions/abstractions.

We replace the (CON) and (ABS) rules with the following four rules:

NotNameType(τ ′) Γ, t = τ ⊢ τ <: τ ′

(CON-C)
Γ, t = τ ⊢ t <: τ ′

NotNameType(τ ′) Γ, t = τ ⊢ τ ′ <: τ
(ABS-C)

Γ, t = τ ⊢ τ ′ <: t

Γ(t) = τ Γ(s) = τ ′ Height(t,Γ) ≥ Height(s,Γ) Γ ⊢ τ <: s
(CON-N)

Γ ⊢ t <: s

Γ(t) = τ Γ(s) = τ ′ Height(s,Γ) > Height(t,Γ) Γ ⊢ t <: τ ′

(ABS-N)
Γ ⊢ t <: s

The predicate NotNameType(τ) returns false if τ is a name and true otherwise. (CON-C)

and (ABS-C) deal with the case τ <: τ ′ where only one of τ and τ ′ is a name. However,

we still need to handle the case when they are both names, e.g. Γ, t = τ, t′ = τ ′ ⊢

t <: t′. Should we unfold the name t, or t′? To break this symmetry we make use of a

function Height , which is defined as follows:

Height(t,Γ) = 1 if Γ(t) = τ and NotNameType(τ)

Height(t,Γ) = 1 + h if Γ(t) = s and h = Height(s,Γ)
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Given a typing context Γ and name t, Height(t,Γ) returns the number of “unfoldings”

we need to make to the name until we get a type constructor. For example, given

Γ ≡ t = int, s = t, u = s, v = t then

Height(u,Γ) = 3,

Height(s,Γ) = 2,

Height(t,Γ) = 1, and

Height(v,Γ) = 2.

We can use this algorithmic subtyping relation to generate coercion contexts as shown

in Figure 5.7. As an example, we show how the derivation of u <: v from earlier would

be translated (assuming that Γ ≡ t = int, s = t, u = s, v = t).

(T.COER.REFL)
Γ ⊢ t <: t Height(v,Γ) > Height(t,Γ)

(T.COER.ABS-N)
Γ ⊢ t <: v absv Height(s,Γ) ≥ Height(v,Γ)

(T.COER.CON-N)
Γ ⊢ s <: v absv cons Height(u,Γ) ≥ Height(v,Γ)

(T.COER.CON-N)
Γ ⊢ u <: v absv cons conu

It is relatively routine to show that whilst this system limits the number of deriva-

tions, it still encodes the same subtyping relation.

5.2.1 Theorem. We refer to the subtyping relation with (CON) and (ABS) as ⊢nd and

the relation that replaces these with (CON-N), (ABS-N), (CON-C), (ABS-C) as ⊢alg . Then

Γ ⊢nd τ <: τ ′ if and only if Γ ⊢alg τ <: τ ′.

Proof. This is proved by relatively straightforward proof-theoretic techniques. ❑

Algorithmic expression typing

The final step toward a deterministic algorithm is to apply subtyping algorithmically

within the typing relation. The standard approach is to remove the subsumption rule

and incorporate it directly into the other rules, allowing subsumption only at the argu-

ment for application and for the right-most expression of an assignment. However, in the

presence of named types, this approach is insufficient for maintaining a tight correspon-

dence with the non-algorithmic relation. Consider an application e1 e2. The problem

occurs when e1 has a named type, because subsumption is not available to expand the

definition to a function type. While we cannot allow subsumption at both e1 and e2 as it
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Γ ⊢ τ <: τ ′  C

Γ ⊢ τ <: τ  
(T.COER.REFL)

NotNameType(τ ′) Γ, t = τ ⊢ τ <: τ ′  C

Γ, t = τ ⊢ t <: τ ′  C[cont ]
(T.COER.CON-C)

NotNameType(τ ′) Γ, t = τ ⊢ τ ′ <: τ  C

Γ, t = τ ⊢ τ ′ <: t (abst )[C]
(T.COER.ABS-C)

Γ(t) = τ Γ(s) = τ ′

Height(t,Γ) ≥ Height(s,Γ) Γ ⊢ τ <: s C

Γ ⊢ t <: s C[cont ]

(T.COER.CON-N)

Γ(t) = τ Γ(s) = τ ′

Height(s,Γ) > Height(t,Γ) Γ ⊢ t <: τ ′  C

Γ ⊢ t <: s (abst )[C]

(T.COER.ABS-N)

Γ ⊢ τ ′
1 <: τ1  C1 Γ ⊢ τ2 <: τ ′

2  C2

Γ ⊢ τ1 → τ2 <: τ ′
1 → τ ′

2  λ(f : τ1 → τ2).λ(x : τ ′
1).C2[f (C1[x])]

(T.COER.FUN)

Γ ⊢ τ1 <: τ ′
1  C1 · · · Γ ⊢ τk <: τ ′

k  C2 k ≤ n

Γ ⊢ {l1 : τ1, . . . , ln : τn} <: {l1 : τ ′
1, . . . , lk : τk} 

let x : {l1 : τ1, . . . , ln : τn} = in {l1 = C1[x.l1], . . . ln = Cn[x.ln]}

(T.COER.REC)

Figure 5.7: Coercion generation via the subtyping relation

would not be algorithmic, we only require unfolding, a weaker form of subsumption, at

e1.1 To this end, we introduce an unfolding judgement Γ ⊢ t ⊳ τ , that relates t and τ

if the definition t = τ holds directly or transitively, inserting an explicit concretion every

time it unfolds a named type to its definition. The unfolding judgement is then used

whenever a specific type is required in the typing judgement, i.e., in the application,

dereference, assignment, and projection rules. This relation is defined as follows:

1The alert reader may have noticed that the subtype relation is in fact sufficient to get algorithmic
behaviour at application, provided we drop the notion of applying subsumption to the arguments of func-
tions, and instead apply it to the function type. Although theoretically simpler, in practice we want to avoid
coercing functions, which is expensive. Moreover, we need the unfolding at projection and dereference in
any case, thus it seems a more general concept to apply unfolding at destruct positions — points where the
top-level structure of a value is deconstructed [BHS+03a].
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Γ ⊢ τ ⊳ τ  

Γ(t) = τ ′ Γ ⊢ τ ′ ⊳ τ  C

Γ ⊢ t⊳ τ  C[cont ]

The complete rules for the translation are given in Figures 5.7, 5.8 and 5.9. (The

normal typing rules for Proteussrc can be read from these figures by simply ignoring the

 C parts.)

5.3 Specifying Dynamic Updates

Formally, a dynamic update, upd, consists of four finite partial maps, written as a record

with the labels UN, UB, AN, and AB:

• UN (Updated Named types) is a map from type names to a pair of a type and an

expression. Each entry, t 7→ (τ, c), specifies a named type to replace (t), its new

representation type (τ), and a type transformer function c from the old represen-

tation type to the new.

• AN (Added Named types) is a map from type names t to type environments Ω,

which are lists of type definitions. This is used to define new named types. Each

entry t 7→ Ω specifies a type t in the existing program, and the new definitions Ω

are inserted just above t.

• UB (Updated Bindings) is a map from top-level identifiers to pairs of a type and

a binding value bv, which is either a function λ(x).e or a value v. These specify

replacement fun and var definitions. Each entry z 7→ (τ, bv) contains the binding

to replace (z), the type the new binding has (τ), which must be equal to the

existing type, and the new binding (bv).

• AB (Added Bindings) is a map from top-level identifiers z to pairs of types and

binding values. These are used to specify new fun and var definitions.

As an example, say we wish to modify socket handling in Figure 5.2 to include a

cookie argument for tracking security information (this was done at one point in Linux).

This requires four changes: (1) we modify the definition of sockhandler to add the ad-

ditional argument; (2) we modify the sock type to add new information (such as a

destination address for which the cookie is relevant); (3) we modify existing handlers,
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Γ ⊢ e : τ  e′

Γ ⊢ n : int  n (T.EXPR.INT)

Γ, x : τ ⊢ x : τ  x (T.EXPR.VAR)

Γ, z : τ ⊢ z : τ  z (T.EXPR.XVAR)

Γ ⊢ ei : τi  e′i (i ∈ 1..n)

Γ ⊢ {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}
 {l1 = e′1, . . . , ln = e′n}

(T.EXPR.REC)

Γ ⊢ e : τ  e′ Γ ⊢ τ ⊳ {l1 : τ1, . . . , ln : τn} C

Γ ⊢ e.li : τi  C[e′].li
(T.EXPR.PROJ)

Γ ⊢ e1 : τ  e′1 Γ ⊢ e2 : τ ′
1  e′2

Γ ⊢ τ ′
1 <: τ1  C1 Γ ⊢ τ ⊳ τ1 → τ2  C2

Γ ⊢ e1 e2 : τ2  C2[e
′
1] C1[e

′
2]

(T.EXPR.APP)

Γ ⊢ e1 : τ ′
1  e′1

Γ ⊢ τ ′
1 <: τ1  C

Γ, x : τ1 ⊢ e2 : τ2  e′2

Γ ⊢ let x : τ1 = e1 in e2 : τ2  let x : τ1 = C[e′1] in e′2

(T.EXPR.LET)

Γ ⊢ e : τ  e′

Γ ⊢ ref e : τ ref  ref e′
(T.EXPR.REF)

Γ ⊢ e : τ ref  e′

Γ ⊢ !e : τ  !e′
(T.EXPR.DEREF)

Γ ⊢ e1 : τ ref  e′1
Γ ⊢ e2 : τ ′  e′2
Γ ⊢ τ ′ <: τ  C

Γ ⊢ e1 := e2 : unit e′1 := C[e′2]

(T.EXPR.ASSIGN)

Γ ⊢ update : int update (T.EXPR.UPDATE)

Figure 5.8: Con/abs insertion for compiling Proteussrc expressions
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Γ ⊢ P : τ  P ′

Γ ⊢ τ
Γ, t = τ ⊢P P : τ  P ′

Γ ⊢P type t = τ in P : τ  type t = τ in P ′

(T.PROG.TYPE)

Γ′ = Γ, zi : τi → τ ′
i

Γ′, x : τi ⊢ ei : τ ′′
i  e′

Γ′ ⊢ τ ′′
i <: τ ′

i  C
Γ′ ⊢P P : τ  P ′

i ∈ 1..n

Γ ⊢P

fun z1(x : τ1) : τ ′
1 = e1 and . . .

fun zn(x : τn) : τ ′
n = en in P : τ  

fun z1(x : τ1) : τ ′
1 = C[e1]and . . .

fun zn(x : τn) : τ ′
n = C[en] in P ′

(T.PROG.FUN)

Γ ⊢ v : τ ′′  e′

Γ ⊢ τ ′′ <: τ ′  C
Γ, z : τ ′ ref ⊢P P : τ  P ′

Γ ⊢P var z : τ ′ = v in P : τ  var z : τ ′ = C[e′] in P ′

(T.PROG.VAR)

Γ ⊢ e : τ  e′

Γ ⊢P e : τ  e′
(T.PROG.EXPR)

Figure 5.9: Con/abs insertion for compiling Proteussrc programs
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Type well-formedness: Γ ⊢ τ

Γ ⊢ int (A.TYPE.WF.INT)

Γ ⊢ τi i ∈ 1..n

Γ ⊢ {l1 : τ1, ..., ln : τn}
(A.TYPE.WF.RECORD)

Γ ⊢ τ

Γ ⊢ τ ref
(A.TYPE.WF.REF)

Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 → τ2

(A.TYPE.WF.FUN)

t ∈ dom(Γ)

Γ ⊢ t
(A.TYPE.WF.NT)

Figure 5.10: Type well-formedness

like udp read, to add the new functionality, and (4) we modify the dispatch routine to

call the handler with the new argument. The user must provide functions to convert

existing sock and sockhandler objects.

The update is shown in Figure 5.11. The UN component specifies the new definitions

of sock and sockhandler, along with type transformer functions sockh coer and sock coer,

which are defined in AB. The AN component defines the new type cookie = int, and

that it should be inserted above the definition of sockhandler (which refers to it). Next,

UB specifies a replacement dispatch function that calls the socket handler with the extra

security cookie, which is acquired by calling a new function security info.

The AB component specifies the definitions to add. First, it specifies new handler

functions udp read′ and udp write′ to be used in place of the existing udp read and

udp write functions. The reason they are defined here, and not in UB, is that the new

versions of these functions have a different type than the old versions (they take an ad-

ditional argument). So that code will properly call the new versions from now on, the

sock coer maps between the old ones and the new ones. Thus, existing datastructures
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UN : sockhandler 7→

({sock : sock,buf : buf, sflags : sflags, cookie : cookie} → int, sockh coer)
sock 7→ ({daddr : int, . . . }, sock coer)

AN : sockhandler 7→ (cookie, int)
UB : dispatch 7→

(req → handResult,
λ(s).. . . (consockhandler h)(k, (conreq s).buf, flags, (security info ()) . . . )

AB : udp read′ 7→
({sock : sock,buf : buf, sflags : sflags, cookie : cookie} → int, λ(x).... )

udp write′ 7→
({sock : sock,buf : buf, sflags : sflags, cookie : cookie} → int, λ(x).... )

sockh coer 7→ (({sock : sock, buf : buf, sflags : sflags} → int) →
({sock : sock, buf : buf, sflags : sflags, cookie : cookie} → int),
λ(f).if f = udp read then udp read′ else if f = udp write then udp write′ )

sock coer 7→ . . .
security info 7→ (int → cookie, λ(x).. . . )

Figure 5.11: A sample update to the I/O kernel

that contain handler objects (such as the table used by getsockhandler) will be updated

to refer to the new versions. If any code in the program called udp read or udp write

directly, we could replace them with stub functions [Hic01, FS91], forwarding calls to

the new version, and filling in the added argument. Thus, Proteus indirectly supports

updating functions to new types for those rare occasions when this is necessary.

5.4 Operational Semantics

The operational semantics is defined using rewriting rules between configurations, which

are triples consisting of a type environment Ω, a heap H and an expression e, as shown

in Figure 5.12.

The type environment Ω defines a configuration’s named types. Each type in dom(Ω)

maps to a single representation τ ; some related approaches [Dug01, Hic01] would per-

mit t to map to a set of representations indexed by a version. We refer to our non-

versioned approach as being representation consistent since a running program has but

one definition of a type at any given time.

The heap H is a map from heap addresses ρ to pairs (ω, b), where ω is a type tag

and b is a binding. We use the heap to store both mutable references created with ref

and top-level bindings created with var and fun; therefore ρ ranges over locations r

and external names z. For locations, the type tag ω is simply ·, indicating the absence

of a type, and for identifiers, e.g. z, it is the type τ which appeared in the definition
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Syntax

Heap (binding) expressions b ∈ HExp ::= e | λ(x).e
Heap (binding) values bv ∈ HVal ::= v | λ(x).e
Heaps H ∈ Heap ::= ∅ | r 7→ (·, b),H | z 7→ (τ, b),H
Type environment Ω ∈ TEnv ::= ∅ | t 7→ τ,Ω
Configurations cfg ∈ CFG ::= Ω;H; e

Reduction context E ::= | {l1 = v1, . . . , li = E, . . . , ln = en}
| E.l | E e | v E | let z = E in e
| ref E | !E | E := e | r := E

| cont E | abst E

| if E = e then e else e
| if v = E then e else e

Updates

Updates U ∈ Upd ::= {UN = un,AN = an,UB = ub,
AB = ab}

Updated Named Types un ∈ NT ⇀ Typ × XVar
Additional Named Types an ∈ NT ⇀ TEnv
Additional Bindings ab ∈ XVar ⇀ Typ × HVal
Updated Bindings ub ∈ XVar ⇀ Typ × HVal

Figure 5.12: Syntax for dynamic semantics

of z in the program. Type tags are used to type check new and replacement definitions

provided by a dynamic update. As there is no type tag associated with references, there

is no runtime overhead to them. They merely act as an interface for updates.

Configuration evaluation is defined by the judgement Ω;H; e −→ Ω;H ′; e′, shown

in Figure 5.13. This judgement consists of a series of computations, the order of which

is determined by evaluation contexts. All expressions e can be uniquely decomposed

into E[e′] for some evaluation context E and e′, so the choice of computation rule is

unambiguous. A program P is compiled into a configuration Ω;H; e = C(∅; ∅;P ), as

shown at the bottom of Figure 5.13.

Next, we consider how our semantics expresses the interesting operations of dynamic

updating: (1) updating top-level identifiers z with new definitions, and (2) updating type

definitions t to have a different representation.
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Computation: H; e −→ H ′; e′

H; {l1 = v1, . . . , ln = vn}.li −→ H; vi (PROJ)

(H, z 7→ (τ, λ(x).e )); z v −→ (H, z 7→ (τ, λ(x).e )); e[v/x] (CALL)

H; let x : τ = v in e −→ H; e[x := v] (LET)

H; ref v −→ (H, r 7→ (·, v)); r (REF)

(H, ρ 7→ (ω, e)); !ρ −→ (H, ρ 7→ (ω, e)); ρ := e (DEREF)

(H, ρ 7→ (ω, e)); ρ := v −→ (H, ρ 7→ (ω, v)); v (ASSIGN)

H; if v1 = v2 then e1 else e2 −→ H; e1 (where v1 = v2) (IF-T)

H; if v1 = v2 then e1 else e2 −→ H; e2 (where v1 6= v2) (IF-F)

Configuration Evaluation: Ω;H; e
·/upd
−−−→ Ω′;H ′; e′

H; e −→ H ′; e′

Ω;H; E[e] −→ Ω;H ′; E[e′]
(CONG)

updateOK(upd,Ω,H, E[0])

Ω;H; E[update]
upd
−−→ U [ Ω ]upd;U [ H ]upd;U [ E[0] ]upd

otherwise: Ω;H; E[update]
upd
−−→ E[1]

(UPDATE)

update is not subject to closure under cong.

Compilation: C(Ω;H;P ) = Ω;H; e

C(Ω;H; e) = Ω;H; e
C(Ω;H; type t = τ in P ) = C(Ω, t = τ ;H;P )

C

(

Ω;H;

(

fun f1(x : τ1) : τ ′
1 = e1 . . .

and fn(x : τn) : τ ′
n = en in P

))

=

C(Ω;H, f1 7→ (τ1 → τ ′
1, λ(x).e1 , . . . , fn 7→ (τn → τ ′

n, λ(x).en );P )

C(Ω;H;var z : τ = v in P ) = C(Ω;H, z 7→ (τ, v);P )

Figure 5.13: Dynamic semantics for Proteuscon



5.4. OPERATIONAL SEMANTICS 137

Dynamic Updating: U [−]upd

U [ z = (τ, b),H ]upd =















z = (τ ′, b′),U [ H ]upd

if upd.UB(z) = (τ ′, b′)

z = (τ,U [ b ]upd),U [ H ]upd

otherwise

U [r = (·, b),H ]upd = (r = (·,U [b]upd)),U [H]upd

U [∅]upd = upd.AB

U [n]upd = n U [x]upd = x U [r]upd = r U [z]upd = z

U [abst e]upd =















abst (c U [e]upd)
if t 7→ (τ ′, c) ∈ upd.UN

abst U [e]upd

otherwise

For remaining b containing subterms e1, . . . , en: U [b]upd = b with U [e1]
upd . . .U [en]upd

Figure 5.14: U [−]− definition for heaps and expressions

5.4.1 Replacing Top-level Identifiers

A top-level identifier z from the source program is essentially a statically-allocated refer-

ence cell. As a result, at update-time we can change z’s binding in the heap; afterwards

any code that accesses (dereferences) z will see the new version. However, our treatment

of references differs somewhat from the standard one to facilitate dynamic updates.

First, since all functions are defined at the top-level, they are all references. However,

rather than give top-level functions the type (τ1 → τ2) ref , we simply give them type

τ1 → τ2, and perform the dereference as part of the (CALL) rule. This has the pleasant

side effect of rendering top-level functions immutable during normal execution, as is

typical, while still allowing them to be dynamically updated.

Second, as we have explained already, top-level bindings stored in the heap are

paired with their type τ to be able to type check new and replacement bindings. Some

formulations of dynamic linking define a heap interface, which maps variables z to types

τ , but we find it more convenient to merge this interface into the heap itself.
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U [Γ]upd

U [∅]upd = types(upd.AB)

U [x : τ,Γ]upd = x : τ,U [Γ]upd

U [r : τ,Γ]upd = r : τ,U [Γ]upd

U [z : τ,Γ]upd =

{

z : heapType(τ ′, bv),U [Γ]upd if upd.UB(z) = (τ ′, bv)

z : τ,U [Γ]upd otherwise

U [t = τ,Ω]upd =

{

upd.AN(t),Ω′ if t ∈ dom(upd.AN)
Ω′ otherwise

where Ω′ =



















t = τ ′,U [Ω]upd

if upd.UN(t) = (τ ′, )

t = τ,U [Ω]upd

otherwise

U [Ω]upd

U [∅]upd = ∅

U [t = τ,Ω]upd =

{

upd.AN(t),Ω′ if t ∈ dom(upd.AN)
Ω′ otherwise

where Ω′ =



















t = τ ′,U [Ω]upd

if upd.UN(t) = (τ ′, )

t = τ,U [Ω]upd

otherwise

The case for named type lists (Ω̂) is the same

Figure 5.15: U [−]− definition for contexts
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5.4.2 Updating Data of Named Type

As discussed in §5.1, Proteuscon uses coercions to identify where data of a type t is being

used abstractly and concretely. The (CONABS) rule allows an abstract value abst v to be

used concretely when it is provided to cont; this annihilates both coercions so that v can

be used directly.

At update time, given a type transformation function c for an updated type t, we

rewrite each occurrence abst e to be abst (c e). Although only values can be stored

in the heap initially, heap values of the form abst v will be rewritten to be abst (c v),

which is no longer a value. Therefore, !r can potentially dereference an expression from

the heap. While this is not a problem in itself, the transformation should be performed

only once since it conceptually modifies the data in place. Therefore, the (DEREF) rule

evaluates the contents of the reference and then writes back the result before proceeding.

Whether the coercions be in the heap or the program, when they are executed is (for

all intents are purposes) unpredictable. As a result, coercions should be written to act

locally and avoid side-effecting computation. One could imagine enforcing this, but we

do not do so here.

5.4.3 Update Semantics

A dynamic update upd is modelled with a labelled transition, where upd labels the ar-

row. When no update is available, an update expression simply evaluates to 1, by (NO-

UPDATE). Otherwise, (UPDATE) specifies that if upd is well-formed (by updateOK(−)),

the update evaluates to 0, and the program is updated by transforming the current type

environment, heap, and expression according to U [−]upd. This transformation is defined

in Figures 5.14 and 5.15. When transforming expressions, U [−]upd applies type transfor-

mation functions to all abst e expressions of a named type t that is being updated. When

transforming the heap, it replaces top-level identifier definitions with their new versions,

and adds all of the new bindings. When transforming Ω (Figure 5.15), it replaces type

definitions with their new versions, and inserts new definitions into specified slots in the

list.

5.5 Update Safety

The conditions placed upon an update to guarantee type-safety are formally expressed by

the precondition to the (UPDATE) rule given in Figure 5.16. The updateOK(−) predicate

must determine that it is valid to apply the update at the current point —a dynamic
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updateOK(upd,Ω,H, e)

updateOK(upd,Ω,H, e) =

conFree[ H ]upd∧

conFree[ e ]upd∧
Γ = types(H)∧

⊢ U [Ω]upd∧

∀t 7→ (τ, c) ∈ upd.UN. U [Ω,Γ]upd ⊢ c : Ω(t) → τ∧

∀z 7→ (τ, bv) ∈ upd.UB. U [Ω,Γ]upd ⊢ bv : τ∧
heapType(τ, bv) = Γ(z)∧

∀z 7→ (τ, bv) ∈ upd.AB. U [Ω,Γ]upd ⊢ bv : τ ∧ z /∈ dom(H)

conFree[− ]upd = tt | ff

conFree[ z = (τ, b),H ]upd

= conFree[ H ]upd ∧

{

tt if z ∈ dom(upd.UB)

conFree[ b ]upd otherwise

conFree[ r = (·, e),H ]upd = conFree[ e ]upd ∧ conFree[H ]upd

conFree[n ]upd = tt conFree[ x ]upd = tt

conFree[ cont e ]upd =

{

ff if t ∈ dom(upd.UN)
tt otherwise

For remaining b containing subterms e1, . . . , en:

conFree[ e ]upd =
∧

i conFree[ ei ]
upd

types(H) = Φ

types(∅) = ∅
types(z 7→ (τ → τ ′, λ(x).e ),H ′) = z : τ → τ ′, types(H ′)
types(z 7→ (τ, e),H ′) = z : τ ref , types(H ′)

heapType(τ, bv) = tt | ff

heapType(τ1 → τ2) = τ1 → τ2

heapType(τ) = τ ref where τ 6= τ1 → τ2

Figure 5.16: updateOK(−), conFree[− ]−, types(−) and heapType(τ, bv) definitions
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property—and that the update is compatible with the program. The latter is a static

property, in the sense that the information to perform it is available without recourse to

the current state of the program, provided one has the original source and the updates

previously applied.

let i = post (
let u2 = update in

let res = (consockhandler abssockhandler udp read)
{sock = vsock, buf = (conreq vreq).buf ,
sflags = vsflags} in

let u3 = update in res
) in loop i

Figure 5.17: Example active expression

5.5.1 Update Timing

To clarify the importance of timing, Figure 5.17 shows the expression fragment of our

example program after some evaluation steps (the outer let i = . . . binding comes

from loop and the argument to post is the partially-evaluated dispatch function). The

let u2 = update . . . is in redex position, and suppose that the update described in

§5.3 is available, which updates sockhandler to have an additional cookie argument,

amongst other things. If this update were applied, the user’s type transformer sockh coer

would be inserted to convert udp read and would be called next. Evaluating the trans-

former replaces udp read with udp read′, and applying (CONABS) yields the expression

udp read′(vsock, (conreq vreq).buf, vsflags). But this would be type-incorrect! The new

version udp read′ expects a fourth argument, but the existing call only passes three ar-

guments.

The problem is that at the time of the update the program is evaluating the old

version of dispatch, which expects sockhandler values to take only three arguments. That

is, this point in the program is not “con-t-free” since it will manipulate t values concretely.

This fact is made manifest by the usage of consockhandler in the active expression. In

general, we say a configuration Ω;H; e is con-free for an update upd if for all named

types t that the update will change, cont is not a subexpression of the active expression

e or any of the bindings in the heap that are not replaced by the update. We write this

as conFree[− ]upd; the definition is given in Figure 5.16.

Two other points are worth noting in the example. First, the active expression only

uses instances of handResult abstractly after the update (passing them to post), and so,
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should we wish, handResult could be modified (assuming that post is modified as well).

Second, the given update is only unsafe at the first update point; it could be safely

applied at let u3 = update . . ., since at that point there are no further concrete uses of

any of the changed types.

5.5.2 Update well-formedness

The conditions for update well-formedness are part of the updateOK(−) predicate, de-

fined in Figure 5.16. In addition to checking proper timing with the conFree[− ] checks,

this predicate ensures that type-safety is maintained following the addition or replace-

ment of code and types. The types(H) predicate extracts all of the type tags from H

and constructs a suitable Γ for typechecking the new or replacement bindings. Since

heap objects are stored with their declared type τ , if they are non-functions then in Γ

they are given type τ ref . Next, the updated type environment U [Ω]upd is checked for

well-formedness. Then, using the updated Ω and Γ, we check that the type transformer

functions, replacement bindings and new bindings are all well-typed. These type-checks

apply only to expressions contained in the update—none of the existing code must be

rechecked (though its types, as stored in the heap, are needed to check the new code).

5.6 Properties

Proteuscon enjoys an essentially standard type safety result. To state it we need a no-

tion of configuration typing. This is expressed by the judgements ⊢ Ω;H; e : τ and

Ω;Φ ⊢ H, defined in Figures 5.19 and 5.18 respectively. Configuration well-formedness

is predicated on the existence of some Φ, called the heap interface, that properly maps

external names z and references r to types τ . That is, a configuration is well-formed as

long as there exists some Φ sufficient to type check the heap (Ω;Φ ⊢ H) and to type

check the active expression. Note that we write Ω,Φ to denote the concatenation of the

heap interface and the configuration type environment, which defines the Γ used to type

check the active expression e.

The definition of heap typing is shown at the bottom of Figure 5.19. It establishes

two facts: (1) each of the types in Φ accurately represents the types of the bindings

found in H; (2) each of the bindings in the heap type checks under Φ and the current

type environment Ω. For functions, we type check with the updateability indicated by

the function’s type, while for other bindings we assume N. Note that the approach of

assuming the existence of a Φ, is necessary to allow cycles in the reference graph.
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Type list: Ω ⊢ Ω

Note: we overload notation. When Ω is on the lhs of ⊢ it is a finite partial function
and on the rhs it is a list

Ω ⊢ ∅ (A.TYPE.TENV.EMPTY)

Ω, t = τ ⊢ Ω′ Ω ⊢ τ

Ω ⊢ t = τ,Ω′
(A.TYPE.TENV.DEF)

Figure 5.18: Type environment well-formedness definition

Configuration typing: Γ ⊢ Ω;H, e : τ

⊢ Ω Ω;Φ ⊢ H
Ω,Φ ⊢ e : τ

⊢ Ω;H; e : τ

Heap typing: Ω;Φ ⊢ H

dom(Φ) = dom(H)
∀z 7→ (τ → τ ′, λ(x).e ) ∈ H.

Ω,Φ, x : τ ⊢ e : τ ′ ∧ Φ(z) = τ → τ ′

∀z 7→ (τ, e) ∈ H.
Ω,Φ ⊢ e : τ ∧ Φ(z) = τ ref

∀r 7→ (·, e) ∈ H.
Ω,Φ ⊢ e : τ ∧ Φ(r) = τ ref

Ω;Φ ⊢ H

Figure 5.19: Configuration and heap typing

The type environment Ω must be consistent. This is particularly important when an

update is applied as we must ensure that the resulting type environment is valid. The

rules in Figure 6.2 ensure this by requiring all types mentioned in other types to be both

defined and linearly orderable (non-recursive). However, it is not hard to add recursive

types to our system (see Section 6.6.2)
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5.6.1 Theorem (Type safety). If ⊢ Ω;H; e : τ then either

1. Ω;H; e → Ω′;H ′; e′ and ⊢ Ω′;H ′, e′ : τ for some Ω′,H ′ and e′; or

2. e is a value

This theorem states that a well-typed program is either a value, or is able to reduce (and

remain well-typed), or terminates abruptly due to a failed dynamic update. The most

interesting case in proving type preservation is the update rule, for which we must

prove a lemma that well-formed and well-timed updates lead to well-typed programs:

5.6.2 Lemma (U [− ]− preserves types of programs). Given ⊢ Ω;H; e and an update,

upd, for which we have updateOK(upd,Ω,H, e), then ⊢ U [ Ω ]upd;U [ H ]upd,U [ e ]upd :

τ .

Proof sketches appear in Appendix A.

5.7 Conclusion

In this chapter we have presented Proteus, a simple calculus for modelling type-safe dy-

namic updates in C-like languages. To ensure that updates are type-safe in the presence

of changes to named types, Proteus exploits the idea of “con-t-freeness”: a given update

point is con-t-free if the program will never use a value of type t concretely at its old

representation from then on. The solution we presented is based on explicit coercions

from named types to their representations. We gave a fully automatic and deterministic

way to insert such coercions based on coercive subtyping and showed that the resulting

notion of con-freeness can be checked dynamically.



6
Update Capability Analysis

Type safety for the system described in Chapter 5 is predicated on a dynamic con-free

check. Unfortunately, the unpredictability of this dynamic con-free check could make it

hard to tell whether an update failure is transient (meaning the update is not valid in

this program state) or permanent (meaning the update is invalid in all program states),

since the dynamic check is for a particular program state. Rather, we would prefer to

reason about update behaviour statically, to (among other things) assess whether there

are enough update points.

This chapter introduces a way to statically determine which types are updatable at

each update point as an analysis on Proteuscon programs. For each update expression,

we estimate those types t for which the program may not be con-t-free. We annotate the

update with those types, and at run time ensure that any dynamic update at that point

does not change them. This is both simpler than the con-free dynamic check and more

predictable. In particular, we can automatically infer those points at which the program

is con-free for all types t, precluding dynamic failure. In other words, we eliminate

the need for conFree[− ] and we make the update behaviour of the program easier to

reason about, since many acceptable update points are known statically. We present the

updateability analysis as a type and inference system, and establish its soundness.

6.1 Capabilities

Our goal is to define and enforce a notion of con-freeness for a program, rather than a

program state. In other words, we wish to determine for a particular update whether

145
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Capabilities ∆ ::= {t1, . . . tn} | ∆ ∩ ∆

Updateability µ ::= U | N

Types τ ::= · · · | τ
µ;∆
−→ τ

Expressions e ::= · · · | update∆

Programs P ::= · · · | fun z1
µ1;∆1;∆′

1(x : τ1) : τ ′
1 = e1 and . . .

fun zn
µn;∆n;∆′

n(x : τn) : τ ′
n = en in P

Heap expressions b ::= e | λ∆(x).e
Heap values bv ::= v | λ∆(x).e

Figure 6.1: Extended syntax for Proteus∆

it will be acceptable to update some type t. An update to t will be unacceptable if an

occurrence of cont exists in any old code evaluated in the continuation of the update.

Assuming we can discover all such occurrences of cont, we annotate update with those

types t, indicating that they should not be updated. To determine this we associate a pre

and post capability with every syntactic constructor of the language. A capability is a set

of named types denoted ∆ with the informal meaning that whenever t is in the capability

then values of type t can be concreted. The annotation on update points has a negative

effect on the post capability associated with it since it serves as a bound on what types

may be used concretely in the continuation of the update. That is, any code following

an update must type check with the capability of the annotation on update. Since an

update could change only types not in the capability, we are certain that existing code

will remain type-safe. As a consequence, if we can type-check our program containing

only update points with empty annotations, we can be sure that no update will fail due

to bad timing, i.e. if an update succeeds at one update point then it will succeed at all.

6.2 Typing

We define a capability type system that tracks the capability at each program point to

ensure that updates are annotated soundly. To do this, we introduce a new language,

Proteus∆, that differs from Proteus only in that types, functions, and update are an-

notated with capabilities. The syntax changes are given in Figure 6.1. We must also

adjust compilation (defined in Figure 5.13) in the case of functions to add the necessary
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Expression Typing: ∆;Γ ⊢µ e : τ ;∆′

∆;Γ ⊢µ n : int;∆ (A.EXPR.INT)

Γ(x) = τ

∆;Γ ⊢µ x : τ ;∆
(A.EXPR.VAR)

Γ(z) = τ

∆;Γ ⊢µ z : τ ;∆
(A.EXPR.XVAR)

Γ(r) = τ ref

∆;Γ ⊢µ r : τ ref ;∆
(A.EXPR.LOC)

∆i; Γ ⊢µ ei+1 : τi+1;∆i+1 i ∈ 1..(n − 1) n ≥ 0

∆0; Γ ⊢µ {l1 = e1, . . . , 1n = en} : {l1 : τ1, . . . , ln : τn};∆n

(A.EXPR.RECORD)

∆;Γ ⊢µ e : {l1 : τ1, . . . , ln : τn};∆
′

∆;Γ ⊢µ e.li : τi;∆
′

(A.EXPR.PROJ)

∆;Γ ⊢µ e1 : τ1
µ̂;∆̂
−→ τ2;∆

′

∆′; Γ ⊢µ e2 : τ1;∆
′′ ∆′′′ ⊆ ∆′′

µ̂ ≤ µ µ̂ = U =⇒ ∆′′′ ⊆ ∆̂

∆; Γ ⊢µ e1 e2 : τ2;∆
′′′

(A.EXPR.APPU)

∆;Γ ⊢µ e : τ ;∆1 ∆1; Γ ⊢µ e′ : τ ;∆2

∆2; Γ ⊢µ e1 : τ ′;∆3 ∆2; Γ ⊢µ e2 : τ ′;∆4

∆;Γ ⊢µ if e = e′ then e1else e2 : τ ′;∆3 ∩ ∆4

(A.EXPR.IF)

∆;Γ ⊢µ e1 : τ ′
1;∆

′

∆′; Γ, x : τ1 ⊢µ e2 : τ2;∆
′′

∆;Γ ⊢µ let x : τ = e1 in e2 : τ2;∆
′′

(A.EXPR.LET)

∆;Γ ⊢µ e : τ ;∆′

∆;Γ ⊢µ ref e : τ ref ;∆′
(A.EXPR.REF)

Figure 6.2: Expression judgements for updateability analysis (part I)



148 6. UPDATE CAPABILITY ANALYSIS
∆;Γ ⊢µ e : τ ref ;∆′

∆;Γ ⊢µ !e : τ ;∆′
(A.EXPR.DEREF)

∆;Γ ⊢µ e1 : τ ref ;∆′

∆′; Γ ⊢µ e2 : τ ;∆′′

∆;Γ ⊢µ e1 := e2 : unit;∆′′

(A.EXPR.ASSIGN)

∆′ ⊆ ∆

∆;Γ ⊢U update∆′
: int;∆′

(A.EXPR.UPDATE)

∆′ ⊆ ∆ ∆′; Γ ⊢U e1 : τ ′;∆1 ∆;Γ ⊢U e2 : τ ′;∆2

∆;Γ ⊢U if update∆′
= 0 then e1else e2 : τ ′;∆1 ∩ ∆2

(A.EXPR.IFUPDATE)

∆;Γ ⊢µ e : t;∆′ Γ(t) = τ t ∈ ∆′

∆;Γ ⊢µ cont e : τ ;∆′
(A.EXPR.CON)

∆;Γ ⊢µ e : τ ;∆′ Γ(t) = τ

∆;Γ ⊢µ abst e : t;∆′
(A.EXPR.ABS)

∆;Γ ⊢µ e : τ ′;∆′ Γ ⊢ τ ′ <: τ ∆′′ ⊆ ∆′

∆;Γ ⊢µ e : τ ;∆′′
(A.EXPR.SUB)

Figure 6.3: Expression judgements for updateability analysis (part II)
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annotation on the generated binding and type:

C

(

Ω;H;
fun f1

µ1;∆1;∆′
1(x : τ1) : τ ′

1 = e1 and

fun fn
µn;∆n;∆′

n(x : τn) : τ ′
n = en in P

)

=

C(Ω;H, f1 7→ (τ!
µ1;∆′

1−→ τ ′
1, λ

∆1(x).e1 , . . . fn 7→ (τn
µn;∆′

n−→ τ ′
n, λ∆n(x).en );P )

For the remainder of this section, we consider the type system for Proteus∆, covering

judgements for expressions, programs, and configurations.

6.2.1 Expression Typing

The rules for typing expressions are given in Figures 6.2 and 6.3, defining judgement

∆;Γ ⊢µ e : τ ;∆′. This can be read as with capability ∆ in the environment Γ and

updateability µ expression e has type τ and results in capability ∆′. We call ∆ the

precapability and ∆′ the postcapability. The updateability µ that parametrises each rule

indicates whether that expression may cause a dynamic update, U indicating updates

may occur and N indicating that they may not. Updateabilities are used to rule out

dynamic updates in undesirable contexts, as we explain in the next subsection.

Typing update and cont e

The capability ∆′ on update∆′
lists those types that must not change due to a dynamic

update. Since any other type could change, the (A.EXPR.UPDATE) rule assumes that the

capability can be at most ∆′ following the update. The (A.EXPR.CON) rule states that to

concretely access a value of type t, the type t must be defined in Γ and also appear in

the capability ∆′.

To type check dispatch in Figure 5.3, we must annotate the update in let u1 =

update in ... with a capability {fdtype, req, sockhandler}, since these types are used

by con expressions following that point within dispatch. By the same reasoning, the

annotation on the u2 update would be {req, sockhandler}, and the u3 update annotation

can be empty. The (A.EXPR.UPDATE) rule requires updateability U; updates cannot be

performed in a non-updatable (N) context.

The (A.EXPR.UPDATE) rule assumes that any update could result in an update at

run time. However, we can make our analysis more precise by incorporating the effects

of a dynamic check. In particular, (A.EXPR.IFUPDATE) checks conditional statements,

if e then e1else e2, when the guard e is update∆′
= 0, which will be true only if an
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update takes place at run time. Therefore, the input capability of e1 is ∆′, while the

input capability of e2 is ∆.

Function calls

Function types have an annotation µ; ∆̂, where ∆̂ is the output capability. If calling a

function could result in an update, the updateability µ must be U. Returning to our moti-

vating example in Figure 5.3 and using the annotations on update mentioned above the

type for dispatch would be req
U;∅
−→ handResult. In the (A.EXPR.UPDATE) rule, the output

capability is bounded by the annotation on the update; in the (A.EXPR.APP) rule, if the

callee can perform an update then the caller’s output capability ∆′′′ is bounded by the

callee’s output capability ∆̂′ for the same reason. This is expressed in the conditional

constraint µ̂ = U =⇒ ∆′′′ ⊆ ∆̂. The updateability constraint µ̂ ≤ µ can be read as, if

the callee cannot perform an update (µ = N) then it cannot call a function that causes

one (µ̂ 6= U). Whenever the called function cannot perform an update, the rule places

no restriction on the caller’s capability or updateability. We will take advantage of this

fact in how we define type transformer functions, described below.

A perhaps interesting effect of (A.EXPR.APP) is that a function f ’s output capability

must mention those types used concretely by its callers following calls to f. To illustrate,

say we modify the type of post in Figure 5.2 to be int → int rather than handResult → int.

As a result, loop would have to concrete the handResult returned by dispatch before

passing it to post, resulting in the code

let i = post (conhandResult (dispatch req))...

To type check the con would require the output capability of dispatch to include

handResult, which in turn would require that handResult appear in the capabilities of

each of the update points in dispatch, preventing handResult from being updated.

Another unintuitive aspect of (A.EXPR.APP) is that to call a function, we would ex-

pect that the caller’s capability must be compatible with (i.e., must be a superset of) the

function’s input capability, but this condition is not necessary. Instead, the type system

assumes that all calls will be to a function’s most recent version, which will be guar-

anteed at update-time to be compatible with the program’s type definitions (see §6.3).

In effect, the type system approximates, for a given update point, the concretions in

code that an updating function could return to, but not code it will later call, which is

guaranteed to be safe. This is critical to avoid restricting updates unnecessarily.
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Γ ⊢ int <: int (A.SUB.INT)

Γ(t) = τ

Γ ⊢ t <: t
(A.SUB.NT)

Γ ⊢ τ2 <: τ1 Γ ⊢ τ ′
1 <: τ ′

2

∆2 ⊆ ∆1 µ1 ≤ µ2

Γ ⊢ τ1
µ1;∆1
−→ τ ′

1 <: τ2
µ2;∆2
−→ τ ′

2

(A.SUB.FUN)

τ1 <: τ ′
1 i ∈ 1..n

{l1 : τ1, . . . , ln : τn} <: {l1 : τ ′
1, . . . , ln : τ ′

n}
(A.SUB.RECORD)

Γ ⊢ τ <: τ ′ Γ ⊢ τ ′ <: τ

Γ ⊢ τ ′ ref <: τ ref
(A.SUB.REF)

Figure 6.4: Subtyping judgement for updatability analysis

Other Rules

Unlike cont e expressions, abst e expressions place no constraint on the capability (see

rule (A.EXPR.ABS)). This is because a dynamic update that changes the definition of t

from τ to τ ′ requires a well-typed type transformer c to rewrite abst e to abst (c(e)),

which will always be well-typed assuming suitable restrictions on c to be described in

section 6.3.

Subtyping

The type system permits subtyping via the (A.EXPR.SUB) rule, which also permits coars-

ening (making smaller) of the output capability ∆. Intuitively, this coarsening is always

sound because it will put a stronger restriction on limits imposed by prior updates. The

subtyping rules shown in Figure 6.4 adds flexibility to programs and to their updates.

The interesting rule is (A.SUB.FUN) for function types. Output capabilities are contravari-

ant: if a caller expects a function’s output capability to be ∆, it will be a conservative

approximation if the function’s output capability is actually larger. A function that per-

forms no updates can be used in place of one that does, assuming they have compatible

capabilities.
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Why a Capability Type System and Not an Effect System?

A type system defines a relation ⊢ that in its simplest form is a tertiary relation be-

tween contexts, expressions and types. An effect system makes this a quaternary rela-

tion between contexts, expressions, types and effects. A capability type system makes

this a quintuple relation between contexts, expressions, types, pre-capabilities and post-

capabilities. As tuples of a given size are isomorphic up to permutations in the order,

an effect system with two effect sets is isomorphic to a capability type system. The

point being that, semantically, it does not matter whether we write ∆;Γ ⊢ e : τ ;∆′ or

Γ ⊢ e : τ ;∆;∆′. Thus the question of why do we need a capability type system instead

of an effect system is reduced to why we need two effects.

The objective of our type system is to check whether prohibiting the change of a

given set of types at a particular update point is sufficient to ensure safety. To do this

we must know the types that might be updated, as these types must not be concreted

by subsequent execution that assumes the pre-update representation. In order to ensure

this latter condition we must know the types used concretely by an expression. Thus, we

need to know two pieces of information, the types updated by an expression and those

concreted by it. Hence two effect sets.

Instead of thinking in terms of effects, we choose two think in terms of capabilities,

believing it more intuitive. As we have seen so far in this chapter, we still associate

two sets with an expression, but they stand for the types that can be concreted (∆) and

those that the expression does not update (∆′). The set ∆ tells us something about

the environment, so we write it on the left of the turnstyle, as these usually denote

properties of the environment. The set ∆′ tells us something about the expression under

consideration and so we write it on the right, as objects on the right usually tell us

something about the expression.

6.2.2 Program Typing

The rules for typing programs are given in Figure 6.5, defining the judgement Γ ⊢P

P : τ . The (A.PROG.TYPE) rule adds a new type definition to the global environment,

and the (A.PROG.FUN) rule simply checks the function’s body using the capabilities and

updateability defined by its type. Since v is a value and cannot effect an update, the

(A.PROG.VAR) rule checks it with an empty capability ∆ and updateability N. Finally, the

(A.PROG.EXPR) rule type checks the body of the program using an arbitrary capability

and updateability U to allow updates.
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Program Typing: Γ ⊢P P : τ

Γ, t = τ ′ ⊢P P : τ
Γ ⊢ τ ′

Γ ⊢P type t = τ ′ in P : τ

(A.PROG.TYPE)

Γ′ = Γ, z1 : τ1
µ1;∆′

1−→ τ ′
1, . . . , zn : τ1

µn;∆′
n−→ τ ′

n

∆;Γ′, x : τi ⊢µ ei : τi;∆
′ i ∈ 1..n Γ′ ⊢P P : τ

Γ ⊢P
fun z

µ1;∆1;∆′
1

1 (x : τ1) : τ ′
1 = e1 . . .

and z
µn;∆n;∆′

n
n (x : τn) : τ ′

n = en in P : τ

(A.PROG.FUN)

∅; Γ ⊢N v : τ ′; ∅ Γ, z : τ ′ ref ⊢P P : τ

Γ ⊢P var z : τ ′ = v in P : τ
(A.PROG.VAR)

∆;Γ ⊢U e : τ ;∆′

Γ ⊢P e : τ
(A.PROG.EXPR)

Figure 6.5: Program judgements for updatability analysis

6.2.3 Configuration Typing

To prove soundness syntactically (Section B), we need typing judgements to express the

well-formedness of configurations. The well-formedness judgement is that of Figure 5.18

from the previous chapter. Configuration typing is altered to take account of capabilities

but otherwise remains unchanged and is given in Figure 6.6.

6.3 Operational Semantics

The dynamic semantics from Figure 5.13 remains unchanged with the exception of the

updateOK(−) predicate for (UPDATE), shown in Figure 6.7. The two timing-related

changes are highlighted by the boxes labelled (a) and (b). First, ∆, taken from update∆,

replaces e as the last argument. This is used in (a) to syntactically check that no types

mentioned in ∆ are changed by the update. Change (a) also refers to bindOK[ Γ ]upd
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Configuration typing: Γ ⊢ Ω;H, e : τ

⊢ Ω Ω;Φ ⊢ H
∆;Ω,Φ ⊢U e : τ ;∆′

⊢ Ω;H; e : τ

(A.TYPE.CONFIG)

Heap typing: Ω;Φ ⊢ H

dom(Φ) = dom(H)

∀z 7→ (τ
µ;∆′

−→ τ ′, λ∆(x).e ) ∈ H.

∆;Ω,Φ, x : τ ⊢µ e : τ ′;∆′ ∧ Φ(z) = τ
µ;∆′

−→ τ ′

∀z 7→ (τ, e) ∈ H.
∅; Ω,Φ ⊢N e : τ ; ∅ ∧ Φ(z) = τ ref

∀r 7→ (·, e) ∈ H.
∅; Ω,Φ ⊢N e : τ ; ∅ ∧ Φ(r) = τ ref

Ω;Φ ⊢ H

(A.TYPE.HEAP)

Figure 6.6: Configuration typing

to ensure that all top-level bindings in the heap that use types in upd.UN concretely,

as indicated by their input capability, are also replaced. This allows the type system

to assume that calling a function is always safe, and need not impact its capability.

Together, these two checks are analogous to the con-free dynamic check to ensure proper

timing.1

Type transformers provided for updated types must not, when inserted, violate as-

sumptions made by the updateability analysis. In particular, each abst e appearing in the

program type checks with some capability prior to an update, i.e., ∆;Γ ⊢µ abst e : τ ;∆′.

If type t is updated with transformer c, we require ∆;Γ ⊢µ abst (c e) : τ ;∆′. Since abst e

expressions could be anywhere at update time, and could require a different capability

∆ to type check, condition (b) conservatively mandates that transformers c must check

in an empty capability, and may not perform updates (c’s type must have updateability

N). These conditions are sufficient to ensure type correctness. Otherwise, a transformer

function c is like any other function. For example, if it uses some type t concretely, it will

have to be updated if t is updated. The ramifications of this fact are explored in §6.6.

1Note that we could combine this with the con-free dynamic check as follows: let UN′ = UN restricted
to those types in ∆. If UN′ is non-empty, and con-free check using UN′ succeeds, then the update is safe.
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updateOK(upd, Ω, H, ∆) =
Γ = types(H)∧

dom(∆) ∩ dom(upd.UN) = ∅ ∧ bindOK[H ]
upd

(a)

∧

⊢ U [Ω]
upd∧

∀t 7→ (τ, c) ∈ upd.UN. ∃∆′, ∆′′.

∅;U [Ω, Γ]
upd ⊢N c : Ω(t)

N;∆′;∆′′

−→ τ ; ∅

(b)

∧

∀z 7→ (τ, bv) ∈ upd.UB. U [Ω, Γ]upd ⊢ bv : τ∧

U [Ω]
upd ⊢ heapType(τ, bv) <: Γ(z)

(c)

∧

∀z 7→ (τ, bv) ∈ upd.AB. U [Ω, Γ]
upd ⊢ bv : τ ∧ z /∈ dom(H)

bindOK[H ]
upd

= tt | ff

bindOK[ ∅ ]
upd

= tt

bindOK

[

z 7→ (τ1
µ;∆′

−→ τ2, λ
∆(x).e ), H ′

]upd

= bindOK[H ′ ]
upd∧

(dom(upd.UN) ∩ ∆ 6= ∅) =⇒ z ∈ dom(upd.UB)

bindOK[ z 7→ (τ, b), H ′ ]upd = bindOK[H ′ ]upd ∧ τ 6= τ1
µ;∆′

−→ τ2

bindOK[ r 7→ (·, b), H ′ ]
upd

= bindOK[H ′ ]
upd

Figure 6.7: Precondition for update∆ operational rule

Finally, we allow bindings to be updated at subtypes, as indicated by condition (c).

This is crucial for functions, because as they evolve over time, it is likely that their capa-

bilities will change depending on what functions they call or what types they manipulate.

Fortunately, we can always update an existing function with a function that causes no

updates. In particular, say function f has type t
U;{t,t′}
−→ t′, where t = int and t′ = int.

Imagine we add a new type t′′ = int and wish to replace f with the following:

fun f(x : t) : t′ =

let y = cont′′ (abst′′ 1) in

let z = cont x in abst′ (z + y)

The expected type of this function would be t
N;{t,t′′}
−→ t′, but it could just as well be given

type t
U;{t,t′,t′′}
−→ t′, which is a subtype of the original, and thus an acceptable replacement.

Replacements that contain update or call functions that contain update are more rigid
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in their capabilities. We expect that experimenting with an implementation of Proteus

will help us understand how this fact affects a program’s potential for being updated

over time.

6.3.1 Phase Order

The key advantages of Proteus∆ over Proteus are two-fold. First, the updatability of a

program can be assessed before the program is run, avoiding the possibility of writing

a program only to discover later, at runtime, that no updates are valid. The second

advantage over Proteus programs comes from a change in the phase order. In proteus,

all of the updateOK predicate has to be checked at runtime. However, in Proteus∆ all but

the bindOK clause of updateOK can be checked off-line. In order to do this we have only

to assume knowledge of the typing of the original program and the particular update

point at which the update will be applied. In practice, the ability to perform the majority

of checks off-line will significantly ease development of updatable programs.

6.4 Inference

It is straightforward to construct a type inference algorithm for our capability type sys-

tem. In particular, we simply extend the definition of capability ∆ to include variables

written ϕ and updateability µ to include variables ε. Then we take a normal Proteus

program and decorate it with fresh variables on each function definition, function type,

and update expression in the program. We also adjust the rules to use an algorithmic

treatment of subtyping, eliminating the separate (A.EXPR.SUB) rule and adding subtyp-

ing preconditions to the (A.EXPR.APP) and (A.EXPR.ASSIGN) rules as is standard. This

allows the expression typing and subtyping judgement to be syntax-directed.

As a result of these changes, conditions imposed on capability variables by the typing

and subtyping rules become simple set and term constraints [Hei92]. We begin with a

typing derivation and extract any constraints generated by the expression or subtyping

rules used. For example, say we use the function subtyping rule in the derivation to

deduce

Γ ⊢ τ1
ε1;ϕ1
−→ τ ′

1 <: τ2
ε2;ϕ2
−→ τ ′

2
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then we introduce the constraints

Γ ⊢ τ2 <: τ1

Γ ⊢ τ ′
1 <: τ ′

2

ϕ2 ⊆ ϕ1

ε1 ≤ ε2

where the subtype constraints expand themselves to more basic constraints. All of the

final constraints are of one of the following forms.

Updatability constraints ε = U and µ ≤ µ′

Implicational constraints µ = U =⇒ C

Capability constraints ϕ ⊆ ∆ and t ∈ ∆.

A solution consists of a substitution σ, which is a map from variables ϕ to capabilities

{t1, . . . , tn}, and from variables ε to updateabilities either U or N. The constraints can

be solved efficiently with standard techniques in time O(n3) in the worst case (but far

better on average), where n is the number of variables ϕ or set constants {·} mentioned

in the constraints.

For updateabilities, we want the greatest solution; that is, we want to allow as many

functions as possible to perform updates (with an unannotated program, this will vacu-

ously be the case). For the capabilities, we are interested in the least solution, in which

we minimise the set to substitute for ϕ, since it will permit more dynamic updates. For

updateϕ, a minimal ϕ imposes fewer restrictions on the types that may be updated at

that point. For functions τ
ε;ϕ′

−→ τ ′, the smaller ϕ′ imposes fewer constraints on subtypes,

which in turn permits more possible function replacements.

Algorithmically, constraint solving proceeds as follows. First, we find the greatest

solution for the updatability constraints. This gives the greatest flexibility when applying

future updates as functions that perform update can be replaced with those that cannot;

the converse is not true. Using this solution we resolve the implicational constraints

µ = U =⇒ C, adding C to the capability constraint set whenever µ = U. The capability

constraints are then solved for the least solution.

When using inference for later versions of a program, we must introduce subtyping

constraints between an old definition’s (solved) type and the new version’s to-be-inferred

one. This ensures that the new definition will be a suitable dynamic replacement for the

old one.
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6.4.1 Inferring update Points

Using the inference system, we can take a program that is devoid of update expressions,

and infer places to insert them that are con-free for all types. Define a source-to-source

rewriting function rewrite : P → P ′ that inserts updateϕ at various locations throughout

the program for example, before every function return point or after every function call.

Then we perform inference, and remove all occurrences of updateϕ for which ϕ is

not ∅ (call these universal update points as they do not restrict the types that may be

updated). Adding more points implies greater availability, but longer analysis times

and more runtime overhead. The inference is stable under adding more update points

because the annotations ϕ on them are unaffected by those on other update points;

rather they are only influenced by occurrences of con in their continuations.

6.5 Properties

We have the usual type soundness property for the calculus.

6.5.1 Theorem (Type Soundness). If ∅ ⊢µ Ω;H; e : τ then either

(i) there exists Ω′,H ′, e′ such that Ω; ;He −→ Ω′;H ′; e′ and ∅ ⊢µ Ω′;H ′; e′ : τ or

(ii) e is a value

The proof of this Theorem is shown in Appendix B. The proof is based on standard

techniques for proving syntactic type soundness [WF94], but extended to deal with a

capability type system. Proving soundness for the system guarantees that our inferred

update points are safe. Consequently, any update judged suitable by updateOK() at

runtime will not invalidate the type of the program.

The idea of update capability weakening (Lemma B.1.13), plays a key rôle in the

proof. Update capability weakening shows that the ∆ annotation on updates is faithful to

our intended meaning, that is, given an update point update∆̂ in redex position in some

larger expression, the only types used concretely following the update are contained in

∆̂. More formally, if

∆;Γ ⊢ E[update∆̂] : τ ;∆′

then

∆̂; Γ ⊢ E[update∆̂] : τ ;∆′

Most of the work to establish this fact is done in proving a generalised E-inversion

lemma, from which Update Capability Weakening follows easily.
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6.6 Extensions

This section considers two extensions to our basic approach: binding deletion and re-

cursive types.

6.6.1 Binding Deletion

While most changes we have observed in source programs are due to new or replacement

definitions, occasionally definitions are deleted as well. It is also desirable to support

removing definitions dynamically, for two reasons:

1. Dead bindings will unnecessarily consume virtual memory, which could be prob-

lematic over time.

2. Dead functions could hamper dynamic updates, since update well-formedness dic-

tates that if some type t is updated, any function f that concretely manipulates t

must also be updated. Therefore, even if some function f has been removed from

the program sources, a future update to t would necessitate updating f. But how

does one update a function that is no longer of use? This issue also arises with old

type transformer functions.

Removing dead code reduces to a garbage collection problem. The programmer can

specify which bindings should be eligible for deletion at update-time, and then those

bindings not reachable by the current program can be removed. Bindings that are un-

reachable but not specified as dead should be preserved, presumably because they still

exist in the program source and might be used later. Formally, we would modify up-

dates upd to include a set of external variable names DB to be deleted. The (UPDATE)

operational rule could then be changed to include the precondition

upd.DB ⊆ deadVar(H, E[update∆])

H ′ = delete(H, e, DB)

updateOK(upd, Ω, H ′, ∆)

Here, deadVar() traverses the current program to discover which bindings are unreach-

able, and if all those specified in DB are unreachable, they are removed before the

update proceeds (using H ′). We could also imagine “marking” bindings eligible for dele-

tion, and removing them as they die.
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6.6.2 Recursive types

The source language we presented uses simple user-defined types. In particular, these

types are non-recursive. However, iso-recursive types are trivial to add to our system as

cont e and abst e correspond precisely to the mediating coercions foldt e and unfoldt e

of iso-recursive types.

6.7 Conclusions

In this chapter we defined Proteus∆, the first system to give static assurances over which

types will be updatable at runtime. The analysis to determine this property was pre-

sented as a novel capability-based type system, for which we showed there was a de-

cision procedure. We gave an operational semantics and proved type soundness, thus

ensuring the representation consistency of updates.
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Implementation

In previous chapters we built up an underlying theory for languages that support dy-

namic update. In this chapter we apply the Proteus theory to the design and implemen-

tation of a whole program, source-to-source transform for applications written in the C

programming language. The main technical problems lie in how to deal with the unsafe

features of C and in designing an efficient runtime to support dynamic update. We show

that our prototype implementation scales, transforming substantial C programs such as

VSFTPD1, a secure FTP server; Apache2, a popular web server; and OpenSSH3, a secure

remote shell. We deal with the full C language, making conservative assumptions for

features of C that are unsafe.

This chapter begins by looking at how to write and update updatable programs.

A general overview of the architecture is given and the update process is described

at the user level. Subsequently, specific details for each stage of the transformation

are given highlighting the problems specific to C. Having described how to compile an

initial updatable program we look at how patch compilation differs. Finally we give

performance results and conclude.

7.1 Writing Updatable Programs

In this section we explain how the Proteus notion of update can be used in practice

to achieve our goal of writing and evolving computer programs without the need for

1http://vsftpd.beasts.org
2http://www.apache.org
3http://www.openssh.com
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down-time. Our approach can be summarised as write-run-patch. That is, write an

initial program, run that program, then write and apply dynamic patches. Our patches

are notionally similar to classical program patches that are commonly applied to source

trees using patch4, in that they embody the change set from one version of a program

to another. Of course, as we patch a running program rather than the source code, our

patches are more structured and contain extra information to transform the live state.

Physically, patches are realised as a triple consisting of functions, data transformers, and

a state transformer. The functions are either new functions not appearing in the original

program, or functions that have changed between the versions. Data transformers are

functions from the old to the new representation of a data type and support arbitrary

changes to user defined types. Finally, the state transformer is an arbitrary procedure to

be run after a patch has been applied, providing a way to manipulate the global state.

Update runtime

Update

Compiler

GCC

Patch 

Compiler

GCC

Program1.vd

Program evolution
Program1.c Program2.c

Patch.so

Program1.exe Update()

Program execution

Program2.vd

Patch.c

Human edit

UserPatch.c

UpdPatch.c

Initial program compilation and execution First Patch compilation and application Second Patch ...

UpdProgram1.c

Patch

Generator

Figure 7.1: Update process overview

An overview of the evolution process is given in Figure 7.1, which we now explain.

The developer writes their initial program, here program1.c, and transforms it with our

update compiler. Using the resulting source code, an executable can be produced using

a standard C compiler. The only requirement is that this program is linked with the

4See the Unix manual page for patch(1)
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update runtime, a small library that handles requests to perform a dynamic update. The

user then receives the executable, which he proceeds to run. Meanwhile, the developer

continues to improve the program, eventually producing a new release, program2.c.

His aim is to produce a dynamic patch which he can send to the user. To do this, he uses

the patch generator. The patch generator looks at the differences between program1.c

and program2.c and produces a patch source file which the developer then edits. The

refined patch is then fed to the patch compiler that generates a dynamic library which,

when loaded into the existing program by the update runtime system, will upgrade the

program to the new version. Further updates can be produced and applied in the same

manner.

7.1.1 An example

To demonstrate the utility of our approach we give a series of example updates to a

linked list implementation. We show not only that it is possible to perform localised

changes to the items stored in the linked list, but that transformations to the structure

as a whole are also possible. The first update changes the items stored in the list, the

second converts the linked list to a doubly linked list and the third makes use of the

doubly linked structure introduced in the second update. We will refer back to this

example when discussing compilation.

The source code in Figure 7.2 shows the implementation of a linked list (struct

Tlist) that stores items of type struct T. Two list operations are shown: concatT,

which prepends an item to a list, and iterT, which iterates a function over the items in

a list. There is a single operation on items stored in the list, printT, which the long-

running procedure loop iterates over its current list. The main function builds a list and

calls loop.

Patch one The patch in Figure 7.3 demonstrates how to change struct T to contain an

extra field. It defines three types: T old, T new and T. Here T is the new representation

type, while T old and T new are the source and destination of the type transformer. The

reader may wonder why we distinguish between the destination of the type transformer

and the new type, after all they should be the same. The reason is technical. We use

a special representation for data of an updatable user defined type, but the result of a

type transformer function should remain in the standard representation. We use the two

types to differentiate between them, treating T new and T as incompatible, even through
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1 struct T { int x; }; /* Items to store in list */

2

3 /* Print a list item */

4 void printT(struct T* pt) {

5 printf("t.x=%d\n", pt->x);

6 return;

7 }

8

9 /* List node storing T items */

10 struct Tlist { struct T item; struct Tlist *next; };

11

12 /* Add an item to the list */

13 struct Tlist* concatT(struct T *pt, struct Tlist *pl) {

14 struct Tlist *l = malloc(sizeof(struct Tlist));

15 l->next = pl;

16 l->item = *pt;

17 return l;

18 }

19

20 /* iterate function f over list pl */

21 void iterT(void(*f)(struct T*), struct Tlist *pl) {

22 while(pl) { f(&pl->item); pl = pl->next; }

23 return;

24 }

25

26 /* Main program loop */

27 void loop(struct Tlist *pl) {

28 iterT(printT,pl);

29

30 getchar();

31 __DSU_update(); /* Do an update */

32

33 loop(pl); /* tail recursive call */

34 }

35

36 /* Initialisation */

37 int main() {

38 struct Tlist *pl = 0;

39 struct T t;

40 int i;

41

42 /* Create a list */

43 for(i=0; i<10; i++) { t.x = i; pl = concatT(&t,pl); }

44

45 loop(pl);

46 return 0;

47 }

Figure 7.2: Source code for linked list
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1 #pragma __DSU_TT("tt_T","struct_T","struct_T_old","struct_T_new")

2

3 struct T {

4 int x;

5 int y;

6 };

7

8 struct T_old {

9 int x;

10 };

11

12 struct T_new {

13 int x;

14 int y;

15 };

16

17 void printT(struct T *pt) {

18 printf("t.x=%d, t.y=%d\n", pt->x, pt->y);

19 return;

20 }

21

22 void tt_T(struct T_old *xin , struct T_new *xout , struct T *xnew ) {

23 xout->x = xin->x;

24 xout->y = xin->x*2;

25 }

Figure 7.3: Patch one: change the items in the list to be a struct that stores two items

they both represent the updated type. The type T corresponds to the new abstract type,

while T new to its representation.

The type transformer tt T converts xin to xout, initialising the extra field. The xnew

argument is a pointer to the resulting T item after conversion; this will be used in patch

two.

The names of the types and that of the type transformer are not fixed, but defined

through a C pragma directive:

#pragma DSU TT("tt T","struct T","struct T old","struct T new")

This associates the type struct T with its type transformer tt T and the definition of

the old and new types struct T old and struct T new.

Patch Two The patch in Figure 7.4 converts our singly linked list to a doubly linked

one. The interesting point here is how the type transformer tt listT works. Lines 20
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1 #pragma __DSU_TT("tt_Tlist","struct_Tlist","struct_Tlist_old",

2 "struct_Tlist_new")

3

4 struct Tlist {

5 struct T item;

6 struct Tlist *next;

7 struct Tlist *prev;

8 } ;

9

10 struct Tlist_old {

11 struct T item;

12 struct Tlist *next;

13 } ;

14

15 struct Tlist_new {

16 struct T item;

17 struct Tlist *next;

18 struct Tlist *prev;

19 } ;

20

21 void tt_Tlist(struct Tlist_old *xin , struct Tlist_new *xout,

22 struct Tlist *xnew ) {

23 xout->item = xin->item;

24 xout->next = xin->next;

25 if(xin->next) xin->next->prev = xnew;

26 }

27

28 struct Tlist* concatT(struct T *pt, struct Tlist *pl) {

29 struct Tlist * l = malloc(sizeof(struct Tlist));

30 l->next = pl;

31 l->prev = (struct Tlist *)0;

32 pl->prev = l;

33 l->item = *pt;

34 return l;

35 }

Figure 7.4: Patch two: change the list into a doubly linked list
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1 void loop(struct Tlist * pl ) {

2 revIterT(printT, lastT(pl));

3

4 getchar();

5 __DSU_update();

6

7 loop(pl);

8 }

9

10 void revIterT(void ( *f )(struct T *), struct Tlist *pl) {

11 while(pl) {

12 f(& pl->item);

13 pl = pl->prev;

14 }

15 return;

16 }

17

18 struct Tlist* lastT(struct Tlist *pl) {

19 while(pl->next) pl = pl->next;

20 return pl;

21 }

Figure 7.5: Patch three: use the structure of the doubly linked list

and 21 copy the data as expected, but we do not see an initialisation of the prev field,

as might be expected. The reason is that we have no way of knowing what the previous

cell in the list is. Therefore, although the type transformer must act locally, we have to

think globally. Here the solution is to set the next cells prev field while processing the

current one. Using this strategy, the list will be converted as soon as all of the cells have

been accessed concretely. We do not even need to force any accesses as the program will

iterate over the list the next time it calls loop.

Patch Three The final patch, shown in Figure 7.5, adds two functions which make use

of the reverse pointers added in the previous patch. revIterT iterates a function over a

list in the order last to first and lastT returns the last element of a list. Finally, the main

loop is modified to make use of these functions.

7.1.2 Tools

Before beginning a discussion of the individual stages involved in making programs

updatable let us describe the tools used to create the compiler. Our implementation is

written in the Objective CAML language [L+01] using the CIL framework [NMRW02]
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to manipulate C source code and Banshee [Kod] to solve set constraints originating

from the typing rules. We work with a type-annotated abstract syntax for C that CIL

has simplified, where the key simplifications from raw C are: switch statements are

converted to if; for/while statements are converted to while(1) using break and

continue; local compound initialisers are expanded to assignments; and locally scoped

variables are lifted to function scope.

7.2 Program compilation

The compilation follows the Proteus theory closely, but let us start by recalling the pro-

cess and introducing the new stages required in the implementation.

Coercion insertion This is the first stage of compilation and inserts explicit coercions

that witness the concrete and abstract use of structs, unions and typedefs.

Update analysis This closely follows the capability-based constraint analysis formally

defined and proved correct in Chapter 6.

Layout This is a new stage required to deal with the low-level data representation. For

example, user defined data types need to include space to expand in later updates and

version information, while functions need to be indirected through lookup tables so that

new ones can be swapped in.

Although the implementation is largely faithful to the theory, there is a timing differ-

ence in when instances of user defined types are updated. To recall, in the theory (Chap-

ter 6) an update to type t results in occurrences of abste becoming abst(c e), where c is a

user supplied transformer from the old representation to the new. In the implementation

we apply transformers at concretions instead of abstractions as it is more efficient. Why

is it more efficient? Because applying coercions at abstraction points would require find-

ing existing abstractions on the heap and stack, whereas applying them at concretions

allows us to wait until we come across a named type value during computation and no

explicit search is needed. We can feel comfortable with this change as the data is still

converted before it is used concretely, thereby preserving representation consistency.

There is one consequence of this change that is worth pointing out. In the Proteus

calculus abst e always expects e to be an element of the latest definition of t. In the
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implementation this will not always be the case, rather abstractions will expect an argu-

ment of the same type as the definition of t at the time they were compiled. To see how

this occurs assume that t = int and consider

let x = abst 2 in let = update in let y = cont (abst 3) in e

The abstraction bound to x will expect an integer argument in both the calculus and

the implementation. Now assume the update changes the definition of t from int to

string supplying the conversion function c : int → string. In the calculus, update would

change the expression bound to y to cont (abst (c 3)) making the argument to the

abstraction a string. As already mentioned, in the implementation conversion is delayed

until a concretion, therefore c is not inserted and the abstraction still receives the integer

3. The implementation of the ensuing concretion then applies the conversion c.

7.2.1 Coercion insertion

As discussed in earlier chapters, the purpose of coercion insertion is to make the ex-

pressions of user defined type and their concrete use explicit. This extra information is

then used in two ways. First in the analysis stage where the coercions indicate how the

program depends on the representation of its data types, and later, at runtime, where

the reduction of contv is exactly the place to apply a user supplied coercion denoting an

update to type t. The implementation introduces a pair of functions, cont and abst, for

each user defined type t. We call these witnessing coercions and they have the following

prototypes:

concrete t cont(abstract t *abs)

void abst(concrete t con, abstract t *abs)

Here concrete t and abstract t represent the concrete and abstract forms of type t. For

types defined using C’s typedef facility the concrete and abstract types are obvious: given

t = τ , t is abstract and τ is concrete. For composite types like structs there is no native

concrete representation, thus for every struct (and union) type struct t we create a

corresponding concrete type struct data t, so that the two forms may be differentiated.

Coercion insertion takes place during a traversal of the program’s abstract syntax.

Concretions are inserted at struct and union field access, while a combination of concre-

tions and abstractions are introduced whenever data of one type is used at another. This

latter reclassification of data is directed by a subtype relation, as described in Chapter 6.

We now comment further on these coercion insertions.
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Composite types We start with an example: x.l is a concrete use of variable x, as

we make the tacit assumption that it is a structure containing a field l. Given such an

expression we witness the concrete use by sequencing the instruction cont(x) just before

the field access.

Subtype relation At an assignment, the type of the data being assigned may not ex-

actly match the type of the variable being assigned to. For example t x = 3 has an

integer on the right hand side, but x is of type t. Assuming t is typedef’ed as an int,

the subtype relation tells us that the resulting code should be t x = abst 3. This type of

coercion also occurs for the arguments to functions.

Following the use of the ⊳ relation in the theory we must unfold the definition of

named types where we require a particular structural type.

Type unsoundness

When inserting coercions we must deal with all the casts that C allows, but which are

not type safe. If data of a user defined type falls into one of the following categories then

we mark the type as non-updatable and refrain from inserting mediating coercions:

• Data of that type is cast to or from void*.

• The type is used in a non-trivial sizeof calculation.

• A named type that is the type of a bit field in a structure.

• A type that is defined externally to the program.

• Data of one type is used at another type and we cannot determine a valid subtype

relation between them.

The most inconvenient of these is the first, although we believe that by using some

standard techniques we could make our analysis more precise in the presence of void*.

However, this is left to future work.

7.2.2 Update Analysis

Our implementation of the update analysis follows the theory presented in Chapter 6.

This section discusses the implementation of the analysis which consists of a core con-

straint collection and solving phase with pre- and post-processing to help the user choose

suitable update points.
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Constraints Constraints are collected according to the rules given in Chapter 6, but

extended to cope with extra constructs such as goto and while loops. Once the con-

straints are collected, the µ-constraints are solved and the solution used to resolve the

conditional constraints (introduced by the call rule) into standard subset constraints

on ∆ sets. These ∆-constraints are solved using Banshee [Kod], a toolkit for building

constraint-based analyses.

One interesting issue is what to do when we lose track of type information due to

C’s weak type system. More specifically, what we do when we lose track of function

types, as this is the only place where type annotations occur. In this case we are forced

to be conservative and constrain the function, forbidding it, or any function it calls, to

perform an update. This guarantees that the function can be called from any context

without affecting the validity of the analysis.

Speculative update insertion When we described the theory in Chapter 6 we assumed

that update points were inserted by the user. In the implementation, we naturally still

allow the user to do this. However, while the user must have ultimate control over the

placement of updates, we would also like the compiler to assist in choosing suitable

update points. In particular, we would like to know which points in our program could

be universal update points, that is, a point in the program at which all types are free to

be updated. To this end, speculative update points are inserted into the code at strategic

points, e.g. before every return point, or after every block. After solving the constraints,

we can determine which of the speculative update points are both universal and not

defined in a function where the analysis ruled out updates. All the speculative update

points except these valid universal ones can be deleted and the remaining ones presented

to the user as candidate update points.

7.2.3 Layout

Up until now, we have looked at how the compiler analyses the updateability of a pro-

gram. We now focus on how a program must be transformed to enable actual updates

to take place. In order to update programs using the method we propose, it is neces-

sary for the runtime to be able to replace functions and to check the version of a user

defined data type before each concrete use 5. To accomplish these two aims layout has

two distinct phases: indirection of functions and wrapping of data structures.

5The reader worried about the efficiency of this can be reassured that it is not necessary to check
the version if no update could have occurred since it was last checked. We have not implemented this
optimisation in the current system, but it would be straightforward to add.
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Function indirection

Function indirection introduces, for every function, a pointer to that function through

which all calls are indirected. Consequently, updating one function for another is a local

operation on the function pointer. Without this transformation all call sites would need

altering when updating a function.

Data type wrapping

In this second phase, for every user defined data structure (e.g. struct t from our

linked list example) we produce an auxiliary data structure that wraps the original one.

The wrapper structure pairs storage for the actual data with a single integer representing

the version number.

The version number records which version of the data type is stored in this wrapper.

Every time a data type is upgraded, the version number is increased and variables of

type struct t subsequently created by new code are given the this increased version

number. Upon concretion, this number can be inspected to determine if a conversion

needs to be applied.

In deciding how we store data of a user defined type, we must take into account

that the size of the data stored here is likely to change. Thus, there is an interesting

decision about how to store the data. There are two choices. The first is to use a fixed

space, larger than the size of the initial data to be stored, to allow for later updates.

While this has the advantage that stack allocated objects remain stack-allocated, it has

the disadvantage that growth in the size of a data type is limited. The second option is to

store in the wrapper a pointer to a heap location. Although this solution allows the size of

the data type may grow arbitrarily, it requires an extra level of indirection at each access

and allocation on the heap, which is more expensive than stack allocation. Moreover,

memory management is a problem here: we would have to use a garbage collector, or

derive a region-based allocation method to remove the heap allocated objects when they

are no longer reachable. Garbage collection is usually unsuitable for programs written in

C, although for the kind of long running server applications likely to benefit from DSU,

the impact would be minimal. Our current implementation supports the fixed space

approach, with the wrapper for struct t defined as follows:

union __DSU_udata_struct_T {

struct __DSU_data_T __DSU_data;

char __DSU_slop[max(2*sizeof(T),16U)];

};
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struct __DSU_wrapper_struct_T {

unsigned int __DSU_version;

union __DSU_udata_struct_T __DSU_udata;

};

The first union provides space for the actual data extended with a slop that provides

room for future updates to grow. The second struct wraps the union and provides version

information.

Con and Abs Implementation

Now we have defined the data representation, we can discuss the implementation of

coercions. Abstractions take a concrete data type and wrap it, while concretions do the

reverse. They have the following definitions:

struct __DSU_data_T*

__DSU_con_struct_T(struct __DSU_wrapper_struct_T* abs )

{

__DSU_latest_tt_struct_T(abs);

abs->__DSU_version = __DSU_latest_type_version_struct_T;

return (& abs->__DSU_udata.__DSU_data);

}

void __DSU_abs_struct_T(struct __DSU_data_T con ,

struct __DSU_wrapper_struct_T* abs )

{

abs->__DSU_udata.__DSU_data = con;

abs->DSU_version = 1;

}

Concretion applies the latest user type transformer (the identity function if no updates

to this type have occurred), sets the data version to the most recent and returns a pointer

to the concrete data structure. To abstract at a type T, the abstraction function is called,

passing a concrete data structure to abstract and the address of a wrapper. The wrapper

is then updated to contain the concrete data and the version number is set to the version

of this abstraction function, i.e. to the number of times the function has been updated,

here 1. Thus even after subsequent updates, this code may create instances of an abstract
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type at the old representation (as only code that concretises has to be replaced) but

before the user sees it (i.e. upon concretion), it will be converted to the most recent

representation.

7.2.4 Version Data

At the end of the initial program compilation and after every patch compilation, we

must save information about user defined types, functions and global variables so that

the validity of future patches can be determined.

For every user defined type we store the type definition, whether or not it is updatable

and its version number. For every function we store its name, type, the name of the

indirection variable that all calls go through and its version number. For global variables

we store their definitions. All stored types contain the capability annotations which

allows us to type check future updates according to the updateOK(−) predicate of the

update capability analysis.

7.3 Abstraction-Violating Alias Analysis

While the Proteus theory does not deal with C’s address-of operator, we must deal with

this in any implementation targeting the full C language. In this section we discuss the

problems posed by this operator and detail our approach to solving them.

To illustrate the problem the address-of operator, suppose type t is a struct with an

integer field i and consider how coercions would be inserted:

struct t x;

int ∗ n = &(x.i);

update;

∗n = 42;

insert coercions
−−−−−−−−−→

struct t x;

contx;

int ∗ n = &(x.i);

update;

∗n = 42;

The access to field i, a concrete use of x, is witnessed by a preceding concretion. How-

ever, the assignment on the last line also accesses field i, but this time indirectly through

the pointer n. The second concrete use does not have an associated concretion. The is-

sue here is that the address-of operator reveals information about the type t. Moreover,

there is now a way to concretely use x that is disassociated from the type of x: we cannot

determine on line 5 that assigning 42 to ∗n is a concrete use of structure t. We say that

n is an abstraction-violating alias and that type t’s abstraction is violated.
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Whenever an abstraction-violating alias exists, there is the possibility of an unde-

tected concrete use. Thus, an abstraction-violated type is not safe to update.

A conservative solution is to mark all violated structures as non-updatable. If some

instance of a structure has an alias to one of its fields then that structure is marked as

non-updatable.

A less conservative solution is to approximate the lifetime of abstraction-violating

aliases. Outside the lifetime of such abstraction-violating aliases, updates to the struc-

ture are safe. If we could determine the set of structures whose fields might be aliased at

each update point, or a conservative approximation of it, we could preclude these types

from being updated only for that update point.

The practicality of the second option is supported by observing that many applica-

tions only take references to fields in order to pass the field’s value to a function by

reference, and that these references are not long lived. In our compiler we have imple-

mented this as a simple constraint-based analysis, which we now describe informally.

7.3.1 Description

The analysis is constraint based. Sets of violated types are associated with pointers and

functions. Constraints are gathered about the types that these sets should contain via a

type-directed traversal of the program. These constraints are then solved to obtain the

actual sets. Given these sets, we can calculate the types violated in the dynamic scope

of each update point, and thus preclude them from update at that point.

With each pointer, we associate the set of types that that pointer may violate. In

other words, the structures whose fields it may point at. Given a typing context, the

union of all the abstraction violating sets associated with the pointer types it mentions,

gives the set of types that are violated in that static environment.

With each function, we associate the set of types that may be abstraction-violated

in the contexts from which it is called. These are the types violated in the dynamic

environment of the function. Whenever a function is called, a constraint is placed on

its associated abstraction-violation set so that it contains all of the types violated in the

calling context’s static environment.

For each update point, we form a conservative approximation of the set of types

that may not be updated there. This is the union of the types violated in the static

environment and those violated in the dynamic environment. These types are precluded

from update at that point.

A formal description of the system will be published in future work.
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7.4 Patch compilation

Having written a program, made that program updatable and run it, the next stage is to

write, compile and apply a patch. In this section we look at the form of patches and how

they are compiled into a dynamic patch.

As mentioned previously, user-written patches consist of new and replacement func-

tions, together with specifications of types to update. As an example, recall the first

patch to our linked list in Figure 7.3. The question now is how a file like this is trans-

formed into a patch that can be applied by the runtime system? The first part of the

answer is pleasingly simple: all functions and types are compiled in the same way as

they were in program compilation. Two further stages are unique to patch generation.

A second stage checks the validity of the patch, ensuring that for any types replaced, all

functions that manipulate that type concretely are included in the patch, and that the re-

placing values are subtypes of the ones currently existing in the program. These checks

are performed using the version data saved when we compiled the original program,

or the last patch. A final stage produces code that installs the patch. Patch installation

involves making sure both old and new code use the latest functions and that when the

program comes across an old type that it converts it to the very latest version.

Type transformer integration When the user writes a type transformer, they produce

a function to convert the current definition of a type to the new definition. After perform-

ing two updates to a type, it is possible that we will use some previously unused data

from the original program which will require converting from version zero to one and

then from one to two. Thus, type transformers need to be wrapped so that, depending

on the version of the data to convert, they first invoke the previous type transformer.

Initialisation code This stage produces an initialisation procedure that installs the

patch. This procedure acts as follows:

1. For each function in the patch, set that function’s indirection variable to point to

it.

2. For each type transformer in the patch, make the latest type transformer indirec-

tion variable point to the type transformer wrapper.
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Program KLoC gcc (sec.) Proteus-C (sec.) µ ∆

Apache 1.3.6 63 3.8 65 4,767 44,633
VSFTPD 2.0.2 25 1.2 14.6 1816 17,572
OpenSSH 4.0p1 85 4.8 88 88,5095 61,929

Table 7.1: Preliminary performance results for the Proteus-C compiler showing the appli-
cation, the number of lines of code (1,000’s), the time gcc takes to compile the program,
the time that Cilly (the C parser and pretty printer we use) takes (including the final call
to gcc, the number of µ-constraints, and the number of ∆-constraints.

7.4.1 Patch Generation

For large programs it is important to partially automate the generation of patches. Pro-

grams are updated in arbitrary ways, so completely automatic patch generation is obvi-

ously impossible and patches will always need to be edited by hand. We found a simple

approach to patch generation to work best. Our patch generator simply compares the

old and new versions of a program and produces a patch file that contains

1. all the user defined types and functions that have changed;

2. an empty type transformer shell for all of the changed types; and

3. all the new user defined types and functions

7.5 Performance

We tested our prototype implementation against Apache, VSFTPD and OpenSSH – three

common Unix server applications. Our experience with our implementation is limited at

the time of writing so we can not give detailed performance figures. This section gives

some preliminary results.

The running times of the compiler in Table 7.1 show that the analysis scales well

with an increase in the size of the code, even though compile times are roughly 15 times

slower on average than gcc.

Interestingly, the server applications that we want to update are IO bound and so

there is a negligible effect on overall performance. We have observed that the memory

requirement of an updatable application is generally less than twice what the original

application would have required. This is because the only significant space overhead is

room to expand the user-defined data types.

We leave to future work reporting experience with updating real-life programs.
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7.6 Patterns for Updatable Programs

Proteus provides a theoretical foundation for dynamic update, and the prototype im-

plementation has gone some way to showing its practicality. By structuring the update

mechanism on the existing user defined type facilities of C, we are able to take advantage

of the structure already present in programs to perform dynamic update. Additionally,

it allows existing C programs to be updated with minimal changes. However, updates

can be made easier to write if programs are structured in an update-friendly way. In this

section we present some design patterns that facilitate the updateability of programs; C

has no abstraction mechanisms to enforce these design patterns, but following them will

aid the update process.

Tail recursive calls instead of loops This is a necessary change. Long running loops

are supported in our system through tail recursive calls. This is because old code that is

active is executed to its end, but only new functions are called. An infinite while loop

never leaves the current function, but a tail recursive loop will use the new code on its

next iteration.6

Encapsulated access Type transformers must act locally, because the transformer only

sees one data item at a time. If a data structure is made up of many sub-structures,

such as our linked list example, then it can be useful to have a handle on the whole

structure when wanting to convert it to another structure, like a tree. If all accesses are

through an enclosing structure, then the outer structure will be updated before the inner

structure is accessed. The outer structure can force the updates of the inner structures

and in addition do the global processing on the structure.

Global handles Suppose you chose an update point in the middle of some tricky pro-

cessing of a complicated data structure. In cases like these, it may be advantageous to

convert all of the data being processed prior to the program resuming. To do this in our

system we can simply iterate over the data making a concrete use of it in the state trans-

former, forcing the lazy conversion. In order to do this the state transformer function

needs access to the data and so we need to provide a global handle.

6As an aside, it would be easy to adapt the update compiler to convert long running loops into tail-
recursive functions by closure converting the body of the loop and lifting it into a new function.
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7.7 Conclusions

This chapter presented an implementation of the Proteus theory presented in Chapter 6

for the full C programming language, discussed the design choices and hilighted areas

where the implementation differed from the theory. We also gave an informal presen-

tation of a new analysis to track abstraction-violating aliases and thus deal with the

address-of operator in our framework. The implementation has validated the utility of

our approach and through use we have gained a better understanding of how to write

updatable programs.





8
Conclusions and Future Work

Dynamic update has traditionally been expressed at a low level of abstraction, unintu-

itive to the programmer and with few guarantees. This thesis raised the level of pre-

sentation to give a semantics at the language level, which is arguably more intuitive. It

presented a theory of dynamic software updates dealing with dynamic rebinding, data

transformation, and static determination of update capability. An exploration of the

practicalities of the theory was initiated.

The rest of this chapter gives a summary of how this was achieved and discusses

future directions for research.

8.1 Summary

We began by attempting to reconcile the semantics of the CBV λ-calculus with that of dy-

namic update. This lead to the discovery of the delayed instantiation calculi λr and λd.

We then showed that the reasoning principles of the CBV λ calculus apply when think-

ing about λr and λd programs by showing that their contextual equivalence relations

coincide. Within the delayed instantiation framework we showed how to express a dy-

namic update operation simply and directly. This foundational theory was then used to

present a simple module-level update operation in the style of Erlang, and its strengths

and weaknesses were demonstrated by example.

Having established a foundation for dynamic relinking, we turned to the challenge

of state transformation. Up until this point, state transformation was carried out in an

ad hoc manner, with no direct support for changing the representation of data. Part two
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of this thesis developed a theory of data type evolution that not only supports uniform

changes to arbitrary data type representations, but amortises the cost of transforming in-

stances across the running time of the program. While this system provided the required

functionality and was type safe, it was unknown which types would be updatable when

the program was ran; this could only be discovered when an update was attempted.

This concern was addressed by providing a capability based type system that gives static

guarantees about which types will be updatable at runtime.

The theory presented was then used to produce a prototype implementation for the

C programming language. The implementation is capable of transforming C programs

into updatable ones, performing the static analysis to give assurances on updatability,

compiling dynamic patches, and applying them at runtime.

8.2 Future Work

There are many directions for future work. Here we limit our discussion to direct exten-

sions of the work presented.

8.2.1 Integration with Other Language Features

In our work we have deliberately kept the number of language features low so that

the problem remained tractable. Future work should investigate how dynamic update

interacts with other language features. For example, consider extending Proteus and

Proteus∆ with modern programming language constructs. Proteus could be augmented

with most type system extensions (e.g. parametric polymorphism) in a straight-forward

way. One area which requires consideration is the addition of first class functions. Due

to our requirement that all functions that use a named type concretely are updated

along with the type, intricacies arise with anonymous functions and partial applications.

Anonymous functions are used as a low-level building block in functional programs and

there may be many of them, for example, if a state monad is implemented in ML. In this

situation it is unclear that the requirement of function replacement mentioned earlier is

still a reasonable one.

8.2.2 Concurrency

Although a lot of server software (especially under Unix) is process based, it is a grow-

ing trend to be thread based instead. The theories of dynamic rebinding and delayed

instantiation extend to accommodate threads in a straight-forward way. It is the state
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transformation of Proteus that is more challenging when extending to a threaded en-

vironment. When a thread reaches an update point it would be unable to carry out a

confree check to guarantee the safety of the update because this check would depend on

the state of the other threads, which would be constantly changing. The obvious option

is to take a barrier approach, waiting for all threads to reach an update point. Given

such a system state, as long as UpdateOK(−) held in one thread and the confree check

passed at all threads, the update would be safe to apply.

Similarly, the capability based type system needs extending to cope with threads.

The property it approximates is flow sensitive, but with threads the flow is non-

deterministically interleaved between concurrent paths of execution. Below some paths

of inquiry are suggested, but more exploration is needed.

Barrier approach Following the suggestion made in the dynamic case, all threads

could be required to reach an update point before an update could proceed. As each

update point is annotated with the named types that may not be updated there we have

a set of n such restricting sets, say D = ∆1,∆2, . . . ,∆n. The safe types to update are

those that are safe to update at each update point, i.e.
⋂

D.

Separation approach This is a refinement on the barrier approach. Each thread in a

program usually has a specific job, such as storage access or handling a request, and is

started from a specific procedure. Associate with each thread a sort indicating the func-

tion where execution begins. The code that can be reached from a given starting point is

limited and therefore, it is possible to determine an approximation to the functions that

are callable from that thread. Thus, we could determine an approximation for the types

concreted by each thread sort. When updating a named type we only need synchronise

the threads that actually concrete values of that type.

8.2.3 Implementation

An implementation is an important part of validating the practicality of theoretical ideas.

Although a working prototype has been produced that demonstrates the idea’s feasibility,

we clearly need to test our ideas with a larger scale study of industrial-sized applications.

Work is currently under way, in collaboration with colleagues at the University of Mary-

land, to produce patches to upgrade the Very Secure FTP Daemon (VSFTPD) and Secure

Shell Daemon (SSHD) that will match their source code evolution over past few years.

Initial results are very encouraging.
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From a technical point of view, the issues that need addressing in the current imple-

mentation for C mainly concern the analysis. One such issue is void * pointers. We are

currently very conservative in dealing with pointers of type void *. Using techniques

from the literature for dealing with parametric and existential uses of void * would

enhance the flexibility of the analysis.

We have a PLDI publication [NHSO06] that details our experience of using Proteus

to update industrial network server applications written in C.



Nomenclature

|a| The maximum label in the labelled term a

Φ ◭ Well-formed environment

Φ ◭ a Environment well-formed w.r.t. the term a

Φ ◭ E Environment well-formed w.r.t. the evaluation context E

−→ Single step reduction relation

−→∗ Transitive, reflexive closure of −→

Hole in a context

µ;∆
−→ An update reduction in Proteus-Delta

[|− |]val Value collapsing function converting λr/d values to λc values

{v/x}e The substitution of v for x in expression e

A Atomic evaluation context

A1 Non-binding atomic evaluation context

A2 Binding atomic evaluation context

a An annotated term

bindOK[ H ]upd Predicate to determine if update upd is compatible with heap H

C A coercion context

C Program context

Ec[E3]
Φ The environment implied by E3 and Φ
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e cval λc value predicate

∆ Capability Set (of named types)

a d’val λd′ value predicate

a dval λd value predicate

E General evaluation context

e A term of the calculus under consideration

E.E′ Context Composition

E.e Context application

E[e] Context application

E1 Non-binding compound evaluation context

E2 Binding only compound evaluation context

E3 Binding and non-binding evaluation context

env(E ) The typing context generated by E

ǫ Variable ranging over updatability flags

ǫ[a] Erase annotation on term a

e err Indicates that e is stuck (a runtime error)

frf(a) The set of free recursive functions in a

fv(e) The set of free variables in e

Γ ⊢ e : τ Typing judgement: e has type τ in context Γ

Γ A typing context mapping variables to their types (and possibly type

names to types)

Γ, x : τ Disjoint extension of Γ with x : τ

Γ[x : τ ] The context Γ, but with x mapping to τ

Γ,Γ′ The context formed by the disjoint union of the elements in Γ and Γ′
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H Heap

hb(E ) The set of variables that bind around the hole in E

a infd Predicate indicating that a is in instantiation normal form for λd

a inf ◦d Predicate indicating that a is in open instantiation normal form λd

a infr Predicate indicating that a is in instantiation normal formfor λr

a inf ◦r Predicate indicating that a is in open instantiation normal form λr

ι[e] Create annotated term from unannotated

instvar[a] The number of variables above lambda abstractions

labell(a) The term a labelled with natural numbers

µ Updatability flag

N Not updatable value for updatability flag

Ω Type environment

φ Variable ranging over capability sets

R Destruct context or relation over terms

r Reference cell

rebind(V ,L) The substitution replacing the variables in V with their (unique) al-

pha variant in L

a r’val λr′ value predicate

a rval λr value predicate

Σ Module context

Σ;Γ ⊢ e : T Expression e has type T in typing context Γ and module context Σ

t A named type

P A program

τ A Type
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U Updatable value for updatability flag

upd Proteus update

updateOK(Upd,Ω,H, e) UpdateOK predicate

v A value

wf[−] Well-formed predicate

x, y, z Variables

a znfd Predicate indicating that a is in zero normal form for λd

a znf ◦d Predicate indicating that a is in open zero normal form λd

a znfr Predicate indicating that a is in zero normal form for λr

a znfr Predicate indicating that a is in open zero normal form λr
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Appendix

A
Proof of Type Soundness for Proteus

The proof of soundness for Proteus follows an almost identical structure to the proof for

Proteus∆. In this section we give a sketch of the proof, paying particular attention when

it differs from that of the corresponding Proteus∆ proof.

We state the three main theorems whose proofs can be easily reconstructed by fol-

lowing the structure of those in Proteus∆.

A.0.1 Lemma (Progress). If ⊢ Ω and Ω;Φ ⊢ H and Ω,Φ ⊢ e : τ then either

(i) there exists Ω′,H ′, e′ such that Ω;H; e −→ Ω′;H ′; e′ or

(ii) e is a value

A.0.2 Lemma (Preservation). If ∅ ⊢ Ω;H; e : τ then

(i) if Ω;H; e −→ Ω;H ′; e′ then ∅ ⊢ Ω;H ′; e′ : τ

(ii) if Ω;H; e
upd
−−→ Ω′;H ′; e′ then ∅ ⊢ Ω′;H ′; e′ : τ

A.0.3 Theorem (Type Soundness). If ∅ ⊢ Ω;H; e : τ then either

(i) there exists Ω′,H ′, e′ such that Ω; ;He −→ Ω′;H ′; e′ and ∅ ⊢ Ω′;H ′; e′ : τ or

(ii) e is a value

Proteus’ type system is a simplification of that of Proteus∆. To obtain Proteus, the

capabilities are removed, along with the subtype relation and the subsumption rule.

191



192 APPENDIX A. PROOF OF TYPE SOUNDNESS FOR PROTEUS

Subtyping can be removed as their only function was to provide subtype-polymorphic

behaviour for the capabilities on function arrow, which do not exist in the dynamic

system.

We first give some properties of conFree[ ] and updateOK(), the proofs for which are

simple inductions on the syntax of terms.

A.0.4 Lemma (conFree[− ] Congruence). For any upd and e, if conFree[ e ]upd holds, then

for any subterm e′ of e we have conFree[ e′ ]upd. We say that conFree[− ]upd is congruent

to the syntax of expressions.

A.0.5 Lemma (updateOK(−) Congruence). For any upd,Ω,H and e, if

updateOK(upd,Ω,H, e) holds then for any subterm e′ of e we have

updateOK(upd,Ω,H, e′). We say that updateOK(−upd,Ω,H,−) is a congruent to

the syntax of expressions.

The only change to the dynamic semantics is in the definition of updateOK. We now

give the cases of proofs that depend on updateOK.

A.0.6 Lemma (Update Expression Safety). If ⊢ Ω and Ω;Φ ⊢ H and Ω,Φ,Γ ⊢µ e : τ

and updateOK(upd,Ω,H, e) then U [Ω,Φ,Γ]upd ⊢µ U [e]upd : τ

Proof. The proof is by induction on the typing derivation of e in a similar way to the

Proteus∆proof. We give the cases for concretization, abstraction and top-level variables

variables:

➤Case (EXPR.XVAR) : By assumption Ω,Φ,Γ ⊢ z : τ . Thus Φ(z) = τ and by (a)

z ∈ dom(H).

By definition of U [−]upd on expressions we have U [z]upd = z.

There are three ways in which U [Ω,Φ,Γ]upd(z) = τ ′ can arise:

➤Case z ∈ dom(upd.AB) : As z ∈ dom(H) and by updateOK the domain of the

heap and upd.AB are disjoint, we can conclude z /∈ upd.AB, therefore this case

cannot occur.

➤Case z ∈ dom(upd.UB) : Let upd.UB(z) = (τ ′, bv).

By definition of U [−]upd we have U [Φ]upd(z) = heapType(τ ′, bv).

By updateOK assumption τ = heapType(τ ′, bv).
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By (A.EXPR.XVAR) U [Ω,Φ]upd ⊢ z : τ , as required.

➤Case z /∈ dom(upd.UB) : By definition of U [−]upd on contexts U [Φ]upd(z) = τ ,

thus U [Ω,Φ,Γ]upd ⊢ z : τ , as required.

➤Case (EXPR.ABS) : By assumption

Ω,Φ,Γ ⊢ e : τ [Ω,Φ](t) = τ

Ω,Φ,Γ ⊢ abst e : t

Consider the form of upd.UN:

➤Case t 6∈ dom(upd.UN) : By definition we have U [Ω,Φ,Γ]upd(t) = τ and

U [abst e]upd = abst U [e]upd. The desired result follows by induction and

(A.EXPR.ABS).

➤Case upd.UN(t) = (τ ′′, c) : Observe U [abst e]upd = abst (c U [e]upd). Using

(A.EXPR.ABS) and (A.EXPR.APP) we are required to prove:

U [Ω,Φ,Γ]upd ⊢ c : τ ′ → τ ′′(a)

U [Ω,Φ,Γ]upd ⊢ U [e]upd : τ ′(b)

U [Ω,Φ,Γ]upd ⊢ c U [e]upd : τ ′′ [Ω,Φ,Γ](t) = τ ′(c)

U [Ω,Φ,Γ]upd ⊢ abst (c U [e]upd) : t

(b) holds by induction. To prove (a):

U [Ω, types(H)]upd ⊢ c : τ → τ ′ By updateOK() assumption

U [Ω, types(H),Γ]upd ⊢ c : τ → τ ′ By Cap. Strengthening lemma

U [Ω,Φ,Γ]upd ⊢ c : τ → τ ′ By Ctx. Weakening lemma

Where the last step is valid because Ω;Φ ⊢ H and so types(H) ⊆ Φ.

By case split Ω = (t = τ,Ω′) for some Ω′.

By definition of U [] U [t = τ,Ω′,Φ,Γ]upd = t = τ ′′,U [Ω′,Φ,Γ]upd, thus (c) holds.

➤Case (EXPR.CON) : Assume

Ω(t) = τ Ω,Φ,Γ ⊢ e : t

Ω,Φ,Γ ⊢ cont e : τ
(A.1)

updateOK(upd,Ω,H, cont e) (A.2)
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Suffices to show that the leaves of this derivation hold:

U [Ω]upd(t) = τ
(a)

U [Ω,Φ,Γ]upd ⊢ U [e]upd : t
(b)

U [Ω,Φ,Γ]upd ⊢ cont U [e]upd : τ

By updateOK assumption: conFree[ cont e ]upd, thus by definition of conFree, t /∈

dom(upd.UN). It follows by definition of U [−]upd that (a) holds.

By Confree Congruence lemma conFree[ e ]upd. It can now be shown by application

of IH that (b) holds.

❑

A.0.7 Lemma (Heap Update Safety). If ⊢ Ω and Ω;Φ ⊢ H and

updateOK(upd,Ω,H, e) then U [Ω]upd;U [Φ]upd ⊢ U [H]upd

Proof. First note that from Ω;Φ ⊢ H we can deduce that for all ρ ∈ dom(H), τ, e

(a) dom(Φ) = dom(H)

(b) if ρ = z and H(z) = (τ, e) then Ω,Φ ⊢ e : τ and Φ(z) = τ ref

(c) if ρ = z and H(z) = (τ, λ(x).e ) then Ω,Φ ⊢ λ(x).e : τ and Φ(z) = τ

(d) if ρ = r and H(r) = (·, e) then there exists a τ such that Ω,Φ ⊢ e : τ and Φ(r) = τ ref

So assume (a)-(d) and also

⊢ Ω (A.3)

updateOK(upd,Ω,H, ∆̂) (A.4)

Via the same expansion we are required to prove for all ρ ∈ dom(U [H]upd), τ, e that

(i) dom(U [Φ]upd) = dom(U [H]upd)

(ii) if ρ = z and U [H]upd(z) = (τ, e) then U [Ω,Φ]upd ⊢ e : τ and U [Φ]upd(z) = τ ref

(iii) if ρ = z and U [H]upd(z) = (τ, λ(x).e ) then U [Ω,Φ]upd ⊢ λ(x).e : τ and

U [Φ]upd(z) = τ

(iv) if ρ = r and U [H]upd(r) = (·, e) then there exists τ such that U [Ω,Φ]upd ⊢ e : τ and

U [Φ]upd(r) = τ ref

hold. (a) implies (i) by inspection of the definition of U [] on contexts and heaps. We

are left to show (ii)-(iv).
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Observe that types(H) ⊆ Φ because of (b) and (c).

Now consider the form of an arbitrary entry in U [H]upd:

➤Case r 7→ (·, e) : This case is dealt with as in the Proteus∆case.

➤Case z 7→ (τ, b) : In this case (iv) holds trivially and we are left to show (ii) and (iii).

➤Case (ii) : This case is dealt with as in the Proteus∆case as it only relies on

properties of updateOK common between the two definitions.

➤Case (iii) : Assume

U [H]upd(z) = (τ1 → τ2, λ(x).e )

i.e. that b = λ(x).e and τ = τ1 → τ2. Prove

U [Ω,Φ]upd ⊢ U [λ(x).e ]upd : τ1 → τ2 (A.5)

U [Ω,Φ]upd(z) = τ1 → τ2 (A.6)

By definition of U [−]upd on heaps, there are three ways to generate elements of

U [H]upd.

➤Case z ∈ dom(H) and z ∈ dom(upd.UB) : This case is dealt with as in the

Proteus∆case as it only relies on properties of updateOK common between

the two definitions.

➤Case z ∈ dom(H) and z /∈ dom(upd.UB) : By case split and definition of

U [−]upd on heaps, there exists b′,H ′ such that U [z 7→ (τ, b′),H ′]upd = z 7→

(τ,U [b′]upd),U [H ′]upd and H = z 7→ (τ, b′),H ′.

Because b′ is a function by case split, then by the definition of U [−]upd on

bindings, U [b′]upd is a function, say b′ = λ(x).e′

By (c) and typing rules

Ω,Φ ⊢µ e′ : τ2

Ω,Φ ⊢ λ(x).e′ : τ1 → τ2

where τ = τ1 → τ2.

Required to prove A.5 and A.6.

By B.5 conFree[ H ]upd, therefore conFree[ e ]upd. By UpdateOK Congruence

lemma updateOK(upd,Ω,H, e).
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By Update Expression Safety lemma U [Ω,Φ]upd ⊢µ U [e]upd : τ2. Therefore, by

use of (A.BIND.FUN), A.5 holds.

By the definition of U [−]upd on contexts it follows that U [Φ]upd(z) = τ making

A.6 holds, as required.

➤Case z /∈ dom(H) : The result follows similarly to this subcase in case (ii).

❑



Appendix

B
Proof of Type Soundness for Proteus-Delta

In this section we give a proof of type soundness for Proteus∆. The proof is based

on standard techniques for proving syntactic type soundness [WF94], but extended to

deal with a capability type system. Proving soundness for the system guarantees that

our inferred update points are safe and consequently any update judged suitable by

updateOK() at runtime will not invalidate the type of the program.

Before we begin the proof we discuss the rôle of update capability weakening

(Lemma B.1.13), a key lemma. Update capability weakening shows that the ∆ an-

notation on updates is faithful to our intended meaning, that is, given an update point

update∆̂ in redex position in some larger expression, the only types used concretely

following the update are contained in ∆̂. More formally, if

∆;Γ ⊢ E[update∆̂] : τ ;∆′

then

∆̂; Γ ⊢ E[update∆̂] : τ ;∆′

Most of the work to establish this fact is done in proving a generalised E-inversion

lemma, from which Update Capability Weakening follows easily.
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B.1 Proof of Type Soundness

B.1.1 Definition (Typing contexts). A context Γ is a finite partial function with the

following entries:

z : τ types of external identifiers

z : τ ref types of references

x : τ types of local identifers

t = τ named type definitions

We write Φ for typing contexts containing only external identifiers and references, and

Ω for those containing only named type definitions. ❑

We first note some standard Inversion, Canonical Forms and Weakening lemmas.

B.1.2 Lemma (Inversion – expressions).

1. If ∆0; Γ ⊢µ {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn};∆n then

∃τ ′
1, . . . , τ

′
n,∆′

1, . . . ,∆
′
n−1,∆

′
n ⊇ ∆n such that ∀i ∈ 1..n we have Γ ⊢ τ ′

i <: τi

and ∆′
i−1; Γ ⊢µ ei : τ ′

i ;∆
′
i

2. If ∆0; Γ ⊢µ e1 e2 : τ2;∆ then ∃τ ′
2,∆1,∆2, ∆̂

′, µ̂ such that ∆0; Γ ⊢µ e1 : τ1
µ̂;∆̂
−→ τ2;∆1

and ∆1; Γ ⊢µ e2 : τ1;∆2 and ∆′ ⊆ ∆2 ∧ (µ̂ = U ⇒ (µ = U ∧ ∆′ ⊆ ∆̂′))

❑

B.1.3 Lemma (Inversion – subtyping).

1. If τ <: τ1
µ1;∆1
−→ τ ′

1 then ∃µ2,∆2, τ2, τ
′
2 such that τ = τ2

µ2;∆2
−→ τ ′

2

2. If τ <: {l1 : τ1, . . . , ln : τn} then ∃τ ′
1, . . . , τ

′
n such that τ = {l1 : τ ′

1, . . . , ln : τ ′
n}

❑

B.1.4 Lemma (Canonical Forms).

1. If v is a value of type int then for some n ∈ N, v = n

2. If v is a value of type t then for some value v′, v = abst

3. If v is a value of type {l1 : τ1, . . . , ln : τn} then ∃v1, . . . , vn such that v = {l1 =

v1, ..., ln = vn}

4. If v is a value of type t ref then v = ρ, where ρ ranges over references and external

identifiers
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5. If v is a value of type τ1
µ;∆
−→ τ2 then ∃z. v = z

❑

B.1.5 Lemma (Weakening). If ∆1; Γ ⊢µ e : τ ;∆2 and Γ ⊆ Γ′ then ∆1; Γ
′ ⊢µ e : τ ;∆2 ❑

We now establish some basic facts about capabilities.

• If an update is judged safe for one update point then it is also safe for any more

restricted update point.

• If an expression does not perform an update, it does not consume any of its capa-

bility. By “consume” we mean that its pre capability is equal to its post capability.

• If a term type checks given one capability the it type checks in a larger capability.

• Values type with any pre and post capability (as long as pre is as least as permissive

as post)

B.1.6 Lemma (UpdateOK Capability Weakening). If updateOK(upd,Ω,H,∆) and ∆′ ⊆

∆ then updateOK(upd,Ω,H,∆′)

Proof. The only clause in updateOK() that depends on ∆ is dom(∆)∩dom(upd.UN) = ∅,

and the validity is uneffected by the shrinking of ∆. ❑

B.1.7 Lemma (Capability Strengthening).

(i) If ∆1; Γ ⊢N e : τ ;∆2 then ∀∆3. ∆1 ∪ ∆3; Γ ⊢N e : τ ;∆2 ∪ ∆3

(ii) If ∆1; Γ ⊢µ e : τ ;∆2 then ∀∆3. ∆1 ∪ ∆3; Γ ⊢µ e : τ ;∆2

Proof. We first prove (i) by induction on the typing derivation of e. Note that the

(A.EXPR.UPDATE) case cannot occur as the annotation on the turnstyle is U not N. We

give the application case:

➤Case (A.EXPR.APP) : Assume

∆;Γ ⊢N e1 : τ1
µ̂;∆̂
−→ τ2;∆

′

∆′; Γ ⊢N e2 : τ1;∆
′′ ∆′′′ ⊆ ∆′′

µ̂ ≤ µ µ̂ = U =⇒ ∆′′′ ⊆ ∆̂′

∆;Γ ⊢N e1 e2 : τ2;∆
′′′
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prove

∆ ∪ ∆3; Γ ⊢N e1 : τ1
µ̂;∆̂
−→ τ2;∆

′ ∪ ∆3

(a)

∆′ ∪ ∆3; Γ ⊢N e2 : τ1;∆
′′ ∪ ∆3

(b) ∆′′′ ∪ ∆3 ⊆ ∆′′ ∪ ∆3
(c)

µ̂ ≤ µ(d) µ̂ = U =⇒ ∆′′′ ∪ ∆3 ⊆ ∆̂′(e)

∆ ∪ ∆3; Γ ⊢N e1 e2 : τ2;∆
′′′ ∪ ∆3

(a) and (b) hold by induction. (c) holds if ∆′′′ ⊆ ∆′′, which holds by assumption.

(d) holds by assumption. If µ̂ = N then (e) holds trivially. It cannot be the case that

µ̂ = U because then the annotation on the turnstyle for the typing of e1 e2 must be U

contradicting our assumption.

➤Case (A.EXPR.UPDATE) : This is trivially true as type checking update requires U an-

notation on the turnstyle.

The rest of the cases are similar.

(ii) can be proved by a similar induction on the typing derivation of e. ❑

B.1.8 Lemma (Value Typing). If ∆1; Γ ⊢µ v : τ ;∆2 then ∀∆′
1,∆

′
2, µ

′ such that ∆′
2 ⊆ ∆′

1

it holds that ∆′
1; Γ ⊢µ′ v : τ ;∆′

2

Proof. Proceed by induction of the typing derivation of v. First note that none of the

rules A.EXPR.VAR,REFCELL,PROJ, APPU,IF, LET, REF DEREF, ASSIGN, UPDATE, CON or IF-

UPDATE can the expression be a value.

➤Case (A.EXPR.INT) : By (A.EXPR.INT) ∆′
2; Γ ⊢µ n : int;∆′

2. By Capability Strengthen-

ing Lemma ∆′
1; Γ ⊢µ n : int;∆′

2 as required.

➤Case (A.EXPR.XVAR) : Similar to (A.EXPR.INT) case.

➤Case (A.EXPR.RECORD) : By Lemma B.1.4 (Canonical Forms) each element of the

record must be a value in order for the record to be a value. The result follows by

induction on each of the elements of the record and use of the (A.EXPR.RECORD) rule.

➤Case (A.EXPR.ABS) : By Lemma B.1.4 (Canonical Forms) of values abst is a value

only if e is a value, thus suppose e = v for some v, then the result follows by induction

on the typing derivation of v and use of the (A.EXPR.ABS) rule.

➤Case (A.EXPR.SUB) : By straight-forward application of the IH.

❑

B.1.9 Lemma (Substitution). If ∆1; Γ, x : τ ′ ⊢µ e : τ ;∆2 and ∆3; Γ ⊢µ v : τ ′;∆3 then

∆1; Γ ⊢µ e[v/x] : τ ;∆2
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Proof. This property follows by induction on the typing derivation of e using the Value

Typing Lemma as appropriate. ❑

B.1.10 Lemma (Derivations have Well-Formed Types). If ∆1; Γ,Ω,Φ ⊢µ e : τ ;∆2 then

Ω ⊢ τ

B.1.11 Lemma (Typing Weakens Capability). If ∆1; Γ ⊢µ e : τ ;∆2 then ∆2 ⊆ ∆1

Proof. By an easy induction on typing derivations. Note that the axioms enforce equality

of capabilities; UPDATE, IF and IF-UPDATE rules allow weakening of capabilities; and the

remainder act inductively w.r.t. capabilities. ❑

The following E-inversion lemma describes the constraints on the capabilities of an

expression if it is to be placed in a given evaluation context (continuation). The lemma

essentially tells us that, given an expression E[e] which is checkable in capability ∆, we

can substitute any term e′ for e, that is checkable in capability ∆̂, provided its post-

capability is at least that of the post-capability of e. i.e. we have to ensure that the

computation has “enough capability left” to execute the continuation.

The reader may be surprised that the pre-capability of e′ (which is also the pre-

capability of E[e′]) is not constrained in any way. Intuitively this is justified by the fact

that capabilities are flow-sensitive, and that the expression E[e′] represents an expression

e′ with continuation E. Thus, the execution of, and therefore the calculation of capabil-

ities for, E[e′] proceeds first by considering e′, and then by considering E. Provided that

after e′ is considered, there is enough capability left over to satisfy E, then the capability

we started out with is irrelevant.

This lemma is a key component in proving Update Capability Weakening (Lemma

B.1.13).

B.1.12 Lemma (E-inversion). If ∆;Γ ⊢µ E[e] : τ ;∆′ then there exists ∆̂′ ⊇ ∆′ and τ ′

such that

(i) ∆;Γ ⊢µ e : τ ′; ∆̂′.

(ii) for all e′, ∆̂, ∆̂′′ ⊇ ∆̂′ and Γ′ ⊇ Γ, if ∆̂; Γ′ ⊢µ e′ : τ ′; ∆̂′′ then ∆̂; Γ′ ⊢µ E[e′] : τ ;∆′.

Proof. Proceed by induction on the expression typing derivation of E[e]. In each case E

may be or a compound context. In the case where E can be a compound context we

don’t consider the case as this holds trivially.

➤Case (A.EXPR.VAR) : In this case E = , e = x and ∆′ = ∆.
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Assume ∆;Γ, x : τ ⊢µ x : τ ;∆ and choose the existentially quantified variable ∆̂ =

∆. (i) holds by assumption.

To prove (ii) assume ∆̂′′ ⊇ ∆ (*), Γ′ ⊇ Γ, x : τ and that for some ∆̂, ∆̂; Γ′ ⊢µ e′ :

τ ; ∆̂′′ (**). To complete we are required to show ∆̂; Γ′ ⊢µ e′ : τ ;∆, which follows from

(*) and (**) using (A.EXPR.SUB) type rule.

➤Case (A.EXPR.INT|XVAR|UPDATE) : These cases all follow in a similar way to the

(A.EXPR.VAR) case.

➤Case (A.EXPR.RECORD) : E = {l1 = v1, . . . , li = E
′[e], . . . , 1n = en}. By assumption

(where ∆ ≡ ∆0,∆
′ ≡ ∆n):

∆0; Γ ⊢µ v1 : τ1;∆1 . . .

∆i−1; Γ ⊢µ E
′[e] : τi;∆i

. . . ∆n−1; Γ ⊢µ en : τn;∆n

∆0; Γ ⊢µ {l1 = v1, . . . , li = E
′[e], . . . , 1n = en} : {l1 : τ1, . . . , ln : τn};∆n

Prove that for some ∆̂′ ⊇ ∆n (i) and (ii) hold.

(i) By induction on the typing derivation of E[e] we have that for some ∆̂′ ⊇ ∆i it

holds that ∆0; Γ ⊢µ e : τ ′; ∆̂′. By Typing Weakens Capability lemma ∆i ⊇ ∆n,

therefore ∆̂′ ⊇ ∆n as required.

(ii) Assume ∆̂; Γ′ ⊢µ e′ : τ ′; ∆̂′′ holds for some ∆̂, ∆̂′′ ⊇ ∆̂′ and Γ′ ⊇ Γ. Note that by

Value Typing lemma and Weakening, we have ∆̂; Γ′ ⊢µ vj : τj; ∆̂ for 1 ≤ j ≤ i − 1.

Prove

∆̂; Γ′ ⊢µ v1 : τ1; ∆̂ . . .

∆̂; Γ′ ⊢µ E
′[e′] : τi;∆i

. . . ∆n−1; Γ
′ ⊢µ en : τn;∆n

∆̂; Γ′ ⊢µ {l1 = v1, . . . , li = E
′[e′], . . . , 1n = en} : {l1 : τ1, . . . , ln : τn};∆n

By induction, we have ∆̂; Γ ⊢µ E
′[e′] : τ ;∆i. The reset of the premises follow from

the assumptions using Weakening.

➤Case (A.EXPR.APP) : There are two possibilities for the form of E: v E
′ and E

′ e. We

just consider the first as the second is similar.
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Assume E = v E
′ and

∆;Γ ⊢µ v : τ1
µ̂;∆f
−→ τ2;∆

′

∆′; Γ ⊢µ E
′[e] : τ1;∆

′′ ∆′′′ ⊆ ∆′′

µ̂ ≤ µ µ̂ = U =⇒ ∆′′′ ⊆ ∆f

∆;Γ ⊢µ v E
′[e] : τ2;∆

′′′

Show that (i) and (ii) hold for some τ ′ and ∆̂′ ⊇ ∆′′′.

(i) By IH there exists a ∆̂′ ⊇ ∆′′ such that ∆;Γ ⊢µ e : τ ′; ∆̂′. From the assumptions we

can deduce ∆̂′ ⊇ ∆′′′ as required.

(ii) By the typing judgement for v, Value Typing lemma and Weakening, for some

Γ′ ⊇ Γ we have

∆̂; Γ′ ⊢µ v : τ1
µ̂;∆f
−→ τ2; ∆̂ (B.1)

Thus, it suffices to prove

∆̂; Γ′ ⊢µ v : τ1
µ̂;∆f
−→ τ2; ∆̂

∆̂; Γ′ ⊢µ E
′[e′] : τ1;∆

′′ ∆′′′ ⊆ ∆′′

µ̂ ≤ µ µ̂ = U =⇒ ∆′′′ ⊆ ∆f

∆̂; Γ′ ⊢µ v E
′[e] : τ2;∆

′′′

The typing for v holds by B.1 and the judgement for E
′[e′] by IH. Finally, the subset

constraints hold directly by assumptions.

➤Case (A.EXPR.CON) : E = cont . Assume

∆;Γ ⊢µ E
′[e] : t;∆′ Γ(t) = τ t ∈ ∆′

∆;Γ ⊢µ cont E
′[e] : τ ;∆′

(i) follows by IH. To prove (ii) assume that for some arbitrary e′, ∆̂, ∆̂′′ ⊇ ∆̂′ and

Γ′ ⊇ Γ

∆̂; Γ′ ⊢µ e′ : t; ∆̂′′

and prove

∆̂; Γ′ ⊢µ E
′[e′] : t;∆′ Γ′(t) = τ t ∈ ∆′

∆̂; Γ′ ⊢µ cont E
′[e] : τ ;∆′
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The first premise of which follows by induction and the second and third directly from

the assumptions.

➤Case (A.EXPR.IF) : There are two cases for the form of E: if v = E
′ then e1else e2

and if E
′ = e then e1else e2. We consider only the first as the second is similar.

Assume E = if E
′ = e then e1else e2 and

∆;Γ ⊢µ v : τ ;∆1 ∆1; Γ ⊢µ E
′[e] : τ ;∆2

∆2; Γ ⊢µ e1 : τ ′;∆3 ∆2; Γ ⊢µ e2 : τ ′;∆4

∆;Γ ⊢µ if v = E
′[e] then e1else e2 : τ ′;∆3 ∩ ∆4

where ∆3 ∩ ∆4 ≡ ∆′. Prove (i) and (ii) hold. (i) holds by induction on the typing

derivation of E
′[e] and use of Weakening, Capability Strengthening, and Typing Weakens

Capability lemmas. To prove (ii) assume for arbitrary e′, ∆̂, ∆̂′′ ⊇ ∆̂′ and Γ′ ⊇ Γ that

∆̂; Γ′ ⊢µ e′ : τ ′; ∆̂′′ holds and show

∆̂; Γ′ ⊢µ v : τ ; ∆̂
(A)

∆̂; Γ′ ⊢µ E
′[e′] : τ ;∆2

(B)

∆2; Γ
′ ⊢µ e1 : τ ′;∆3

(C) ∆2; Γ
′ ⊢µ e2 : τ ′;∆4

(D)

∆̂; Γ′ ⊢µ if v = E
′[e′] then e1else e2 : τ ′;∆3 ∩ ∆4

(A) holds by assumptions, Value Typing lemma and Weakening. (B) holds by induction

on the typing derivation of E[e], while (C) and (D) hold straight from the assumptions

by use of Weakening.

➤Case (A.EXPR.PROJ-ABS-REF-DEREF-ASSIGN-LET-IFUPDATE-SUB) :

These cases follow by simple inductive arguments, similar to those presented above,

using Value Typing lemma and Weakening lemma.

❑

The following Update Capability Weakening lemma is used in the proof of Update

Program Safety. It states that given an expression where the next redex is an update,

this expression is checkable with the capability annotated on the update. Put another

way, the capability annotated on the update is a sufficient capability for the execution

of the continuation. If this is true, then the only types concreted by old code in the

continuation are those not updated at this update point.

B.1.13 Lemma (Update Capability Weakening). If ∆;Γ ⊢µ E[update∆′′
] : τ ;∆′ then

∆′′; Γ ⊢µ E[update∆′′
] : τ ;∆′.
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Proof. Assume ∆;Γ ⊢µ E[update∆′′
] : τ ;∆′.

By E-inversion lemma, for some ∆̂′: ∆;Γ ⊢µ update∆′′
: τ ; ∆̂′.

By update type rule ∆̂′ = ∆′′ and ∆′′ ⊆ ∆.

Thus: ∆′′; Γ ⊢µ update∆′′
: τ ;∆′′.

By E-inversion: ∆′′; Γ ⊢µ E[update∆′
] : τ ;∆′, as required. ❑

B.1.14 Lemma (Heap Extension). If ⊢ Ω and Ω;Φ ⊢ H and ∅; Ω,Φ ⊢N v : τ ; ∅ and

l /∈ dom(H) then Ω;Φ, l : τ ref ⊢ H, l 7→ (·, v)

Proof. By definition of heap typing. ❑

B.1.15 Lemma (Update Expression Safety). If ⊢ Ω and Ω;Φ ⊢ H and ∆1; Ω,Φ,Γ ⊢µ

e : τ ;∆2 and updateOK(upd,Ω,H,∆1) then ∆1;U [Ω,Φ,Γ]upd ⊢µ U [e]upd : τ ;∆2

Proof. Proceed by induction on the derivation of ∆;Ω,Φ,Γ ⊢µ e : τ ;∆′:

➤Case (A.EXPR.INT) : By assumption ∆;Ω,Φ,Γ ⊢µ n : int;∆′. Since U [n]upd = n, we

have ∆;U [Ω,Φ,Γ]upd ⊢µ U [n]upd : int;∆′ follows from (A.EXPR.INT).

➤Case (A.EXPR.VAR) : By assumption ∆;Ω,Φ,Γ, x : τ ⊢µ x : τ ;∆′. Since U [x]upd = x

and U [Ω,Φ,Γ, x : τ ]upd = U [Ω,Φ,Γ]upd, x : τ , the result follows from (A.EXPR.VAR).

➤Case (A.EXPR.XVAR) : By assumption ∆;Ω,Φ,Γ ⊢µ z : τ ;∆′. Thus Φ(z) = τ and by

(a) z ∈ dom(H).

By definition of U [−]upd on expressions we have U [z]upd = z.

There are three ways in which U [Ω,Φ,Γ]upd(z) = τ ′ can arise:

➤Case z ∈ dom(upd.AB) : As z ∈ dom(H) and by updateOK the domain of the

heap and upd.AB are disjoint, we can conclude z /∈ upd.AB, therefore this case

cannot occur.

➤Case z ∈ dom(upd.UB) : Let upd.UB(z) = (τ ′, bv).

By definition of U [−]upd we have U [Φ]upd(z) = heapType(τ ′, bv).

By updateOK assumption U [Ω, types(H)]upd ⊢ heapType(τ ′, bv) <: τ .

By Weakening U [Ω,Φ]upd ⊢ heapType(τ ′, bv) <: τ .
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The result follows by use of (A.EXPR.SUB) type rule.

➤Case z /∈ dom(upd.UB) : By definition of U [−]upd on contexts U [Φ]upd(z) = τ ,

thus ∆;U [Ω,Φ,Γ]upd ⊢µ z : τ ;∆′, as required.

➤Case (A.EXPR.REFERENCE) : Similar to the var case.

➤Case (A.EXPR.ABS) : By assumption

∆;Ω,Φ,Γ ⊢µ e : τ ;∆′ [Ω,Φ](t) = τ

∆;Ω,Φ,Γ ⊢µ abst e : t;∆′

Consider the form of upd.UN:

➤Case t 6∈ dom(upd.UN) : By definition we have U [Ω,Φ,Γ]upd(t) = τ and

U [abst e]upd = abst U [e]upd. The desired result follows by induction and

(A.EXPR.ABS).

➤Case upd.UN(t) = (τ ′′, c) : Observe U [abst e]upd = abst (c U [e]upd). Using

(A.EXPR.ABS) and (A.EXPR.APP) we are required to prove:

∆;U [Ω,Φ,Γ]upd ⊢µ c : τ ′ N;∆c
−→ τ ′′;∆

(a)

∆;U [Ω,Φ,Γ]upd ⊢µ U [e]upd : τ ′;∆′(b)

∆;U [Ω,Φ,Γ]upd ⊢µ c U [e]upd : τ ′′;∆′ [Ω,Φ,Γ](t) = τ ′(c)

∆;U [Ω,Φ,Γ]upd ⊢µ abst (c U [e]upd) : t;∆′

(b) holds by induction. To prove (a):

∅;U [Ω, types(H)]upd ⊢N c : τ → τ ′; ∅ By updateOK() assumption

∆;U [Ω, types(H),Γ]upd ⊢N c : τ
N;∆c
−→ τ ′;∆ By Cap. Strengthening lemma

∆;U [Ω,Φ,Γ]upd ⊢N c : τ
N;∆c
−→ τ ′;∆ By Ctx. Weakening lemma

Where the last step is valid because Ω;Φ ⊢ H and so types(H) ⊆ Φ.

By case split Ω = (t = τ,Ω′) for some Ω′.
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By definition of U [] U [t = τ,Ω′,Φ,Γ]upd = t = τ ′′,U [Ω′,Φ,Γ]upd, thus (c) holds.

➤Case (A.EXPR.CON) : Assume

t ∈ ∆′ Ω(t) = τ ∆;Ω,Φ,Γ ⊢µ e : t;∆′

∆;Ω,Φ,Γ ⊢µ cont e : τ ;∆′
(B.2)

updateOK(upd,Ω,H,∆) (B.3)

Suffices to show that the leaves of this derivation hold:

t ∈ ∆′(a) U [Ω]upd(t) = τ
(b)

∆;U [Ω,Φ,Γ]upd ⊢µ U [e]upd : t;∆′(c)

∆;U [Ω,Φ,Γ]upd ⊢µ cont U [e]upd : τ ;∆′

(a) holds by assumptions. (c) holds by induction. Now show (b). Note that by B.3

∆ ∩ dom(upd.UN) = ∅, so by assumption t /∈ upd.UN.

Ω = t = τ,Ω′ for some Ω′, by B.3

dom(∆′) ∩ dom(upd.UN) = ∅ by B.3

U [t = τ,Ω′]upd = (t = τ,U [Ω′]upd) as t /∈ upd.UN

➤Case (A.EXPR.RECORD) : By assumption (where ∆ ≡ ∆0,∆
′ ≡ ∆n):

∆i; Ω,Φ,Γ ⊢µ ei+1 : τi+1;∆i+1 i ∈ 1..(n − 1) n ≥ 0

∆0; Ω,Φ,Γ ⊢µ {l1 = e1, . . . , 1n = en} : {l1 : τ1, . . . , ln : τn};∆n

By typing weakens capability ∆i−1 ⊆ ∆i for i ∈ 1..n. By the fact that updateOK(−) is

preserved under weakening of capability, and induction, we can prove:

∆i; Ω,Φ,Γ ⊢µ U [ei+1]
upd : τi+1;∆i+1

For each i ∈ 0..n − 1. Finally, the result follows using (A.EQ.RECORD).

➤Case (A.EXPR.SUB) : Assume

∆;Ω,Φ,Γ ⊢µ e : τ ′;∆′′ Γ ⊢ τ ′ <: τ ∆′ ⊆ ∆′′

∆;Ω,Φ.Γ ⊢µ e : τ ;∆′
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Prove

∆;U [Ω,Φ,Γ]upd ⊢µ U [e]upd : τ ′;∆′′ U [Ω,Φ,Γ]upd ⊢ τ ′ <: τ ∆′ ⊆ ∆′′

∆;U [Ω,Φ,Γ]upd ⊢µ U [e]upd : τ ;∆′

The typing judgement on e holds by induction and the subset constraint holds by as-

sumption. We are left to show the subtype assertion. By assumption Ω,Φ,Γ ⊢ τ ′ <: τ .

Furthermore, this judgement’s only constraint on Ω,Φ,Γ is that the free type names in τ

and τ ′ are in the domain of Ω,Φ,Γ. It is easily proven that the domain of U [Ω,Φ,Γ]upd

is a conservative extension of the domain of Ω,Φ,Γ. Thus the subtype judgement holds.

➤Case (A.EXPR.UPDATE) : Update checks to be int in any environment.

➤Case (A.EXPR.(APP|PROJ|LET|REF|DEREF|ASSIGN|IF|IF-UPDATE)) :

All follow by a simple inductive argument.

❑

The next lemma, Heap Update Safety, tells us that given a typeable heap and a valid

update, applying that update to the heap leaves the heap well typed in the updated

environment.

B.1.16 Lemma (Heap Update Safety). If ⊢ Ω and Ω;Φ ⊢ H and

updateOK(upd,Ω,H, ∆̂) then U [Ω]upd;U [Φ]upd ⊢ U [H]upd

Proof. First note that from Ω;Φ ⊢ H we can deduce that for all ρ ∈ dom(H), τ, e:

(a) dom(Φ) = dom(H)

(b) if ρ = z and H(z) = (τ, e) then Ω,Φ ⊢ e : τ and Φ(z) = τ ref

(c) if ρ = z and H(z) = (τ, λ(x).e ) then Ω,Φ ⊢ λ(x).e : τ and Φ(z) = τ

(d) if ρ = r and H(r) = (·, e) then there exists a τ such that Ω,Φ ⊢ e : τ and Φ(r) = τ ref

So assume (a)-(d) and also:

⊢ Ω (B.4)

updateOK(upd,Ω,H, ∆̂) (B.5)

Via the same expansion we are required to prove for all ρ ∈ dom(U [H]upd), τ, e that

(i) dom(U [Φ]upd) = dom(U [H]upd)
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(ii) if ρ = z and U [H]upd(z) = (τ, e) then U [Ω,Φ]upd ⊢ e : τ and U [Φ]upd(z) = τ ref

(iii) if ρ = z and U [H]upd(z) = (τ, λ(x).e ) then U [Ω,Φ]upd ⊢ λ(x).e : τ and

U [Φ]upd(z) = τ

(iv) if ρ = r and U [H]upd(r) = (·, e) then there exists τ such that U [Ω,Φ]upd ⊢ e : τ and

U [Φ]upd(r) = τ ref

hold. (a) implies (i) by inspection of the definition of U [] on contexts and heaps. We

are left to show (ii)-(iv).

Observe that types(H) ⊆ Φ because of (b) and (c).

Now consider the form of an arbitrary entry in U [H]upd:

➤Case r 7→ (·, e) : In this case (ii) and (iii) hold trivially because the domain is a

reference. To prove (iv) for U [H]upd(r) = (·, e) we show that, for some τ

∅;U [Ω,Φ]upd ⊢N e : τ ; ∅

U [Ω,Φ]upd ⊢ e : τ
(B.6)

U [Φ]upd(r) = τ ref (B.7)

By the action of U [−]upd on heaps there exists an e′ such that r 7→ (·, e′) ∈ H and

e = U [e′]upd.

By (d) there exists a τ ′ such that

Ω,Φ ⊢ e′ : τ ′ (B.8)

Φ(r) = τ ′ ref (B.9)

By Update Expression Safety lemma U [Ω;Φ]upd ⊢ e′ : τ ′.

Take τ = τ ′ to show B.8 and B.9.

By definition of U [−]upd on heaps U [Φ]upd(r) = τ ′ ref holds, which proves B.9.

By UpdateOK Capability Weakening lemma updateOK(upd,Ω,Φ, ∅).

By Update Expression Safety lemma:

∅;U [Ω,Φ]upd ⊢N U
[

e′
]upd

: τ ′; ∅

We obtain B.8 by application of (A.BIND.EXPR).

➤Case z 7→ (τ, b) : In this case (iv) holds trivially and we are left to show (ii) and (iii).
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➤Case (ii) : Assume U [H]upd(z) = (τ, e) and prove

∅;U [Ω,Φ]upd ⊢N e : τ ; ∅

U [Ω,Φ]upd ⊢ e : τ
(B.10)

U [Φ]upd(z) = τ ref (B.11)

By definition of U [−]upd on heaps, there are three ways to generate elements of

U [H]upd.

➤Case z ∈ dom(H) and upd.UB(z = (τ, e) : As (a) holds by assumption and

z ∈ dom(H) by case split, we have z ∈ dom(Φ). Thus for some τ ′, Φ(z) = τ ′.

By definition of U [−]upd on contexts U [Φ]upd(z) = τ ref , which proves B.11.

By B.9 U [Ω, types(H)]upd ⊢ e : τ .

By context weakening U [Ω,Φ]upd ⊢ e : τ , which proves B.10.

➤Case z ∈ dom(H) and z /∈ dom(upd.UB) : By the definition of

U [−]upd on heaps there must exist b′ such that U [z 7→ (τ, b′),H ′]upd = z 7→

(τ,U [b′]upd),U [H ′]upd.

As b = U [b′]upd and this is an expression by fact we are in (ii) case split, b′

must also be an expression. Thus by (b) Ω,Φ ⊢ b′ : τ and Φ(z) = τ ref .

Then by inversion ∅; Ω,Φ ⊢N b′ : τ ; ∅ holds.

By Update Expression Safety lemma

∅;U [Ω,Φ]upd ⊢N U
[

b′
]upd

: τ ; ∅

which proves B.10

As z /∈ dom(upd.UB), by the definition of U [−]upd on contexts we have

U [Ω,Φ′, z : τ ref ]upd = z : τ ref ,U [Ω,Φ′]upd, which proves B.11.

➤Case z /∈ dom(H) : In this case it must hold that z ∈ dom(upd.AB).

By assumptionU [H]upd(z) = (τ, e) (where e is in fact a value) therefore

upd.AB(z) = (τ, e).

By B.9

U [Ω,Φ]upd ⊢ e : τ

which proves B.10.



B.1. PROOF OF TYPE SOUNDNESS 211

By inspection of the action of U [−]upd on contexts we see that

U [Ω,Φ]upd(z) = types(upd.AB)(z) = τ ref

which proves B.11, as required.

➤Case (iii) : Assume

U [H]upd(z) = (τ1
µ;∆′

−→ τ2, λ
∆(x).e )

i.e. that b = λ∆(x).e and τ = τ1
µ;∆′

−→ τ2. Prove

U [Ω,Φ]upd ⊢ U
[

λ∆(x).e
]upd

: τ1
µ;∆′

−→ τ2 (B.12)

U [Ω,Φ]upd(z) = τ1
µ;∆′

−→ τ2 (B.13)

By definition of U [−]upd on heaps, there are three ways to generate elements of

U [H]upd.

➤Case z ∈ dom(H) and z ∈ dom(upd.UB) : By case split there exists

x, e, τ1, τ2, µ
′,∆1,∆2 such that upd.UB(z) = (τ1

µ′;∆2
−→ τ2, λ

∆1(x).e ).

U [Ω, types(H)]upd ⊢ λ∆1(x).e : τ1
µ′;∆2
−→ τ2 by B.9

U [Ω, types(()H)]upd ⊢ λ∆1(x).e : τ1
µ′;∆2
−→ τ2 by weakening

which proves B.12. Finally, by (a), z ∈ dom(Φ), so by definition of U [−]upd

on contexts: U [Φ]upd(z) = τ1
µ′;∆2
−→ τ2 which proves B.13

➤Case z ∈ dom(H) and z /∈ dom(upd.UB) : By case split and definition of

U [−]upd on heaps, there exists b′,H ′ such that U [z 7→ (τ, b′),H ′]upd = z 7→

(τ,U [b′]upd),U [H ′]upd and H = z 7→ (τ, b′),H ′.

Because b′ is a function by case split, then by the definition of U [−]upd on

bindings, U [b′]upd is a function, say b′ = λ∆(x).e′

By (c) and typing rules

∆;Ω,Φ ⊢µ e′ : τ2;∆
′

Ω,Φ ⊢ λ∆(x).e′ : τ1
µ;∆′

−→ τ2

where τ = τ1
µ;∆′

−→ τ2.
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Required to prove B.12 and B.13.

By B.9 bindOK[ types(H) ]. By case split z /∈ dom(upd.UB). By last two

facts dom(upd.UN) ∩ ∆ = ∅. It follows by th eprevious fact B.9 that

updateOK(upd,Ω,H,∆).

By Update Expression Safety lemma ∆;U [Ω,Φ]upd ⊢µ U [e]upd : τ2;∆
′. There-

fore, by use of (A.BIND.FUN), B.12 holds.

By the definition of U [−]upd on contexts it follows that U [Φ]upd(z) = τ making

B.13 holds, as required.

➤Case z /∈ dom(H) : The result follows similarly to this subcase in case (ii).

❑

B.1.17 Lemma (Update Program Safety). If

(i) ∅ ⊢µ Ω;H; E[update∆̂] : τ and

(ii) updateOK(upd,Ω,H, ∆̂)

then U [∅]upd ⊢ U [Ω]upd;U [H]upd;U [E[0]]upd : τ

Proof. Assume

⊢ Ω Ω;Φ ⊢ H

∆;Ω,Φ ⊢U E[update∆̂] : τ ;∆′

∅ ⊢ Ω;H; E[update∆̂] : τ

(B.14)

updateOK(upd,Ω,H, ∆̂) (B.15)

It suffices to prove the hypotheses for this deduction:

⊢ U [Ω]upd(a)
U [Ω]upd; Φ′ ⊢ U [H]upd(b)

∆̂;U [Ω]upd,Φ′ ⊢U U
[

E[update∆̂]
]upd

: τ ;∆′
(c)

U [∅]upd ⊢ U [Ω]upd;U [H]upd;U
[

E[update∆̂]
]upd

: τ

Choose Φ′ = U [Φ]upd; then (a) follows from the definition of updateOK. (b) follows from

Update Heap Safety lemma.

By Update Capability Weakening lemma and B.14

∆̂; Γ,Ω,Φ′ ⊢U E[update∆̂] : τ ;∆′
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therefore (c) follows from Update Expression Safety lemma. ❑

The Non-update Expression Safety Lemma establishes that the typing relation is

closed under reduction. One thing to stress is that we only require closure; the ca-

pabilities do not become more restrictive, indeed they can grow at function calls, which

explains ∆′
1 ⊇ ∆1 and ∆′

2 ⊇ ∆2 in the existentially quantified variables.

B.1.18 Lemma (Non-Update Expression Safety). If ⊢ Ω and Ω;Φ ⊢ H and ∆1; Ω,Φ ⊢µ

e : τ ;∆2 and H; e −→ H ′; e′ then ∃Φ′ ⊇ Φ,∆′
1 ⊇ ∆1,∆

′
2 ⊇ ∆2 such that

(i) Ω;Φ′ ⊢ H ′ and

(ii) ∆′
1; Ω,Φ′ ⊢µ e′ : τ ;∆′

2

Proof. Proceed by induction on the derivation of ∆1; Γ,Ω,Φ ⊢µ e : τ ;∆2.

➤Case (A.EXPR.VAR) : Expressions are closed w.r.t local variables, so this cannot occur.

➤Case (A.EXPR.XVAR-INT-REFERENCE) : These are values, so can not reduce.

➤Case (A.TYPE.APPU) : Assume

Ω;Φ ⊢ H (B.16)

∆1; Ω,Φ ⊢µ e1 : τ1
µ̂;∆′

−→ τ2;∆2

∆2; Ω,Φ ⊢µ e2 : τ1;∆3 ∆4 ⊆ ∆3

µ̂ ≤ µ µ̂ = U =⇒ ∆4 ⊆ ∆′

∆1; Ω,Φ ⊢µ e1 e2 : τ2;∆4

(B.17)

H; e1 e2 −→ H ′; e′ (B.18)

Required to prove that there exists Φ′ ⊇ Φ,∆′
1 ⊇ ∆1,∆

′
2 ⊇ ∆2 such that (i) and (ii)

hold. The only possible expression reduction of B.18 is (CALL). In this case

(H, z 7→ (τ, λ∆(x).e )), z v −→ (H, z 7→ λ∆(x).e ), e[v/x]

Take H ′ = H and Ω′ = Ω then (i) holds by B.16.

Now prove (ii) by showing

∆ ∪ ∆1; Γ ⊢µ e[v/x] : τ2;∆4 (B.19)
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By B.17 we have ∆2; Ω,Φ ⊢µ v : τ1;∆3 and by applying Value Typing lemma ∅; Ω,Φ ⊢µ

v : τ1; ∅. By B.16 ∆;Ω,Φ, x : τ1 ⊢µ̂ e : τ2;∆
′. Then by Substitution lemma

∆;Ω,Φ ⊢µ̂ e[v/x] : τ2;∆
′ (B.20)

From typing of the LHS of the application

∆;Ω,Φ ⊢µ z : τ1
µ̂;∆′

−→ τ2;∆2 (B.21)

It is clear that B.20 must be derived either directly from the axiom (A.TYPE.XVAR) or by

(possibly repeated use of) subsumption terminated by (A.TYPE.XVAR). It is easy to check

that <: is transitive allowing us to conclude that Ω ⊢ Φ(z) <: τ1
µ̂;∆′

−→ τ2. By Subtype

Inversion Lemma there exists τ3, τ4, µ̂
′,∆5 such that

Ω ⊢ τ3
µ̂′;∆5
−→ τ4 <: τ1

µ̂;∆′

−→ τ2 (B.22)

and thus

τ1 <: τ3 τ4 <: τ1 ∆′ ⊆ ∆5 µ̂′ ≤ µ̂ (B.23)

By use of subsumption on B.20 using facts from B.23

∆;Ω,Φ ⊢µ̂′ e[v/x] : τ2;∆
′ (B.24)

To show B.19 we case on the value of µ̂′.

➤Case µ̂′ = U : By B.23 µ̂ = U. Thus by precondition of app rule µ = U and

∆4 ⊆ ∆′. By these derived facts, B.24, Capability Strengthening Lemma, and

subsumption rule we have the result.

➤Case µ̂ = N : By B.23 µ̂ can be either U or N. If it is U we proceed as we did

in the previous case, so suppose µ̂ = N. In this case µ is unconstrained so case on

its value. If µ = U then proceed as in µ̂′ = U case. If µ = N the result follows by

Capability Strengthening Lemma and use of subsumption.

➤Case (A.EXPR.CON) : Assume

∆1; Ω,Φ ⊢µ e′ : t;∆2 t ∈ ∆2 [Ω,Φ](t) = τ

∆1; Ω,Φ ⊢µ cont e′ : τ ;∆2

(B.25)

Ω;Φ ⊢ H (B.26)
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The only possible expression reduction of cont e′ is (CONABS). In this case e′ = abst v

for some value v, and the result of the reduction is v. By inversion ∆1; Ω,Φ ⊢µ v : τ ;∆2

as required.

➤Case (A.EXPR.PROJ) : Assume

∆0; Ω,Φ ⊢µ e : {l1 : τ1, . . . , ln : τn};∆1

∆0; Ω,Φ ⊢µ e.li : τi;∆1

(B.27)

Ω;Φ ⊢ H (B.28)

The only possible expression reduction is (PROJ). Assume

∆i−1; Ω,Φ ⊢ vi : τi;∆i i ∈ 0..n n ≥ 0

∆0; Ω,Φ ⊢ {l1 = v1, . . . , 1n = vn} : {l1 : τ1, . . . , ln : τn};∆n

∆0; Ω,Φ ⊢ {l1 = v1, . . . , 1n = vn}.li : τi;∆n

(B.29)

The result of the reduction is vi. Choose Φ′ = Φ, then (a) holds by B.28. By typing

weakens capability lemma we have ∆i ⊆ ∆i+1 for i ∈ 0..n. Therefore:

∆0; Ω,Φ ⊢ vi : τi;∆i by capability strengthening

∆0; Ω,Φ ⊢ vi : τi;∆n by (A.EXPR.SUB)

as required to show (b).

➤Case (A.EXPR.LET) : Assume

∆1; Ω,Φ ⊢µ e1 : τ ′
1;∆2

∆2; Ω,Φ, x : τ1 ⊢µ e2 : τ2;∆3

∆1; Ω,Φ ⊢µ let x : τ = e1 in e2 : τ2;∆3

(B.30)

The only possible expression reduction is (LET). In this case e1 is equal to some value.

(i) holds by assumption and we are left to show (ii) where e′ = e2[e1/x].

∅; Ω,Φ ⊢µ e1 : τ ′
1; ∅ by Value Typing lemma

∆2; Ω,Φ ⊢ e2[e1/x]τ2;∆3 by Substitution lemma

∆1; Ω,Φ ⊢ e2[e1/x]τ2;∆3 by Capability Strengthening lemma

➤Case (A.EXPR.RECORD) : No expression reductions apply.

➤Case (A.EXPR.UPDATE) :
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The case is trivially true as the expression cannot do a non-update reduction.

➤Case (A.EXPR.SUB) :

Follows directly by application of IH.

➤Case (A.EXPR.REF) : Assume ⊢ Ω and Ω;Φ ⊢ H and H, ref e′′ −→ H ′, e′ and

∆;Ω,Φ ⊢µ e : τ ;∆′

∆;Ω,Φ ⊢µ ref e : τ ref ;∆′

The only reduction rule applicable here is ref. This implies, for some value v and

location r /∈ dom(H), that e′′ = v and H ′ = H, r 7→ v.

Required to prove

(i) Ω;Φ, r : τ ref ⊢ H, r 7→ (·., v)

(ii) ∆;Ω,Φ, r : τ ref ⊢µ r : τ ref ;∆′

(i) follows from Heap Extension lemma. (ii) is deducible from (A.EXPR.LOC) and

(A.EXPR.SUB).

➤Case (A.EXPR.(IF|DEREF|ASSIGN|ABS|IF-UPDATE)) : These cases follow similarly.

❑

B.1.19 Lemma (Non-Update Program Safety). If ⊢ Ω, Ω;Φ ⊢ H, ∆1; Ω,Φ ⊢ E[e] : τ ;∆2

and Ω;H; E[e] −→ Ω;H ′; E[e′], then there exists Φ′ ⊇ Φ,∆′
1 ⊇ ∆1 and ∆′

2 ⊇ ∆2 such

that

(i) Ω;Φ′ ⊢ H

(ii) ∆′
1; Ω,Φ ⊢ E[e′] : τ ;∆′

2

Proof. By E-inversion lemma we have, for some τ ′ and ∆̂′ ⊇ ∆′
2, that ∆1; Ω,Φ ⊢ e :

τ ′; ∆̂′.

By inversion of derivation of program reduction Ω;H; e −→ Ω;H ′; e′.

By Non-Update Expression Safety lemma there exists Φ′ ⊇ Φ,∆′
1 ⊇ ∆1 and ∆̂′′ ⊇ ∆̂′

such that ∆′
1; Ω,Φ ⊢ e′ : τ ′; ∆̂′ and Ω;Φ ⊢ H. The latter proves (i).

By weakening ∆1; Ω,Φ′ ⊢ E[e] : τ ′;∆2.

By E-inversion lemma ∆′
1; Ω,Φ′ ⊢ E[e] : τ ′;∆2, which proves (ii) as required.

❑

B.1.20 Lemma (Preservation). If ∅ ⊢ Ω;H; e : τ then

(i) if Ω;H; e −→ Ω;H ′; e′ then ∅ ⊢ Ω;H ′; e′ : τ
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(ii) if Ω;H; e
upd
−−→ Ω′;H ′; e′ then ∅ ⊢ Ω′;H ′; e′ : τ

Proof. Suppose ∅ ⊢ Ω;H; e : τ and consider the form of the transition:

➤Case Ω;H; e −→ Ω;H ′; e′ : (i) holds by Non-Update Program Safety lemma. (ii)

trivially holds.

➤Case Ω;H; e
upd
−−→ Ω′;H ′; e′ : This transition must be by the update rule, therefore

e = E[update∆] for some E and ∆; and either

(a) updateOK(upd,Ω,H,∆) Ω′ = U [Ω]upd H ′ = U [H]upd e′ = U [E[0]]upd

(b) e′ = E[1]

In the former case ∅ ⊢ Ω′;H ′; e′ : τ by Update Program Safety lemma. In the latter

case E[1] can be typed by E-inversion lemma. In either case (ii) is confirmed. (i) holds

trivially. ❑

B.1.21 Lemma (Progress). If ⊢ Ω and Ω;Φ ⊢ H and ∆1; Ω,Φ ⊢µ e : τ ;∆2 then either

(i) there exists Ω′,H ′, e′ such that Ω;H; e −→ Ω′;H ′; e′ or

(ii) e is a value

Proof. Proceed by induction on the derivation of ∆1; Ω,Φ ⊢µ e : τ ;∆2.

➤Case (A.EXPR.INT|XVAR|LOC) : All values.

➤Case (A.EXPR.VAR) : Cannot occur because the context is closed under local variables.

➤Case (A.EXPR.APP) : Assume

⊢ Ω (B.31)

Ω;Φ ⊢ H (B.32)

∆1; Ω,Φ ⊢µ e1 : τ1
µ̂;∆′

−→ τ2;∆2

(a)

∆2; Ω,Φ ⊢µ e2 : τ1;∆3 ∆4 ⊆ ∆3

µ̂ ≤ µ (µ̂ = U) =⇒ ∆4 ⊆ ∆′

∆1; Ω,Φ ⊢µ e1 e2 : τ2;∆4

(B.33)

By IH one of (i)-(iii) holds for e1:

➤Case (i) holds for e1 : (i) holds for e1 e2 by cong rule.

➤Case (iii) holds for e1 : By IH there are three cases to consider for e1:
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➤Case (i) holds for e2 : (i) holds for e1 e2 by cong rule

➤Case (iii) holds for e2 :

e1 = z by Canonical Forms lemma

∆1; Ω,Φ ⊢µ z : τ1
µ̂;∆′

−→ τ2;∆2 By (a)

Thus Φ(z) = τ1
µ̂;∆′

−→ τ2 and H(z) = λ∆(x).e by B.32. Therefore the (CALL)

reduction rule matches and (a) holds for e1 e2.

➤Case (A.EXPR.SUB) : Follows directly by induction on the sub derivation.

➤Case (A.EXPR.ABS) : Assume

∆;Ω,Φ ⊢µ e : τ ;∆′ Γ(t) = τ

∆;Ω,Φ ⊢µ abst e : t;∆′

By IH there are three cases to consider:

➤Case (i) holds for e : By cong reduction rule (i) holds.

➤Case (iii) holds for e : e is a value by case split, thus abst is also a value (by

inspection of values)

➤Case (A.EXPR.UPDATE) : update∆ is not a value, so (i) must hold. There are two

possible reductions for update, but both result in an integer. By Typing Weakens Capa-

bility and the Value Typing Lemma an integer can be made to type check in the same

updatability and capability environments as update∆.

The rest of the cases are similar.

❑

B.1.22 Theorem (Type Soundness). If ∅ ⊢µ Ω;H; e : τ then either

(i) there exists Ω′,H ′, e′ such that Ω; ;He −→ Ω′;H ′; e′ and ∅ ⊢µ Ω′;H ′; e′ : τ or

(ii) e is a value

Proof. Suppose ∅ ⊢µ Ω;H; e : τ then by progress one of the following hold:

(a) there exists Ω′,H ′, e′ such that Ω;H; e −→ Ω′;H ′; e′ or
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(b) e is a value

Suppose (a) holds, then by preservation ∅ ⊢µ Ω′;H ′; e′ : τ and (i) holds. Suppose (c)

holds, then (iii) holds. ❑
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